JP4121226B2 - Liquid passing method and apparatus for liquid passing capacitor - Google Patents

Liquid passing method and apparatus for liquid passing capacitor Download PDF

Info

Publication number
JP4121226B2
JP4121226B2 JP31780599A JP31780599A JP4121226B2 JP 4121226 B2 JP4121226 B2 JP 4121226B2 JP 31780599 A JP31780599 A JP 31780599A JP 31780599 A JP31780599 A JP 31780599A JP 4121226 B2 JP4121226 B2 JP 4121226B2
Authority
JP
Japan
Prior art keywords
liquid
capacitor
electrodes
desalted
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31780599A
Other languages
Japanese (ja)
Other versions
JP2001129552A (en
Inventor
大作 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP31780599A priority Critical patent/JP4121226B2/en
Publication of JP2001129552A publication Critical patent/JP2001129552A/en
Application granted granted Critical
Publication of JP4121226B2 publication Critical patent/JP4121226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、その保有する一対の電極に直流電圧を印加して通液中の被処理液のイオン成分が除去された脱塩液を得、その後、短絡あるいは逆接続して一対の電極を再生すると共に、前記除去イオン成分を通液中の被処理液と共に回収するもので、その目的に合わせて被処理液のイオン成分を除去及び回収する通液型コンデンサの通液方法及び装置に関する。
【0002】
【従来の技術】
通液型コンデンサは、静電力を利用して被処理液中のイオン成分の除去と回収(再生)を行うもので、その原理は以下の通りである。すなわち、通液型コンデンサは、その保有する一対の電極に直流電圧を印加して、通液中の被処理液のイオン成分、あるいは電荷のある粒子、有機物を一対の電極に吸着することにより除去し、イオン成分が除去された脱塩液を得て、その後一対の電極を短絡あるいは直流電源を逆接続して、一対の電極に吸着している前記イオン成分を離脱させ、一対の電極を再生しつつ除去イオン成分を通液中の被処理液と共に濃縮液として回収することを繰り返し行うものである。
【0003】
このような通液型コンデンサは、特開平5−258992号公報に開示されており、この公知例の一例では、カラムに被処理液を導入する入口と、イオン成分が除去された液を排出する出口とを設け、そのカラム内に上記一対の電極を収容している。これら一対の電極は、双方とも導電性支持層に高表面積導電性表面層が支持され、更に非導電性多孔のスペーサが含まれている。従って、一対の電極は、一方の電極の非導電性多孔のスペーサ、導電性支持層、高表面積導電性表面層、他方の電極の非導電性多孔のスペーサ、導電性支持層、高表面積導電性表面層の6層構造となっている。この一対の電極は、中空の多孔質中心管に高表面積導電性表面層を内側にして巻かれてカートリッジを形成している。一方の電極の導電性支持層及び他方の電極の導電性支持層からはリード線がカラム外に延出され、直流電源に接続されている。カラムの入口には被処理液供給源が接続され、出口にはイオン成分が除去された脱塩液とイオン成分を回収した濃縮液とを分ける切替え弁が接続されている。
【0004】
上記のような通液型コンデンサの通液方法を図5を参照して説明する。図5中、50は通液型コンデンサである。先ず、切替え弁51を開、切替え弁52を閉の状態とし、スイッチ53をオンして一対の電極54、55に直流電圧を印加し、被処理液供給源56から被処理液を通液型コンデンサ50に供給すると、一対の電極54、55にイオン成分が吸着され、切替え弁51の下流側でイオン成分が除去された脱塩液が得られる。この状態が継続すると、一対の電極54、55にイオン成分が徐々に吸着され飽和状態となり、イオン成分除去性能が徐々に低下することが水質監視装置57により測定されるから、ある時点でスイッチ53をオフして直流電圧の印加を止める。そして、切替え弁51を閉、切替え弁52を開の状態にしておき、イオン成分除去性能を再生させるために、スイッチ58をオンして一対の電極54、55間を短絡、あるいは直流電源59を逆接続すると、一対の電極54、55に吸着されていたイオン成分が離脱し、一対の電極54、55が再生されつつ、切替え弁52の下流側でイオン成分を回収した濃縮液が得られ、被処理液中のイオン成分の除去と回収(再生)の1サイクルが終了する。そして、被処理液供給源56から被処理液が常時に通液型コンデンサ50に供給され、上記サイクルが繰り返されてイオン成分が除去された脱塩液とイオン成分を回収した濃縮液とを交互に得ることができる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の通液型コンデンサの通液方法では、処理液(脱塩液又は濃縮液)に気泡が含まれることがある。特に印加電圧を高めて、高度にイオン成分を除去する運転を行った場合に気泡が含まれる。このような気泡は、通液型コンデンサの後段において、様々な障害を引き起こす。例えば、脱塩液又は濃縮液をポンプを用いて更にユースポイントへ送液する場合、該気泡はポンプの円滑な通液を妨げることとなり、場合によってはポンプを停止に至らしめることもある。また、イオン成分を更に低減せしめるために、脱塩液をイオン交換樹脂塔へ通液する場合には、該気泡がイオン交換樹脂の分離を引き起こし、イオン成分の低減が十分に行われなくなる。
【0006】
従って、本発明の目的は、通液型コンデンサの通液方法において、気泡を含まない脱塩液又は濃縮液を得ることが可能で、且つイオン成分除去率が高められた脱塩液を得る通液型コンデンサの通液方法及び装置を提供することにある。
【0007】
【課題を解決するための手段】
かかる実情において、本発明者は鋭意検討を行った結果、気泡の発生は主に、水の電気分解によって生じる酸素ガスと水素ガスであること、従って、通液型コンデンサの後段に気液分離装置を設け、通液型コンデンサの印加電圧を意図的に高めて、例えば、水の電気分解が生じる印加電圧V1 (V)〜該水の電気分解が生じる印加電圧より2.0V高い値V2 (V)の範囲で通液処理を行えば、イオン成分除去率が高められ、且つ気泡が除去された脱塩液を得ることができることなどを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明(1)は、一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去して脱塩液を得、その後前記一対の電極を短絡あるいは直流電源を逆接続して、前記除去されたイオン成分を通液中の被処理液又は回収用水と共に濃縮液として回収する通液型コンデンサにおいて、前記通液型コンデンサから得られる脱塩液又は濃縮液を気液分離装置に通液して、気泡が除去された脱塩液又は濃縮液を得ることを特徴とする通液型コンデンサの通液方法を提供するものである。かかる構成を採ることにより、簡易な方法で気泡が除去された脱塩液又は濃縮液を得ることができ、その結果、脱塩液又は濃縮液をポンプを用いて更にユースポイントへ送液する場合、気泡が原因となるポンプの停止を回避でき、イオン成分を更に低減せしめるために、脱塩液をイオン交換樹脂塔へ通液する場合、気泡がイオン交換樹脂の分離を引き起こすることなく、安定したイオン成分の低減が可能となる。
【0009】
また、本発明(2)は、前記通液型コンデンサの印加電圧が、水の電気分解が生じる印加電圧V1 (V)〜該水の電気分解が生じる印加電圧より2.0V高い値V2 (V)の範囲であることを特徴とする前記発明(1)記載の通液型コンデンサの通液方法を提供するものである。かかる構成を採ることにより、前記発明と同様の効果を奏する他、イオン成分除去率が更に高めらた脱塩液を得ることができる。
【0010】
また、本発明(3)は、一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去し、前記一対の電極を短絡あるいは直流電源を逆接続して、除去されたイオン成分を通液中の被処理液又は回収用水に回収する通液型コンデンサと、前記通液型コンデンサから得られる脱塩液又は濃縮液を気液分離する気液分離装置とからなることを特徴とする通液型コンデンサ装置を提供するものである。かかる構成を採ることにより、前記発明(1)及び(2)を実施できる。
【0011】
【発明の実施の形態】
次に、本発明の第1の実施の形態における通液型コンデンサの通液方法を図1に基づいて説明する。図1は本発明の第1の実施の形態である通液型コンデンサの通液方法を示すフロー図である。図中、1は通液型コンデンサであり、通液型コンデンサ1の下流側は流出配管6により水質監視装置8に接続し、更に水質監視装置8の流出配管10は切替え弁12Aを有する脱塩液流出配管17により気液分離装置2に接続している。また、流出配管10はこれから分岐する切替え弁12Bを有する濃縮液流出配管21を有している。通液コンデンサ1の上流側は接続配管3により被処理液供給源5に接続している。被処理液供給源5は被処理液タンクと、これから被処理液を定量的に供給するための送液ポンプとを含んでいる(不図示)。気液分離装置2は液相に接する装置部分、ここでは底面部に接続される処理液流出配管22と、気相に接する装置部分、ここでは天板部に接続される排気管23とを備える。
【0012】
前記第1通液型コンデンサ1は、少なくとも一対の電極30、31を内蔵し、電極30、31はスイッチ33Aを介して互いに接続され、また、電極30はスイッチ32Aを介して直流電源34の陰極に接続されている。そして、これらの図1に表示の機器類の運転制御は、シーケンサー、マイコン等の公知の制御機器で行われ、その詳細な運転制御としては、例えば、後述の通液型コンデンサの通液方法が挙げられる。
【0013】
前記通液型コンデンサ1の構造は、特に制限されないが、ここではカラム中に金属、黒鉛等の集電極に高表面積活性炭を接してなる電極30、31を収容し、これら電極30、31間に非導電性のスペーサを介在させたものである。そして、直流電圧、例えば、1〜2Vを印加した状態で、カラム中にイオンを含有する被処理液を通すと、一対の電極30、31がイオンを吸着して、イオン成分が除去され脱塩液を得ることができ、その後、一対の電極30、31を短絡させると、電気的に中和し吸着していたイオンが一対の電極30、31から離脱し、一対の電極30、31を再生させると共に、濃厚なイオン成分を回収した濃縮液を得ることができるものである。
【0014】
なお、一対の電極30、31間に印加する電圧としては任意に設定することができるが、本発明においては、特に、水の電気分解が生じる印加電圧V1 (V)〜該水の電気分解が生じる印加電圧より2.0V高い値V2 (V)の範囲、好ましくは(V1 +0.1)〜(V1 +1.0)Vの範囲であることが、イオン成分除去率が高められた脱塩液を得るとともに、後段の気液分離装置で気泡が除去された脱塩液を得ることができる点で本発明の効果を顕著に奏する。図2に通液型コンデンサの通水で得られる印加電圧と脱塩水の導電率又は気泡発生量の関係の一例を示すが、この例によれば、水の電気分解が生じる印加電圧V1 (V)は1.5Vであり、該V1 値より少し高めの印加電圧で脱塩率の導電率は極小値を示す。すなわち、通液型コンデンサでイオン成分の除去率を高めるために印加電圧を上げると、気泡発生の問題を生じることとなる。
【0015】
従って、印加電圧は上記の範囲として、気泡を含む脱塩液は後段で気液分離処理される。水の電気分解が生じることのない印加電圧であれば、イオン成分が十分に除去された脱塩液を得ることができず、(V1 +2.0)V値を越える印加電圧では気泡の発生量が多くなりすぎて、活性炭からなる電極表面に吸着するガスが増え、イオン吸着サイトが減少するため好ましくない。ここで、水の電気分解が生じる印加電圧V1 (V)は、被処理液の組成、性状及び通液型コンデンサの電極表面の格子欠損や不純物の付着等の電極の状態により異なるものである。従って、該V1 値は、通常、通液型コンデンサから流出される脱塩液に気泡が目視できるようになる電圧で定義される。なお、図2中、「気泡発生量」は脱塩水に含まれる気体を水上置換法により水槽内にてメスシリンダに捕集して計測したものに基づくものである。
【0016】
通液型コンデンサ1の他の構造例としては、非導電性多孔質通液性シートからなるスペーサを挟んで、高比表面積活性炭を主材とする活性炭層である一対の電極を配置し、該電極の外側に一対の集電極を配置し、更に該集電極の外側に押さえ板を配置した平板形状とし、集電極に直流電源を接続し、更に集電極間の短絡又は直流電源の逆接続を行うものであってもよい。また、電極と集電極とは一体化されたものでもよい。
【0017】
また、水質監視装置8は、いずれも液質を測定するものでイオン除去の程度を正確に把握できる指標の測定機器であれば特に限定されず、導電率計、比抵抗計が挙げられ、本実施の形態では導電率計である。
【0018】
気液分離装置2は、気液分離能を有する装置であり、被処理液流入口171と、気体を実質的に分離除去した液を排出する処理液流出口221を備え、気相に接する液面を有するタンク構造のものである。該タンクは塵埃などが処理液に混入するのを防止するため上面に蓋をするものであり、該蓋にはガスを外部へ誘導する排気管23を備える。また、気液分離装置2は蓋を持たず液面が大気開放されたものを使用してもよい。また、タンク内に邪魔板を設けた構造のものであってもよい。
【0019】
上記のような通液型コンデンサ1に水を通水する方法について説明する。先ず、スイッチ32Aをオンして、例えば、水の電気分解が生じる直流電圧を一対の電極30、31に印加し、切替え弁12Aを開、切替え弁12Bを閉の状態とし、水質監視装置8を監視可能状態にして、被処理液供給源5のポンプを作動させ、被処理液を通液コンデンサ1に定量的に供給する。この段階で通液型コンデンサ1はイオン成分除去工程に入り、被処理液は通液型コンデンサ1の一対の電極30、31にイオン成分を吸着され、イオン成分が除去された脱塩液となる。この時、水の電気分解が起こり、酸素ガスと水素ガスが発生し、気泡を含んだ水が接続配管17(脱塩液流出配管)により排出され、後段の気液分離装置2に送られる。
【0020】
この状態を継続すると、やがて一対の電極のイオン吸着能が飽和状態に近づき、イオン除去能は低下し、徐々に脱塩液の導電率が上昇する。水質監視装置8により測定された導電率が脱塩液採液不可値になると、切替え弁12Aを閉、切替え弁12Bを開として、直ちに通液型コンデンサへの直流電圧の印加を止める。この状態で、スイッチ32Aをオフ、スイッチ33Aをオンすると、一対の電極30、31に吸着されていたイオン成分が脱離し、一対の電極30、31を再生するイオン回収工程に入る。また、濃縮工程においては、通液中の水と一緒に又は別途に純水や工業用水等の回収用水を通液することによりイオン成分を回収し、濃縮液流出配管21を通って系外へ排出するか、又は次工程へ送っている。
【0021】
上記除去工程及び回収工程を1サイクルとし、このサイクルを繰り返して行うことにより、被処理液からイオン成分が除去された脱塩液及び前記除去されたイオン成分を回収したイオン濃度の高い濃縮液を得ると共に、通液型コンデンサ1の一対の電極30、31の飽和と再生の繰り返しを図るものである。この場合、前記イオン成分回収工程中は通液型コンデンサから脱塩液を得ることはできない。このため、イオン成分回収工程中も脱塩液を得たい場合は、複数の通液型コンデンサを設置し、必要最小量が確保されるように、各通液型コンデンサのイオン成分回収工程実施の時機を制御すればよい。
【0022】
除去工程(脱塩工程)から排出される気泡を含んだ脱塩液は、気液分離装置2に供給され、気液が分離され、ガスは排気管23から排気され、気泡が消失した脱塩液は処理液流出管22を通って、例えば、イオン交換樹脂塔などの次工程へ送られる。本実施の形態例によれば、イオン成分が高度に除去されると共に、気泡が除去された脱塩液を得ることができる。
【0023】
次に、本発明の第2の実施の形態における通液型コンデンサの通液方法を図3に基づいて説明する。図3は本発明の第2の実施の形態である通液型コンデンサの通液方法を示すフロー図である。図3において、図1と同一構成要素には同一符号を付してその説明を省略し、異なる点についてのみ説明する。すなわち、図3中、図1と異なる点は濃縮液流出配管21に気液分離装置2aを接続した点である。すなわち、通液型コンデンサ1はイオン成分回収工程において、一対の電極30、31を逆接続する場合、一対の電極30、31に水の電気分解が生じる印加電圧以上の電圧がかけられていると、濃縮液中に気泡を含むことがある。本実施の形態例においては、上記構成を採ることから、気泡が消失した脱塩液及び濃縮液をそれぞれ得ることができ、脱塩液のみならず、濃縮液も回収目的とする場合に好適である。
【0024】
本発明において、気液分離装置2の設置位置としては、上記実施の形態例で示す位置の他、図1中、接続配管6の途中、接続配管10の途中などが挙げられる。
【0025】
【実施例】
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
実施例1
下記仕様の装置及び下記運転条件下、図1に示すフローで市水を通液型コンデンサに通水して実験運転を行った。結果は、脱塩水の導電率を測定し、イオン成分除去率を求めると共に、脱塩水の気泡の有無を確認した。
・被処理水;市水(導電率330μS/cm)
・通液型コンデンサの仕様及び運転条件
装置;(キャパシタ;関西熱化学社製)
活性炭電極の総活性炭量;253g
活性炭電極の表面積;1500m2/g
印加電圧;直流2.0V
運転方法は直流電圧2.0Vを印加して45分間イオン成分の除去を行う脱塩工程と、次いで、15分間電極を短絡して吸着したイオンを脱離する濃縮工程を繰り返して運転した。濃縮工程で排出される濃縮水は系外へ排出した。試験中、脱塩工程の処理水平均流速は0.3L/分であった。
・気液分離装置
装置;図4に示すような蓋付きステンレス製タンク(内径80mm、高さ200mm)
図4中、気液分離装置2bは容器本体210と、蓋211からなり、容器本体の一側下方部で液相に接する部分には脱塩液流出配管17(被処理液流入配管)が接続される被処理液流入口171b、他側の上方部で液相に接する部分には処理水流出配管22が接続される処理液流入口221bが設けられ、蓋211にはガス排出管23bが接続されている。
運転方法は容器本体210に流入する脱塩水をその液面が処理液流入口221bの上面で、且つ液面上に気相部が形成されるように満たし、その状態を維持するように処理液を排出することで気泡を除去する。
【0026】
その結果、イオン成分が除去された水の導電率は約30μS/cmであり、平均のイオン成分除去率は約91%であり、しかも脱塩水は気泡を含まないものであった。
【0027】
比較例1
気液分離装置2bを使用しない以外は、実施例1と同様の方法で行った。その結果、平均のイオン成分除去率は約91%で実施例1と同じであったが、脱塩水は気泡を含むものであった。
【0028】
比較例2
印加電圧2.0Vを1.5Vとした以外は、比較例1と同様の方法で行った。すなわち、印加電圧を水の電気分解が起こらない値とし、更に気液分離装置を使用しなかったものである。その結果、脱塩水は気泡を含まないものであったが、イオン成分が除去された水の導電率は約50μS/cmであり、平均のイオン成分除去率は約85%と低下した。
【0029】
【発明の効果】
本発明(1)によれば、簡易な方法で気泡が除去された脱塩液又は濃縮液を得ることができ、その結果、脱塩液又は濃縮液をポンプを用いて更にユースポイントへ送液する場合、気泡が原因となるポンプの停止を回避でき、イオン成分を更に低減せしめて、脱塩液をイオン交換樹脂塔へ通液する場合にも、気泡がイオン交換樹脂の分離を引き起こすことなく、安定したイオン成分の低減が可能となる。
【0030】
本発明(2)によれば、前記発明と同様の効果を奏する他、イオン成分除去率が更に高めらた脱塩液を得ることができる。また、本発明(3)によれば、前記発明(1)及び(2)を実施できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態である通液型コンデンサの通液方法を示すフロー図である。
【図2】通液型コンデンサにおける、印加電圧と脱塩水の導電率又は気泡発生量の関係の一例を示す図である。
【図3】本発明の第2の実施の形態である通液型コンデンサの通水方法を示すフロー図である。
【図4】実施例で使用した気液分離装置の概略図である。
【図5】従来の通液型コンデンサの通液方法を示すフロー図である。
【符号の説明】
1、50 通液型コンデンサ
2、2a、2b 気液分離装置
3 供給配管
5、56 被処理液供給源
6、10、 接続配管
8、57 水質監視装置
12A、12B 切替え弁
17 脱塩液流出配管
21 濃縮液流出配管
22 処理液流出配管
23、23a、23b 排気管
30、31、54、55 電極
32A、33A、53、58 スイッチ
34、59 直流電源
171、171a、171b 処理液流入口
210、210a 容器本体
211 蓋
221、221a、221b 処理液流出口
[0001]
BACKGROUND OF THE INVENTION
The present invention obtains a desalting solution from which the ionic components of the liquid to be treated are removed by applying a DC voltage to the pair of electrodes held therein, and then regenerates the pair of electrodes by short-circuiting or reversely connecting them. In addition, the present invention relates to a method and an apparatus for passing a liquid-type condenser that collects the removed ion component together with the liquid to be treated and removes and collects the ion component of the liquid to be treated according to the purpose.
[0002]
[Prior art]
The liquid-passing capacitor uses an electrostatic force to remove and recover (regenerate) ionic components in the liquid to be treated, and its principle is as follows. In other words, a liquid-flowing capacitor is removed by applying a DC voltage to the pair of electrodes it holds and adsorbing ionic components, charged particles, or organic substances in the liquid to be treated to the pair of electrodes. To obtain a desalted solution from which the ionic components have been removed, and then short-circuit the pair of electrodes or reversely connect a DC power source to release the ionic components adsorbed on the pair of electrodes and regenerate the pair of electrodes. However, the removal ion component is repeatedly collected as a concentrated liquid together with the liquid to be treated in the liquid.
[0003]
Such a liquid passing type capacitor is disclosed in Japanese Patent Laid-Open No. 5-258992. In this example of the known example, an inlet for introducing a liquid to be processed into a column and a liquid from which ion components have been removed are discharged. An outlet is provided, and the pair of electrodes is accommodated in the column. In both of these pairs of electrodes, a high surface area conductive surface layer is supported on a conductive support layer, and a nonconductive porous spacer is further included. Therefore, a pair of electrodes is a non-conductive porous spacer of one electrode, a conductive support layer, a high surface area conductive surface layer, a non-conductive porous spacer of the other electrode, a conductive support layer, a high surface area conductive. The surface layer has a six-layer structure. The pair of electrodes are wound around a hollow porous central tube with a high surface area conductive surface layer inside to form a cartridge. Lead wires extend from the conductive support layer of one electrode and the conductive support layer of the other electrode to the outside of the column and are connected to a DC power source. A liquid supply source to be processed is connected to the inlet of the column, and a switching valve for separating the desalted liquid from which the ionic component has been removed and the concentrated liquid from which the ionic component has been recovered is connected to the outlet.
[0004]
The liquid passing method of the above liquid passing type capacitor will be described with reference to FIG. In FIG. 5, reference numeral 50 denotes a liquid passing type capacitor. First, the switching valve 51 is opened, the switching valve 52 is closed, the switch 53 is turned on, a DC voltage is applied to the pair of electrodes 54 and 55, and the liquid to be processed is supplied from the liquid source 56 to be processed. When supplied to the capacitor 50, an ion component is adsorbed on the pair of electrodes 54 and 55, and a desalted solution from which the ion component is removed on the downstream side of the switching valve 51 is obtained. If this state continues, the water quality monitoring device 57 measures that the ionic components are gradually adsorbed and saturated by the pair of electrodes 54 and 55 and the ionic component removal performance gradually decreases. To turn off the DC voltage. Then, the switching valve 51 is closed and the switching valve 52 is opened, and in order to regenerate the ion component removal performance, the switch 58 is turned on and the pair of electrodes 54 and 55 are short-circuited or the DC power source 59 is turned on. When the reverse connection is established, the ionic components adsorbed on the pair of electrodes 54 and 55 are released, and a concentrated liquid is obtained in which the ionic components are recovered on the downstream side of the switching valve 52 while the pair of electrodes 54 and 55 are regenerated. One cycle of removal and recovery (regeneration) of ionic components in the liquid to be treated is completed. And the to-be-processed liquid is always supplied to the flow-through type capacitor | condenser 50 from the to-be-processed liquid supply source 56, The said cycle is repeated and the desalted liquid from which the ionic component was removed, and the concentrated liquid which collect | recovered the ionic component alternately Can get to.
[0005]
[Problems to be solved by the invention]
However, in the conventional liquid passing type capacitor passing method, the processing liquid (desalted liquid or concentrated liquid) may contain bubbles. In particular, bubbles are included when the applied voltage is increased to perform an operation for highly removing ionic components. Such bubbles cause various obstacles in the subsequent stage of the liquid passing type capacitor. For example, when desalinating liquid or concentrated liquid is further sent to a use point using a pump, the bubbles interfere with smooth pump passage, and may cause the pump to stop in some cases. Further, when the desalted liquid is passed through the ion exchange resin tower in order to further reduce the ion component, the bubbles cause separation of the ion exchange resin, and the ion component is not sufficiently reduced.
[0006]
Accordingly, an object of the present invention is to provide a desalting solution that can obtain a desalting solution or a concentrated solution that does not contain bubbles and that has an improved ionic component removal rate, in the passing method of the passing-through capacitor. It is an object of the present invention to provide a liquid passing method and apparatus for a liquid capacitor.
[0007]
[Means for Solving the Problems]
In such a situation, the present inventor has intensively studied, and as a result, the generation of bubbles is mainly oxygen gas and hydrogen gas generated by water electrolysis. the provided, by increasing the voltage applied to the FTC intentionally, for example, the applied voltage V 1 (V) ~ 2.0V higher value V 2 than the applied voltage electrolysis occurs in water electrolysis of water occurs It has been found that if the liquid passing treatment is carried out in the range of (V), the desalting solution from which the ionic component removal rate is increased and the bubbles are removed can be obtained, and the present invention has been completed.
[0008]
That is, the present invention (1) applies a DC voltage to a pair of electrodes to remove an ionic component of a liquid to be treated in the liquid flow to obtain a desalted solution, and then short-circuits the pair of electrodes or a DC power source. In a flow-through capacitor that is reversely connected and collects the removed ionic component as a concentrate together with the liquid to be treated or the recovery water, the desalted liquid or the concentrate obtained from the liquid-flow condenser is removed. It is intended to provide a flow-through method for a flow-through capacitor, which is obtained by passing through a liquid separation device to obtain a desalted liquid or a concentrated liquid from which bubbles are removed. By adopting such a configuration, it is possible to obtain a desalted liquid or concentrated liquid from which bubbles have been removed by a simple method, and as a result, when the desalted liquid or concentrated liquid is further sent to a point of use using a pump. When the desalted liquid is passed through the ion exchange resin tower to prevent the pump from stopping due to bubbles and to further reduce the ionic components, the bubbles are stable without causing separation of the ion exchange resin. It is possible to reduce the ion component.
[0009]
Further, in the present invention (2), the applied voltage of the liquid-flowing capacitor is a value V 2 that is 2.0 V higher than the applied voltage V 1 (V) at which electrolysis of water occurs to the applied voltage at which electrolysis of water occurs. The present invention provides the liquid-passing method for a liquid-passing capacitor according to the invention (1), which is in the range of (V). By adopting such a configuration, it is possible to obtain a desalting solution that has the same effects as the above-described invention and that has a further improved ionic component removal rate.
[0010]
In the present invention (3), a DC voltage is applied to the pair of electrodes to remove the ionic components of the liquid to be treated, and the pair of electrodes are removed by short-circuiting or reversely connecting a DC power source. A liquid-flow condenser that collects the ionic components in the liquid to be treated or the water for recovery, and a gas-liquid separation device that gas-liquid separates the desalted liquid or concentrated liquid obtained from the liquid-flow condenser. The liquid-flow type capacitor device characterized by the above is provided. By adopting such a configuration, the inventions (1) and (2) can be implemented.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, a liquid passing method of the liquid passing type capacitor according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a flowchart showing a liquid passing method of a liquid passing type capacitor according to the first embodiment of the present invention. In the figure, reference numeral 1 denotes a flow-through condenser, and the downstream side of the flow-through condenser 1 is connected to a water quality monitoring device 8 by an outflow pipe 6, and the outflow pipe 10 of the water quality monitoring device 8 further has a switching valve 12A. The gas / liquid separator 2 is connected to the liquid outflow pipe 17. In addition, the outflow pipe 10 has a concentrate outflow pipe 21 having a switching valve 12B branched from now on. The upstream side of the liquid passing capacitor 1 is connected to the liquid supply source 5 to be processed by a connection pipe 3. The processing liquid supply source 5 includes a processing liquid tank and a liquid feed pump for quantitatively supplying the processing liquid from now on (not shown). The gas-liquid separation device 2 includes an apparatus part in contact with the liquid phase, here a treatment liquid outflow pipe 22 connected to the bottom surface part, and an apparatus part in contact with the gas phase, here an exhaust pipe 23 connected to the top plate part. .
[0012]
The first liquid-flowing capacitor 1 includes at least a pair of electrodes 30 and 31. The electrodes 30 and 31 are connected to each other via a switch 33A. The electrode 30 is connected to a cathode of a DC power supply 34 via a switch 32A. It is connected to the. The operation control of the devices shown in FIG. 1 is performed by a known control device such as a sequencer or a microcomputer. As the detailed operation control, for example, a liquid passing method of a liquid passing capacitor described later is used. Can be mentioned.
[0013]
The structure of the liquid-flowing capacitor 1 is not particularly limited, but here, electrodes 30 and 31 formed by contacting a high surface area activated carbon with a collecting electrode such as metal or graphite are accommodated in a column. A non-conductive spacer is interposed. Then, when a treatment liquid containing ions is passed through the column in a state where a DC voltage, for example, 1 to 2 V is applied, the pair of electrodes 30 and 31 adsorb ions, and the ionic components are removed and desalting is performed. Then, when the pair of electrodes 30 and 31 are short-circuited, the electrically neutralized and adsorbed ions are released from the pair of electrodes 30 and 31, and the pair of electrodes 30 and 31 are regenerated. In addition, a concentrated liquid in which a concentrated ionic component is recovered can be obtained.
[0014]
Although it is possible to arbitrarily set as a voltage applied between the pair of electrodes 30 and 31, in the present invention, especially electrolysis of applied voltage V 1 (V) ~ aqueous electrolysis of water occurs An ion component removal rate is increased by a value V 2 (V) that is 2.0 V higher than the applied voltage at which the above occurs, preferably in the range of (V 1 +0.1) to (V 1 +1.0) V. The effect of the present invention is remarkably exhibited in that the desalted liquid can be obtained, and the desalted liquid from which bubbles have been removed can be obtained by the gas-liquid separator at the subsequent stage. FIG. 2 shows an example of the relationship between the applied voltage obtained by the flow of the liquid-pass condenser and the conductivity of the desalted water or the amount of bubbles generated. According to this example, the applied voltage V 1 ( V) is 1.5 V, and the conductivity of the desalting rate shows a minimum value at an applied voltage slightly higher than the V 1 value. That is, if the applied voltage is increased in order to increase the removal rate of the ionic component with a liquid-flowing capacitor, a problem of bubble generation occurs.
[0015]
Therefore, the applied voltage is in the above range, and the desalted liquid containing bubbles is subjected to gas-liquid separation processing at a later stage. If the applied voltage does not cause electrolysis of water, a desalted solution from which ion components are sufficiently removed cannot be obtained, and bubbles are generated at an applied voltage exceeding (V 1 +2.0) V value. Since the amount increases excessively, the amount of gas adsorbed on the surface of the electrode made of activated carbon increases, and the number of ion adsorption sites decreases, which is not preferable. Here, the applied voltage V 1 (V) at which water electrolysis occurs varies depending on the composition and properties of the liquid to be treated and the state of the electrode such as lattice defects on the electrode surface of the liquid-flowing capacitor and adhesion of impurities. . Therefore, the V 1 value is usually defined as a voltage at which bubbles can be visually observed in the desalted liquid flowing out from the liquid-flowing capacitor. In FIG. 2, the “bubble generation amount” is based on the measurement of the gas contained in the desalted water collected in the measuring cylinder in the water tank by the water displacement method.
[0016]
As another example of the structure of the liquid-permeable capacitor 1, a pair of electrodes, which are activated carbon layers mainly composed of activated carbon with a high specific surface area, are arranged with a spacer made of a non-conductive porous liquid-permeable sheet interposed therebetween, A pair of collector electrodes is arranged outside the electrode, and a flat plate shape is formed with a holding plate arranged outside the collector electrode. A DC power source is connected to the collector electrode, and a short circuit between the collector electrodes or reverse connection of the DC power source is performed. You may do it. Further, the electrode and the collector electrode may be integrated.
[0017]
In addition, the water quality monitoring device 8 is not particularly limited as long as it is a measuring device that measures liquid quality and can accurately grasp the degree of ion removal, and includes a conductivity meter and a specific resistance meter. In the embodiment, it is a conductivity meter.
[0018]
The gas-liquid separation device 2 is a device having gas-liquid separation capability, and includes a liquid inlet 171 to be processed and a liquid outlet 221 for discharging a liquid from which gas has been substantially separated and removed, and is in contact with the gas phase A tank structure having a surface. The tank is provided with a lid on the upper surface to prevent dust and the like from entering the processing liquid, and the lid is provided with an exhaust pipe 23 for guiding gas to the outside. Further, the gas-liquid separator 2 may be a device that does not have a lid and whose liquid surface is open to the atmosphere. Moreover, the thing of the structure which provided the baffle plate in the tank may be used.
[0019]
A method for passing water through the liquid-passing capacitor 1 as described above will be described. First, the switch 32A is turned on, for example, a DC voltage that causes electrolysis of water is applied to the pair of electrodes 30 and 31, the switching valve 12A is opened, the switching valve 12B is closed, and the water quality monitoring device 8 is In a state where monitoring is possible, the pump of the processing liquid supply source 5 is operated, and the processing liquid is quantitatively supplied to the liquid condenser 1. At this stage, the flow-through capacitor 1 enters an ionic component removal step, and the liquid to be treated becomes a desalting solution from which the ionic components are adsorbed by the pair of electrodes 30 and 31 of the flow-through capacitor 1. . At this time, electrolysis of water occurs, oxygen gas and hydrogen gas are generated, and water containing bubbles is discharged through the connection pipe 17 (desalted liquid outflow pipe) and sent to the gas-liquid separator 2 at the subsequent stage.
[0020]
If this state is continued, the ion adsorption ability of the pair of electrodes eventually approaches a saturated state, the ion removal ability decreases, and the conductivity of the desalting solution gradually increases. When the electrical conductivity measured by the water quality monitoring device 8 becomes a desalted liquid collection impossible value, the switching valve 12A is closed and the switching valve 12B is opened, and the application of the DC voltage to the liquid passing type capacitor is immediately stopped. When the switch 32A is turned off and the switch 33A is turned on in this state, the ion component adsorbed on the pair of electrodes 30 and 31 is desorbed, and an ion recovery process for regenerating the pair of electrodes 30 and 31 is entered. Further, in the concentration step, the ionic components are recovered by passing recovery water such as pure water or industrial water together with or separately from the flowing water, and the system is passed out of the system through the concentrate outflow pipe 21. It is discharged or sent to the next process.
[0021]
The removal step and the recovery step are defined as one cycle, and by repeating this cycle, a desalted solution from which the ionic component has been removed from the liquid to be treated and a concentrated solution having a high ion concentration from which the removed ionic component has been recovered. In addition, the saturation and regeneration of the pair of electrodes 30 and 31 of the liquid-flowing capacitor 1 are repeated. In this case, it is not possible to obtain a desalted liquid from the flow-through capacitor during the ion component recovery step. For this reason, if you want to obtain a desalted solution even during the ionic component recovery process, install multiple flow-through capacitors and implement the ionic component recovery process for each flow-through capacitor so that the required minimum amount is secured. Control the time.
[0022]
The desalted liquid containing bubbles discharged from the removal step (desalting step) is supplied to the gas-liquid separator 2, the gas-liquid is separated, the gas is exhausted from the exhaust pipe 23, and the bubbles disappear. The liquid is sent to the next process such as an ion exchange resin tower through the treatment liquid outflow pipe 22. According to the present embodiment, it is possible to obtain a desalting solution from which ionic components are highly removed and bubbles are removed.
[0023]
Next, a liquid passing method of the liquid passing type capacitor according to the second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a flowchart showing a liquid passing method of the liquid passing capacitor according to the second embodiment of the present invention. In FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and only different points will be described. That is, the point different from FIG. 1 in FIG. 3 is that the gas-liquid separation device 2 a is connected to the concentrate outflow pipe 21. That is, when the pair of electrodes 30 and 31 are reversely connected in the ion component recovery step, the liquid-type capacitor 1 is applied with a voltage higher than an applied voltage at which electrolysis of water occurs on the pair of electrodes 30 and 31. In some cases, the concentrate may contain bubbles. In the present embodiment, since the above configuration is adopted, it is possible to obtain a desalted solution and a concentrated solution in which bubbles disappear, respectively, which is suitable not only for the desalted solution but also for the purpose of collecting the concentrated solution. is there.
[0024]
In the present invention, as the installation position of the gas-liquid separation device 2, in addition to the positions shown in the above embodiment, in the middle of the connection pipe 6 and in the middle of the connection pipe 10 in FIG.
[0025]
【Example】
EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.
Example 1
An experimental operation was performed by passing city water through a liquid condenser with the flow shown in FIG. As a result, the conductivity of the demineralized water was measured to obtain the ionic component removal rate, and the presence or absence of bubbles in the demineralized water was confirmed.
・ Water to be treated; city water (conductivity 330μS / cm)
・ Specification and operation condition equipment of liquid-type capacitor; (Capacitor; manufactured by Kansai Thermal Chemical Co., Ltd.)
Total activated carbon amount of activated carbon electrode: 253 g
Activated carbon electrode surface area: 1500 m 2 / g
Applied voltage: DC 2.0V
The operation was performed by repeating a desalting step of removing an ionic component for 45 minutes by applying a DC voltage of 2.0 V, and then a concentrating step of desorbing the adsorbed ions by short-circuiting the electrodes for 15 minutes. The concentrated water discharged in the concentration process was discharged out of the system. During the test, the average treated water flow rate in the desalting step was 0.3 L / min.
・ Gas-liquid separator: Stainless steel tank with lid as shown in Fig. 4 (inner diameter 80mm, height 200mm)
In FIG. 4, the gas-liquid separator 2 b includes a container main body 210 and a lid 211, and a desalted liquid outflow pipe 17 (processed liquid inflow pipe) is connected to a portion in contact with the liquid phase at a lower side of the container main body. The liquid inlet 171 b to be treated is provided, and the processing liquid inflow pipe 221 b to which the treated water outflow pipe 22 is connected is provided at a portion in contact with the liquid phase at the upper part on the other side, and the gas discharge pipe 23 b is connected to the lid 211. Has been.
The operation method is such that the desalted water flowing into the container body 210 is filled with the liquid level at the upper surface of the processing liquid inlet 221b and a gas phase portion is formed on the liquid level, and the processing liquid is maintained so as to maintain the state. Remove air bubbles by discharging.
[0026]
As a result, the conductivity of the water from which the ionic components were removed was about 30 μS / cm, the average ionic component removal rate was about 91%, and the demineralized water did not contain bubbles.
[0027]
Comparative Example 1
The same method as in Example 1 was performed except that the gas-liquid separator 2b was not used. As a result, the average ionic component removal rate was about 91%, which was the same as in Example 1. However, the demineralized water contained bubbles.
[0028]
Comparative Example 2
The method was the same as that of Comparative Example 1 except that the applied voltage was set to 2.0V. That is, the applied voltage is set to a value at which electrolysis of water does not occur, and no gas-liquid separator is used. As a result, the demineralized water did not contain bubbles, but the conductivity of the water from which the ionic component was removed was about 50 μS / cm, and the average ionic component removal rate was reduced to about 85%.
[0029]
【The invention's effect】
According to the present invention (1), it is possible to obtain a desalted liquid or concentrated liquid from which bubbles have been removed by a simple method. As a result, the desalted liquid or concentrated liquid is further sent to a use point using a pump. In this case, it is possible to avoid stopping the pump due to bubbles, reducing the ionic component further, and passing the desalted liquid to the ion exchange resin tower without causing bubbles to separate the ion exchange resin. This makes it possible to reduce the ionic component stably.
[0030]
According to the present invention (2), in addition to the same effects as the above-described invention, a desalting solution with a further enhanced ionic component removal rate can be obtained. Moreover, according to this invention (3), the said invention (1) and (2) can be implemented.
[Brief description of the drawings]
FIG. 1 is a flow chart showing a liquid passing method of a liquid passing type capacitor according to a first embodiment of the present invention.
FIG. 2 is a diagram illustrating an example of a relationship between an applied voltage and the conductivity of desalted water or the amount of bubbles generated in a liquid-flow capacitor.
FIG. 3 is a flowchart showing a water passing method of a liquid passing type capacitor according to a second embodiment of the present invention.
FIG. 4 is a schematic view of a gas-liquid separator used in Examples.
FIG. 5 is a flow chart showing a conventional liquid passing method for a liquid passing type capacitor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 50 Liquid-flow type capacitor | condenser 2, 2a, 2b Gas-liquid separation apparatus 3 Supply piping 5, 56 Processed liquid supply source 6, 10, Connection piping 8, 57 Water quality monitoring apparatus 12A, 12B Switching valve 17 Desalination liquid outflow piping 21 Concentrate outflow piping 22 Processing liquid outflow piping 23, 23a, 23b Exhaust pipes 30, 31, 54, 55 Electrodes 32A, 33A, 53, 58 Switch 34, 59 DC power supplies 171, 171a, 171b Treatment liquid inlets 210, 210a Container body 211 Lids 221, 221a, 221b Treatment liquid outlet

Claims (3)

一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去して脱塩液を得、その後前記一対の電極を短絡あるいは直流電源を逆接続して、前記除去されたイオン成分を通液中の被処理液又は回収用水と共に濃縮液として回収する通液型コンデンサにおいて、前記通液型コンデンサから得られる脱塩液又は濃縮液を気液分離装置に通液して、気泡が除去された脱塩液又は濃縮液を得ることを特徴とする通液型コンデンサの通液方法。A desalted solution was obtained by applying a DC voltage to the pair of electrodes to remove the ionic component of the liquid to be treated while passing through the solution, and then the paired electrodes were short-circuited or reversely connected to a DC power source to remove the solution. In a flow-through type condenser that collects an ionic component as a concentrated liquid together with the liquid to be treated or the water for collection in the liquid, the desalted liquid or the concentrated liquid obtained from the liquid-type condenser is passed through a gas-liquid separator, A liquid passing method for a liquid passing type capacitor, wherein a desalted liquid or a concentrated liquid from which bubbles are removed is obtained. 前記通液型コンデンサの印加電圧が、水の電気分解が生じる印加電圧V1 (V)〜該水の電気分解が生じる印加電圧より2.0V高い値V2 (V)の範囲であることを特徴とする請求項1記載の通液型コンデンサの通液方法。The applied voltage of the liquid-flowing capacitor is in the range of an applied voltage V 1 (V) at which electrolysis of water occurs to a value V 2 (V) that is 2.0 V higher than an applied voltage at which electrolysis of water occurs. The liquid passing method of the liquid passing type capacitor according to claim 1. 一対の電極に直流電圧を印加して通液中の被処理液のイオン成分を除去し、前記一対の電極を短絡あるいは直流電源を逆接続して、除去されたイオン成分を通液中の被処理液又は回収用水に回収する通液型コンデンサと、前記通液型コンデンサから得られる脱塩液又は濃縮液を気液分離する気液分離装置とからなることを特徴とする通液型コンデンサ装置。A DC voltage is applied to the pair of electrodes to remove the ionic component of the liquid to be treated, and the paired electrodes are short-circuited or a DC power supply is reversely connected to pass the removed ionic component in the liquid. A flow-through capacitor device comprising: a flow-through capacitor that is recovered in a treatment liquid or recovery water; and a gas-liquid separation device that gas-liquid separates a desalted liquid or a concentrate obtained from the flow-through capacitor. .
JP31780599A 1999-11-09 1999-11-09 Liquid passing method and apparatus for liquid passing capacitor Expired - Lifetime JP4121226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31780599A JP4121226B2 (en) 1999-11-09 1999-11-09 Liquid passing method and apparatus for liquid passing capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31780599A JP4121226B2 (en) 1999-11-09 1999-11-09 Liquid passing method and apparatus for liquid passing capacitor

Publications (2)

Publication Number Publication Date
JP2001129552A JP2001129552A (en) 2001-05-15
JP4121226B2 true JP4121226B2 (en) 2008-07-23

Family

ID=18092246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31780599A Expired - Lifetime JP4121226B2 (en) 1999-11-09 1999-11-09 Liquid passing method and apparatus for liquid passing capacitor

Country Status (1)

Country Link
JP (1) JP4121226B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7813106B2 (en) * 2006-12-19 2010-10-12 General Electric Company High current efficiency supercapacitor desalination devices and methods of making the same
JP2009092483A (en) * 2007-10-05 2009-04-30 Shimadzu Corp 18f-ion acquisition-recovery flow cell and manufacturing method of the same
US20210053849A1 (en) * 2018-04-05 2021-02-25 Mitsubishi Electric Corporation Water treatment device and water treatment method

Also Published As

Publication number Publication date
JP2001129552A (en) 2001-05-15

Similar Documents

Publication Publication Date Title
CN111936428B (en) Water treatment device and water treatment method
WO2015099320A1 (en) Cdi-type water treatment device
WO2015088219A1 (en) Device for treating water by cdi method
WO2017122520A1 (en) Water treatment device and water treatment method
JPH06325983A (en) Flat liquid-passing-type electric double-layer capacitor and liquid processing method
CN102583646B (en) Membraneless electrodeionization method and system thereof, capable of directly exhausting oxygen gas and hydrogen gas
KR20120133229A (en) Capacitive deionization method for drinking water treatment
JP4121226B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP4135802B2 (en) Desalination equipment
JP4090640B2 (en) Liquid passing method and apparatus for liquid passing capacitor
JP4090635B2 (en) Liquid passing method and apparatus for liquid passing capacitor
US5647969A (en) Method and system for removing ionic species from water
KR102210190B1 (en) Cdi type water treatment apparatus and method for controlling the same
JP2003200166A (en) Operation method for liquid passing type electric double- layered condenser desalting apparatus
JP2004024990A (en) Method of removing ionic substance in liquid and liquid treatment apparatus
KR101137042B1 (en) Capacitive deionization device, Method for capacitively deionizing, and Desalination apparatus, Wastewater treatment apparatus using the same
WO2015088218A1 (en) Device for treating water by cdi method
JP4093386B2 (en) Liquid passing method and apparatus for liquid passing capacitor
KR101394112B1 (en) Water treatment cell by electrosorption, Electrosorptive water treatment apparatus and method using the same
KR102220165B1 (en) Electro deionization-type water treatment apparatus
JP3988462B2 (en) Desalination method
JP4135801B2 (en) Liquid passing method and apparatus for liquid passing capacitor
KR200379769Y1 (en) Apparatus for Purifying Wastewater Using Active Carbon Electrode
JP2001058183A (en) Operation method and apparatus of liquid passing type condenser
Xu et al. Electrosorption of heavy metals with capacitive deionization: Water reuse, desalination and resources recovery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4121226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term