JP2001087769A - Desalting device - Google Patents

Desalting device

Info

Publication number
JP2001087769A
JP2001087769A JP27196399A JP27196399A JP2001087769A JP 2001087769 A JP2001087769 A JP 2001087769A JP 27196399 A JP27196399 A JP 27196399A JP 27196399 A JP27196399 A JP 27196399A JP 2001087769 A JP2001087769 A JP 2001087769A
Authority
JP
Japan
Prior art keywords
liquid
flow
condenser
desalination
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27196399A
Other languages
Japanese (ja)
Other versions
JP4135802B2 (en
Inventor
Makio Tamura
真紀夫 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP27196399A priority Critical patent/JP4135802B2/en
Publication of JP2001087769A publication Critical patent/JP2001087769A/en
Application granted granted Critical
Publication of JP4135802B2 publication Critical patent/JP4135802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a desalting device capable of simple and efficient desalting treatment. SOLUTION: This desalting device 20a is obtained by connecting in series a liquid passing type condenser 1 for removing an ion component in liquid to be treated under liquid passing by applying direct current voltage to a pair of electrodes and recovering the removed ion component into the liquid to be treated under liquid passing by short-circuiting a pair of the electrodes or reversibly connecting a direct current power source with a single of plural desalting means 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高純度の液質を得
ることが可能な脱塩装置に関し、詳しくは、通液型コン
デンサとそれ以外の脱塩手段を直列に接続してなる、簡
便で高効率な脱塩処理が可能な脱塩装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desalination apparatus capable of obtaining high-purity liquid quality, and more particularly, to a simple desalination apparatus comprising a flow-through condenser and other desalination means connected in series. The present invention relates to a desalination apparatus capable of performing high-efficiency desalination.

【0002】[0002]

【従来の技術】従来、工業用水、市水などの原水を純水
などにする簡便な脱塩方法として、通液型コンデンサを
使用する方法が提案されている。通液型コンデンサは、
静電力を利用して被処理液中のイオン成分の除去と回収
(再生)を行うもので、その原理は以下の通りである。
すなわち、通液型コンデンサは、その保有する一対の電
極に直流電圧を印加して、通液中の被処理液のイオン成
分、あるいは電荷のある粒子、有機物を一対の電極に吸
着することにより除去し、イオン成分が除去された脱塩
液を得て、その後一対の電極を短絡あるいは直流電源を
逆接続して、一対の電極に吸着している前記イオン成分
を離脱させ、一対の電極を再生しつつ除去イオン成分を
通液中の被処理液と共に濃縮液として回収することを繰
り返し行うものである。
2. Description of the Related Art Hitherto, as a simple desalting method for converting raw water such as industrial water or city water to pure water, a method using a flow-through condenser has been proposed. The flow-through condenser is
The removal and recovery (regeneration) of ionic components in the liquid to be treated are performed using electrostatic force, and the principle is as follows.
In other words, the flow-through capacitor applies a DC voltage to a pair of electrodes held by the flow-through capacitor, and removes ionic components, charged particles, and organic substances of the liquid to be processed by adsorbing the pair of electrodes. Then, a desalted solution from which the ionic components have been removed is obtained, and then the pair of electrodes is short-circuited or a DC power supply is reversely connected to release the ionic components adsorbed on the pair of electrodes, thereby regenerating the pair of electrodes. The removal of the removed ion component together with the liquid to be treated in the liquid as a concentrated solution is repeatedly performed.

【0003】一方、従来より脱イオン水又は高純度の水
を製造する方法としては、イオン交換樹脂を充填したイ
オン交換装置を用いて脱イオン水を得る方法、蒸留装置
により蒸留水を得る方法、電気式脱イオン水製造装置を
使用する方法、逆浸透膜装置を使用する方法などが知ら
れている。電気式脱イオン水製造装置は、イオン交換樹
脂を用いる方法では通常薬剤による再生を必要とするた
め、該イオン交換樹脂を利用した脱イオンと電気透析作
用を組合せ、薬剤による再生が不要で、高度な脱イオン
水を得る点で好適である。また、逆浸透膜装置は、通常
複数台を直列に接続して使用するか、又はイオン交換装
置の前段に設置して、有機物やイオン成分を除去した透
過水を後段のイオン交換装置で処理して高度の水質を得
ている。
On the other hand, conventionally, methods for producing deionized water or high-purity water include a method for obtaining deionized water using an ion exchange apparatus filled with an ion exchange resin, a method for obtaining distilled water using a distillation apparatus, A method using an electric deionized water producing device, a method using a reverse osmosis membrane device, and the like are known. The electric deionized water production apparatus generally requires regeneration with a drug in the method using an ion exchange resin, so that deionization using the ion exchange resin and electrodialysis action are combined, and regeneration with a drug is not required. This is preferable in that deionized water is obtained. In addition, a reverse osmosis membrane device is usually used by connecting a plurality of units in series, or is installed in the preceding stage of the ion exchange device, and the permeated water from which organic substances and ionic components have been removed is treated in the subsequent ion exchange device. And high water quality.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、通液型
コンデンサは高度な脱塩を目的とする場合、脱塩能力は
不十分である。すなわち、通液型コンデンサの脱塩能力
は、主に印加電圧、電極面積、被処理水の水質及び処理
流量に依存する。印加電圧はこれを大きくすれば処理水
の水質の向上には効果があるものの、単位セル当たりの
印加電圧を水の電気分解電圧以上、すなわち、約1.2
V以上に上げると脱塩の電流効率を極めて低下させると
同時に通液型コンデンサの寿命の低下を招く。従って、
印加電圧を約1.2V以上に上げることができず、結局
この条件下、処理水質の水質を考慮した範囲において、
電極面積と処理流量の比(電極面積/処理流量)を上げ
ても脱塩性能は十分ではない。また、被処理液中のシリ
カやホウ素などは通液型コンデンサでは十分に除去でき
ないという問題もある。
However, in the case where the flow-through type condenser is intended for a high degree of desalination, the desalination capacity is insufficient. That is, the desalting ability of the flow-through condenser mainly depends on the applied voltage, the electrode area, the quality of the water to be treated, and the treatment flow rate. If the applied voltage is increased, it is effective in improving the quality of the treated water, but the applied voltage per unit cell is higher than the electrolysis voltage of water, that is, about 1.2.
When the voltage is increased to V or more, the current efficiency of desalination is extremely reduced, and at the same time, the life of the flow-through capacitor is shortened. Therefore,
The applied voltage cannot be increased to about 1.2 V or more. After all, under this condition, in the range considering the quality of the treated water,
Even if the ratio between the electrode area and the processing flow rate (electrode area / processing flow rate) is increased, the desalination performance is not sufficient. In addition, there is also a problem that silica, boron, and the like in the liquid to be treated cannot be sufficiently removed by the liquid-flow type capacitor.

【0005】また、従来のイオン交換装置を用いて脱イ
オン水を得る方法、蒸留装置により蒸留水を得る方法、
電気式脱イオン水製造装置を使用する方法、逆浸透膜装
置を使用する方法などは、有効な脱塩手段ではあるもの
の、いずれも単独で使用する場合、被処理水の汚れ、特
に微粒子と有機物による処理能力の低下の問題を潜在的
に有している。すなわち、電気的性質を帯びた微粒子や
有機物は、イオン交換体(樹脂)上や逆浸透膜及び電気
式脱イオン水製造装置のイオン交換膜の膜面上に不可逆
的に付着して、イオン交換装置の場合はイオン交換の反
応速度の低下として、蒸留装置の場合は蒸留水中の微粒
子数の上昇として、電気式脱イオン水製造装置の場合は
操作電圧の上昇として、逆浸透膜装置の場合はフラック
スの低下として、それぞれ現れる。また、逆浸透膜装置
の透過水をさらに逆浸透膜装置に透過させて処理する多
段逆浸透膜装置においては、被処理水中の炭酸ガスがそ
のままでは除去できず、アルカリ添加によりpHを変動
させて、炭酸ガスをイオン化して逆浸透膜装置で除去で
きる形態に解離させていた。従って、本来の目的が脱塩
であるにも関わらず、苛性ソーダなどのアルカリ添加が
処理水の水質を悪化させるという問題があった。
A method for obtaining deionized water using a conventional ion exchange apparatus, a method for obtaining distilled water using a distillation apparatus,
The method of using an electric deionized water production device and the method of using a reverse osmosis membrane device are effective desalination means, but when both are used alone, the contamination of the water to be treated, especially fine particles and organic matter, Has the problem of a decrease in processing capacity due to That is, the fine particles and organic substances having electrical properties are irreversibly attached to the ion exchanger (resin), the reverse osmosis membrane, and the ion exchange membrane of the electric deionized water producing apparatus, and the ion exchange is performed. In the case of a device, the reaction rate of ion exchange is reduced, in the case of a distillation device, the number of fine particles in distilled water is increased, in the case of an electro-deionized water production device, the operating voltage is increased, and in the case of a reverse osmosis membrane device, Each appears as a decrease in flux. Further, in a multi-stage reverse osmosis membrane device in which the permeated water of the reverse osmosis membrane device is further passed through the reverse osmosis membrane device for treatment, the carbon dioxide in the water to be treated cannot be removed as it is, and the pH is changed by adding an alkali. In addition, the carbon dioxide gas is ionized and dissociated into a form that can be removed by a reverse osmosis membrane device. Therefore, although the original purpose is desalination, there is a problem that the addition of alkali such as caustic soda deteriorates the quality of treated water.

【0006】従って、本発明の目的は、従来の脱塩装置
がそれぞれに有する上記の課題を解決するものであっ
て、簡便で高効率な脱塩処理が可能な脱塩装置を提供す
ることにある。
Accordingly, an object of the present invention is to solve the above-mentioned problems of the conventional desalination apparatuses, and to provide a desalination apparatus capable of performing a simple and highly efficient desalination treatment. is there.

【0007】[0007]

【課題を解決するための手段】かかる実情において、本
発明者は鋭意検討を行った結果、通液型コンデンサとそ
れ以外の脱塩手段の単一又は複数を直列に接続して脱塩
装置とし、これに被処理液を通液すれば、簡便で高効率
な脱塩処理が可能であることを見出し、本発明を完成す
るに至った。
Under such circumstances, the present inventor has conducted intensive studies and as a result, has connected a liquid-flow condenser and one or more other desalination means in series to form a desalination apparatus. It has been found that if the liquid to be treated is passed through this, a simple and highly efficient desalination treatment is possible, and the present invention has been completed.

【0008】すなわち、本発明(1)は、一対の電極に
直流電圧を印加して通液中の被処理液のイオン成分を除
去し、前記一対の電極を短絡あるいは直流電源を逆接続
して、除去されたイオン成分を通液中の被処理液に回収
する通液型コンデンサと、単一又は複数の脱塩手段とを
直列に接続してなることを特徴とする脱塩装置を提供す
るものである。
That is, in the present invention (1), a DC voltage is applied to a pair of electrodes to remove an ionic component of a liquid to be processed during the passage, and the pair of electrodes is short-circuited or a DC power supply is reversely connected. And a desalination apparatus characterized in that a flow-through condenser for recovering the removed ionic components into the liquid to be processed and a single or a plurality of desalination means are connected in series. Things.

【0009】また、本発明(2)は、前記脱塩手段は、
前記通液型コンデンサの後段側に配置されることを特徴
とする前記(1)記載の脱塩装置を提供するものであ
る。
The present invention (2) is characterized in that the desalting means comprises:
The present invention provides the desalination apparatus according to the above (1), wherein the desalination apparatus is arranged on the downstream side of the liquid-flow condenser.

【0010】また、本発明(3)は、前記脱塩手段が、
イオン交換装置、逆浸透膜装置、蒸留装置又は電気式脱
イオン水製造装置であることを特徴とする前記(1)又
は(2)記載の脱塩装置を提供するものである。
[0010] In the present invention (3), the desalting means preferably comprises:
The present invention provides the desalination apparatus according to the above (1) or (2), which is an ion exchange apparatus, a reverse osmosis membrane apparatus, a distillation apparatus, or an electric deionized water production apparatus.

【0011】また、本発明(4)は、逆浸透膜装置と、
一対の電極に直流電圧を印加して通液中の被処理液のイ
オン成分を除去し、前記一対の電極を短絡あるいは直流
電源を逆接続して、除去されたイオン成分を通液中の被
処理液に回収する通液型コンデンサをこの順序で接続し
てなることを特徴とする脱塩装置を提供するものであ
る。
Further, the present invention (4) provides a reverse osmosis membrane device,
A dc voltage is applied to the pair of electrodes to remove ionic components of the liquid to be treated during the passage of the liquid, and the pair of electrodes is short-circuited or the DC power supply is reversely connected to remove the ionic components from the liquid to be treated during the passage of the liquid. It is another object of the present invention to provide a desalination apparatus characterized in that a flow-through condenser to be recovered in a processing liquid is connected in this order.

【0012】また、本発明(5)は、前記通液型コンデ
ンサの後段に、更に単段又は複数段の逆浸透膜装置を設
置してなることを特徴とする前記(4)記載の脱塩装置
を提供するものである。
Further, the present invention (5) is characterized in that a single-stage or a plurality of stages of reverse osmosis membrane devices are further provided downstream of the liquid-flow condenser, wherein the desalination is carried out. An apparatus is provided.

【0013】また、本発明(6)は、前記通液型コンデ
ンサの後段に、更に単段又は複数段のイオン交換塔を配
置してなることを特徴とする前記(4)記載の脱塩装置
を提供するものである。
In the present invention (6), the desalination apparatus according to (4), further comprising a single-stage or a plurality of stages of ion-exchange columns disposed downstream of the liquid-flow condenser. Is provided.

【0014】[0014]

【発明の実施の形態】本発明の脱塩装置は、通液型コン
デンサと、単一又は複数の脱塩手段とを直列に接続して
なるものである。通液型コンデンサとしては、特に制限
されないが、カラム中に金属、黒鉛等の集電極に高表面
積活性炭を接してなる一対の電極を収容し、これら一対
の電極間に非導電性のスペーサを介在させたものであ
る。そして、この通液型コンデンサは、一対の電極に直
流電源を接続し、直流電圧、例えば、1〜2Vを印加し
た状態で、カラム中にイオンを含有する被処理液を通す
と、一対の電極がイオンを吸着して、イオン成分が除去
され脱塩液を得ることができ、その後、一対の電極を短
絡させると、電気的に中和し吸着していたイオンが一対
の電極から離脱し、一対の電極を再生させると共に、濃
厚なイオン成分を回収した濃縮液を得ることができるも
のである。尚、一対の電極間30、31間に印加する電
圧は任意に設定することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The desalination apparatus of the present invention comprises a flow-through condenser and one or more desalination means connected in series. The flow-through capacitor is not particularly limited, but contains a pair of electrodes in which a high surface area activated carbon is in contact with a collecting electrode such as a metal or graphite in a column, and a non-conductive spacer is interposed between the pair of electrodes. It was made. When a direct current power supply is connected to the pair of electrodes and a liquid to be treated containing ions is passed through the column in a state where a direct current voltage, for example, 1 to 2 V is applied, the pair of electrodes is connected to the pair of electrodes. Adsorbs ions, the ionic components are removed, and a desalted solution can be obtained.After that, when the pair of electrodes is short-circuited, the ions that have been electrically neutralized and adsorbed are separated from the pair of electrodes, In addition to regenerating a pair of electrodes, a concentrated solution in which a concentrated ionic component is recovered can be obtained. The voltage applied between the pair of electrodes 30, 31 can be set arbitrarily.

【0015】このような通液型コンデンサは、特開平5
−258992号公報に開示されており、この公知例の
一例では、カラムに被処理液を導入する入口と、イオン
成分が除去された液を排出する出口とを設け、そのカラ
ム内に上記一対の電極を収容している。これら一対の電
極は、双方とも導電性支持層に高表面積導電性表面層が
支持され、更に非導電性多孔のスペーサが含まれてい
る。従って、一対の電極は、一方の電極の非導電性多孔
のスペーサ、導電性支持層、高表面積導電性表面層、他
方の電極の非導電性多孔のスペーサ、導電性支持層、高
表面積導電性表面層の6層構造となっている。この一対
の電極は、中空の多孔質中心管に高表面積導電性表面層
を内側にして巻かれてカートリッジを形成する。一方の
電極の導電性支持層及び他方の電極の導電性支持層から
はリード線がカラム外に延出され、直流電源に接続さ
れ、カラムの入口には被処理液供給源が接続され、出口
にはイオン成分が除去された脱塩液とイオン成分を回収
した濃縮液とを分ける切替え弁が接続されている。
Such a flow-through type capacitor is disclosed in
In one example of this known example, an inlet for introducing a liquid to be treated into a column, and an outlet for discharging a liquid from which ionic components have been removed are provided. Contains electrodes. Each of the pair of electrodes has a high-surface area conductive surface layer supported by a conductive support layer, and further includes a non-conductive porous spacer. Accordingly, the pair of electrodes is composed of a non-conductive porous spacer of one electrode, a conductive support layer, a high surface area conductive surface layer, a non-conductive porous spacer of the other electrode, a conductive support layer, and a high surface area conductive layer. It has a six-layer structure of a surface layer. This pair of electrodes is wound around a hollow porous central tube with the high surface area conductive surface layer inside to form a cartridge. Lead wires extend from the conductive support layer of one electrode and the conductive support layer of the other electrode to the outside of the column, are connected to a DC power supply, a liquid supply source is connected to an inlet of the column, and an outlet is provided. Is connected to a switching valve for separating a desalted solution from which the ionic components have been removed and a concentrated solution from which the ionic components have been recovered.

【0016】更に、通液型コンデンサの他の構造例とし
ては、非導電性多孔質通液性シートからなるスペーサを
挟んで、高比表面積活性炭を主材とする活性炭層である
一対の電極を配置し、該電極の外側に一対の集電極を配
置し、更に該集電極の外側に押さえ板を配置した平板形
状とし、集電極に直流電源を接続し、更に集電極間の短
絡又は直流電源の逆接続を行うものであってもよい。ま
た、電極と集電極とは一体化されたものでもよい。
Further, as another structural example of the liquid-passing type capacitor, a pair of electrodes, which are activated carbon layers mainly composed of activated carbon having a high specific surface area, are sandwiched between spacers made of a non-conductive porous liquid-permeable sheet. It arranges, a pair of collector electrodes is arranged outside the electrodes, and furthermore, it has a flat plate shape in which a holding plate is arranged outside the collector electrodes, a DC power supply is connected to the collector electrodes, and a short circuit between the collector electrodes or a DC power supply is further provided. The reverse connection may be performed. Further, the electrode and the collecting electrode may be integrated.

【0017】本発明において、脱塩手段としては、特に
制限されないが、例えば蒸留装置、イオン交換装置、逆
浸透膜装置及び電気式脱イオン水製造装置など挙げられ
る。蒸留装置としては、例えば、純水などからなる原水
を、加熱装置を備えた蒸発缶の内部で加熱することによ
り水蒸気を得て、この水蒸気を凝縮器で凝縮させ蒸留水
となし、これを冷却器に送って使用温度まで下げ、冷却
器に接続された蒸留水供給管を通じて採水口に予めセッ
トしてあるストレージボトル又は貯留槽内に当該蒸留水
を貯留させるようにした装置が挙げられる。
In the present invention, the desalting means is not particularly limited, but includes, for example, a distillation apparatus, an ion exchange apparatus, a reverse osmosis membrane apparatus, and an electric deionized water producing apparatus. As a distillation apparatus, for example, raw water consisting of pure water or the like is heated in an evaporator equipped with a heating device to obtain steam, and the steam is condensed in a condenser to form distilled water, which is cooled. An apparatus is provided in which the distilled water is sent to a cooler to reduce the temperature to a use temperature, and the distilled water is stored in a storage bottle or a storage tank set in a water sampling port through a distilled water supply pipe connected to a cooler.

【0018】イオン交換装置としては、例えば、強酸性
カチオン交換体(強酸性カチオン交換樹脂)(以下、
「交換体」及び「交換樹脂」を含めて「交換樹脂」とい
う)、弱酸性カチオン交換樹脂などのカチオン交換樹脂
又は強塩基性アニオン交換樹脂、弱塩基性アニオン交換
樹脂などのアニオン交換樹脂、又はこれらを組合せたも
のなどが挙げられる。これらは単床又は混床のいずれで
あってもよい。また、ホウ素を選択的に除去する多価ア
ルコールを官能基として含有するホウ素選択性樹脂やカ
ートリッジポリッシャ(非再生式イオン交換樹脂装置)
なども使用できる。ホウ素選択性樹脂としては、例えば
アンバーライトIRA743Tが使用できる。
Examples of the ion exchange device include, for example, a strongly acidic cation exchanger (strongly acidic cation exchange resin)
"Exchange resin" and "exchange resin" including "exchange resin"), a cation exchange resin such as a weakly acidic cation exchange resin or a strongly basic anion exchange resin, an anion exchange resin such as a weakly basic anion exchange resin, or What combined these etc. is mentioned. These may be either single beds or mixed beds. In addition, a boron selective resin or a cartridge polisher containing a polyhydric alcohol capable of selectively removing boron as a functional group (non-regeneration type ion exchange resin device)
Etc. can also be used. As the boron selective resin, for example, Amberlite IRA743T can be used.

【0019】電気式脱イオン水製造装置としては、例え
ば、基本的にはカチオン交換膜とアニオン交換膜で形成
される隙間に、イオン交換体を充填して脱塩室とし、当
該イオン交換体に被処理水を通過させると共に、前記両
イオン交換膜を介して直流電流を作用させて、両イオン
交換膜の外側に流れている濃縮水中にイオンを電気的に
排除しながら脱イオン水を製造するものである。このた
め、濃縮水中にはイオンが濃縮される。
As an electric deionized water producing apparatus, for example, a gap formed by a cation exchange membrane and an anion exchange membrane is basically filled with an ion exchanger to form a deionization chamber. While passing the water to be treated, a direct current is applied through the both ion exchange membranes to produce deionized water while electrically removing ions from the concentrated water flowing outside the both ion exchange membranes. Things. For this reason, ions are concentrated in the concentrated water.

【0020】本発明において、通液型コンデンサと、単
一又は複数の脱塩手段とを直列に接続する形態として
は、前段に単一又は複数の脱塩手段を、後段に通液型コ
ンデンサを設置する形態、前段に通液型コンデンサを、
後段に単一又は複数の脱塩手段を設置する形態、通液型
コンデンサの前段及び後段に単一又は複数の脱塩手段を
設置する形態の3形態がある。このうち、通液型コンデ
ンサと後段の脱塩手段とを接続する場合、通液型コンデ
ンサの脱塩液流出配管と脱塩装置の被処理液供給配管が
連接される。上記接続形態の具体例としては、次のもの
が列挙される。左から右に被処理液の流れ方向とする。 (1) 通液型コンデンサ+イオン交換装置 (2) 通液型コンデンサ+蒸留装置 (3) 通液型コンデンサ+電気式脱イオン水製造装置 (4) 通液型コンデンサ+逆浸透膜装置 (5) 逆浸透膜装置+通液型コンデンサ (6) 逆浸透膜装置+通液型コンデンサ+逆浸透膜装置 (7) 通液型コンデンサ+逆浸透膜装置+非再生型イオン
交換装置 (8) 通液型コンデンサ+逆浸透膜装置+電気式脱イオン
水製造装置 (9) 通液型コンデンサ+逆浸透膜装置+蒸留器 (10)通液型コンデンサ+逆浸透膜装置+通液型コンデン
サ+逆浸透膜装置
In the present invention, as a mode in which a liquid-flow condenser and a single or a plurality of desalination means are connected in series, a single or a plurality of desalination means are provided in the first stage, and a liquid-flow condenser is provided in the second stage. Installation type, a liquid-flow condenser in the first stage,
There are three modes, one in which a single or a plurality of desalination means are provided in the subsequent stage, and the other in which a single or a plurality of desalination means is provided in the front and rear stages of the flow-through condenser. When the flow-through condenser is connected to the subsequent desalting means, the desalinate outflow pipe of the flow-through condenser and the liquid supply pipe of the desalination apparatus are connected. The following are listed as specific examples of the connection form. The flow direction of the liquid to be treated is from left to right. (1) Flow-through condenser + ion exchanger (2) Flow-through condenser + distillation apparatus (3) Flow-through condenser + electric deionized water production equipment (4) Flow-through condenser + reverse osmosis membrane device (5 ) Reverse osmosis membrane device + liquid-flow condenser (6) Reverse osmosis membrane device + liquid-flow condenser + reverse osmosis membrane device (7) Liquid-flow condenser + reverse osmosis membrane device + non-regeneration ion exchange device (8) Liquid condenser + reverse osmosis membrane device + electric deionized water production equipment (9) Flow-through condenser + reverse osmosis membrane device + distillator (10) Flow-through condenser + reverse osmosis membrane device + liquid-flow condenser + reverse Osmotic membrane device

【0021】上記(1) におけるイオン交換装置として
は、例えば、アニオン交換樹脂とカチオン交換樹脂の混
合樹脂を充填してイオン交換塔とし、該混合樹脂が貫流
点に到達した段階で新品の樹脂に交換する非再生型のイ
オン交換装置及び同様に該混合樹脂が貫流点に到達した
段階で現地で酸又はアルカリで再生する現場再生型のイ
オン交換装置などが挙げられる。
As the ion exchange apparatus in the above (1), for example, a mixed resin of an anion exchange resin and a cation exchange resin is filled to form an ion exchange tower, and when the mixed resin reaches a flow-through point, a new resin is formed. A non-regeneration type ion exchange device to be exchanged, and an in-situ regeneration type ion exchange device which similarly regenerates with an acid or alkali at the stage when the mixed resin reaches the cross-flow point are exemplified.

【0022】次に、本発明の第1の実施の形態における
脱塩装置を図1を参照して説明する。図1は、本実施の
形態例の脱塩装置のフロー図である。図1中、脱塩装置
20aは前段の通液型コンデンサ1と、後段の脱塩手段
2から構成される。通液型コンデンサ1の下流側は排出
配管8により水質監視装置5に接続し、更に水質監視装
置5の排出管9は切替え弁13を有する脱塩液排出管1
1と切替え弁12を有する濃縮液排出管10の二つに分
岐し、脱塩液排出管11は脱塩手段2に接続している。
通液型コンデンサ1の上流側は供給配管7により途中の
絶対孔径10μm の安全フィルタ4を介して被処理水を
定量的に供給するための送液ポンプ3に接続している。
Next, a desalination apparatus according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a flowchart of the desalination apparatus of the present embodiment. In FIG. 1, a desalination apparatus 20a is composed of a first-stage liquid-flow condenser 1 and a second-stage desalination means 2. The downstream side of the flow-through condenser 1 is connected to a water quality monitoring device 5 by a discharge pipe 8, and the discharge pipe 9 of the water quality monitoring device 5 is a desalted liquid discharge pipe 1 having a switching valve 13.
1 and a concentrated liquid discharge pipe 10 having a switching valve 12, and the desalted liquid discharge pipe 11 is connected to the desalting means 2.
The upstream side of the flow-through condenser 1 is connected to a liquid supply pump 3 for quantitatively supplying the water to be treated through a supply pipe 7 via a safety filter 4 having an absolute pore diameter of 10 μm in the middle.

【0023】通液型コンデンサ1は、少なくとも一対の
電極30、31を内蔵し、電極30はスイッチ32を介
して直流電源34の陰極に接続されている。また、一対
の電極30、31はスイッチ35を介して互いに接続さ
れている。そして、これらの図1に表示の機器類の運転
制御は、シーケンサー、マイコン等の公知の制御機器で
行われ、その詳細な運転制御としては、例えば、後述の
通液型コンデンサの通液方法が挙げられる。
The flow-through capacitor 1 includes at least a pair of electrodes 30 and 31, and the electrode 30 is connected to a cathode of a DC power supply 34 via a switch 32. The pair of electrodes 30 and 31 are connected to each other via a switch 35. The operation control of the devices shown in FIG. 1 is performed by a known control device such as a sequencer or a microcomputer. The detailed operation control includes, for example, a method of passing a liquid through a condenser described later. No.

【0024】図1において、水質監視装置5は、液質を
測定するもので、イオン除去の程度を正確に把握できる
指標の測定機器であれば特に限定されず、導電率計、比
抵抗計が挙げられ、本実施の形態では導電率計である。
In FIG. 1, the water quality monitoring device 5 is for measuring liquid quality, and is not particularly limited as long as it is an index measuring device capable of accurately grasping the degree of ion removal. In this embodiment, the conductivity meter is used.

【0025】第1の実施の形態例の脱塩装置を使用した
脱塩方法を説明する。図1中、送液ポンプ3を駆動する
と、市水、工業用水、回収水、河沼水あるいは糖液など
の被処理液は、安全フィルタ4を通って供給配管7によ
り通液型コンデンサ1に供給される。通液型コンデンサ
1ではスイッチ32をオンして一対の電極30、31に
直流電圧を印加し、切替え弁13を開、切替え弁12を
閉の状態とし、水質監視装置5を監視状態にする。この
段階で通液型コンデンサ1は脱塩工程(イオン成分除去
工程)に入り、被処理液は通液型コンデンサ1の一対の
電極30、31にイオン成分を吸着され、イオン成分が
除去された液となり、脱塩液排出配管11により脱塩手
段2に送られる。
A desalination method using the desalination apparatus of the first embodiment will be described. In FIG. 1, when the liquid feed pump 3 is driven, the liquid to be treated, such as city water, industrial water, recovered water, river water, or sugar solution, is supplied to the flow-through condenser 1 by the supply pipe 7 through the safety filter 4. Is done. In the flow-through condenser 1, the switch 32 is turned on, a DC voltage is applied to the pair of electrodes 30, 31, the switching valve 13 is opened, the switching valve 12 is closed, and the water quality monitoring device 5 is set in the monitoring state. At this stage, the liquid-flow condenser 1 enters a desalting step (ion component removal step), and the liquid to be treated is adsorbed on the pair of electrodes 30 and 31 of the liquid-flow condenser 1 to remove the ion components. It becomes a liquid and is sent to the desalting means 2 by the desalting liquid discharge pipe 11.

【0026】この状態が継続すると、一対の電極30、
31にイオン成分が徐々に吸着され飽和状態に近づき、
イオン成分除去性能が低下し、徐々に脱塩液の導電率が
上昇する。水質監視装置5により測定された導電率が脱
塩液採液不可値になると、切替え弁13を閉、切替え弁
12を開の状態として、直ちにスイッチ32をオフして
通液型コンデンサ1への直流電圧の印加を止め、更にス
イッチ35をオンして一対の電極30、31間を短絡、
あるいは直流電源34を逆接続させ、吸着したイオン成
分を一対の電極30、31から離脱させ、被処理液側に
移動させて一対の電極30、31を再生する。すなわ
ち、通液型コンデンサ1は濃縮工程(イオン成分回収工
程)に入り、イオン成分が濃縮された濃縮液は濃縮液排
出配管10により系外に排出される。
When this state continues, a pair of electrodes 30,
The ionic component is gradually adsorbed to 31 and approaches a saturated state,
The ionic component removal performance decreases, and the conductivity of the desalted solution gradually increases. When the electric conductivity measured by the water quality monitoring device 5 becomes a non-desalted liquid sampling impossible value, the switching valve 13 is closed and the switching valve 12 is opened, the switch 32 is immediately turned off, and the flow through the condenser 1 is stopped. The application of the DC voltage is stopped, and the switch 35 is turned on to short-circuit the pair of electrodes 30 and 31,
Alternatively, the DC power supply 34 is reversely connected, the adsorbed ion component is separated from the pair of electrodes 30 and 31, and moved to the liquid to be treated, thereby regenerating the pair of electrodes 30 and 31. That is, the flow-through condenser 1 enters a concentration step (ion component recovery step), and the concentrated liquid in which the ionic components are concentrated is discharged out of the system by the concentrated liquid discharge pipe 10.

【0027】上記脱塩工程(除去工程)及び濃縮工程
(回収工程)を1サイクルとし、このサイクルを繰り返
して行うことにより、被処理液からイオン成分が除去さ
れた脱塩液及び前記除去されたイオン成分を回収したイ
オン濃度の高い濃縮液を得ると共に、通液型コンデンサ
1の一対の電極30、31の飽和・再生の繰り返しを図
るものである。
The desalting step (removing step) and the concentrating step (recovering step) are defined as one cycle, and the cycle is repeatedly performed to remove the ionic components from the liquid to be treated and to remove the ionic component. In addition to obtaining a concentrated solution having a high ion concentration from which the ionic components have been recovered, the saturation and regeneration of the pair of electrodes 30 and 31 of the flow-through condenser 1 are repeated.

【0028】次いで、脱塩手段2では、通液型コンデン
サで脱塩された脱塩液に含まれる微量のイオン成分を更
に除去し、流出配管14から高度に脱塩された脱塩液を
得ることができる。また、脱塩手段2が、逆浸透膜装置
や電気式脱イオン水製造装置のように濃縮液を排出する
装置の場合、脱塩手段2から排出される濃縮液を戻り配
管15(図1中、二点鎖線)により、被処理液側に戻す
ことにより、液の回収率を向上させることができる。
Next, in the desalting means 2, a trace amount of ionic components contained in the desalted solution desalted by the flow-through condenser is further removed, and a highly desalted solution is obtained from the outlet pipe 14. be able to. Further, when the desalting means 2 is a device for discharging a concentrated liquid such as a reverse osmosis membrane device or an electric deionized water producing device, the concentrated liquid discharged from the desalting means 2 is returned to the return pipe 15 (FIG. 1). , Two-dot chain line), the liquid recovery rate can be improved by returning to the liquid to be treated.

【0029】第1の実施の形態例において、前段の通液
型コンデンサは被処理液中のイオン成分の粗取り装置と
し、後段の脱塩手段で残りのイオン成分、有機物及び微
粒子などを除去する仕上げ装置とすることが脱塩処理を
効率的に行うことができる点で好ましい。この場合、通
液型コンデンサの脱塩工程から流出する脱塩液の液質は
導電率が100μS/cmμ以下、好ましくは10〜50μ
S/cmであり、脱塩手段から流出する脱塩液の水質は、脱
塩手段がイオン交換装置の場合、1.0〜18.25M
Ω・cm、好ましくは10〜18.25M Ω・cmであり、
脱塩手段が蒸留装置の場合、0.2〜2.0μS/cm、好
ましくは0.2〜1.0μS/cmであり、脱塩手段が逆浸
透膜装置の場合、1.0〜10μS/cm、好ましくは1.
0〜5.0μS/cmであり、脱塩手段が電気式脱イオン水
製造装置の場合、1.0〜18.25M Ω・cm、好まし
くは10〜18.25M Ω・cmである。
In the first embodiment, the first-stage flow-through condenser is a device for roughly removing ionic components in the liquid to be treated, and the second-stage desalting means removes remaining ionic components, organic substances, fine particles and the like. It is preferable to use a finishing device in that desalting can be performed efficiently. In this case, the liquid quality of the desalted liquid flowing out of the desalting step of the flow-through condenser has a conductivity of 100 μS / cmμ or less, preferably 10 to 50 μM.
S / cm, and the water quality of the desalted liquid flowing out of the desalting means is 1.0 to 18.25 M when the desalting means is an ion exchange device.
Ω · cm, preferably 10 to 18.25 MΩ · cm,
When the desalting means is a distillation apparatus, it is 0.2 to 2.0 μS / cm, preferably 0.2 to 1.0 μS / cm, and when the desalting means is a reverse osmosis membrane apparatus, it is 1.0 to 10 μS / cm. cm, preferably 1.
0 to 5.0 μS / cm, and when the desalting means is an electric deionized water production device, the pressure is 1.0 to 18.25 MΩ · cm, preferably 10 to 18.25 MΩ · cm.

【0030】次に、第2の実施の形態例の脱塩装置を使
用した脱塩方法を図2を参照して説明する。図2におい
て、図1と同一構成要素には同一符号を付してその説明
を省略し、異なる点について主に説明する。図2の脱塩
装置20bにおいて、図1の脱塩装置20aと異なる点
は、後段の脱塩手段を逆浸透膜装置2bとし、逆浸透膜
装置2bの非透過液を被処理液に戻す戻り配管15を設
けた点、通液型コンデンサ1の前段に逆浸透膜装置2a
を設置した点及び通液型コンデンサ1の濃縮液を濃縮液
流出配管10を通って被処理液に戻す戻り配管16を設
けた点である。
Next, a desalination method using the desalination apparatus of the second embodiment will be described with reference to FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted, and different points will be mainly described. The desalination apparatus 20b of FIG. 2 is different from the desalination apparatus 20a of FIG. 1 in that the subsequent desalination means is a reverse osmosis membrane apparatus 2b, and the non-permeate of the reverse osmosis membrane apparatus 2b is returned to the liquid to be treated. The reverse osmosis membrane device 2a is provided at the point where the pipe 15 is provided,
And a return pipe 16 for returning the concentrated liquid of the flow-through condenser 1 to the liquid to be treated through the concentrated liquid outlet pipe 10.

【0031】これにより、被処理液は逆浸透膜装置2a
でイオン成分や有機物が除去され、その透過液の主成分
は分子状の炭酸、重炭酸イオンなどのアニオン、ナトリ
ウムなどの1価のカチオン及びシリカなどである。かか
る液質を有する透過液は通液型コンデンサ1で重炭酸イ
オン及びナトリウムイオンが除去される。その結果、次
式:H2 CO3 ⇔H+ +HCO3 2- に示すように、残存
する分子状の炭酸の重炭酸イオン化が進み、通液型コン
デンサ1で重炭酸イオンは除去される。被処理液中の炭
酸由来物質が通液型コンデンサ1で除去されるにつれ
て、被処理液は酸性から中性に変化していき、重炭酸イ
オンの割合が増加する。次いで、通液型コンデンサ1か
ら得られた脱塩液は逆浸透膜装置2bで残存する重炭酸
イオンが除去され、高度の液質を有する透過液となる。
また、通液型コンデンサ1から得られる濃縮液と逆浸透
膜装置2bの非透過液は被処理液に戻されるから、液の
回収効率を向上させることができる。
Thus, the liquid to be treated is supplied to the reverse osmosis membrane device 2a.
The main components of the permeated liquid are molecular anions such as carbonic acid and bicarbonate, monovalent cations such as sodium, and silica. From the permeate having such a liquid quality, bicarbonate ions and sodium ions are removed by the flow-through condenser 1. As a result, as shown in the following formula: H 2 CO 3 ⇔H + + HCO 3 2− , the bicarbonate ionization of the remaining molecular carbonic acid proceeds, and the bicarbonate ion is removed by the liquid-flow condenser 1. As the carbonic acid-derived substance in the liquid to be treated is removed by the flow-through condenser 1, the liquid to be treated changes from acidic to neutral, and the proportion of bicarbonate ions increases. Next, the residual bicarbonate ion is removed from the desalted liquid obtained from the flow-through condenser 1 by the reverse osmosis membrane device 2b, and becomes a permeate having a high liquid quality.
In addition, since the concentrated liquid obtained from the flow-through condenser 1 and the non-permeated liquid of the reverse osmosis membrane device 2b are returned to the liquid to be treated, the liquid collection efficiency can be improved.

【0032】また、通液型コンデンサの処理水は、硬度
成分も除去されているため、硬度成分を析出させること
なくpH調整できるアルカリ領域が拡大している。従っ
て、必要に応じて、通液型コンデンサ処理水にアルカリ
を添加して後段の脱塩手段、特に逆浸透膜装置に通水す
れば、炭酸、シリカあるいはホウ素のイオン化が進み、
逆浸透膜装置の透過水の水質をより改善できる。
Further, since the hardness component is also removed from the treated water of the flow-through condenser, the alkali region in which the pH can be adjusted without precipitating the hardness component is expanded. Therefore, if necessary, if an alkali is added to the flow-through condenser-treated water and the water is passed through the subsequent desalination means, particularly a reverse osmosis membrane device, ionization of carbonic acid, silica or boron proceeds,
The quality of the permeated water of the reverse osmosis membrane device can be further improved.

【0033】上記実施の形態では、通液型コンデンサー
は1台であるが、通液型コンデンサーの複数台を並列に
配置して、イオン濃度が低減された脱塩液又はイオンの
濃度が高められた濃縮液を連続して得るようにしてもよ
い。
In the above embodiment, the number of the flow-through condensers is one, but a plurality of the flow-through condensers are arranged in parallel to increase the ion concentration of the desalted solution or the ion concentration. May be obtained continuously.

【0034】[0034]

【実施例】次に、実施例を挙げて、本発明を更に具体的
に説明するが、これは単に例示であって、本発明を制限
するものではない。 実施例1 被処理液(原水)は市水を活性炭処理し、更に脱気膜
(100torr)にて脱気後、20℃に調整したものを用
い、図1に示すような脱塩フローを有する脱塩装置を用
いて、下記脱塩処理条件で脱塩処理した。得られた処理
水の水質を原水と共に、表1に示す。なお、本実施例に
おいて、通液型コンデンサーの処理流量が不足した場
合、先ず、通液型コンデンサーを運転して通液型コンデ
ンサーの脱塩水を清浄なタンク(不図示)に貯蔵後、後
段の処理に用いることとした。 (脱塩処理条件) ・通液型コンデンサの仕様及び運転条件 装置;関西熱化学社製 活性炭電極の総活性炭量;252g 印加電圧;直流1.2V 処理液流速;300ml/ 分 運転方法;導電率計により、排水の導電率を監視し、脱
塩工程から脱塩率が90%の脱塩水を得るように運転し
た。 ・脱塩手段の仕様及び運転条件 装置;イオン交換装置「非再生式カートリッジポリッシ
ャG5型」(オルガノ社製) イオン交換体の種類;混床樹脂MB2を5L 充填比率;カチオン交換樹脂:アニオン交換樹脂=1:
EXAMPLES Next, the present invention will be described more specifically with reference to examples, but this is merely an example and does not limit the present invention. Example 1 A liquid to be treated (raw water) was prepared by treating city water with activated carbon, degassing with a degassing membrane (100 torr), and adjusting the temperature to 20 ° C., and having a desalination flow as shown in FIG. Using a desalting apparatus, desalting was performed under the following desalting conditions. Table 1 shows the quality of the obtained treated water together with the raw water. In the present embodiment, when the processing flow rate of the liquid-flow condenser is insufficient, first, the liquid-flow condenser is operated to store the demineralized water of the liquid-flow condenser in a clean tank (not shown), and then the subsequent step is performed. It was used for processing. (Desalination conditions) ・ Specifications and operating conditions of the flow-through condenser Capacitor: Total activated carbon of activated carbon electrode manufactured by Kansai Thermochemical Co .; 252 g Applied voltage: DC 1.2 V Treatment liquid flow rate; 300 ml / min Operating method; The conductivity of the waste water was monitored by a meter, and the operation was performed so as to obtain 90% of desalinated water from the desalination step.・ Specifications and operating conditions of desalting means Device: Ion exchange device “Non-regenerative cartridge polisher G5” (manufactured by Organo) Type of ion exchanger: 5L of mixed bed resin MB2 Filling ratio; = 1
2

【0035】実施例2 脱塩手段として、イオン交換装置に代えて、下記仕様及
び処理条件の逆浸透膜装置を使用した以外は、実施例1
と同様の方法で脱塩処理した。得られた処理水の水質を
表1に示す。 ・逆浸透膜装置;「実験機」(オルガノ社製) 膜;ES−20(日東電工社製) 運転圧力;8kgf/cm2
Example 2 Example 1 was repeated except that a reverse osmosis membrane device having the following specifications and processing conditions was used as the desalting means instead of the ion exchange device.
Desalting was performed in the same manner as described above. Table 1 shows the quality of the obtained treated water. - reverse osmosis unit; "experimental machine" (manufactured by Organo Corporation) membrane; (manufactured by Nitto Denko Corporation) ES-20 operating pressure; 8 kgf / cm 2

【0036】実施例3 脱塩手段として、イオン交換装置に代えて、下記仕様及
び処理条件の電気式脱イオン水製造装置を使用した以外
は、実施例1と同様の方法で脱塩処理した。得られた処
理水の水質を表1に示す。 ・電気式脱イオン水製造装置;「試作機」(オルガノ社
製) 試作機の構造及び脱塩室に充填されるイオン交換樹脂等
は特許公報第2865389号記載の実施例Aに準じ
た。 定格;100L/時間 運転電圧;50V
Example 3 A desalting treatment was carried out in the same manner as in Example 1 except that an electric deionized water producing apparatus having the following specifications and processing conditions was used instead of the ion exchange apparatus as the desalting means. Table 1 shows the quality of the obtained treated water. -Electric deionized water producing apparatus; "prototype" (manufactured by Organo) The structure of the prototype and the ion-exchange resin to be filled in the desalting chamber were in accordance with Example A described in Japanese Patent Publication No. 2865389. Rating: 100L / hour Operating voltage: 50V

【0037】実施例4 脱塩手段として、イオン交換装置に代えて、下記仕様及
び処理条件の蒸留器を使用した以外は、実施例1と同様
の方法で脱塩処理した。得られた処理水の水質を表1に
示す。 ・蒸留器;「オートスチル蒸留器」(ヤマト科学社製) 定格;1.8L/時間
Example 4 A desalting treatment was carried out in the same manner as in Example 1 except that a distillation apparatus having the following specifications and processing conditions was used instead of the ion exchange device as the desalting means. Table 1 shows the quality of the obtained treated water.・ Distiller; “Auto Still Distiller” (manufactured by Yamato Scientific Co., Ltd.) Rating: 1.8 L / hour

【0038】実施例5 図2に示すような脱塩処理フローを有する脱塩装置を用
いて、下記脱塩処理条件で処理した。得られた処理水の
水質を表1に示す。 ・被処理液;実施例1と同様のもの。 ・通液型コンデンサ;装置及び処理条件は、実施例1と
同様のもの。 ・逆浸透膜装置;前段及び後段共に、装置及び処理条件
は、実施例1と同様のもの。
Example 5 Using a desalination apparatus having a desalination treatment flow as shown in FIG. 2, treatment was performed under the following desalination treatment conditions. Table 1 shows the quality of the obtained treated water. Liquid to be treated: the same as in Example 1. -Flow-through condenser; the equipment and processing conditions are the same as in Example 1. Reverse osmosis membrane device: Both the former stage and the latter stage have the same apparatus and processing conditions as in Example 1.

【0039】実施例6 後段の逆浸透膜装置2bを省略した以外は、実施例5と
同様の方法で脱塩処理した。すなわち、図2中、脱塩液
排出配管11から流出する液を処理水として得た。得ら
れた処理水の水質を表1に示す。
Example 6 A desalting treatment was performed in the same manner as in Example 5, except that the reverse osmosis membrane device 2b at the subsequent stage was omitted. That is, in FIG. 2, the liquid flowing out of the desalted liquid discharge pipe 11 was obtained as treated water. Table 1 shows the quality of the obtained treated water.

【0040】実施例7 実施例2の処理液をさらに、実施例1で使用したイオン
交換装置で脱塩処理した。すなわち、図1中、脱塩液排
出配管14から流出する逆浸透膜装置の透過水を更にイ
オン交換処理した。得られた処理水の水質を表1に示
す。
Example 7 The treatment liquid of Example 2 was further desalted by the ion exchange apparatus used in Example 1. That is, in FIG. 1, the permeated water of the reverse osmosis membrane device flowing out of the desalted liquid discharge pipe 14 was further subjected to ion exchange treatment. Table 1 shows the quality of the obtained treated water.

【0041】比較例1 後段の脱塩手段(イオン交換装置)を省略した以外は、
実施例1と同様の方法で処理した。すなわち、被処理液
を通液型コンデンサ単独で処理して処理水を得たもので
ある。得られた処理水の水質を表1に示す。
COMPARATIVE EXAMPLE 1 Except for omitting the subsequent desalting means (ion exchange device),
The treatment was performed in the same manner as in Example 1. That is, the liquid to be treated is treated with the liquid type condenser alone to obtain treated water. Table 1 shows the quality of the obtained treated water.

【0042】比較例2 後段の脱塩手段(イオン交換装置)の代わりに、通液型
コンデンサを使用した以外は、実施例1と同様の方法で
処理した。すなわち、被処理液を2台の通液型コンデン
サを直列に接続した脱塩装置で処理して処理水を得たも
のである。なお、実験の都合上、実際には同じ通液型コ
ンデンサで2度処理した。得られた処理水の水質を表1
に示す。
Comparative Example 2 A treatment was performed in the same manner as in Example 1 except that a liquid-flow condenser was used in place of the subsequent desalting means (ion exchange device). That is, the liquid to be treated is treated by a desalination device in which two flow-through condensers are connected in series to obtain treated water. Incidentally, for the sake of the experiment, the treatment was actually performed twice with the same liquid-passing condenser. Table 1 shows the quality of the obtained treated water.
Shown in

【0043】比較例3 通液型コンデンサの印加電圧1.2Vを0V(無通電)
とした以外は、実施例5と同様に行った。すなわち、被
処理液を逆浸透膜装置単独で処理して処理水を得たもの
である。得られた処理水の水質を表1に示す。
Comparative Example 3 A voltage of 1.2 V applied to the flow-through capacitor was changed to 0 V (no current).
The procedure was performed in the same manner as in Example 5, except that That is, the liquid to be treated is treated with the reverse osmosis membrane device alone to obtain treated water. Table 1 shows the quality of the obtained treated water.

【0044】[0044]

【表1】 [Table 1]

【0045】表1中、「CP」は通液型コンデンサ、「IE
R 」イオン交換装置、「RO」は逆浸透膜装置、「EDI 」
電気式脱イオン水製造装置をそれぞれ示す。
In Table 1, “CP” is a liquid-flow condenser, and “IE”
R ”ion exchange device,“ RO ”reverse osmosis membrane device,“ EDI ”
Each shows an electric deionized water production apparatus.

【0046】表1から、通液型コンデンサとそれ以外の
脱塩手段を直列に接続した脱塩装置は、いずれも通液型
コンデンサ単独又はそれ以外の脱塩手段の単独装置に比
して、高度な水質を得ることができる。特に、通液型コ
ンデンサ→逆浸透膜装置→非再生式カートリッジポリッ
シャとする脱塩装置(実施例7)は高純度の水質を得る
ことができた。また、通液型コンデンサ→脱塩手段とす
る脱塩装置(実施例1〜4)で優れた脱塩性能を示すの
は、前段の通液型コンデンサでは電極に直流電圧を印加
して、被処理液中の電気的性質を帯びた微粒子や有機物
成分を吸着し、次いで短絡又は逆電位を印加して、可逆
的な脱着を行い不純物を系外に排出する。従って、後段
の脱塩手段にこれらの不純物が持ち込まれることがな
い。一方、従来の通液型コンデンサ以外の脱塩手段では
イオン交換体上やイオン交換膜上に微粒子や有機物の不
可逆的な吸着が起こり、これが脱塩性能を低下させる。
From Table 1, it can be seen that the desalination apparatus in which the liquid-flow condenser and the other desalting means are connected in series is different from the single apparatus of the liquid-flow condenser alone or the other apparatus of the other desalination means. High water quality can be obtained. In particular, a high-purity water quality was obtained in the desalination apparatus (Example 7) using a flow-through condenser, a reverse osmosis membrane device, and a non-regenerative cartridge polisher. In addition, the desalination apparatus (Examples 1 to 4), which is a liquid-flow condenser to a desalination means, exhibits excellent desalination performance. The treatment liquid adsorbs fine particles and organic components having electrical properties and then applies a short circuit or a reverse potential to perform reversible desorption and discharge impurities out of the system. Therefore, these impurities are not carried into the subsequent desalination means. On the other hand, in the desalting means other than the conventional flow-through type condenser, irreversible adsorption of fine particles and organic substances occurs on the ion exchanger and the ion exchange membrane, which lowers the desalting performance.

【0047】実施例8 実施例1において、通液型コンデンサの運転条件を種々
変化させ、これに伴う後段のイオン交換装置に及ぼす水
質向上効果以外の影響を観察した。通液型コンデンサの
運転は通液型コンデンサの処理水質(脱塩水質)が15
0、100、50及び25μS/cmとなるように印加電圧
を調整して行った。イオン交換装置に及ぼす水質向上効
果以外の影響はイオン交換樹脂の反応速度で評価した。
イオン交換樹脂の反応速度は特開平10−267838
等に記載の定法により測定した。結果を表2に示す。
Example 8 In Example 1, the operating conditions of the flow-through condenser were variously changed, and the effects other than the effect of improving the water quality on the subsequent ion exchanger were observed. The operation of the flow-through condenser is such that the treated water quality (desalinated water quality) of the flow-through condenser is 15
The applied voltage was adjusted so as to be 0, 100, 50 and 25 μS / cm. The effects other than the water quality improvement effect on the ion exchange device were evaluated by the reaction rate of the ion exchange resin.
The reaction rate of the ion exchange resin is disclosed in JP-A-10-267838.
And the like. Table 2 shows the results.

【0048】実施例9 実施例2において、通液型コンデンサの運転条件を種々
変化させ、これに伴う後段の逆浸透膜装置に及ぼす水質
向上効果以外の影響を観察した。通液型コンデンサの運
転は通液型コンデンサの処理水質(脱塩水質)が15
0、100、50及び25μS/cmとなるように印加電圧
を調整して行った。逆浸透膜装置に及ぼす水質向上効果
以外の影響は逆浸透膜装置のフラックス(透過水流量)
の低下で評価した。すなわち、実施例2で用いた膜と同
じ平膜を小型平膜試験装置(C70−F型、日東電工社
製)にセットし、操作圧力を8kgf/cm2 として、各通液
型コンデンサの処理水を通水し、通水開始時からフラッ
クスが初期値の90%になるまでの透過水の積算量を測
定した。結果を表2に示す。
Example 9 In Example 2, the operating conditions of the flow-through condenser were changed variously, and the effects other than the effect of improving the water quality on the subsequent reverse osmosis membrane device were observed. The operation of the flow-through condenser is such that the treated water quality (desalinated water quality) of the flow-through condenser is 15
The applied voltage was adjusted so as to be 0, 100, 50 and 25 μS / cm. The effect other than the water quality improvement effect on the reverse osmosis membrane device is the flux (permeate flow rate) of the reverse osmosis membrane device.
Was evaluated in terms of decrease. That is, the same flat membrane as the membrane used in Example 2 was set in a small flat membrane test apparatus (C70-F type, manufactured by Nitto Denko Corporation), the operating pressure was set to 8 kgf / cm 2 , and the treatment of each flow-through condenser was performed. Water was passed through, and the integrated amount of permeated water from the start of water passing until the flux became 90% of the initial value was measured. Table 2 shows the results.

【0049】実施例10 実施例3において、通液型コンデンサの運転条件を種々
変化させ、これに伴う後段の電気式脱イオン水製造装置
に及ぼす水質向上効果以外の影響を観察した。通液型コ
ンデンサの運転は通液型コンデンサの処理水質(脱塩水
質)が150、100、50及び25μS/cmとなるよう
に印加電圧を調整して行った。電気式脱イオン水製造装
置に及ぼす水質向上効果以外の影響は電気式脱イオン水
製造装置のスタックの電流値1A運転時の電気抵抗の経
時的上昇速度で評価した。結果を表2に示す。
Example 10 In Example 3, the operating conditions of the flow-through condenser were changed variously, and the effects other than the effect of improving the water quality on the subsequent electric deionized water producing apparatus were observed. The operation of the flow-through condenser was performed by adjusting the applied voltage so that the treated water quality (desalinated water quality) of the flow-through condenser was 150, 100, 50, and 25 μS / cm. The effects other than the effect of improving the water quality on the electric deionized water producing apparatus were evaluated by the time-dependent increase rate of the electric resistance of the stack of the electric deionized water producing apparatus at a current value of 1 A. Table 2 shows the results.

【0050】実施例11 実施例4において、通液型コンデンサの運転条件を種々
変化させ、これに伴う後段の蒸留器に及ぼす水質向上効
果以外の影響を観察した。通液型コンデンサの運転は通
液型コンデンサの処理水質(脱塩水質)が150、10
0、50及び25μS/cmとなるように印加電圧を調整し
て行った。蒸留器に及ぼす水質向上効果以外の影響は蒸
留水中の2μm 以上の微粒子数で評価した。この微粒子
は電子微粒子測定器「ROYCO4100+246B」(HIAC 社製) で
測定した。結果を表2に示す。
Example 11 In Example 4, the operating conditions of the flow-through condenser were changed variously, and the effects other than the effect of improving the water quality on the subsequent distillation unit were observed. In the operation of the flow-through condenser, the treated water quality (desalted water quality) of the flow-through condenser is 150, 10
The applied voltage was adjusted so as to be 0, 50, and 25 μS / cm. The effects other than the effect of improving the water quality on the still were evaluated by the number of fine particles of 2 μm or more in the distilled water. The fine particles were measured with an electronic fine particle measuring device “ROYCO4100 + 246B” (manufactured by HIAC). Table 2 shows the results.

【0051】比較例4〜7 実施例7〜10のそれぞれにおいて、通液コンデンサを
無通電とした場合における後段のイオン交換装置、逆浸
透膜装置、電気式脱イオン水製造装置及び蒸留器のそれ
ぞれに及ぼす水質向上効果以外の影響を同様の評価項目
で観察した。結果を表2に示す。
Comparative Examples 4 to 7 In each of Examples 7 to 10, each of the subsequent stage ion exchange device, reverse osmosis membrane device, electric deionized water producing device, and distiller when the flow-through condenser was de-energized. The effect other than the water quality improvement effect on water was observed with the same evaluation items. Table 2 shows the results.

【0052】[0052]

【表2】 脚注1)通液型コンデンサ無通電[Table 2] Footnote 1) No flow through condenser

【0053】表2から、前段の通液型コンデンサの処理
水(脱塩水)の水質が向上するほど、後段の各種脱塩手
段への悪影響は低減するものの、通液型コンデンサの処
理水の水質が50μS/cm程度以下ではその影響も飽和状
態となる。従って、通液型コンデンサの運転は、通液型
コンデンサの処理水の水質が50〜100μS/cmとなる
程度とするのがよい。
From Table 2, it can be seen that as the quality of the treated water (desalinated water) of the first-stage flow-through condenser improves, the adverse effect on the subsequent various types of desalination means decreases, but the quality of the treated water of the first-stage flow-through condenser decreases. Is less than about 50 μS / cm, the effect is saturated. Therefore, the operation of the flow-through condenser should preferably be such that the quality of the treated water of the flow-through condenser is 50 to 100 μS / cm.

【0054】[0054]

【発明の効果】本発明によれば、簡便で高効率な脱塩処
理が可能となる。特に、通液型コンデンサ→逆浸透膜装
置→非再生式カートリッジポリッシャとする脱塩装置で
は高純度の水質を得ることができた。また、通液型コン
デンサ→脱塩手段とする脱塩装置では、前段の通液型コ
ンデンサでは電極に直流電圧を印加して、被処理液中の
電気的性質を帯びた微粒子や有機物成分を吸着し、次い
で短絡又は逆電位を印加して、可逆的な脱着が行われる
から不純物が系外に排出される。従って、後段の脱塩手
段にこれらの不純物が持ち込まれることがないため、高
純度の脱塩液を得ることができる。
According to the present invention, a simple and highly efficient desalination treatment can be performed. In particular, a high-purity water quality could be obtained in a desalination device using a flow-through condenser, a reverse osmosis membrane device, and a non-regenerative cartridge polisher. Also, in the desalination device that uses a liquid-flow condenser → desalination means, a direct-current voltage is applied to the electrodes in the preceding liquid-flow condenser to adsorb fine particles and organic components with electrical properties in the liquid to be treated. Then, a short circuit or a reverse potential is applied to perform reversible desorption, so that impurities are discharged out of the system. Therefore, since these impurities are not brought into the subsequent desalting means, a highly purified desalted liquid can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態である脱塩装置の処
理方法を示すフロー図である。
FIG. 1 is a flowchart showing a processing method of a desalination apparatus according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態である脱塩装置の処
理方法を示すフロー図である。
FIG. 2 is a flowchart showing a processing method of a desalination apparatus according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 通液型コンデンサ 2 脱塩手段 3 送液ポンプ 4 安全フィルタ 5 水質監視装置 7 供給配管 8、9 接続配管 10 脱塩液排出配管 11 濃縮液排出配管 12、13 切り替え弁 14 流出配管 15、16 戻り配管 30、31 電極 32、35 スイッチ 34 直流電源 DESCRIPTION OF SYMBOLS 1 Flow-through condenser 2 Desalting means 3 Liquid sending pump 4 Safety filter 5 Water quality monitoring device 7 Supply piping 8, 9 Connection piping 10 Desalting liquid discharging piping 11 Concentrated liquid discharging piping 12, 13 Switching valve 14 Outflow piping 15, 16 Return pipe 30, 31 Electrode 32, 35 Switch 34 DC power supply

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01G 9/155 H01G 9/00 301Z Fターム(参考) 4D006 GA03 KA01 KA72 KB01 KB14 PA01 PB02 PC02 4D025 AA04 AB02 BA09 BA10 BA14 BA15 BB04 DA06 4D034 BA03 CA12 4D061 DA01 DB18 DC19 EA02 EA09 EB02 EB05 EB29 EB31 EB37 EB39 FA02 FA08 FA09 FA13 GA21 GC16 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) H01G 9/155 H01G 9/00 301Z F term (reference) 4D006 GA03 KA01 KA72 KB01 KB14 PA01 PB02 PC02 4D025 AA04 AB02 BA09 BA10 BA14 BA15 BB04 DA06 4D034 BA03 CA12 4D061 DA01 DB18 DC19 EA02 EA09 EB02 EB05 EB29 EB31 EB37 EB39 FA02 FA08 FA09 FA13 GA21 GC16

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一対の電極に直流電圧を印加して通液中
の被処理液のイオン成分を除去し、前記一対の電極を短
絡あるいは直流電源を逆接続して、除去されたイオン成
分を通液中の被処理液に回収する通液型コンデンサと、
単一又は複数の脱塩手段とを直列に接続してなることを
特徴とする脱塩装置。
A dc voltage is applied to a pair of electrodes to remove ionic components of a liquid to be treated in a liquid flowing therethrough, and the pair of electrodes is short-circuited or a DC power supply is reversely connected to remove the removed ionic components. A flow-through condenser that recovers the liquid to be treated during the flow,
A desalination apparatus comprising a single or a plurality of desalination means connected in series.
【請求項2】 前記脱塩手段は、前記通液型コンデンサ
の後段側に配置されることを特徴とする請求項1記載の
脱塩装置。
2. The desalination apparatus according to claim 1, wherein the desalination unit is disposed downstream of the liquid-flow condenser.
【請求項3】 前記脱塩手段が、イオン交換装置、逆浸
透膜装置、蒸留装置又は電気式脱イオン水製造装置であ
ることを特徴とする請求項1又は2記載の脱塩装置。
3. The desalination apparatus according to claim 1, wherein the desalination means is an ion exchange device, a reverse osmosis membrane device, a distillation device, or an electric deionized water production device.
【請求項4】 逆浸透膜装置と、一対の電極に直流電圧
を印加して通液中の被処理液のイオン成分を除去し、前
記一対の電極を短絡あるいは直流電源を逆接続して、除
去されたイオン成分を通液中の被処理液に回収する通液
型コンデンサをこの順序で接続してなることを特徴とす
る脱塩装置。
4. A reverse osmosis membrane device, a DC voltage is applied to a pair of electrodes to remove an ionic component of a liquid to be processed in the flowing liquid, and the pair of electrodes is short-circuited or a DC power supply is reversely connected. A desalination apparatus characterized in that a flow-through condenser for collecting the removed ionic components into the liquid to be treated is connected in this order.
【請求項5】 前記通液型コンデンサの後段に、更に単
段又は複数段の逆浸透膜装置を設置してなることを特徴
とする請求項4記載の脱塩装置。
5. The desalination apparatus according to claim 4, wherein a single-stage or multiple-stage reverse osmosis membrane device is further provided downstream of the liquid-flow condenser.
【請求項6】 前記通液型コンデンサの後段に、更に単
段又は複数段のイオン交換装置を配置してなることを特
徴とする請求項4記載の脱塩装置。
6. The desalination apparatus according to claim 4, wherein a single-stage or a plurality of stages of ion-exchange devices are further disposed downstream of the liquid-flow condenser.
JP27196399A 1999-09-27 1999-09-27 Desalination equipment Expired - Fee Related JP4135802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27196399A JP4135802B2 (en) 1999-09-27 1999-09-27 Desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27196399A JP4135802B2 (en) 1999-09-27 1999-09-27 Desalination equipment

Publications (2)

Publication Number Publication Date
JP2001087769A true JP2001087769A (en) 2001-04-03
JP4135802B2 JP4135802B2 (en) 2008-08-20

Family

ID=17507259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27196399A Expired - Fee Related JP4135802B2 (en) 1999-09-27 1999-09-27 Desalination equipment

Country Status (1)

Country Link
JP (1) JP4135802B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000827A (en) * 2005-06-27 2007-01-11 Japan Organo Co Ltd Water treatment method and apparatus
JP2008272650A (en) * 2007-04-27 2008-11-13 Sekisui Chem Co Ltd Desalting treatment method and desalting treatment apparatus
JP2011078936A (en) * 2009-10-09 2011-04-21 Panasonic Corp Water treatment apparatus and water heater
WO2014163094A1 (en) * 2013-04-01 2014-10-09 三菱重工業株式会社 Water treatment system
WO2014170981A1 (en) * 2013-04-18 2014-10-23 三菱重工業株式会社 Water treatment system
JP2016011577A (en) * 2014-06-05 2016-01-21 Toto株式会社 urinal
JP2016011576A (en) * 2014-06-05 2016-01-21 Toto株式会社 urinal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013394505B2 (en) 2013-07-17 2017-03-23 Mitsubishi Heavy Industries, Ltd. Water treatment device
EP3067325A4 (en) * 2013-11-07 2017-01-11 Fujifilm Corporation Ion exchange membrane electrode assembly, method for manufacturing same, and capacitor demineralization device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007000827A (en) * 2005-06-27 2007-01-11 Japan Organo Co Ltd Water treatment method and apparatus
JP2008272650A (en) * 2007-04-27 2008-11-13 Sekisui Chem Co Ltd Desalting treatment method and desalting treatment apparatus
JP2011078936A (en) * 2009-10-09 2011-04-21 Panasonic Corp Water treatment apparatus and water heater
WO2014163094A1 (en) * 2013-04-01 2014-10-09 三菱重工業株式会社 Water treatment system
WO2014170981A1 (en) * 2013-04-18 2014-10-23 三菱重工業株式会社 Water treatment system
JP2016011577A (en) * 2014-06-05 2016-01-21 Toto株式会社 urinal
JP2016011576A (en) * 2014-06-05 2016-01-21 Toto株式会社 urinal

Also Published As

Publication number Publication date
JP4135802B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
TW201307270A (en) Method and device for refining alcohol
JP4599803B2 (en) Demineralized water production equipment
JP4135802B2 (en) Desalination equipment
JP3864934B2 (en) Pure water production equipment
KR20140100601A (en) Water treatment apparatus
KR101529477B1 (en) NF/RO water purification system using capacitive deionization
JP3593892B2 (en) Pure water production method and apparatus
KR101068664B1 (en) Hybrid type desalination device, desalinating method using the same and regenerating method thereof
US5647969A (en) Method and system for removing ionic species from water
JP4090635B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP3729349B2 (en) Electric regenerative desalination equipment
JP3729347B2 (en) Electric regenerative desalination equipment
CN212151930U (en) Water purification system and water purifier with multiple purification units
JP4090640B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP4135801B2 (en) Liquid passing method and apparatus for liquid passing capacitor
CN113398763A (en) Regeneration method and separation device
KR101636701B1 (en) NF/RO water purification system using capacitive deionization
JP2002336859A (en) Desalted water making method
JPH07163845A (en) Treatment apparatus for ammonium nitrate-containing waste solution
JP6034736B2 (en) Electric deionized water production equipment
JP3988462B2 (en) Desalination method
JP4121226B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP4093386B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP2002210468A (en) Demineralizing device and demineralizing method
JP3881120B2 (en) How to pass liquid-type capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees