JP2001087767A - Method and device for passing liquid in liquid passing type capacitor - Google Patents

Method and device for passing liquid in liquid passing type capacitor

Info

Publication number
JP2001087767A
JP2001087767A JP27076799A JP27076799A JP2001087767A JP 2001087767 A JP2001087767 A JP 2001087767A JP 27076799 A JP27076799 A JP 27076799A JP 27076799 A JP27076799 A JP 27076799A JP 2001087767 A JP2001087767 A JP 2001087767A
Authority
JP
Japan
Prior art keywords
liquid
condenser
flow
electrodes
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27076799A
Other languages
Japanese (ja)
Other versions
JP4135801B2 (en
Inventor
Makio Tamura
真紀夫 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP27076799A priority Critical patent/JP4135801B2/en
Publication of JP2001087767A publication Critical patent/JP2001087767A/en
Application granted granted Critical
Publication of JP4135801B2 publication Critical patent/JP4135801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for passing liquid in a liquid passing type capacitor which keeps the separation ability of ionic component in the liquid passing type capacitor constant even in the operation over a long period and allows the electrode material to have a long life. SOLUTION: In this method for passing liquid in a liquid passing type capacitor, the ionic component of the liquid to be treated during the liquid passing is removed and desalted liquid is produced by impressing DC voltage to a pair of electrodes, thereafter, the pair of electrodes are short-circuited or DC power source is inversely connected and the ionic component which is removed is recovered as concentrated liquid together with the liquid to be treated during the liquid passing. Therein, the liquid to be treated is adjusted to <=30 deg.C or >=50 deg.C, <= pH 5 or >= pH 9, or is subjected to deaeration treatment or reduction treatment and, thereafter, is passed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、その保有する一対
の電極に直流電圧を印加して通液中の被処理液のイオン
成分が除去された脱塩液を得、その後、短絡あるいは逆
接続して一対の電極を再生すると共に、前記除去イオン
成分を通液中の被処理液と共に回収するもので、その目
的に合わせて被処理液のイオン成分を除去及び回収する
長期間に亘り安定した通液が可能な通液型コンデンサの
通液方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a desalting solution in which ionic components of a liquid to be treated are removed by applying a DC voltage to a pair of electrodes held in the solution, and then a short circuit or reverse connection is performed. In addition to regenerating a pair of electrodes, the removed ion component is collected together with the liquid to be processed in the liquid, and the ionic component of the liquid to be processed is removed and recovered in accordance with the purpose. The present invention relates to a method of passing a liquid through a condenser that allows liquid to flow.

【0002】[0002]

【従来の技術】通液型コンデンサは、静電力を利用して
被処理液中のイオン成分の除去と回収(再生)を行うも
ので、その原理は以下の通りである。すなわち、通液型
コンデンサは、その保有する一対の電極に直流電圧を印
加して、通液中の被処理液のイオン成分、あるいは電荷
のある粒子、有機物を一対の電極に吸着することにより
除去し、イオン成分が除去された脱塩液を得て、その後
一対の電極を短絡あるいは直流電源を逆接続して、一対
の電極に吸着している前記イオン成分を離脱させ、一対
の電極を再生しつつ除去イオン成分を通液中の被処理液
と共に濃縮液として回収することを繰り返し行うもので
ある。
2. Description of the Related Art A flow-through type condenser removes and recovers (regenerates) ionic components in a liquid to be treated by using electrostatic force, and its principle is as follows. In other words, the flow-through capacitor applies a DC voltage to a pair of electrodes held by the flow-through capacitor, and removes ionic components, charged particles, and organic substances of the liquid to be processed by adsorbing the pair of electrodes. Then, a desalted solution from which the ionic components have been removed is obtained, and then the pair of electrodes is short-circuited or a DC power supply is reversely connected to release the ionic components adsorbed on the pair of electrodes, thereby regenerating the pair of electrodes. The removal of the removed ion component together with the liquid to be treated in the liquid as a concentrated solution is repeatedly performed.

【0003】このような通液型コンデンサは、特開平5
−258992号公報に開示されており、この公知例の
一例では、カラムに被処理液を導入する入口と、イオン
成分が除去された液を排出する出口とを設け、そのカラ
ム内に上記一対の電極を収容している。これら一対の電
極は、双方とも導電性支持層に高表面積導電性表面層が
支持され、更に非導電性多孔のスペーサが含まれてい
る。従って、一対の電極は、一方の電極の非導電性多孔
のスペーサ、導電性支持層、高表面積導電性表面層、他
方の電極の非導電性多孔のスペーサ、導電性支持層、高
表面積導電性表面層の6層構造となっている。この一対
の電極は、中空の多孔質中心管に高表面積導電性表面層
を内側にして巻かれてカートリッジを形成している。一
方の電極の導電性支持層及び他方の電極の導電性支持層
からはリード線がカラム外に延出され、直流電源に接続
されている。カラムの入口には被処理液供給源が接続さ
れ、出口にはイオン成分が除去された脱塩液とイオン成
分を回収した濃縮液とを分ける切替え弁が接続されてい
る。
Such a flow-through type capacitor is disclosed in Japanese Patent Application Laid-Open
In one example of this known example, an inlet for introducing a liquid to be treated into a column, and an outlet for discharging a liquid from which ionic components have been removed are provided. Contains electrodes. Each of the pair of electrodes has a high-surface area conductive surface layer supported by a conductive support layer, and further includes a non-conductive porous spacer. Accordingly, the pair of electrodes is composed of a non-conductive porous spacer of one electrode, a conductive support layer, a high surface area conductive surface layer, a non-conductive porous spacer of the other electrode, a conductive support layer, and a high surface area conductive layer. It has a six-layer structure of a surface layer. This pair of electrodes is wound around a hollow porous central tube with the high surface area conductive surface layer inside, forming a cartridge. Lead wires extend from the conductive support layer of one electrode and the conductive support layer of the other electrode outside the column, and are connected to a DC power supply. A supply source of the liquid to be treated is connected to the inlet of the column, and a switching valve for separating a desalted solution from which the ionic components have been removed and a concentrated solution from which the ionic components have been recovered is connected to the outlet.

【0004】上記のような通液型コンデンサの通液方法
を図8を参照して説明する。図8中、50は通液型コン
デンサである。先ず、切替え弁51を開、切替え弁52
を閉の状態とし、スイッチ53をオンして一対の電極5
4、55に直流電圧を印加し、被処理液供給源56から
被処理液を通液型コンデンサ50に供給すると、一対の
電極54、55にイオン成分が吸着され、切替え弁51
の下流側でイオン成分が除去された脱塩液が得られる。
この状態が継続すると、一対の電極54、55にイオン
成分が徐々に吸着され飽和状態となり、イオン成分除去
性能が徐々に低下することが水質監視装置57により測
定されるから、ある時点で切替え弁51を閉、切替え弁
52を開の状態にし、スイッチ53をオフして直流電圧
の印加を止める。そして、イオン成分除去性能を再生さ
せるために、スイッチ58をオンして一対の電極54、
55間を短絡、あるいは直流電源59を逆接続すると、
一対の電極54、55に吸着されていたイオン成分が離
脱し、一対の電極54、55が再生されつつ、切替え弁
52の下流側でイオン成分を回収した濃縮液が得られ、
被処理液中のイオン成分の除去と回収(再生)の1サイ
クルが終了する。そして、被処理液供給源56から被処
理液が常時に通液型コンデンサ50に供給され、上記サ
イクルが繰り返されてイオン成分が除去された脱塩液と
イオン成分を回収した濃縮液とを交互に得ることができ
る。
[0004] A method of passing a liquid through the above-described liquid-passing type condenser will be described with reference to FIG. In FIG. 8, reference numeral 50 denotes a liquid-flow condenser. First, the switching valve 51 is opened, and the switching valve 52 is opened.
Is closed, the switch 53 is turned on, and the pair of electrodes 5
When a DC voltage is applied to the liquid supply 4 and 55 and the liquid to be treated is supplied from the liquid supply source 56 to the liquid condenser 50, the ion component is adsorbed on the pair of electrodes 54 and 55, and the switching valve 51
On the downstream side of the deionized water from which the ionic components have been removed.
When this state continues, the water quality monitoring device 57 measures that the ion component is gradually adsorbed on the pair of electrodes 54 and 55 and becomes saturated and the ion component removal performance gradually decreases. 51 is closed and the switching valve 52 is opened, and the switch 53 is turned off to stop the application of the DC voltage. Then, in order to regenerate the ion component removal performance, the switch 58 is turned on and the pair of electrodes 54,
55 or short-circuit the DC power supply 59,
The ionic component adsorbed on the pair of electrodes 54 and 55 is released, and a concentrated solution in which the ionic components are recovered on the downstream side of the switching valve 52 while the pair of electrodes 54 and 55 are being regenerated is obtained.
One cycle of removal and recovery (regeneration) of the ionic component in the liquid to be treated is completed. Then, the liquid to be treated is constantly supplied from the liquid supply source 56 to the flow-through condenser 50, and the above cycle is repeated to alternate the desalted liquid from which the ionic components have been removed and the concentrated liquid from which the ionic components have been recovered. Can be obtained.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の通液型コンデンサの通液方法では、通液型コンデン
サの通液サイクルを重ねるにつれ、被処理液からのイオ
ン成分の除去能が低下するという問題がある。このよう
な電極の除去能を回復するものとして、一旦、被処理液
の供給を停止し、酸やアルカリあるいは殺菌剤等の薬液
を供給する洗浄工程を設ける方法もあるが、薬液の管
理、薬液供給設備の設置、薬液の廃液処理等の諸問題が
ある。
However, according to the above-mentioned conventional method for passing a liquid through a condenser, the ability to remove ionic components from the liquid to be treated decreases as the cycle of passing the liquid through the condenser increases. There's a problem. As a method for recovering such electrode removing ability, there is a method of temporarily stopping supply of the liquid to be treated and providing a cleaning step of supplying a chemical such as an acid, an alkali or a bactericide. There are various problems such as installation of supply facilities and treatment of waste liquid of chemicals.

【0006】従って、本発明の目的は、電極の除去能を
回復するための薬剤洗浄を不用とし、長期間に亘る運転
においても通液型コンデンサのイオン成分の分離能を一
定に保ち、電極材の長寿命化を図ることができる通液型
コンデンサの通液方法及び装置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to eliminate the need for chemical cleaning to recover the electrode removing ability, to keep the ionic component separation ability of the flow-through condenser constant even over a long period of operation, It is an object of the present invention to provide a method and an apparatus for passing a liquid through a condenser which can extend the life of the liquid.

【0007】[0007]

【課題を解決するための手段】かかる実情において、本
発明者らは、鋭意検討を行った結果、少なくとも一対の
電極に直流電圧を印加して通液中の被処理液のイオン成
分を除去した後、短絡あるいは逆接続して、該除去され
たイオン成分を通液中の被処理水に回収する通液型コン
デンサの通液方法において、当該被処理液を特定温度範
囲又は特定pH値とするか、あるいは脱気処理又は還元
処理等を行い通液すれば、長期間に亘る運転においても
電極の有効表面積を減少させることなく維持することが
でき、通液型コンデンサのイオン成分分離能を一定に保
つと共に、電極材の長寿命化を図ることができることを
見出し、本発明を完成するに至った。
Under such circumstances, the present inventors have made intensive studies and as a result, have applied a DC voltage to at least a pair of electrodes to remove ionic components of the liquid to be treated during the passage. After that, in a flow-through method of a flow-through condenser in which a short-circuit or reverse connection is performed and the removed ionic component is recovered in the water to be processed, the liquid to be processed is set to a specific temperature range or a specific pH value. Alternatively, if the liquid is passed through degassing or reduction treatment, the effective surface area of the electrode can be maintained without reducing the effective surface area of the electrode even during long-term operation, and the ionic component separation ability of the liquid-flow condenser is constant. And it was found that the life of the electrode material could be extended, and the present invention was completed.

【0008】すなわち、請求項1の発明は、一対の電極
に直流電圧を印加して通液中の被処理液のイオン成分を
除去して脱塩液を得、その後前記一対の電極を短絡ある
いは直流電源を逆接続して、前記除去されたイオン成分
を通液中の被処理液と共に濃縮液として回収する通液型
コンデンサの通液方法であって、前記被処理液は、30
℃以下又は50℃以上の温度で通液されることを特徴と
する通液型コンデンサの通液方法を提供するものであ
る。
That is, according to the first aspect of the present invention, a direct current voltage is applied to a pair of electrodes to remove ionic components of a liquid to be processed in a flowing solution to obtain a desalted solution. A method of passing a liquid through a condenser in which a DC power supply is reversely connected and the removed ion component is recovered as a concentrated solution together with a liquid to be processed in the liquid, wherein the liquid to be processed is 30%.
It is intended to provide a method for passing a liquid through a condenser, wherein the liquid is passed at a temperature of not higher than 50 ° C. or lower than 50 ° C.

【0009】また、請求項2の発明は、一対の電極に直
流電圧を印加して通液中の被処理液のイオン成分を除去
して脱塩液を得、その後前記一対の電極を短絡あるいは
直流電源を逆接続して、前記除去されたイオン成分を通
液中の被処理液と共に濃縮液として回収する通液型コン
デンサの通液方法であって、前記被処理液は、pH5以
下又はpH9以上で通液されることを特徴とする通液型
コンデンサの通液方法を提供するものである。
Further, according to the present invention, a desalinated solution is obtained by applying a DC voltage to a pair of electrodes to remove ionic components of the liquid to be processed during the passage, and then short-circuiting the pair of electrodes or A method of passing a liquid through a condenser in which a DC power supply is reversely connected and the removed ionic component is recovered as a concentrated solution together with the liquid to be treated in the liquid, wherein the liquid to be treated has a pH of 5 or less or a pH of 9 or less. The present invention provides a method for passing a fluid through a fluid-flow condenser, characterized in that the fluid is passed.

【0010】また、請求項3の発明は、一対の電極に直
流電圧を印加して通液中の被処理液のイオン成分を除去
して脱塩液を得、その後前記一対の電極を短絡あるいは
直流電源を逆接続して、前記除去されたイオン成分を通
液中の被処理液と共に濃縮液として回収する通液型コン
デンサの通液方法であって、前記被処理液は、脱気処理
されたものであることを特徴とする通液型コンデンサの
通液方法を提供するものである。
Further, according to the invention of claim 3, a DC voltage is applied to the pair of electrodes to remove ionic components of the liquid to be processed in the flowing liquid to obtain a desalted solution, and thereafter the pair of electrodes is short-circuited or Reversely connecting a DC power supply, a method of passing a liquid through a condenser in which the removed ionic component is recovered as a concentrated solution together with the liquid to be processed in the liquid, wherein the liquid to be processed is degassed. And a method for passing a liquid through a liquid-flow condenser.

【0011】また、請求項4の発明は、一対の電極に直
流電圧を印加して通液中の被処理液のイオン成分を除去
して脱塩液を得、その後前記一対の電極を短絡あるいは
直流電源を逆接続して、前記除去されたイオン成分を通
液中の被処理液と共に濃縮液として回収する通液型コン
デンサの通液方法であって、前記被処理液は、還元処理
されたものであることを特徴とする通液型コンデンサの
通液方法を提供するものである。
Further, according to the present invention, a DC voltage is applied to a pair of electrodes to remove ionic components of the liquid to be processed in the flowing liquid to obtain a desalted solution, and then the pair of electrodes is short-circuited or Reversely connecting a DC power supply, a method of passing a liquid through a condenser in which the removed ionic component is recovered as a concentrated solution together with the liquid to be processed in the liquid, wherein the liquid to be processed is reduced. The present invention provides a method of passing a liquid through a liquid-passing type capacitor.

【0012】また、請求項5の発明は、一対の電極に直
流電圧を印加して通液中の被処理液のイオン成分を除去
し、前記一対の電極を短絡あるいは直流電源を逆接続し
て、除去されたイオン成分を通液中の被処理液と共に回
収する通液型コンデンサと、前記通液型コンデンサの上
流側に位置して被処理液を脱気する脱気手段とを有する
ことを特徴とする通液型コンデンサの通液装置を提供す
るものである。
According to a fifth aspect of the present invention, a DC voltage is applied to a pair of electrodes to remove ionic components of the liquid to be processed during the passage, and the pair of electrodes is short-circuited or a DC power supply is reversely connected. Having a flow-through condenser for recovering the removed ionic components together with the liquid to be processed in the flow-through, and a deaeration means positioned upstream of the flow-through type condenser to deaerate the liquid to be processed. A feature of the present invention is to provide a liquid flowing device for a liquid flowing condenser.

【0013】また、請求項6の発明は、一対の電極に直
流電圧を印加して通液中の被処理液のイオン成分を除去
し、前記一対の電極を短絡あるいは直流電源を逆接続し
て、除去されたイオン成分を通液中の被処理液と共に回
収する通液型コンデンサと、前記通液型コンデンサの上
流側に位置して被処理液を還元する還元手段とを有する
ことを特徴とする通液型コンデンサの通液装置を提供す
るものである。
According to a sixth aspect of the present invention, a DC voltage is applied to a pair of electrodes to remove ionic components of the liquid to be processed during the passage, and the pair of electrodes is short-circuited or a DC power supply is reversely connected. Having a flow-through condenser that collects the removed ionic components together with the liquid to be processed in the flow-through liquid, and a reduction unit that is located upstream of the flow-through type condenser and reduces the liquid to be processed. The present invention provides a liquid-flowing device for a liquid-flowing condenser.

【0014】[0014]

【発明の実施の形態】次に、本発明の実施の形態におけ
る通液型コンデンサの通液方法を図1に基づいて説明す
る。図1は本発明の実施の形態である通液型コンデンサ
の通液方法を示すフロー図である。図中、1は通液型コ
ンデンサであり、通液型コンデンサ1の上流側は供給配
管2により前処理装置4に接続され、更に接続配管3に
より被処理液供給源5に接続されている。一方、その下
流側は接続配管6により水質監視装置8に接続し、更
に、水質監視装置8の流出配管7は切替え弁11を有す
る脱塩液流出配管9と切替え弁12を有する濃縮液流出
配管10の二つに分岐している。被処理液供給源5は被
処理液タンクと、これから被処理液を定量的に供給する
ための送液ポンプとを含んでいる(不図示)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a description will be given of a method for passing a liquid through a liquid-flow condenser according to an embodiment of the present invention with reference to FIG. FIG. 1 is a flow chart showing a method for passing a liquid through a liquid-passing type capacitor according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a liquid-flow condenser. The upstream side of the liquid-flow condenser 1 is connected to a pretreatment device 4 by a supply pipe 2, and further connected to a liquid supply source 5 by a connection pipe 3. On the other hand, the downstream side thereof is connected to a water quality monitoring device 8 by a connection pipe 6, and further, an outflow pipe 7 of the water quality monitoring apparatus 8 has a desalted liquid outflow pipe 9 having a switching valve 11 and a concentrated liquid outflow pipe having a switching valve 12. There are 10 branches. The liquid-to-be-treated supply source 5 includes a liquid-to-be-treated tank and a liquid feed pump for supplying the liquid to be treated quantitatively from the tank (not shown).

【0015】前記通液型コンデンサ1は、少なくとも一
対の電極30、31を内蔵し、電極30はスイッチ32
を介して直流電源34の陰極に接続され、電極31は直
流電源34の陽極に接続されている。また、通液型コン
デンサ1の一対の電極30、31はスイッチ35を介し
て互いに接続されている。そして、これらの図1に表示
の機器類の運転制御は、シーケンサー、マイコン等の公
知の制御機器で行われ、その詳細な運転制御としては、
例えば、後述の通液型コンデンサの通液方法が挙げられ
る。
The liquid-flow condenser 1 has at least a pair of electrodes 30 and 31 built therein.
, And the electrode 31 is connected to the anode of the DC power supply 34. The pair of electrodes 30 and 31 of the flow-through capacitor 1 are connected to each other via a switch 35. The operation control of the devices shown in FIG. 1 is performed by known control devices such as a sequencer and a microcomputer.
For example, there is a method for passing a liquid through a later-described liquid-passing condenser.

【0016】前記通液型コンデンサ1の構造は、特に制
限されないが、ここではカラム中に金属、黒鉛等の集電
極に高表面積活性炭を接してなる電極30、31を収容
し、これら電極30、31間に非導電性のスペーサを介
在させたものである。そして、この通液型コンデンサ1
は、一対の電極30、31に直流電源34を接続し、直
流電圧、例えば、1〜2Vを印加した状態で、カラム中
にイオンを含有する被処理液を通すと、一対の電極3
0、31がイオンを吸着して、イオン成分が除去され脱
塩液を得ることができ、その後、一対の電極30、31
を短絡させると、電気的に中和し吸着していたイオンが
一対の電極30、31から離脱し、一対の電極30、3
1を再生させると共に、濃厚なイオン成分を回収した濃
縮液を得ることができるものである。なお、一対の電極
30、31間に印加する電圧は任意に設定することがで
きる。
The structure of the flow-through type capacitor 1 is not particularly limited, but here, electrodes 30 and 31 in which a high-surface-area activated carbon is in contact with a collecting electrode of metal, graphite or the like are accommodated in a column. A non-conductive spacer is interposed between 31. Then, this liquid-flow condenser 1
When a DC power source 34 is connected to the pair of electrodes 30 and 31 and a liquid containing ions is passed through the column in a state where a DC voltage, for example, 1 to 2 V is applied, the pair of electrodes 3
0 and 31 adsorb the ions, the ionic components are removed, and a desalted solution can be obtained.
Is short-circuited, the ions that have been electrically neutralized and adsorbed are separated from the pair of electrodes 30 and 31, and the pair of electrodes 30, 3
1 can be regenerated and a concentrated liquid in which a concentrated ionic component is recovered can be obtained. The voltage applied between the pair of electrodes 30 and 31 can be set arbitrarily.

【0017】通液型コンデンサ1の他の構造例として
は、非導電性多孔質通液性シートからなるスペーサを挟
んで、高比表面積活性炭を主材とする活性炭層である一
対の電極を配置し、該電極の外側に一対の集電極を配置
し、更に該集電極の外側に押さえ板を配置した平板形状
とし、集電極に直流電源を接続し、更に集電極間の短絡
又は直流電源の逆接続を行うものであってもよい。ま
た、電極と集電極とは一体化されたものでもよい。
As another structural example of the liquid-passing type capacitor 1, a pair of electrodes, which are activated carbon layers mainly composed of activated carbon having a high specific surface area, are arranged with a spacer made of a non-conductive porous liquid-permeable sheet interposed therebetween. Then, a pair of collector electrodes are arranged outside the electrodes, and a flat plate shape is further arranged with a pressing plate outside the collector electrodes, a DC power supply is connected to the collector electrodes, and a short circuit between the collector electrodes or a DC power supply is further provided. A reverse connection may be performed. Further, the electrode and the collecting electrode may be integrated.

【0018】前処理装置4は、通液型コンデンサ1に供
給する被処理液を特定の性状に調整するためのものであ
り、被処理液の温度を30℃以下又は50℃以上に調節
する熱交換器、被処理液のpHをpH5以下又はpH9
以上に調節するpH調節手段、被処理液を脱気処理する
脱気装置及び被処理液を還元処理する還元装置(還元手
段)が挙げられる。これらの前処理装置は単独又は2種
以上を組み合わせて設置してもよい。ここで、被処理液
としては、特に制限されず、例えば市水、工業用水、河
川の水又はこれらを逆浸透膜処理した透過水、あるいは
半導体ウエハーや液晶ディスプレイ等の電子部品部材を
超純水で洗浄した際に排出される洗浄排水、発電所の蒸
気タービンの循環系の復水等が挙げられ、これらが例え
ば上記温度範囲等に含まれるものであれば、当該前処理
装置4は省略できる。本発明の被処理液は、上記前処理
とは異なる、いわゆる純水製造等の場合に行われる凝集
沈殿処理、濾過処理等の原水の前処理がされていてもよ
い。
The pretreatment device 4 is for adjusting the liquid to be treated supplied to the flow-through condenser 1 to a specific property, and is used to adjust the temperature of the liquid to be treated to 30 ° C. or less or 50 ° C. or more. Exchanger, pH of the liquid to be treated is pH 5 or less or pH 9
There are a pH adjusting means for adjusting as described above, a deaerator for degassing the liquid to be treated, and a reducing device (reducing means) for reducing the liquid to be treated. These pretreatment devices may be installed alone or in combination of two or more. Here, the liquid to be treated is not particularly limited, and may be, for example, city water, industrial water, river water or permeated water obtained by subjecting these to reverse osmosis membrane treatment, or ultrapure water for electronic parts such as semiconductor wafers and liquid crystal displays. And the condensate of the circulating system of the steam turbine of the power plant, and the like. If these are included in, for example, the above temperature range, the pretreatment device 4 can be omitted. . The liquid to be treated of the present invention may be subjected to a pretreatment of raw water such as a coagulation sedimentation treatment and a filtration treatment which are performed in the case of so-called pure water production or the like, which is different from the above pretreatment.

【0019】被処理液の温度を30℃以下、好ましくは
0〜20℃に調節する熱交換器としては、冷却器及びヒ
ータが挙げられ、被処理液の温度を50℃以上、好まし
くは60℃〜沸点以下に調節する熱交換器としては、ヒ
ータが挙げられる。また、被処理液を加熱する場合に
は、気泡が発生し易くなり、活性炭電極の表面や微細ポ
ア内にガスが蓄積し、有効な電極表面を減少させる点で
好ましくなく、従って、後述するような脱気処理を加熱
処理の前又は後に行うことが好ましい。被処理液を上記
温度範囲とすることにより、通液型コンデンサ内に微生
物が発生することを防止し、炭素電極表面を微生物又は
微生物の代謝物が覆うことによる、有効な電極表面積の
減少を抑制できる。従来、液体処理装置において、微生
物の発生を防止する方法として、酸化剤を連続又は間欠
的に注入する方法があるが、酸化剤の使用は活性炭電極
を酸化して、イオン成分除去性能を低下させる。
The heat exchanger for adjusting the temperature of the liquid to be treated to 30 ° C. or less, preferably 0 to 20 ° C. includes a cooler and a heater. The temperature of the liquid to be treated is 50 ° C. or more, preferably 60 ° C. A heater is used as a heat exchanger for adjusting the temperature to a boiling point or lower. In addition, when the liquid to be treated is heated, bubbles are likely to be generated, and gas is accumulated on the surface of the activated carbon electrode or in the fine pores, which is not preferable in that the effective electrode surface is reduced. It is preferable to perform the deaeration treatment before or after the heat treatment. By setting the liquid to be treated in the above temperature range, it is possible to prevent the generation of microorganisms in the flow-through condenser, and to suppress a decrease in the effective electrode surface area due to the microorganisms or the metabolites of the microorganisms covering the carbon electrode surface. it can. Conventionally, in a liquid treatment apparatus, as a method of preventing the generation of microorganisms, there is a method of continuously or intermittently injecting an oxidizing agent. However, the use of an oxidizing agent oxidizes an activated carbon electrode and lowers ionic component removal performance. .

【0020】被処理液のpHをpH5以下、好ましくは
pH1〜pH3に調節するpH調節手段としては、酸性
液貯留槽、酸性液供給ポンプを備え、酸性液供給点と通
液型コンデンサ間にpH計を配置するものが使用できる
(不図示)。酸性液としては、硫酸溶液、塩酸溶液等が
挙げられる。被処理液のpHをpH9以上、好ましくは
pH10〜pH13に調節するpH調節手段としては、
アルカリ性液貯留槽、アルカリ性液供給ポンプを備え、
アルカリ性液供給点と通液型コンデンサ間にpH計を配
置するものが使用できる(不図示)。アルカリ性液とし
ては、苛性ソーダ、トリメチルアンモニウムハイドロオ
キサイド等が挙げられる。被処理液を上記pH範囲とす
ることにより、通液型コンデンサ内に微生物が発生する
ことを防止し、炭素電極表面を微生物又は微生物の代謝
物が覆うことによる、有効な電極表面積の減少を抑制で
きる。
The pH adjusting means for adjusting the pH of the liquid to be treated to pH 5 or less, preferably pH 1 to pH 3 is provided with an acidic solution storage tank and an acidic solution supply pump, and the pH is adjusted between the acidic solution supply point and the flow-through condenser. A device with a meter can be used (not shown). Examples of the acidic liquid include a sulfuric acid solution and a hydrochloric acid solution. PH adjusting means for adjusting the pH of the liquid to be treated to pH 9 or higher, preferably pH 10 to pH 13, includes:
Equipped with an alkaline liquid storage tank and an alkaline liquid supply pump,
A device in which a pH meter is arranged between the alkaline liquid supply point and the flow-through condenser can be used (not shown). Examples of the alkaline liquid include caustic soda and trimethylammonium hydroxide. By setting the liquid to be treated in the above pH range, it is possible to prevent the generation of microorganisms in the flow-through condenser, and to suppress the decrease in the effective electrode surface area due to the surface of the carbon electrode being covered with microorganisms or metabolites of microorganisms. it can.

【0021】また、被処理液はTOC濃度が低いものほ
ど、微生物の影響を低減できる点で好ましい。被処理液
はTOC濃度としては、1000ppb 以下、好ましくは
100ppb 以下である。被処理液のTOC濃度を低減す
るには、通常用いられる公知の方法を適用すればよい。
The liquid to be treated preferably has a lower TOC concentration in that the effect of microorganisms can be reduced. The liquid to be treated has a TOC concentration of 1000 ppb or less, preferably 100 ppb or less. In order to reduce the TOC concentration of the liquid to be treated, a known method generally used may be applied.

【0022】被処理液を脱気する脱気装置としては、被
処理液中に溶存している窒素、酸素、アンモニア、メタ
ン及び揮発性有機炭化水素等のガス成分を予め除去する
ものであればよく、例えば真空脱気装置、膜脱気装置及
び加熱脱気装置等が挙げられる。これらの脱気装置によ
り、被処理液は、例えば溶存酸素ガス濃度1.0mg/L以
下、好ましくは0.1mg/L以下に調節される。また、脱
気装置は、これ以外にも減圧したタンク内に液体を給水
する方法も使用できる。また、超音波振動を被処理液に
与えることにより、気泡の発生を促進し、発生した気泡
を通液型コンデンサの直前で除去する方法も使用でき
る。被処理液を脱気することにより、例えば活性炭電極
の表面や微細ポア内にガスが蓄積することを防止し、該
ガスの蓄積に伴う有効な電極表面積の減少を抑制でき
る。
As a deaerator for degassing the liquid to be treated, any gas components such as nitrogen, oxygen, ammonia, methane and volatile organic hydrocarbons dissolved in the liquid to be treated can be removed in advance. For example, a vacuum deaerator, a membrane deaerator, a heating deaerator and the like can be used. With these deaerators, the liquid to be treated is adjusted to, for example, a dissolved oxygen gas concentration of 1.0 mg / L or less, preferably 0.1 mg / L or less. In addition, the deaerator can also use a method of supplying the liquid into the depressurized tank. Further, a method may be used in which the generation of bubbles is promoted by applying ultrasonic vibration to the liquid to be treated, and the generated bubbles are removed immediately before the liquid condenser. By degassing the liquid to be treated, for example, it is possible to prevent gas from accumulating on the surface of the activated carbon electrode or in the fine pores, and to suppress a decrease in the effective electrode surface area due to the accumulation of the gas.

【0023】被処理液を還元する還元装置(還元手段)
としては、還元剤注入手段、水素ガス溶解手段、活性炭
又は活性炭繊維による濾過装置等が挙げられ、これらは
単独又は2種以上を組み合わせて用いる。還元剤として
は、亜硫酸ソーダ、重亜硫酸ソーダが挙げられる。還元
剤の注入量としては、被処理液中の酸化剤を還元して中
和するに十分な量であればよい。被処理液が市水の場
合、市水中の酸化剤の例としては、次亜塩素酸ソーダ、
クロラミン等が挙げられ、電子部品の洗浄排水等に含ま
れる酸化剤の例としてはオゾン、過酸化水素等が挙げら
れる。また、水素ガス溶解手段による水素ガスの溶解
は、通液型コンデンサ内に気泡の発生を生じる可能性が
あり、水素ガスの飽和溶解度以下に制御することが好ま
しい。この場合、別途の被処理液供給配管を設け、一部
の被処理液に水素ガスを添加し、水素ガスを溶解してい
ない被処理液に混合する方法等で溶解量を制御すればよ
い。被処理液を還元装置(還元手段)で還元することに
より、被処理液中の酸化剤が還元されて中和するため、
通液型コンデンサの活性炭電極の表面の酸化が抑制さ
れ、有効な電極表面積の減少を抑制できる。
Reduction device (reduction means) for reducing the liquid to be treated
Examples thereof include a reducing agent injection means, a hydrogen gas dissolving means, a filtration device using activated carbon or activated carbon fiber, and the like, and these may be used alone or in combination of two or more. Examples of the reducing agent include sodium sulfite and sodium bisulfite. The injection amount of the reducing agent may be an amount sufficient to reduce and neutralize the oxidizing agent in the liquid to be treated. When the liquid to be treated is city water, examples of the oxidizing agent in the city water include sodium hypochlorite,
Chloramine and the like can be mentioned, and examples of the oxidizing agent contained in the washing wastewater of electronic parts include ozone, hydrogen peroxide and the like. In addition, the dissolution of hydrogen gas by the hydrogen gas dissolving means may generate bubbles in the flow-through condenser, and is preferably controlled to be equal to or lower than the saturation solubility of hydrogen gas. In this case, a separate treatment liquid supply pipe may be provided, and the dissolved amount may be controlled by a method of adding hydrogen gas to a part of the treatment liquid and mixing the hydrogen gas with the non-dissolved treatment liquid. Since the oxidizing agent in the liquid to be treated is reduced and neutralized by reducing the liquid to be treated by the reducing device (reducing means),
Oxidation on the surface of the activated carbon electrode of the flow-through capacitor is suppressed, and a decrease in the effective electrode surface area can be suppressed.

【0024】また、水質監視装置8は、液質を測定する
ものでイオン除去の程度を正確に把握できる指標の測定
機器であれば特に限定されず、導電率計、比抵抗計が挙
げられ、本実施の形態では導電率計である。なお、水質
監視装置は、処理水を一部バイパスして計測してもよ
い。
The water quality monitoring device 8 is not particularly limited as long as it is a device for measuring liquid quality and is an index measuring device capable of accurately grasping the degree of ion removal, and examples thereof include a conductivity meter and a resistivity meter. In this embodiment, the conductivity meter is used. It should be noted that the water quality monitoring device may perform measurement by partially bypassing the treated water.

【0025】次に、本発明の通液型コンデンサの通液方
法を説明する。先ず、スイッチ32をオンして直流電圧
を一対の電極30、31に印加し、切替え弁11を開、
切替え弁12を閉の状態とし、水質監視装置8を監視可
能状態にして、被処理液供給源5のポンプ及び前処理装
置4を作動させ、前処理された被処理液を通液型コンデ
ンサ1に定量的に供給する。この段階で通液型コンデン
サ1はイオン成分除去工程に入り、被処理液は通液型コ
ンデンサ1の一対の電極30、31にイオン成分を吸着
され、イオン成分が除去された脱塩液となり、脱塩液流
出配管9により流出される。
Next, a description will be given of a method of passing a liquid through the liquid-flow condenser according to the present invention. First, the switch 32 is turned on to apply a DC voltage to the pair of electrodes 30 and 31, and the switching valve 11 is opened.
The switching valve 12 is closed, the water quality monitoring device 8 is placed in a monitoring enabled state, the pump of the liquid to be treated 5 and the pretreatment device 4 are operated, and the pretreated liquid to be treated is passed through the condenser 1. Quantitatively. At this stage, the liquid-flow condenser 1 enters an ionic component removing step, and the liquid to be treated is adsorbed on the pair of electrodes 30 and 31 of the liquid-flow condenser 1 to become a desalted liquid from which the ionic components have been removed. The water is discharged through the desalting liquid discharge pipe 9.

【0026】この状態を継続すると、やがて一対の電極
のイオン吸着能が飽和状態に近づき、イオン除去能は低
下し、徐々に脱塩液の導電率が上昇する。水質監視装置
8にて測定された導電率が脱塩液の採液不可値になる
と、切替え弁11を閉、切替え弁12を開として、直ち
にスイッチ32をオフして直流電圧の印加を止め、更に
スイッチ35をオンして一対の電極30、31を短絡さ
せ、吸着したイオン成分を一対の電極30、31から離
脱させ、液側に移動させて一対の電極30、31を再生
する、イオン回収工程に入る。
When this state is continued, the ion adsorbing capacity of the pair of electrodes soon approaches a saturated state, the ion removing ability decreases, and the conductivity of the desalted solution gradually increases. When the conductivity measured by the water quality monitoring device 8 becomes an uncollectable value of the desalted liquid, the switching valve 11 is closed, the switching valve 12 is opened, the switch 32 is immediately turned off, and the application of the DC voltage is stopped. Further, the switch 35 is turned on to short-circuit the pair of electrodes 30 and 31, the adsorbed ion component is separated from the pair of electrodes 30 and 31, and moved to the liquid side to regenerate the pair of electrodes 30 and 31. Enter the process.

【0027】上記除去工程及び回収工程を1サイクルと
し、このサイクルを繰り返して行うことにより、被処理
液からイオン成分が除去された脱塩液及び前記除去され
たイオン成分を回収したイオン濃度の高い濃縮液を得る
と共に、通液型コンデンサ1の一対の電極30、31の
飽和・再生の繰り返しを図るものである。
The above-described removal step and recovery step are defined as one cycle, and by repeating this cycle, the desalted solution from which the ionic components have been removed from the liquid to be treated and the high ion concentration in which the removed ionic components have been recovered can be obtained. In addition to obtaining a concentrated solution, the saturation and regeneration of the pair of electrodes 30 and 31 of the flow-through condenser 1 are repeated.

【0028】本発明において、当該前処理は基本的に連
続的処理が望ましいが、間欠的処理であっても表面の気
泡を除去することで性能低下した通液型コンデンサのイ
オン除去能を著しく回復することもできる。
In the present invention, the pretreatment is basically desirably a continuous treatment. However, even in the case of intermittent treatment, the ion-removing ability of the flow-through condenser whose performance has deteriorated by removing bubbles on the surface is remarkably recovered. You can also.

【0029】本発明において、脱塩液としては、軟化
水、脱塩水、純水、溶液脱塩液等が挙げられる。これら
の脱塩液はボイラー用水、飲料水及び洗浄用水等に使用
される。また、濃縮液は、有価物回収等に利用できる。
In the present invention, examples of the desalted solution include softened water, demineralized water, pure water, and solution desalted solution. These desalted liquids are used for boiler water, drinking water, washing water and the like. The concentrated liquid can be used for recovering valuable resources.

【0030】本発明において、通液型コンデンサーは複
数台であってもよく、例えば2台を並列配置して、一方
の通液型コンデンサをイオン成分除去工程とし、他方の
通液型コンデンサをイオン成分回収工程とし、これを交
互に繰り返して行う通液方法にも適用できる。
In the present invention, a plurality of liquid-passing condensers may be provided. For example, two liquid-passing condensers are arranged in parallel, and one of the liquid-passing condensers is used as an ion component removing step, and the other liquid-passing condenser is used as an ion-permeable condenser. The present invention can also be applied to a liquid passing method in which a component recovery step is performed alternately and repeatedly.

【0031】[0031]

【実施例】次に、実施例を挙げて、本発明を更に具体的
に説明するが、これは単に例示であって、本発明を制限
するものではない。 実施例1 被処理液は導電率330μS/cm、pH5.9、温度23
℃、TOC0.8ppmの工業用水を用い、通液型コンデ
ンサは関西熱化学社製のものを使用し、図1に示すよう
に、1台を配置接続した。前処理装置は膜脱気装置(脱
気膜としてLiqui-cel2.5インチタイプ( セルガード社
製) を装備) を用い、絶対圧100torrの真空脱気処理
を行い、溶存酸素濃度0.1mg/Lの工業用水を通液型コ
ンデンサに通液するようにした。また、通液型コンデン
サに対する印加電圧は直流1.2Vとした。被処理水を
250ml/ 分で通液型コンデンサに連続的に供給し、前
述のような除去工程と回収工程を繰り返し、これを50
回(サイクル)行った。その際、通液型コンデンサの流
出水の水質を導電率計でモニターした。その結果を図3
に示す。
EXAMPLES Next, the present invention will be described more specifically with reference to examples, but this is merely an example and does not limit the present invention. Example 1 The liquid to be treated had a conductivity of 330 μS / cm, a pH of 5.9, and a temperature of 23.
Using industrial water having a temperature of 0.8 ° C. and TOC of 0.8 ppm, a flow-through type condenser manufactured by Kansai Thermal Chemical Co., Ltd. was used, and one condenser was arranged and connected as shown in FIG. The pretreatment device is a membrane deaerator (equipped with a Liqui-cel 2.5 inch type (Celgard) as a deaerator), performs vacuum deaeration at an absolute pressure of 100 torr, and has a dissolved oxygen concentration of 0.1 mg / L. Was passed through a liquid condenser. The voltage applied to the liquid-passing type capacitor was DC 1.2 V. The water to be treated is continuously supplied to the flow-through condenser at a rate of 250 ml / min, and the removal step and the recovery step as described above are repeated.
(Cycles). At this time, the quality of the effluent of the liquid-flow condenser was monitored with a conductivity meter. The result is shown in FIG.
Shown in

【0032】ここで、通液型コンデンサのイオン除去能
は、被処理水の流量が一定であれば、除去工程における
所定濃度までイオン成分が除去された脱塩水の得られる
量で決定される。そこで、被処理水の10%濃度を保つ
時間(以下、「10%濃度値に至る時間」と言う。)を
通液型コンデンサのイオン除去能の指標とした。これを
図2を参照して説明する。図2は時間経過に対する流出
水の導電率の関係の典型例を示す。図中、除去工程当初
には被処理水の導電率330μS/cmは20μS/cmまで低
下し、イオン成分は除去されて脱塩水が得られる。その
後、電極内にイオン成分が蓄積されて飽和状態に近づく
と、流出水の水質は低下し、26分後には被処理水の導
電率の1/10である33μS/cmを上回る。その後、電
極間を短絡して電極の再生工程、すなわち回収工程を実
施することにより、通液型コンデンサ内に蓄積したイオ
ン成分の濃縮液が得られ、被処理液の導電率は上昇す
る。図2では10%濃度値に至る時間は26分である。
従って、10%濃度値に至る時間が当初運転の10%濃
度値に至る時間よりも短ければ、通液型コンデンサのイ
オン成分除去能は低下していると判る。
Here, the ion-removing ability of the flow-through condenser is determined by the amount of demineralized water from which ionic components have been removed to a predetermined concentration in the removing step, if the flow rate of the water to be treated is constant. Therefore, the time during which the 10% concentration of the water to be treated is maintained (hereinafter, referred to as “time to reach a 10% concentration value”) is used as an index of the ion removal ability of the liquid condenser. This will be described with reference to FIG. FIG. 2 shows a typical example of the relationship of the conductivity of the effluent with the passage of time. In the figure, at the beginning of the removal step, the conductivity of the water to be treated is reduced to 330 μS / cm to 20 μS / cm, and the ionic components are removed to obtain demineralized water. After that, when the ion component is accumulated in the electrode and approaches the saturated state, the quality of the effluent water decreases, and after 26 minutes, exceeds 33 μS / cm, which is 1/10 of the conductivity of the water to be treated. Thereafter, the electrode is short-circuited and the electrode regeneration step, that is, the recovery step is performed, whereby a concentrated solution of the ionic component accumulated in the flow-through condenser is obtained, and the conductivity of the liquid to be treated is increased. In FIG. 2, the time to reach the 10% density value is 26 minutes.
Therefore, if the time required to reach the 10% concentration value is shorter than the time required to reach the 10% concentration value in the initial operation, it can be understood that the ionic component removing ability of the flow-through condenser is reduced.

【0033】実施例1では図3から明らかなように、被
処理水の前処理として、膜脱気処理を行ったため、50
サイクル後であっても、運転当初のイオン成分除去能を
維持したままであった。
In the first embodiment, as is apparent from FIG. 3, the membrane deaeration was performed as a pretreatment for the water to be treated.
Even after the cycle, the ability to remove ion components at the beginning of operation was maintained.

【0034】比較例1 前処理装置の運転を停止した以外は、実施例1と同様の
方法で行った。結果を図3に示す。図3から、約20サ
イクル運転頃から通液型コンデンサのイオン成分除去能
は低下し、50サイクル運転では、当初の約40%程度
にまで除去能が低下した。
Comparative Example 1 The procedure was performed in the same manner as in Example 1 except that the operation of the pretreatment device was stopped. The results are shown in FIG. From FIG. 3, it can be seen that the ionic component removing ability of the flow-through condenser decreased from about the 20th cycle operation, and to about 40% of the initial ability in the 50 cycle operation.

【0035】実施例2 比較例1の50サイクル運転後、前処理装置の運転を稼
働して実施例1と同様の方法で運転を継続した。結果を
図3に示す。図3から、イオン成分除去能が低下した通
液型コンデンサは脱気水が供給されたことにより、徐々
に除去能が回復した。これは、電極の微細ポアに蓄積し
たガスが脱気水に溶解して除去され、電極の有効表面積
が回復したものと思われる。
Example 2 After the 50-cycle operation of Comparative Example 1, the operation of the pretreatment device was started, and the operation was continued in the same manner as in Example 1. The results are shown in FIG. From FIG. 3, the flow-through condenser with reduced ion component removal ability gradually recovered its removal ability due to the supply of degassed water. This is probably because the gas accumulated in the fine pores of the electrode was dissolved in the degassed water and removed, and the effective surface area of the electrode was restored.

【0036】実施例3〜8、比較例2及び3 前処理装置を膜脱気装置と熱交換器とし、被処理水の温
度23℃を10℃(実施例3)、20℃(実施例4)、
30℃(実施例5)、35℃(比較例2)、40℃(比
較例3)、50℃(実施例6)、60℃(実施例7)又
は70℃(実施例8)とし、50サイクル運転を100
サイクル運転とした以外は、実施例1と同様の方法で行
った。結果を図4に示す。なお、上記いずれの温度にお
いても、10サイクル運転のような初期においては、当
初の除去能を維持していた。図4から、長期間に亘る運
転においては、被処理水の通液温度が30℃を超え、5
0℃未満の範囲のものは、除去能が低下することが判
る。
Examples 3 to 8, Comparative Examples 2 and 3 The pretreatment device was a membrane deaerator and a heat exchanger, and the temperature of the water to be treated was changed from 23 ° C. to 10 ° C. (Example 3) and 20 ° C. (Example 4). ),
30 ° C. (Example 5), 35 ° C. (Comparative Example 2), 40 ° C. (Comparative Example 3), 50 ° C. (Example 6), 60 ° C. (Example 7) or 70 ° C. (Example 8). 100 cycle operations
The procedure was performed in the same manner as in Example 1 except that the cycle operation was performed. FIG. 4 shows the results. At any of the above temperatures, the initial removal ability was maintained in the initial stage such as the 10-cycle operation. From FIG. 4, in the operation for a long time, the flow temperature of the water to be treated exceeds 30 ° C.
It can be seen that those having a temperature lower than 0 ° C. have reduced removal ability.

【0037】実施例9〜15、比較例4〜6 前処理装置を熱交換器(ヒータ)、膜脱気装置及びpH
調節器として上流側よりこの順序で配置し、被処理水の
温度23℃を30℃とし、被処理水のpH5.9をpH
2(実施例9)、pH3(実施例10)、pH4(実施
例11)、pH5(実施例12)、pH6(比較例
4)、pH7(比較例5)、pH8(比較例6)、pH
9(実施例13)、pH10(実施例14)又はpH1
1(実施例15)とし、50サイクル運転を100サイ
クル運転とした以外は、実施例1と同様の方法で行っ
た。結果を図5に示す。
Examples 9 to 15 and Comparative Examples 4 to 6 The pretreatment device was a heat exchanger (heater), a membrane deaerator, and a pH.
The temperature of the water to be treated is set at 30 ° C. and the pH of the water to be treated is adjusted to pH 5.9.
2 (Example 9), pH 3 (Example 10), pH 4 (Example 11), pH 5 (Example 12), pH 6 (Comparative Example 4), pH 7 (Comparative Example 5), pH 8 (Comparative Example 6), pH
9 (Example 13), pH 10 (Example 14) or pH 1
1 (Example 15), except that the 50-cycle operation was changed to the 100-cycle operation. FIG. 5 shows the results.

【0038】実施例16〜22、比較例7〜9 被処理水の温度30℃を35℃とした以外は、実施例9
〜15並びに比較例4〜比較例6と同様の方法で行っ
た。結果を図6に示す。
Examples 16 to 22 and Comparative Examples 7 to 9 Example 9 was repeated except that the temperature of the water to be treated was changed from 30 ° C. to 35 ° C.
To 15 and Comparative Examples 4 to 6. FIG. 6 shows the results.

【0039】実施例23〜29、比較例10〜12 被処理水の温度30℃を40℃とした以外は、実施例9
〜15並びに比較例4〜比較例6と同様の方法で行っ
た。結果は図6と同様のものであった。
Examples 23 to 29 and Comparative Examples 10 to 12 Example 9 was repeated except that the temperature of the water to be treated was changed from 30 ° C. to 40 ° C.
To 15 and Comparative Examples 4 to 6. The results were the same as in FIG.

【0040】図5及び図6から、イオン成分除去能の低
下が認められた通液温度領域30℃〜40℃において
も、被処理水のpH値を4以下又は9以上に維持すれ
ば、イオン成分除去能の低下は防止できることが判る。
From FIGS. 5 and 6, even in the flow-through temperature range of 30 ° C. to 40 ° C. in which a decrease in the ionic component removing ability was observed, if the pH value of the water to be treated was maintained at 4 or less or 9 or more, It can be seen that a decrease in the ability to remove components can be prevented.

【0041】実施例30、比較例13 被処理液として工業用水の代わりに、導電率330μS/
cm、pH6.0、温度20℃の市水を使用し、50サイ
クル運転を1500サイクル運転とする以外は、実施例
1と同様の方法で第1通水処理を行った。次いで、引き
続き、市水を市販の活性炭処理装置(PCF−500A
型、オルガノ社製)を用いてろ過を行う活性炭処理(前
処理)を行い、これを500サイクル運転とする第2通
水処理を行った。次いで、引き続き、活性炭処理の代わ
りに、重亜硫酸ソーダを3ppm 注入する還元処理(前処
理)を行い、これを500サイクル運転とする第3通水
処理を行った。次いで、引き続き、市水に戻し前記第1
通水処理と同様の方法で運転する第4通水処理を行っ
た。結果を図7に示す。
Example 30, Comparative Example 13 Instead of industrial water as the liquid to be treated, the conductivity was 330 μS /
The first water-passing treatment was performed in the same manner as in Example 1, except that city water having a pH of 6.0, a temperature of 20 ° C, and a 50-cycle operation were changed to a 1500-cycle operation. Next, the city water was continuously supplied to a commercial activated carbon treatment device (PCF-500A).
(Manufactured by Organo Co., Ltd.), an activated carbon treatment (pretreatment) for filtration was performed, and a second water passing treatment was performed with 500 cycles of the treatment. Next, instead of the activated carbon treatment, a reduction treatment (pretreatment) of injecting 3 ppm of sodium bisulfite was performed, and a third water passing treatment was performed with 500 cycles of the reduction treatment. Next, return to city water
A fourth water passing treatment was performed in the same manner as the water passing treatment. FIG. 7 shows the results.

【0042】図7から、第1通水処理及び第4通水処理
では極めて僅かではあるが、徐々に除去能の低下が認め
られた。これは、市水中の次亜塩素酸ソーダ等の酸化性
物質が電極をアタックし、電極表面積を減少させたため
である。また、第2通水処理及び第3通水処理では電極
の除去能の低下傾向は止まり、その後の第4通水処理で
は再び低下傾向を示した。第2通水処理及び第3通水処
理において、電極の除去能の低下傾向が止まったのは、
活性炭や重亜硫酸ソーダによる還元処理により、市水中
の上記酸化剤が中和され電極の酸化が抑制されたためで
ある。
From FIG. 7, it was observed that the removal performance was gradually reduced, though very slightly, in the first and fourth water passage treatments. This is because an oxidizing substance such as sodium hypochlorite in city water attacked the electrode and reduced the electrode surface area. In the second and third water passing treatments, the tendency to decrease the electrode removing ability stopped, and in the subsequent fourth water passing treatment, the tendency to decrease again was exhibited. In the second water passing treatment and the third water passing treatment, the tendency of the electrode removing ability to decrease has stopped.
This is because the oxidizing agent in city water was neutralized by the reduction treatment with activated carbon or sodium bisulfite, and the oxidation of the electrode was suppressed.

【0043】[0043]

【発明の効果】本発明によれば、被処理液の通液温度を
30℃以下又は50℃以上とし、又は、被処理液のpH
値をpH5以下又はpH9以上とするため、電極内に微
生物が発生することを防止し、炭素電極表面を微生物又
は微生物の代謝物が覆うことによる、有効な電極表面積
の減少を抑制できる。また、被処理液を脱気処理して供
給するため、活性炭電極の表面や微細ポア内にガスが蓄
積することを防止し、該ガスの蓄積に伴う有効な電極表
面積の減少を抑制できる。また、被処理液を還元処理し
て供給するため、活性炭電極の表面の酸化が抑制され、
酸化物皮膜による有効な電極表面積の減少を抑制でき
る。このため、処理サイクルを重ねるにつれ、被処理液
からのイオン成分の除去能が低下するという問題が解決
される。また、被処理液の上記前処理手段を複数組み合
わせて前処理を行えば、上記効果は更に顕著となる。
According to the present invention, the liquid passing temperature of the liquid to be treated is set to 30 ° C. or less or 50 ° C. or more, or the pH of the liquid to be treated is adjusted.
Since the value is adjusted to pH 5 or lower or pH 9 or higher, it is possible to prevent the generation of microorganisms in the electrode, and to suppress an effective decrease in the electrode surface area due to the microorganisms or metabolites of the microorganisms covering the carbon electrode surface. In addition, since the liquid to be treated is supplied after being degassed, gas is prevented from accumulating on the surface of the activated carbon electrode or in the fine pores, and a reduction in the effective electrode surface area due to the accumulation of the gas can be suppressed. In addition, since the liquid to be treated is supplied after being reduced, oxidation of the surface of the activated carbon electrode is suppressed,
The reduction in effective electrode surface area due to the oxide film can be suppressed. This solves the problem that the ability to remove ionic components from the liquid to be treated is reduced as the processing cycle is repeated. Further, if the pre-processing is performed by combining a plurality of the pre-processing means for the liquid to be processed, the above-mentioned effect becomes more remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態である通液型コンデンサの
通液方法を示すフロー図である。
FIG. 1 is a flow chart showing a method for passing a liquid through a liquid-flow condenser according to an embodiment of the present invention.

【図2】本発明の実施の形態である通液型コンデンサの
通液方法における流出液の導電率と時間との関係を示す
特性図である。
FIG. 2 is a characteristic diagram showing the relationship between the conductivity of the effluent and the time in the method for passing a fluid through a fluid-flow condenser according to an embodiment of the present invention.

【図3】実施例1、2及び比較例1の通液型コンデンサ
の通液サイクルの影響を示す図である。
FIG. 3 is a view showing the influence of the liquid passing cycle of the liquid flowing type capacitors of Examples 1 and 2 and Comparative Example 1.

【図4】実施例3〜8及び比較例2、3の通液型コンデ
ンサの通液温度の影響を示す図である。
FIG. 4 is a diagram showing the influence of the flowing temperature of the flowing capacitors of Examples 3 to 8 and Comparative Examples 2 and 3.

【図5】実施例9〜15及び比較例4〜6の通液型コン
デンサの通液pHの影響を示す図である。
FIG. 5 is a graph showing the influence of the flow pH of the flow-through capacitors of Examples 9 to 15 and Comparative Examples 4 to 6.

【図6】実施例16〜22及び比較例7〜9の通液型コ
ンデンサの通液pHの影響を示す図である。
FIG. 6 is a graph showing the influence of the flow pH of the flow-through capacitors of Examples 16 to 22 and Comparative Examples 7 to 9.

【図7】実施例30及び比較例13の通液型コンデンサ
の通液サイクルの影響を示す図である。
FIG. 7 is a view showing the influence of the liquid passing cycle of the liquid flowing type capacitors of Example 30 and Comparative Example 13.

【図8】従来の通液型コンデンサの通液方法を示すフロ
ー図である。
FIG. 8 is a flowchart showing a method of passing a liquid through a conventional liquid-passing type condenser.

【符号の説明】[Explanation of symbols]

1、50 通液型コンデンサ 2、3 供給配管 4 前処理装置 6、7、9、10 接続配管 5、56 被処理液供給源 8、57 水質監視装置 30、31、54、55 電極 32、35、53、58 スイッチ 34、59 直流電源 11、12、51、52 切替弁 1, 50 Flow-through condenser 2, 3 Supply pipe 4 Pretreatment device 6, 7, 9, 10 Connection pipe 5, 56 Liquid supply source 8, 57 Water quality monitoring device 30, 31, 54, 55 Electrode 32, 35 , 53, 58 Switch 34, 59 DC power supply 11, 12, 51, 52 Switching valve

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一対の電極に直流電圧を印加して通液中
の被処理液のイオン成分を除去して脱塩液を得、その後
前記一対の電極を短絡あるいは直流電源を逆接続して、
前記除去されたイオン成分を通液中の被処理液と共に濃
縮液として回収する通液型コンデンサの通液方法であっ
て、前記被処理液は、30℃以下又は50℃以上の温度
で通液されることを特徴とする通液型コンデンサの通液
方法。
1. A direct current voltage is applied to a pair of electrodes to remove a ionic component of a liquid to be treated in a flowing solution to obtain a desalted solution. Thereafter, the pair of electrodes is short-circuited or a direct current power supply is reversely connected. ,
A method of passing a removed liquid component through a flow-through condenser for recovering a concentrated liquid together with a liquid to be processed in the liquid, wherein the liquid to be processed is passed at a temperature of 30 ° C. or lower or 50 ° C. or higher. A method for passing a liquid through a liquid condenser.
【請求項2】 一対の電極に直流電圧を印加して通液中
の被処理液のイオン成分を除去して脱塩液を得、その後
前記一対の電極を短絡あるいは直流電源を逆接続して、
前記除去されたイオン成分を通液中の被処理液と共に濃
縮液として回収する通液型コンデンサの通液方法であっ
て、前記被処理液は、pH5以下又はpH9以上で通液
されることを特徴とする通液型コンデンサの通液方法。
2. A desalting solution is obtained by applying a DC voltage to a pair of electrodes to remove ionic components of the liquid to be processed in the liquid flow, and then short-circuiting the pair of electrodes or reversely connecting a DC power supply. ,
A method of passing a removed liquid component through a flow-through condenser for recovering a concentrated liquid together with a liquid to be processed in the liquid, wherein the liquid to be processed is passed at a pH of 5 or less or a pH of 9 or more. Characteristic method of passing liquid through a condenser.
【請求項3】 一対の電極に直流電圧を印加して通液中
の被処理液のイオン成分を除去して脱塩液を得、その後
前記一対の電極を短絡あるいは直流電源を逆接続して、
前記除去されたイオン成分を通液中の被処理液と共に濃
縮液として回収する通液型コンデンサの通液方法であっ
て、前記被処理液は、脱気処理されたものであることを
特徴とする通液型コンデンサの通液方法。
3. A desalinated solution is obtained by applying a DC voltage to a pair of electrodes to remove ionic components of a liquid to be processed in the liquid flow, and thereafter short-circuiting the pair of electrodes or reversely connecting a DC power supply. ,
A method of passing a liquid through a condenser in which the removed ionic component is collected as a concentrated solution together with a liquid to be processed in the liquid, wherein the liquid to be processed is a degassed liquid. How to pass liquid through condenser.
【請求項4】 一対の電極に直流電圧を印加して通液中
の被処理液のイオン成分を除去して脱塩液を得、その後
前記一対の電極を短絡あるいは直流電源を逆接続して、
前記除去されたイオン成分を通液中の被処理液と共に濃
縮液として回収する通液型コンデンサの通液方法であっ
て、前記被処理液は、還元処理されたものであることを
特徴とする通液型コンデンサの通液方法。
4. A desalting solution is obtained by applying a DC voltage to a pair of electrodes to remove ionic components of the liquid to be processed in the liquid flow, and then short-circuiting the pair of electrodes or reversely connecting a DC power supply. ,
A method of passing a liquid through a condenser in which the removed ionic component is recovered as a concentrated solution together with a liquid to be processed in the liquid, wherein the liquid to be processed is one subjected to a reduction treatment. The flow method of the flow-through condenser.
【請求項5】 一対の電極に直流電圧を印加して通液中
の被処理液のイオン成分を除去し、前記一対の電極を短
絡あるいは直流電源を逆接続して、除去されたイオン成
分を通液中の被処理液と共に回収する通液型コンデンサ
と、前記通液型コンデンサの上流側に位置して被処理液
を脱気する脱気手段とを有することを特徴とする通液型
コンデンサの通液装置。
5. A dc voltage is applied to a pair of electrodes to remove ionic components of the liquid to be processed in the flowing liquid, and the pair of electrodes is short-circuited or a direct current power supply is reversely connected to remove the removed ionic components. A flow-through condenser comprising: a flow-through condenser that collects together with the liquid to be processed in the flow-through; and a deaeration means positioned upstream of the liquid-flow condenser to deaerate the liquid to be processed. Liquid passing device.
【請求項6】 一対の電極に直流電圧を印加して通液中
の被処理液のイオン成分を除去し、前記一対の電極を短
絡あるいは直流電源を逆接続して、除去されたイオン成
分を通液中の被処理液と共に回収する通液型コンデンサ
と、前記通液型コンデンサの上流側に位置して被処理液
を還元する還元手段とを有することを特徴とする通液型
コンデンサの通液装置。
6. Applying a DC voltage to a pair of electrodes to remove ionic components of the liquid to be treated in the flowing liquid, short-circuiting the pair of electrodes or reversely connecting a DC power supply to remove the removed ionic components. A flow-through condenser comprising: a flow-through condenser for collecting together with the liquid-to-be-processed in the flow-through liquid; and a reduction means positioned upstream of the liquid-flow-through condenser to reduce the liquid to be processed. Liquid device.
JP27076799A 1999-09-24 1999-09-24 Liquid passing method and apparatus for liquid passing capacitor Expired - Fee Related JP4135801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27076799A JP4135801B2 (en) 1999-09-24 1999-09-24 Liquid passing method and apparatus for liquid passing capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27076799A JP4135801B2 (en) 1999-09-24 1999-09-24 Liquid passing method and apparatus for liquid passing capacitor

Publications (2)

Publication Number Publication Date
JP2001087767A true JP2001087767A (en) 2001-04-03
JP4135801B2 JP4135801B2 (en) 2008-08-20

Family

ID=17490724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27076799A Expired - Fee Related JP4135801B2 (en) 1999-09-24 1999-09-24 Liquid passing method and apparatus for liquid passing capacitor

Country Status (1)

Country Link
JP (1) JP4135801B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038933A1 (en) * 2011-09-15 2013-03-21 栗田工業株式会社 Water treatment method
WO2014020762A1 (en) * 2012-08-03 2014-02-06 三菱重工メカトロシステムズ株式会社 Water treatment device
JP2019209297A (en) * 2018-06-08 2019-12-12 株式会社クラレ Operation method of liquid-flow type capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038933A1 (en) * 2011-09-15 2013-03-21 栗田工業株式会社 Water treatment method
WO2014020762A1 (en) * 2012-08-03 2014-02-06 三菱重工メカトロシステムズ株式会社 Water treatment device
CN104507875A (en) * 2012-08-03 2015-04-08 三菱重工机电系统株式会社 Water treatment device
JP5909281B2 (en) * 2012-08-03 2016-04-26 三菱重工メカトロシステムズ株式会社 Water treatment equipment
US9718715B2 (en) 2012-08-03 2017-08-01 Mitsubishi Hitachi Power Systems Environmental Solutions, Ltd. Water treatment device
JP2019209297A (en) * 2018-06-08 2019-12-12 株式会社クラレ Operation method of liquid-flow type capacitor

Also Published As

Publication number Publication date
JP4135801B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
US6780328B1 (en) Fluid purification devices and methods employing deionization followed by ionization followed by deionization
JP5617231B2 (en) Method and apparatus for purifying ion exchange resin
JP3864934B2 (en) Pure water production equipment
WO1998058727A1 (en) Fluid purification devices and methods employing deionization followed by ionization followed by deionization
JP4135801B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP2001087769A (en) Desalting device
KR101213230B1 (en) Recycling device of inorganic wastewater and the recycling method of inorganic wastewater using the solar heat
KR101068664B1 (en) Hybrid type desalination device, desalinating method using the same and regenerating method thereof
JP4090635B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP2003200166A (en) Operation method for liquid passing type electric double- layered condenser desalting apparatus
JP2002336859A (en) Desalted water making method
JP2002336863A (en) Method and apparatus for making desalted water
JP3928484B2 (en) Functional water recovery method
JP2001121150A (en) Treatment method for waste water and apparatus thereof
JP4121226B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP2002273438A (en) Desalting device
JP3988462B2 (en) Desalination method
JP2001276821A (en) Method of preventing clogging of reverse osmosis membrane device and reverse osmosis membrane device
JP2001070947A (en) Method for running liquid in liquid condenser and device therefor
JP4093386B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JPH07163845A (en) Treatment apparatus for ammonium nitrate-containing waste solution
JP3727156B2 (en) Desalination equipment
JP2005087898A (en) Electrostatic deionization apparatus and electrostatic deionization method
JP2001121160A (en) Waste water treatment method and apparatus therefor
JP3881120B2 (en) How to pass liquid-type capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees