JPH06325983A - Flat liquid-passing-type electric double-layer capacitor and liquid processing method - Google Patents
Flat liquid-passing-type electric double-layer capacitor and liquid processing methodInfo
- Publication number
- JPH06325983A JPH06325983A JP5139354A JP13935493A JPH06325983A JP H06325983 A JPH06325983 A JP H06325983A JP 5139354 A JP5139354 A JP 5139354A JP 13935493 A JP13935493 A JP 13935493A JP H06325983 A JPH06325983 A JP H06325983A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- electric double
- layer capacitor
- activated carbon
- type electric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 66
- 239000003990 capacitor Substances 0.000 title claims abstract description 39
- 238000003672 processing method Methods 0.000 title abstract 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 86
- 239000000463 material Substances 0.000 claims abstract description 5
- 239000000126 substance Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000008030 elimination Effects 0.000 abstract 1
- 238000003379 elimination reaction Methods 0.000 abstract 1
- 150000003839 salts Chemical class 0.000 description 26
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 230000001186 cumulative effect Effects 0.000 description 5
- -1 polytetrafluoroethylene Polymers 0.000 description 5
- 238000000746 purification Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000011550 stock solution Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002242 deionisation method Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/08—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
- B01J19/087—Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/24—Stationary reactors without moving elements inside
- B01J19/248—Reactors comprising multiple separated flow channels
- B01J19/249—Plate-type reactors
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
- C02F1/4691—Capacitive deionisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2451—Geometry of the reactor
- B01J2219/2453—Plates arranged in parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2469—Feeding means
- B01J2219/247—Feeding means for the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2475—Separation means, e.g. membranes inside the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2491—Other constructional details
- B01J2219/2492—Assembling means
- B01J2219/2493—Means for assembling plates together, e.g. sealing means, screws, bolts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/24—Stationary reactors without moving elements inside
- B01J2219/2401—Reactors comprising multiple separate flow channels
- B01J2219/245—Plate-type reactors
- B01J2219/2491—Other constructional details
- B01J2219/2497—Size aspects, i.e. concrete sizes are being mentioned in the classified document
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
- C02F2001/46138—Electrodes comprising a substrate and a coating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/46115—Electrolytic cell with membranes or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/4612—Controlling or monitoring
- C02F2201/4615—Time
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/05—Conductivity or salinity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Toxicology (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、活性炭層を用いた平板
形状の通液型電気二重層コンデンサに関するものであ
る。またその平板形状の通液型電気二重層コンデンサを
用いて、イオン性物質を含む液体を処理する方法に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat plate liquid-permeable electric double layer capacitor using an activated carbon layer. The present invention also relates to a method of treating a liquid containing an ionic substance by using the flat plate-type liquid-passing electric double layer capacitor.
【0002】[0002]
【従来の技術】電気二重層コンデンサを用い、静電力を
利用してイオン性物質を含む水中からそのイオン性物質
を除去する方法が知られている。2. Description of the Related Art There is known a method of removing an ionic substance from water containing the ionic substance by using electrostatic force by using an electric double layer capacitor.
【0003】たとえば、米国特許第5192432号明
細書には、液体の精製を目的とする定電荷クロマトグラ
フ用カラムに用いる通液型コンデンサであって、第1の
導電性支持層、第1の高表面積導電性層、第1の非導電
性多孔質のスペーサ層、第2の導電性支持層、第2の高
表面積導電性層、第2の非導電性多孔質のスペーサ層な
どを含む複数の隣接層群をスパイラル状に巻回した通液
型コンデンサが示されている。また同明細書には、この
コンデンサはたとえば塩化ナトリウム等のイオン性物質
を含む水の精製に用いうることも示されている。For example, US Pat. No. 5,192,432 discloses a through-type capacitor used in a column for constant-charge chromatography for the purpose of purifying a liquid, which comprises a first conductive support layer, a first conductive support layer, and A plurality of layers including a surface area conductive layer, a first non-conductive porous spacer layer, a second conductive support layer, a second high surface area conductive layer, a second non-conductive porous spacer layer, etc. A through-type capacitor in which adjacent layers are spirally wound is shown. It is also shown therein that the condenser can be used for the purification of water containing ionic substances such as sodium chloride.
【0004】[0004]
【発明が解決しようとする課題】米国特許第51924
32号明細書に開示の通液型コンデンサは興味のあるも
のであり、本出願人は現在においてはこの米国特許の権
利者と協力しながらそれぞれの立場で研究を行ってい
る。Problems to be Solved by the Invention US Pat. No. 5,192,924
The through-flow type capacitor disclosed in the specification No. 32 is of interest, and the present applicant is currently conducting research from each position in cooperation with the right holder of this US patent.
【0005】しかしながら、この通液型コンデンサは隣
接層群をスパイラル状に巻回した構造を有するため通液
時に偏流を生じやすく、この通液型コンデンサをイオン
性物質を含む液体の精製に適用した場合、精製操作中に
イオン性物質の除去率が変動して安定しない上、その除
去率が平均的にはかなり低くなるという事実が判明し
た。そのため、この通液型コンデンサを工業的規模で液
体の精製に用いることは困難であるという事態に立ち至
った。However, since this liquid-flowing type capacitor has a structure in which adjacent layer groups are spirally wound, uneven flow is apt to occur during liquid-flowing, and this liquid-flowing type capacitor is applied to the purification of a liquid containing an ionic substance. In this case, it was found that the removal rate of the ionic substance fluctuates during the purification operation and is not stable, and the removal rate is considerably low on average. For this reason, it has been difficult to use this liquid-conducting capacitor for refining liquid on an industrial scale.
【0006】本発明は、このような背景下において、イ
オン性物質の除去率が高くかつ安定しており、工業的規
模での実施が可能な通液型電気二重層コンデンサを提供
すること、およびその通液型電気二重層コンデンサを用
いた液体の処理方法を提供することを目的とするもので
ある。Under the circumstances described above, the present invention provides a through-flow type electric double layer capacitor which has a high ionic substance removal rate and is stable, and which can be carried out on an industrial scale. It is an object of the present invention to provide a liquid treatment method using the liquid-passing type electric double layer capacitor.
【0007】[0007]
【課題を解決するための手段】本発明の平板形状の通液
型電気二重層コンデンサは、電気絶縁性多孔質通液性シ
ートからなるセパレータ(1) を挟んで、高比表面積活性
炭を主材とする活性炭層(2), (2)を配置し、その活性炭
層(2), (2)の外側に集電極(3), (3)を配置し、さらにそ
の集電極(3), (3)の外側に押え板(4), (4)を配置した構
成を有するものである。Means for Solving the Problems The flat plate-type liquid permeable type electric double layer capacitor of the present invention comprises a high specific surface area activated carbon as a main material with a separator (1) made of an electrically insulating porous liquid permeable sheet sandwiched therebetween. The activated carbon layers (2), (2) are arranged, the collecting electrodes (3), (3) are arranged outside the activated carbon layers (2), (2), and the collecting electrodes (3), ( The pressing plate (4), (4) is arranged outside of (3).
【0008】また本発明の液体の処理方法は、上記の平
板形状の通液型電気二重層コンデンサにイオン性物質を
含む液体を通液しながら、集電極(3), (3)への直流定電
圧の印加と、両集電極(3), (3)間のショートまたは逆接
続とを交互に繰り返すことを特徴とするものである。Further, the liquid treating method of the present invention is characterized in that a direct current to the collecting electrodes (3) and (3) is applied while the liquid containing an ionic substance is passed through the flat plate type liquid-passing electric double layer capacitor. It is characterized in that a constant voltage is applied and a short circuit or a reverse connection between both collector electrodes (3) and (3) is alternately repeated.
【0009】以下本発明を詳細に説明する。The present invention will be described in detail below.
【0010】セパレータ(1) としては、ろ紙、多孔質高
分子膜、織布、不織布など、液体の通過が容易でかつ電
気絶縁性を有する有機質または無機質のシートからなる
ものが用いられる。セパレータ(1) の厚さは、0.01〜0.
5mm 程度、殊に0.02〜0.3mm程度が適当である。As the separator (1), a filter paper, a porous polymer film, a woven fabric, a non-woven fabric, or the like, which is made of an organic or inorganic sheet which allows liquid to easily pass therethrough and which has electric insulation, is used. The thickness of the separator (1) is 0.01 to 0.
About 5 mm, especially about 0.02 to 0.3 mm is suitable.
【0011】活性炭層(2), (2)としては、高比表面積活
性炭を主材とする層が用いられる。高比表面積活性炭と
は、BET比表面積1000m2/g以上、好ましくは15
00m2/g以上、さらに好ましくは2000〜2500m2
/gの活性炭を言う。BET比表面積が余りに小さいとき
は、イオン性物質を含む液体を通したときのイオン性物
質の除去率が低下する。なおBET比表面積が余りに大
きくなるとイオン性物質の除去率がかえって低下する傾
向があるので、BET比表面積を必要以上に大きくする
には及ばない。As the activated carbon layers (2) and (2), layers having high specific surface area activated carbon as a main material are used. High specific surface area activated carbon means BET specific surface area of 1000 m 2 / g or more, preferably 15
00m 2 / g or more, more preferably 2000-2500m 2
Says / g of activated carbon. When the BET specific surface area is too small, the removal rate of the ionic substance when passing through the liquid containing the ionic substance decreases. If the BET specific surface area becomes too large, the removal rate of the ionic substance tends to decrease, so that it is not necessary to increase the BET specific surface area more than necessary.
【0012】使用する活性炭の形状は、粉粒状、繊維状
など任意である。粉粒状の場合には平板状またはシート
状に成形して用い、繊維状の場合には布状に加工して用
いる。粉粒状活性炭を平板状またはシート状に成形して
用いることは、繊維状の活性炭を布状に加工して用いる
場合に比し、コストの点からは格段に有利である。The shape of the activated carbon to be used is arbitrary such as powdery or fibrous. In the case of powdery particles, it is used after being formed into a flat plate or sheet, and in the case of fibrous materials, it is processed into a cloth and used. Forming the powdery granular activated carbon into a flat plate shape or a sheet shape and using it is significantly advantageous in terms of cost, as compared with the case where the fibrous activated carbon is processed into a cloth shape and used.
【0013】平板状またはシート状への成形は、たとえ
ば、粉粒状活性炭をバインダー成分(ポリテトラフルオ
ロエチレン、フェノール樹脂、カーボンブラック等)お
よび/または分散媒(溶媒等)と混合して板状に成形し
てから、適宜熱処理することにより得られる。活性炭層
(2), (2)として平板状またはシート状のものを用いる場
合は、必要に応じこれに穿孔加工を施しておくこともで
きる。なお、平板状またはシート状の活性炭を用いる技
術については、特開昭63−107011号公報、特開
平3−122008号公報、特開平3−228814
号、特開昭63−110622号、特開昭63−226
019号公報、特開昭64−1219号公報などにも開
示があるので、それらの公報に開示のものを参考にする
こともできる。Molding into a flat plate or a sheet is carried out, for example, by mixing powdered granular activated carbon with a binder component (polytetrafluoroethylene, phenol resin, carbon black, etc.) and / or a dispersion medium (solvent, etc.) into a plate. It is obtained by appropriately heat-treating after molding. Activated carbon layer
When a flat plate or sheet is used as (2) and (2), it may be perforated if necessary. Regarding the technique of using flat plate-shaped or sheet-shaped activated carbon, JP-A-63-107011, JP-A-3-122008, and JP-A-3-228814.
No. 63-110622, 63-226.
No. 019, Japanese Patent Laid-Open No. 64-1219, etc. are also disclosed, and those disclosed in those publications can be referred to.
【0014】活性炭層(2), (2)の厚さは、 0.1〜3mm程
度、殊に 0.5〜2mm程度とすることが多いが、必ずしも
この範囲内に限られるものではない。The thickness of the activated carbon layers (2), (2) is often about 0.1 to 3 mm, especially about 0.5 to 2 mm, but is not limited to this range.
【0015】集電極(3), (3)としては、銅板、アルミニ
ウム板、カーボン板、フォイル状グラファイトなどの電
気良導体であって、活性炭層(2), (2)との緊密な接触が
可能なものが用いられる。集電極(3), (3)の厚さには限
定はないが、 0.1〜0.5mm 程度のものを用いることが多
い。印加を容易にするため、集電極(3), (3)には端子
(リード)(3a)を設けるのが通常である。The collector electrodes (3), (3) are electrically good conductors such as copper plate, aluminum plate, carbon plate, foil graphite, etc., and can make close contact with the activated carbon layers (2), (2). What is used. The thickness of the collecting electrodes (3), (3) is not limited, but those having a thickness of about 0.1 to 0.5 mm are often used. In order to facilitate the application, terminals (leads) (3a) are usually provided on the collecting electrodes (3), (3).
【0016】押え板(4), (4)としては、プラスチックス
板などの電気絶縁性材料からできた変形しにくい平板が
用いられる。この押え板(4), (4)には、液入口、液出
口、固定用ボルト孔などを適宜設けることができる。As the pressing plates (4), (4), flat plates made of an electrically insulating material such as a plastics plate and hard to deform are used. A liquid inlet, a liquid outlet, a fixing bolt hole, and the like can be appropriately provided in the holding plates (4) and (4).
【0017】集電極(3), (3)と押え板(4), (4)との間に
は、枠状のガスケット(5), (5)を介在させることが望ま
しい。そのようなガスケット(5), (5)を独立に設ける代
りに、押え板(4), (4)側にシール機能を有する部材を設
けておくこともできる。Frame-like gaskets (5) and (5) are preferably interposed between the collector electrodes (3) and (3) and the holding plates (4) and (4). Instead of providing such gaskets (5), (5) independently, a member having a sealing function may be provided on the holding plates (4), (4) side.
【0018】上記の部材を用いて、押え板(4) /(ガス
ケット(5) /)集電極(3) /活性炭層(2) /セパレータ
(1) /活性炭層(2) /集電極(3) /(ガスケット(5)
/)押え板(4) の構成を有する平板形状の通液型電気二
重層コンデンサが組み立てられる。Using the above members, a holding plate (4) / (gasket (5) /) collector electrode (3) / activated carbon layer (2) / separator
(1) / activated carbon layer (2) / collector electrode (3) / (gasket (5)
/) A flat plate liquid-permeable electric double layer capacitor having the structure of the holding plate (4) is assembled.
【0019】上記構造の平板形状の通液型電気二重層コ
ンデンサを用いて、イオン性物質を含む液体の処理がな
される。液体の処理とは、水の浄化、海水の淡水化、廃
液の脱窒素の如き精製処理だけでなく、貴金属の回収、
無機塩の精製、溶存するイオン性物質の定量などイオン
性物質の捕捉・回収のための処理も含む。液体として
は、水やその他の無機系溶媒、有機系溶媒あるいはこれ
らの混合溶媒を媒体とするものがあげられ、血液などで
あってもよい。イオン性物質としては、金属塩、アミン
塩、アンモニウム塩、無機酸、有機酸など液中で解離可
能な電解質や帯電性物質があげられる。A liquid containing an ionic substance is treated using the flat plate type liquid-conducting electric double layer capacitor having the above structure. Liquid treatment means not only purification of water, desalination of seawater, denitrification of waste liquid, but also recovery of precious metals,
It also includes processing for capturing and recovering ionic substances such as purification of inorganic salts and quantification of dissolved ionic substances. Examples of the liquid include water and other inorganic solvents, organic solvents, or mixed solvents thereof, which may be blood or the like. Examples of the ionic substance include an electrolyte and a chargeable substance such as a metal salt, an amine salt, an ammonium salt, an inorganic acid and an organic acid which can be dissociated in a liquid.
【0020】本発明に従ってイオン性物質を含む液体の
処理を行うにあたっては、次の手順が採用される。 ・ 平板形状の通液型電気二重層コンデンサを組み立
て、送液ポンプ等で液入口からイオン性物質を含む液体
を通液する。 ・ 直流定電圧供給源より 0.5〜5ボルト(水溶液の場
合には水が電気分解しないように2ボルト程度までにと
どめる)またはその前後の電圧を集電極(3), (3)の端子
より印加する。なお水溶液の場合には ・ 液出口部分の液を導電率計などを用いてモニター
し、適当なタイミングでショート(または逆接続)、印
加を繰り返す。タイマーによる時間的な制御も可能であ
る。ショート(または逆接続)時には、活性炭層(2),
(2)に電気的に吸着されていたイオン性物質が脱離し、
濃縮液となって液出口から排出される。In carrying out the treatment of a liquid containing an ionic substance according to the present invention, the following procedure is adopted.・ Assemble a flat-plate liquid-flow type electric double-layer capacitor, and use a liquid feed pump, etc., to flow liquid containing ionic substances from the liquid inlet.・ Apply 0.5 to 5 V from the DC constant voltage source (in the case of an aqueous solution, keep it to about 2 V so that water will not be electrolyzed) or a voltage around it from the terminals of the collector electrodes (3), (3). To do. In the case of an aqueous solution: ・ Monitor the liquid at the liquid outlet using a conductivity meter, etc., and short-circuit (or reverse-connect) at appropriate timing and repeat application. Time control by a timer is also possible. When shorted (or reverse connection), activated carbon layer (2),
Ionic substances that were electrically adsorbed in (2) are desorbed,
It becomes a concentrated liquid and is discharged from the liquid outlet.
【0021】[0021]
【作用】本発明の平板形状の通液型電気二重層コンデン
サを用いてイオン性物質を含む液体の処理を行うときの
原理を、イオン性物質を含む液体が食塩水である場合を
例にとって図6に示す。The principle of processing a liquid containing an ionic substance by using the flat-plate through-flow type electric double layer capacitor of the present invention is illustrated by taking the case where the liquid containing an ionic substance is saline as an example. 6 shows.
【0022】図6(イ)のように、電圧印加時には、通
水した水中のナトリウンムイオンはアノード側の集電極
(3) に接する活性炭層(2) に電気的に吸着され、塩素イ
オンはカソード側の集電極(3) に接する活性炭層(2) に
電気的に吸着され、その結果出口水中の食塩濃度は著減
する。通水を続けると活性炭層(2), (2)に対する両イオ
ンの吸着は飽和に達するので、出口における食塩濃度は
原液のそれに近くなる。適当なタイミングを見てカソー
ド側とアノード側とをショートさせるか逆接続すれば、
図6(ロ)のように、活性炭層(2), (2)に吸着されてい
たナトリムイオンおよび塩素イオンが脱離し、原液中の
食塩濃度よりはるかに高濃度の食塩水が出口より排出さ
れる。この際、通液時の流速を落とすなどの工夫を凝ら
せば、出口水中の食塩濃度はさらに上昇する。As shown in FIG. 6 (a), when voltage is applied, the sodium ions in the water that has passed through the water flow into the anode side collecting electrode.
The activated carbon layer (2) in contact with (3) is electrically adsorbed, and the chlorine ions are electrically adsorbed in the activated carbon layer (2) in contact with the collector electrode (3) on the cathode side. Decrease significantly. Adsorption of both ions to the activated carbon layers (2) and (2) reaches saturation when water flow is continued, so the salt concentration at the outlet becomes close to that of the stock solution. If the cathode side and the anode side are short-circuited or reversely connected while seeing appropriate timing,
As shown in Fig. 6 (b), sodium and chlorine ions adsorbed on the activated carbon layers (2) and (2) are desorbed, and saline solution having a much higher concentration than the salt concentration in the stock solution is discharged from the outlet. It At this time, the concentration of salt in the outlet water is further increased by devising measures such as reducing the flow velocity during passage.
【0023】そして本発明においては、フラットな活性
炭層(2), (2)を用いると共に、各部材を配置して圧締し
た平板形状の構造としてあるため、活性炭層(2), (2)を
均等に圧縮でき、通液時の液の偏流を効果的に防止する
ことができる。そのため、イオン性物質の除去率の安定
化が図られ、しかもその除去率を極限にまで高めること
ができる。In the present invention, since the flat activated carbon layers (2) and (2) are used and each member is arranged and pressed to have a flat plate-shaped structure, the activated carbon layers (2) and (2) are Can be uniformly compressed, and uneven flow of the liquid at the time of liquid passage can be effectively prevented. Therefore, the removal rate of ionic substances can be stabilized, and the removal rate can be increased to the maximum.
【0024】[0024]
【実施例】次に実施例をあげて本発明をさらに説明す
る。EXAMPLES The present invention will be further described with reference to examples.
【0025】〈通液型電気二重層コンデンサの作製〉 装置例 図1は本発明の通液型電気二重層コンデンサの分解図、
図2はその組み立て図である。なお図2においては集電
極(3), (3)を断面で表示してある。<Production of Liquid-Passing Electric Double Layer Capacitor> Device Example FIG. 1 is an exploded view of a liquid-feeding electric double layer capacitor of the present invention,
FIG. 2 is an assembly diagram thereof. In FIG. 2, the collector electrodes (3) and (3) are shown in cross section.
【0026】下記の部材を準備し、図2の通液型電気二
重層コンデンサを作製した。The following members were prepared and the liquid-passing type electric double layer capacitor shown in FIG. 2 was produced.
【0027】(1) は平板状セパレータであり、厚さ約
0.2mmのろ紙を用いている。(1) is a flat plate-shaped separator having a thickness of about
0.2 mm filter paper is used.
【0028】(2), (2)は120mm×120mmの大きさの
比重 0.4の活性炭層であり、石油コークスを水酸化カリ
ウムで賦活することにより製造されたBET比表面積2
200m2/gの粉粒状の高比表面積活性炭をポリテトラフ
ルオロエチレン、カーボンブラックおよび適当な分散媒
と混合して厚さ 1.0mmの板状に圧縮成形したものからな
る。成形時の活性炭の配合割合は80重量%であり、2
枚の活性炭層(2), (2)に含まれる活性炭の合計量は10
gである。(2) and (2) are an activated carbon layer having a specific gravity of 0.4 and a size of 120 mm × 120 mm, and the BET specific surface area 2 produced by activating petroleum coke with potassium hydroxide.
It consists of 200 m 2 / g powdery granular high specific surface area activated carbon mixed with polytetrafluoroethylene, carbon black and a suitable dispersion medium and compression molded into a 1.0 mm thick plate. The compounding ratio of activated carbon at the time of molding is 80% by weight.
The total amount of activated carbon contained in one activated carbon layer (2), (2) is 10
It is g.
【0029】(3), (3)は集電極であり、厚さ125μm
のフォイル状のグラファイトからなる。一方の集電極
(3) の下半分には径1mm程度の通液孔(3b)を穿設してあ
り、他方の集電極(3) の上半分には同様の通液孔(3b)を
穿設してある。また、これらの集電極(3), (3)にはいず
れも端子(3a)を付設してある。(3) and (3) are collector electrodes having a thickness of 125 μm.
Made of foil-like graphite. One collector electrode
(3) The lower half has a through hole (3b) with a diameter of about 1 mm, and the upper half of the other collector electrode (3) has a similar through hole (3b). is there. A terminal (3a) is attached to each of these collector electrodes (3), (3).
【0030】(4), (4)は押え板であり、厚さ10mmのポ
リメチルメタクリレート板からなる。押え板(4), (4)の
周縁にはボルト孔(8) を設けてある。また、一方の押え
板(4) の片側の下隅には液入口(6) を設けてあり、他方
の押え板(4) の対角側の上隅には液出口(7) を設けてあ
る。(4) and (4) are holding plates, which are made of a polymethylmethacrylate plate having a thickness of 10 mm. Bolt holes (8) are provided on the periphery of the holding plates (4), (4). A liquid inlet (6) is provided at the lower corner of one holding plate (4), and a liquid outlet (7) is provided at the diagonally upper corner of the other holding plate (4). .
【0031】(5), (5)はいずれも厚さ1mmの枠状のガス
ケットであり、シリコーンゴムシートを枠状に打ち抜い
たものを用いている。(5) and (5) are both frame-shaped gaskets having a thickness of 1 mm, which are obtained by punching a silicone rubber sheet into a frame shape.
【0032】上記の各部材を図1の配置関係となるよう
にし、ボルト・ナット(9) を用いて圧締して図2の通液
型電気二重層コンデンサを組み立てた。The above-mentioned members were arranged in the arrangement shown in FIG. 1, and the liquid-flow electric double layer capacitor shown in FIG. 2 was assembled by pressing the bolts and nuts (9).
【0033】〈イオン性物質を含む液体の処理〉 処理例1 上記で得た通液型電気二重層コンデンサを用い、図2の
ように集電極(3), (3)の端子(3a), (3a)を1ボルトの直
流電源とつなぎ、押え板(4) の液入口(6) から濃度0.01
モル/リットルの食塩水を通液し、流し放し状態で液出
口(7) より流出させた。<Treatment of Liquid Containing Ionic Substance> Treatment Example 1 Using the through-flow type electric double layer capacitor obtained above, as shown in FIG. 2, the terminals (3a) of the collecting electrodes (3), (3), Connect (3a) to a 1 volt DC power supply, and press the 0.01% solution from the liquid inlet (6) of the holding plate (4).
A mol / liter saline solution was passed, and it was allowed to flow out from the liquid outlet (7) while being allowed to flow.
【0034】食塩水通液時の流速をそれぞれ 0.9ml/mi
n、 9.1ml/minとしたときの積算通液量と出口液食塩濃
度との関係を図3に示す。The flow rate at the time of passing saline solution is 0.9 ml / mi, respectively.
FIG. 3 shows the relationship between the cumulative liquid flow rate and the outlet solution salt concentration when n and 9.1 ml / min.
【0035】図3から、1ボルト定電圧の印加により出
口食塩濃度が急激に低下して、流速0.9ml/minの場合に
は最大で93%の食塩が除去され、流速 9.1ml/minの場
合には最大で70%の食塩が除去されることがわかる。From FIG. 3, when the constant voltage of 1 volt is applied, the salt concentration at the outlet drops sharply, and at the flow rate of 0.9 ml / min, 93% of the maximum salt is removed. At the flow rate of 9.1 ml / min. It can be seen that up to 70% of the salt is removed.
【0036】処理例2 図4は図2の通液型電気二重層コンデンサに食塩水を通
液し、定電圧印加とショートとを交互に繰り返したとき
の積算通液量と出口液食塩濃度との関係を示したグラフ
である。Treatment Example 2 FIG. 4 shows the cumulative amount of liquid passing and the salt concentration of the outlet liquid when saline is passed through the liquid electric double layer capacitor of FIG. 2 and constant voltage application and short circuit are alternately repeated. It is a graph showing the relationship of.
【0037】上記で得た通液型電気二重層コンデンサを
用い、図2のように集電極(3), (3)の端子(3a), (3a)を
1ボルトの直流電源とつなぎ、押え板(4) の液入口(6)
から濃度0.01モル/リットルの食塩水を 0.9ml/minの流
速で通液し、流し放し状態で液出口(7) より流出させ
た。Using the liquid-passing type electric double layer capacitor obtained above, as shown in FIG. 2, the terminals (3a) and (3a) of the collecting electrodes (3) and (3) were connected to a DC power source of 1 volt and held. Plate (4) Liquid Inlet (6)
A saline solution having a concentration of 0.01 mol / liter was passed through at a flow rate of 0.9 ml / min, and was allowed to flow out from the liquid outlet (7) while being allowed to flow.
【0038】図4中に付記のタイミングで1ボルト定電
圧の印加とショートとを繰り返し、液出口(7) から流出
する液中の食塩濃度を測定した。結果を図4に示す。Application of a constant voltage of 1 volt and short-circuiting were repeated at the timings shown in FIG. 4 to measure the salt concentration in the liquid flowing out from the liquid outlet (7). The results are shown in Fig. 4.
【0039】図4から、1ボルト定電圧の印加により出
口食塩濃度が急激に低下して最大で93%の食塩が除去
され、ショートさせると最大で約4倍にまで食塩濃度が
高まった液が導出されること、出口食塩濃度が原液のそ
れ近くになった時点で再度印加を開始すると出口食塩濃
度急激に低下して同様に最大で93%まで食塩が除去さ
れ、ショートさせると最大で約4倍にまで食塩濃度の高
まった液が導出されること、以下同様のパターンを10
回以上繰り返しても同様の結果が得られること、従って
脱イオン率の安定性がすぐれていることがわかる。From FIG. 4, when the constant voltage of 1 volt was applied, the salt concentration at the outlet dropped sharply to remove 93% of the salt at the maximum, and when it was short-circuited, the salt concentration increased to about 4 times at maximum. When the application is started again when the salt concentration at the outlet is close to that of the stock solution, the salt concentration at the outlet drops sharply and salt is removed up to 93% in the same manner. A solution with a salt concentration that is doubled is derived.
It can be seen that similar results are obtained even when repeated more than once, and therefore the stability of the deionization rate is excellent.
【0040】処理例3 活性炭層(2), (2)としてBET比表面積1450m2/gの
繊維状活性炭からなるフェルト状の布を用いたほかは、
上記の装置例と同様にして通液型電気二重層コンデンサ
を組み立てた。Treatment Example 3 As the activated carbon layers (2) and (2), a felt-like cloth made of fibrous activated carbon having a BET specific surface area of 1450 m 2 / g was used.
A through-flow type electric double layer capacitor was assembled in the same manner as in the above device example.
【0041】上記で得た通液型電気二重層コンデンサを
用い、図2のように集電極(3), (3)の端子(3a), (3a)を
1ボルトの直流電源とつなぎ、押え板(4) の液入口(6)
から濃度0.01モル/リットルの食塩水を通液し、流し放
し状態で液出口(7) より流出させた。Using the liquid-passing type electric double layer capacitor obtained above, as shown in FIG. 2, the terminals (3a) and (3a) of the collecting electrodes (3) and (3) were connected to a DC power source of 1 volt and held. Plate (4) Liquid Inlet (6)
Saline solution having a concentration of 0.01 mol / liter was passed from the above, and it was made to flow out from the liquid outlet (7) in a state where it was allowed to flow.
【0042】食塩水通液時の流速をそれぞれ 1.0ml/mi
n、10ml/minとしたときの積算通液量と出口液食塩濃
度との関係を図5に示す。なお流速は、2枚の活性炭層
(2), (2)を構成する繊維状活性炭の合計量10g当りの
流速である。The flow rate when passing saline solution is 1.0 ml / mi
FIG. 5 shows the relationship between the cumulative liquid flow rate and the outlet solution salt concentration when n is 10 ml / min. The flow rate is 2 activated carbon beds.
(2) The flow rate per 10 g of the total amount of fibrous activated carbon constituting (2).
【0043】図5から、1ボルト定電圧の印加により出
口食塩濃度が急激に低下すること、また流速 1.0ml/min
の場合の食塩除去率がすぐれているのみならず、流速を
10ml/minとしても食塩除去率が大きいことがわかる。From FIG. 5, it is found that the concentration of salt at the outlet drops sharply when a constant voltage of 1 volt is applied, and the flow rate is 1.0 ml / min.
It is understood that not only is the salt removal rate excellent in the case of 1, but the salt removal rate is large even when the flow rate is 10 ml / min.
【0044】[0044]
【発明の効果】作用の項でも述べたように、本発明の通
液型電気二重層コンデンサにおいては、フラットな活性
炭層(2), (2)を用いると共に、各部材を配置して圧締し
た平板形状の構造としてあるため、活性炭層(2), (2)を
均等に圧縮でき、通液時の液の偏流を効果的に防止する
ことができる。そのため、イオン性物質の除去率の安定
化が図られ、しかもその除去率を極限にまで高めること
ができる。また大型化しても全体の厚さが薄いため、こ
れを並列に多段に並べて大容量化することも容易であ
る。よって本発明により、工業的規模での液体の処理が
可能となる。As described in the section of the operation, in the liquid-flow type electric double layer capacitor of the present invention, the flat activated carbon layers (2) and (2) are used and each member is arranged and compressed. Because of the flat plate-shaped structure, the activated carbon layers (2) and (2) can be uniformly compressed, and uneven flow of the liquid at the time of liquid passage can be effectively prevented. Therefore, the removal rate of ionic substances can be stabilized, and the removal rate can be increased to the maximum. In addition, even if the size is increased, the total thickness is thin, so that it is easy to arrange them in parallel in multiple stages to increase the capacity. Thus, the present invention enables the treatment of liquids on an industrial scale.
【図1】本発明の通液型電気二重層コンデンサの分解図
である。FIG. 1 is an exploded view of a liquid-flow type electric double layer capacitor of the present invention.
【図2】図1の通液型電気二重層コンデンサの組み立て
図である。FIG. 2 is an assembly diagram of the liquid through type electric double layer capacitor of FIG.
【図3】処理例1において、食塩水通液時の流速をそれ
ぞれ 0.9ml/min、 9.1ml/minとしたときの積算通液量と
出口液食塩濃度との関係を示したグラフである。FIG. 3 is a graph showing the relationship between the cumulative liquid flow rate and the salt concentration of the outlet liquid when the flow rates during saline flow were 0.9 ml / min and 9.1 ml / min, respectively, in Treatment Example 1.
【図4】処理例2において、図2の通液型電気二重層コ
ンデンサに食塩水を通液し、定電圧印加とショートとを
交互に繰り返したときの積算通液量と出口液食塩濃度と
の関係を示したグラフである。FIG. 4 is a graph showing the accumulated liquid passing amount and the outlet liquid salt concentration when salt water is passed through the liquid flow type electric double layer capacitor of FIG. 2 and a constant voltage application and a short circuit are alternately repeated in Treatment Example 2. It is a graph showing the relationship of.
【図5】処理例3において、食塩水通液時の流速をそれ
ぞれ 1.0ml/min、10ml/minとしたときの積算通液量と
出口液食塩濃度との関係を示したグラフである。FIG. 5 is a graph showing the relationship between the cumulative liquid flow rate and the outlet liquid salt concentration when the flow rate during saline solution flow was set to 1.0 ml / min and 10 ml / min in Treatment Example 3.
【図6】本発明の平板形状の通液型電気二重層コンデン
サを用いてイオン性物質を含む液体の処理を行うときの
原理図である。FIG. 6 is a principle diagram when a liquid containing an ionic substance is processed by using the flat plate liquid-permeable electric double layer capacitor of the present invention.
(1) …セパレータ、(2) …活性炭層、(3) …集電極、(3
a)…端子、(3b)…通液孔、(4) …押え板、(5) …ガスケ
ット、(6) …液入口、(7) …液出口、(8) …ボルト孔、
(9) …ボルト・ナット(1) ... separator, (2) ... activated carbon layer, (3) ... collector electrode, (3
a) ... terminal, (3b) ... liquid passage hole, (4) ... holding plate, (5) ... gasket, (6) ... liquid inlet, (7) ... liquid outlet, (8) ... bolt hole,
(9)… Bolts and nuts
Claims (3)
パレータ(1) を挟んで、高比表面積活性炭を主材とする
活性炭層(2), (2)を配置し、その活性炭層(2), (2)の外
側に集電極(3), (3)を配置し、さらにその集電極(3),
(3)の外側に押え板(4), (4)を配置した構成を有する平
板形状の通液型電気二重層コンデンサ。1. An activated carbon layer (2), (2) having a high specific surface area activated carbon as a main material is disposed with a separator (1) made of an electrically insulating porous liquid-permeable sheet sandwiched therebetween, and the activated carbon layer ( 2), collecting electrodes (3), (3) are placed outside (2), and further collecting electrodes (3), (3)
A plate-shaped liquid-flow type electric double layer capacitor having a structure in which holding plates (4) and (4) are arranged outside (3).
枠状のガスケット(5), (5)を介在させてなる請求項1記
載の通液型電気二重層コンデンサ。2. The gasket according to claim 1, wherein frame-shaped gaskets (5), (5) are interposed between the collector electrodes (3), (3) and the holding plates (4), (4). Liquid type electric double layer capacitor.
ンデンサにイオン性物質を含む液体を通液しながら、集
電極(3), (3)への直流定電圧の印加と、両集電極(3),
(3)間のショートまたは逆接続とを交互に繰り返すこと
を特徴とする液体の処理方法。3. A constant DC voltage is applied to the collecting electrodes (3), (3) while passing a liquid containing an ionic substance through the flat liquid-flowing type electric double layer capacitor of claim 1. Both collector electrodes (3),
(3) A method for treating a liquid, characterized by alternately repeating short-circuiting or reverse connection.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13935493A JP3302443B2 (en) | 1993-05-17 | 1993-05-17 | Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same |
US08/379,493 US5538611A (en) | 1993-05-17 | 1994-05-12 | Planar, flow-through, electric, double-layer capacitor and a method of treating liquids with the capacitor |
PCT/US1994/005364 WO1994026669A1 (en) | 1993-05-17 | 1994-05-12 | A planar, flow-through, electric, double-layer capacitor and method of treating fluids with the capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13935493A JP3302443B2 (en) | 1993-05-17 | 1993-05-17 | Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06325983A true JPH06325983A (en) | 1994-11-25 |
JP3302443B2 JP3302443B2 (en) | 2002-07-15 |
Family
ID=15243380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13935493A Expired - Fee Related JP3302443B2 (en) | 1993-05-17 | 1993-05-17 | Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3302443B2 (en) |
WO (1) | WO1994026669A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003039070A (en) * | 2001-07-27 | 2003-02-12 | Kurita Water Ind Ltd | Device and method for producing desalted water |
WO2007037193A1 (en) | 2005-09-27 | 2007-04-05 | Tanah Process Ltd. | Ion concentration regulation method and ion concentration regulation apparatus |
JP2010517746A (en) * | 2007-02-01 | 2010-05-27 | ゼネラル・エレクトリック・カンパニイ | Desalination method and apparatus including supercapacitor electrode |
JP2011525704A (en) * | 2008-06-24 | 2011-09-22 | ゼネラル・エレクトリック・カンパニイ | Supercapacitor and manufacturing method thereof |
JPWO2010150534A1 (en) * | 2009-06-23 | 2012-12-06 | クラレケミカル株式会社 | Liquid-permeable capacitor, deionized water production method, and deionized water production apparatus |
US8529737B2 (en) | 2008-03-25 | 2013-09-10 | Tanah Process Ltd. | Portable device for regulating hardness of drinking water |
WO2014020758A1 (en) * | 2012-08-03 | 2014-02-06 | 三菱重工メカトロシステムズ株式会社 | Desalination treatment device, and operation method for desalination treatment device |
JP2014127466A (en) * | 2012-12-26 | 2014-07-07 | Kazuhiro Hayashi | Promoting step of material movement between electrodes in electrolyte by applying voltage |
WO2014185114A1 (en) * | 2013-05-15 | 2014-11-20 | シャープ株式会社 | Functional water production apparatus |
JP2018514382A (en) * | 2015-05-20 | 2018-06-07 | エディプ・バイラムEdip BAYRAM | Electroadsorption system for removing foreign matter from water |
JP2018525769A (en) * | 2015-05-20 | 2018-09-06 | エディプ・バイラムEdip BAYRAM | Generation method |
WO2020039676A1 (en) * | 2018-08-23 | 2020-02-27 | 株式会社寿通商 | Water treatment device and ion concentration adjusted water manufacturing method |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5620597A (en) * | 1990-04-23 | 1997-04-15 | Andelman; Marc D. | Non-fouling flow-through capacitor |
US5425858A (en) * | 1994-05-20 | 1995-06-20 | The Regents Of The University Of California | Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes |
GB2332210B (en) * | 1997-12-10 | 2000-07-19 | Toshiba Kk | Processing method of waste water and processing apparatus thereof |
US6781817B2 (en) | 2000-10-02 | 2004-08-24 | Biosource, Inc. | Fringe-field capacitor electrode for electrochemical device |
GB0822816D0 (en) * | 2008-12-15 | 2009-01-21 | Enpar Technologies Inc | Electrostatic water filtration (esf) system and methid |
GB0921953D0 (en) * | 2009-12-16 | 2010-02-03 | Enpar Technologies Inc | Flow-through electro static water filter |
CN102060359B (en) * | 2010-11-12 | 2012-02-08 | 北京化工大学 | Capacitive desalination module |
NL2007600C2 (en) | 2011-10-14 | 2013-04-16 | Voltea Bv | Method of producing an apparatus for removal of ions and apparatus for removal of ions. |
EP3037389B1 (en) | 2014-12-24 | 2018-05-16 | IDROPAN DELL'ORTO DEPURATORI S.r.l. | Apparatus for purifying a fluid and method for the attainment thereof |
JP6395952B1 (en) | 2016-11-02 | 2018-09-26 | 三菱電機株式会社 | Water treatment apparatus and water treatment method |
SG11201907558QA (en) | 2017-03-28 | 2019-10-30 | Mitsubishi Electric Corp | Water treatment device, water treatment system, method of assembling water treatment device, and water treatment method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3658674A (en) * | 1966-02-28 | 1972-04-25 | Standard Oil Co Ohio | Process for demineralization of water |
US5200068A (en) * | 1990-04-23 | 1993-04-06 | Andelman Marc D | Controlled charge chromatography system |
US5192432A (en) * | 1990-04-23 | 1993-03-09 | Andelman Marc D | Flow-through capacitor |
-
1993
- 1993-05-17 JP JP13935493A patent/JP3302443B2/en not_active Expired - Fee Related
-
1994
- 1994-05-12 WO PCT/US1994/005364 patent/WO1994026669A1/en active Application Filing
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003039070A (en) * | 2001-07-27 | 2003-02-12 | Kurita Water Ind Ltd | Device and method for producing desalted water |
WO2007037193A1 (en) | 2005-09-27 | 2007-04-05 | Tanah Process Ltd. | Ion concentration regulation method and ion concentration regulation apparatus |
JP2010517746A (en) * | 2007-02-01 | 2010-05-27 | ゼネラル・エレクトリック・カンパニイ | Desalination method and apparatus including supercapacitor electrode |
US8529737B2 (en) | 2008-03-25 | 2013-09-10 | Tanah Process Ltd. | Portable device for regulating hardness of drinking water |
JP2011525704A (en) * | 2008-06-24 | 2011-09-22 | ゼネラル・エレクトリック・カンパニイ | Supercapacitor and manufacturing method thereof |
US9233860B2 (en) | 2008-06-24 | 2016-01-12 | General Electric Company | Supercapacitor and method for making the same |
JPWO2010150534A1 (en) * | 2009-06-23 | 2012-12-06 | クラレケミカル株式会社 | Liquid-permeable capacitor, deionized water production method, and deionized water production apparatus |
JP5687620B2 (en) * | 2009-06-23 | 2015-03-18 | クラレケミカル株式会社 | Liquid-permeable capacitor, deionized water production method, and deionized water production apparatus |
JPWO2014020758A1 (en) * | 2012-08-03 | 2016-07-11 | 三菱重工メカトロシステムズ株式会社 | Desalination treatment apparatus and method of operating desalination treatment apparatus |
WO2014020758A1 (en) * | 2012-08-03 | 2014-02-06 | 三菱重工メカトロシステムズ株式会社 | Desalination treatment device, and operation method for desalination treatment device |
JP2014127466A (en) * | 2012-12-26 | 2014-07-07 | Kazuhiro Hayashi | Promoting step of material movement between electrodes in electrolyte by applying voltage |
WO2014185114A1 (en) * | 2013-05-15 | 2014-11-20 | シャープ株式会社 | Functional water production apparatus |
JP2018514382A (en) * | 2015-05-20 | 2018-06-07 | エディプ・バイラムEdip BAYRAM | Electroadsorption system for removing foreign matter from water |
JP2018525769A (en) * | 2015-05-20 | 2018-09-06 | エディプ・バイラムEdip BAYRAM | Generation method |
WO2020039676A1 (en) * | 2018-08-23 | 2020-02-27 | 株式会社寿通商 | Water treatment device and ion concentration adjusted water manufacturing method |
JPWO2020039676A1 (en) * | 2018-08-23 | 2021-08-12 | 株式会社寿ホールディングス | Water treatment equipment and manufacturing method of ion concentration adjusted water |
EP3842130A4 (en) * | 2018-08-23 | 2022-05-18 | Kotobuki Holdings Co., Ltd. | Water treatment device and ion concentration adjusted water manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
WO1994026669A1 (en) | 1994-11-24 |
JP3302443B2 (en) | 2002-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3302443B2 (en) | Flat-plate flow-through type electric double layer capacitor and liquid processing method using the same | |
US5538611A (en) | Planar, flow-through, electric, double-layer capacitor and a method of treating liquids with the capacitor | |
JP4286931B2 (en) | Liquid-permeable capacitor and liquid processing method using the same | |
US6413409B1 (en) | Flow-through capacitor and method of treating liquids with it | |
CA1196601A (en) | Method for removing liquid from chemically- precipitated sludge | |
US20080073288A1 (en) | Multifunctional filtration and water purification systems | |
WO2008016671A2 (en) | Multifunctional filtration and water purification systems | |
JPH11514289A (en) | Stained flow-through capacitors, systems, and separation methods | |
JP3893740B2 (en) | Electrolytic capacitor type desalting apparatus and desalting method | |
KR101479457B1 (en) | Flow through capacitor, device for producing deionized liquid, and method for producing deionized liquid | |
WO1994026669B1 (en) | A planar, flow-through, electric, double-layer capacitor and method of treating fluids with the capacitor | |
US6798639B2 (en) | Fluid deionization flow through capacitor systems | |
US20070246367A1 (en) | Electrochemical capacitive concentration and deactivation of actinide nuclear materials | |
JP2002273439A (en) | Desalting method and device therefor | |
JP2003200166A (en) | Operation method for liquid passing type electric double- layered condenser desalting apparatus | |
JP2002336863A (en) | Method and apparatus for making desalted water | |
JP4148628B2 (en) | Liquid purification process | |
JP2003200164A (en) | Winding and liquid passing type condenser for removing charged matter from liquid and liquid treatment apparatus | |
WO1997003024A1 (en) | Method and system for removing ionic species from water | |
JP2002336859A (en) | Desalted water making method | |
JP2002336865A (en) | Desalting apparatus and desalting method | |
JP2001058182A (en) | Method and apparatus for passing liquid into liquid passing type capacitor | |
RU2181107C1 (en) | Process of controllable electric sorption of organic substances and cations of heavy metals from aqueous solutions | |
JP2002273437A (en) | Desalting device | |
JP2002210468A (en) | Demineralizing device and demineralizing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020402 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080426 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090426 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090426 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090426 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100426 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100426 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100426 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100426 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100426 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110426 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120426 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130426 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |