JP2001080953A - Ceramic sintered compact and coated ceramic sintered compact - Google Patents

Ceramic sintered compact and coated ceramic sintered compact

Info

Publication number
JP2001080953A
JP2001080953A JP25378099A JP25378099A JP2001080953A JP 2001080953 A JP2001080953 A JP 2001080953A JP 25378099 A JP25378099 A JP 25378099A JP 25378099 A JP25378099 A JP 25378099A JP 2001080953 A JP2001080953 A JP 2001080953A
Authority
JP
Japan
Prior art keywords
ceramic sintered
sintered body
titanium
nitride
body according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25378099A
Other languages
Japanese (ja)
Other versions
JP3519324B2 (en
Inventor
Toshiyuki Takahashi
俊行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP25378099A priority Critical patent/JP3519324B2/en
Publication of JP2001080953A publication Critical patent/JP2001080953A/en
Application granted granted Critical
Publication of JP3519324B2 publication Critical patent/JP3519324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics

Abstract

PROBLEM TO BE SOLVED: To enhance the hardness, strength and toughness from a low- temperature region to a high-temperature region of sintered ceramics by incorporating a specific ratio of aluminum nitride and a specific ratio of at least one kind of titanium compounds expressed by a formula expressed by specific relations of Ti, C, N and O. SOLUTION: This ceramic sintered compact contains the Ti compound expressed by the formula: Ti (Cx, Ny and Oz). (In the formula, (x), (y) and (z) denote the respective atom ratios of C, N and O and x+y+z=1, 0<=x<=0,4, 0.6<=y<=1.0, 0<=z<=0.05). The content of the aluminum nitride is 1 to 25 vol.% and the content of the titanium compound is 75 to 99 vol.%. The titanium compound of the high-nitrogen content contained in the ceramic sintered compact and the coated ceramic sintered compact acts to suppress the friction resistance and reaction with ferrous materials, or the like, in the high-temperature region and, on the other hand, the aluminum nitride ats to enhance thermal conductivity. When the sintered compact is used as a cutting tool, the wear resistance and chipping resistance are excellent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化アルミニウム
とチタンの化合物とを含有したセラミックス焼結体、な
らびにこのセラミックス焼結体の基材表面に硬質膜が被
覆された被覆セラミックス焼結体に関し、特にチタンの
化合物を主成分として含有するセラミックス焼結体、被
覆セラミックス焼結体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic sintered body containing a compound of aluminum nitride and titanium, and a coated ceramic sintered body in which a hard film is coated on a substrate surface of the ceramic sintered body. In particular, the present invention relates to a ceramic sintered body and a coated ceramic sintered body containing a titanium compound as a main component.

【0002】[0002]

【従来の技術】一般に、セラミックス焼結体は、酸化物
系セラミックス焼結体と非酸化物系セラミックス焼結体
に大別される。これらのセラミックス焼結体は、一部が
切削工具や耐摩耗工具などの工具として実用されてい
る。工具として実用されるセラミックス焼結体は、高硬
度性,高靱性などを要求され、特に高負荷と高温の過酷
な条件で実用される切削工具の場合には、耐熱衝撃性と
高破壊靱性などの特性も要求される。このような要求か
ら開発された一方向のセラミックス焼結体として、酸化
アルミニウムと炭化チタン,窒化チタンなどの非酸化物
とを含有するセラミックス焼結体があり、その代表的な
ものに特開昭63ー225579号公報および特開平1
ー179778号公報として提案されている。また、そ
の他のセラミックス焼結体として提案されているものの
代表的なものに、特開昭61ー295271号公報があ
る。
2. Description of the Related Art In general, ceramic sintered bodies are roughly classified into oxide ceramic sintered bodies and non-oxide ceramic sintered bodies. Some of these ceramic sintered bodies are practically used as tools such as cutting tools and wear-resistant tools. Ceramic sintered bodies used as tools are required to have high hardness and high toughness, especially for cutting tools used under severe conditions of high load and high temperature, such as thermal shock resistance and high fracture toughness. Characteristics are also required. As a one-way ceramic sintered body developed from such a demand, there is a ceramic sintered body containing aluminum oxide and a non-oxide such as titanium carbide and titanium nitride. 63-225579 and JP-A-Hei 1
No. 179778. As a typical ceramic sintered body, there is Japanese Patent Application Laid-Open No. 61-295271.

【0003】[0003]

【発明が解決しようとする課題】切削工具や耐摩耗工具
などの工具に使用可能なセラミックス焼結体として例示
した特開昭63ー225579号公報には、40〜9
4.5重量%TiCと0.5〜40重量%Al23に5
〜40重量%SiCウイスカーが均一分散,焼結された
セラミックス焼結体について開示されている。また、特
開平1ー179778号公報には、酸化アルミニウムを
9〜45重量%とMg,Y,Zrの酸化物の中の1種以
上を0.5〜8重量%と、残り51〜90重量%炭化チ
タンからなるセラミックス焼結体を基材とし、この基材
表面にTi化合物の硬質膜が被覆されてなる被覆セラミ
ックス焼結体について開示されている。これら両公報に
開示のセラミックス焼結体は、酸化アルミニウムなどの
酸化物が割合多量に添加されていることから、熱伝導性
が低下し、耐熱衝撃性、耐サーマルクラック性に劣ると
いう課題があること、特に後者の場合にはSiCウイス
カーが鉄系材料との反応性を高めることから、耐摩耗性
の低下をも引き起こすという課題がある。
Japanese Patent Application Laid-Open No. 63-225579 discloses a ceramic sintered body which can be used for tools such as cutting tools and wear-resistant tools.
4.5 wt% TiC and 0.5 to 40 wt% Al 2 O 3 to 5
A ceramic sintered body in which -40% by weight of SiC whiskers are uniformly dispersed and sintered is disclosed. JP-A-1-179778 discloses that 9 to 45% by weight of aluminum oxide, 0.5 to 8% by weight of at least one of oxides of Mg, Y, and Zr, and 51 to 90% by weight are provided. Patent Document 1 discloses a coated ceramic sintered body in which a ceramic sintered body composed of% titanium carbide is used as a base material, and a hard film of a Ti compound is coated on the base material surface. The ceramics sintered bodies disclosed in both of these publications have a problem that thermal conductivity is reduced, and thermal shock resistance and thermal crack resistance are inferior because oxides such as aluminum oxide are added in a large amount. In particular, in the latter case, since the SiC whiskers increase the reactivity with the iron-based material, there is a problem that the wear resistance is also reduced.

【0004】さらに、その他のセラミックス焼結体とし
て例示した特開昭61ー295271号公報には、B
e,Mg,Ca,Sr,Al,Ga,In,Tl,S
c,Y,ランタノイドの酸化物もしくはこれらの相互固
溶体の中の少なくとも1種の分散相を1〜15重量%
と、残り(Ti,M)の炭化物、炭窒化物、炭酸化物、
炭窒酸化物の硬質相(ただし、M=Zr,Hf,V,T
a,Nbの中の少なくとも1種の金属元素)からなるチ
タン化合物基高硬度焼結体について開示されている。同
公報に開示のチタン化合物基高硬度焼結体は、硬質相中
の炭素含有量が多いことから、低温領域においては、高
硬度で、かつ耐摩耗性にすぐれるのであるが、高温領域
においては、鉄系材料との摩擦抵抗および反応性が高く
なり、逆に耐摩耗性の低下を引き起こすという課題があ
る。特に、一般の鋳鉄に対比して、強度、靱性の高いダ
クタイル鋳鉄を切削加工するのに、従来のセラミックス
焼結体でなる切削工具を使用した場合には、摩耗および
サーマルクラックに起因する欠損が生じて短寿命になる
という課題がある。
Japanese Patent Application Laid-Open No. 61-295271, which is another example of a ceramic sintered body, discloses B
e, Mg, Ca, Sr, Al, Ga, In, Tl, S
1 to 15% by weight of at least one dispersed phase in c, Y, lanthanoid oxide or their mutual solid solution
And the remaining (Ti, M) carbides, carbonitrides, carbonates,
Hard phase of carbonitride (where M = Zr, Hf, V, T
a, a high hardness sintered body based on a titanium compound comprising at least one metal element of Nb). The titanium compound-based high-hardness sintered body disclosed in the publication has a high carbon content in the hard phase, and thus has a high hardness and excellent wear resistance in a low temperature region, but has a high wear resistance in a high temperature region. Has a problem that friction resistance and reactivity with iron-based materials are increased, and conversely, wear resistance is reduced. In particular, when using conventional ceramics cutting tools to cut ductile cast iron with high strength and toughness compared to general cast iron, wear and cracks due to thermal cracks will occur. There is a problem that the life is shortened.

【0005】本発明は、上述のような課題を解決したセ
ラミックス焼結体および被覆セラミックス焼結体であ
り、具体的には、窒素を多く含有したチタン化合物に熱
伝導性にすぐれる窒化アルミニウムを均一分散させて、
かつ緻密な焼結体とすることにより、低温領域から高温
領域における硬さ、強度、靱性を高くさせるとともに、
耐熱衝撃性、耐サーマルクラック性にすぐれたセラミッ
クス焼結体および被覆セラミックス焼結体の提供を目的
とするものである。
The present invention is directed to a ceramic sintered body and a coated ceramic sintered body which have solved the above-mentioned problems. More specifically, the present invention relates to a titanium compound containing a large amount of nitrogen and aluminum nitride having excellent thermal conductivity. Evenly disperse,
And by making it a dense sintered body, while increasing the hardness, strength, toughness in the low to high temperature range,
It is an object of the present invention to provide a ceramic sintered body and a coated ceramic sintered body having excellent thermal shock resistance and thermal crack resistance.

【0006】[0006]

【課題を解決するための手段】本発明者は、ダクタイル
鋳鉄の被加工性について検討していたところ、第1に従
来から実用されている酸化アルミニウムに炭窒化チタン
が添加されたAl23系セラミックス焼結体を切削工具
として、ダクタイル鋳鉄の切削加工試験を行った結果、
炭窒化チタン中の窒素含有量に影響されること、具体的
には、炭窒化チタン中の窒素含有量、すなわちN/(N
+C)≧0.6の場合には鉄との反応性が急激に改善さ
れるという知見を得た。第2にダクタイル鋳鉄の切削加
工として使用する切削工具は、熱伝導率の高い材料が好
ましく、そのために酸化アルミニウムよりも窒化アルミ
ニウムが好ましという知見を得た。さらに、第3に窒化
アルミニウムとチタン含有化合物との比率、ならびに炭
窒化チタン中の窒素含有量との最適な関係が存在すると
いう知見を得た。これらの知見に基づいて、本発明を完
成するに至ったものである。
The inventor of the present invention has studied the workability of ductile cast iron. First, Al 2 O 3 in which titanium carbonitride is added to conventionally used aluminum oxide. As a result of conducting a cutting test of ductile cast iron using sintered ceramics as a cutting tool,
Being affected by the nitrogen content in the titanium carbonitride, specifically, the nitrogen content in the titanium carbonitride, ie, N / (N
It was found that when + C) ≧ 0.6, the reactivity with iron was sharply improved. Secondly, it has been found that a cutting tool used for cutting ductile cast iron is preferably made of a material having high thermal conductivity, and therefore, aluminum nitride is preferred over aluminum oxide. Thirdly, they have found that there is an optimal relationship between the ratio between aluminum nitride and a titanium-containing compound and the nitrogen content in titanium carbonitride. Based on these findings, the present invention has been completed.

【0007】すなわち、本発明のセラミックス焼結体
は、窒化アルミニウムを1〜25体積%と、Ti(C
x,Ny,Oz)で表される少なくとも1種のチタン化
合物を75〜99体積%とを含有してなるものである。
(ただし、Tiはチタン元素、Cは炭素元素、Nは窒素
元素、Oは酸素元素を表し、x,y,zはC,N,Oの
それぞれの原子比を表し、x+y+z=1,0≦x≦
0.4,0.6≦y≦1.0,0≦z≦0.05の関係
を満足する)
That is, the ceramic sintered body of the present invention comprises 1 to 25% by volume of aluminum nitride and Ti (C
(x, Ny, Oz) in an amount of 75 to 99% by volume of at least one titanium compound.
(However, Ti represents a titanium element, C represents a carbon element, N represents a nitrogen element, O represents an oxygen element, x, y, and z represent respective atomic ratios of C, N, and O, and x + y + z = 1, 0 ≦ x ≦
0.4, 0.6 ≦ y ≦ 1.0, satisfying the relationship of 0 ≦ z ≦ 0.05)

【0008】[0008]

【発明の実施態様】本発明のセラミックス焼結体は、1
〜25体積%の窒化アルミニウムと、75〜99体積%
のチタン化合物と不可避不純物とからなる組成成分でな
る場合、または1〜25体積%の窒化アルミニウムと7
5〜99体積のチタン化合物との体積比率でなる両物質
の合計を50体積%以上と、好ましくは80体積%以上
と、残り第3物質が含有されている場合でもよい。この
ときのチタン化合物としては、窒化チタン、炭窒化チタ
ン、窒酸化チタン、炭窒酸化チタンの中の少なくとも1
種からなるものであり、これらのうち窒化チタンおよび
/または炭窒化チタンからなる場合には、摩擦抵抗が抑
制されて、例えば切削工具として使用したときに切り屑
による損傷が抑制されることから好ましいことである。
この窒化アルミニウムとチタン化合物との体積比率は、
窒化アルミニウムが1体積%未満になると、窒化アルミ
ニウム自体の保有している熱伝導性が発揮され難くな
り、逆に窒化アルミニウムが25体積%を越えて多くな
ると、靱性および強度の低下が顕著となる。
BEST MODE FOR CARRYING OUT THE INVENTION The ceramic sintered body of the present invention comprises:
~ 25% by volume aluminum nitride and 75 ~ 99% by volume
Of a titanium compound and an unavoidable impurity, or 1 to 25% by volume of aluminum nitride and 7
The total of the two substances in a volume ratio of 5 to 99 volumes of the titanium compound may be 50% by volume or more, preferably 80% by volume or more, and the remaining third substance may be contained. As the titanium compound at this time, at least one of titanium nitride, titanium carbonitride, titanium nitride oxide, and titanium carbonitride
It is preferable to use titanium nitride and / or titanium carbonitride, since frictional resistance is suppressed, and damage caused by chips when used as a cutting tool is suppressed. That is.
The volume ratio between the aluminum nitride and the titanium compound is:
When the content of aluminum nitride is less than 1% by volume, the thermal conductivity possessed by aluminum nitride itself is difficult to exhibit, and when the content of aluminum nitride exceeds 25% by volume, the toughness and strength are significantly reduced. .

【0009】また、窒化アルミニウムとチタン化合物の
他に含有される第3物質としては、具体的には、例えば
周期律表の4a,5a,6a族元素の炭化物、窒化物、
酸化物、周期律表の2a,3a族元素の酸化物およびこ
れらの相互固溶体、炭化けい素、窒化けい素、酸化アル
ミニウム、(Ti,Al)N,(Ti,Al)(C,
N),(Ti,Al)C、(Ti,Al)(N,O)の
中の少なくとも1種からなる場合を代表例として挙げる
ことができる。この第3物質は、組成成分により異なる
が、焼結体全体30体積%以下でなることが好ましく、
用途や形状などにより組成成分を選定することが好まし
いことである。特にTiとAlを含む窒化物、炭窒化
物、窒酸化物、炭窒酸化物、周期律表の4a族元素の炭
化物、窒化物、炭化タングステン、窒化タンタル、酸化
マグネシウム、Sc、Yを含めた希土類元素の酸化物お
よびこれらの相互固溶体の中から選ばれた少なくとも1
種からなる場合には、第3物質が焼結体中に均一に分散
されて、緻密な焼結体を得ることが容易となり、耐熱衝
撃性および耐サーマルクラック性に顕著にすぐれること
から好ましいことである。これらの窒化アルミニウム、
チタン化合物および第3物質は、化学量論組成物または
非化学量論組成物からなる場合でも問題はないものであ
る。
Specific examples of the third substance contained in addition to the aluminum nitride and the titanium compound include, for example, carbides, nitrides, and the like of elements of groups 4a, 5a, and 6a of the periodic table.
Oxides, oxides of Group 2a and 3a elements of the periodic table and their mutual solid solutions, silicon carbide, silicon nitride, aluminum oxide, (Ti, Al) N, (Ti, Al) (C,
N), (Ti, Al) C and (Ti, Al) (N, O). The third substance is different depending on the composition, but is preferably 30% by volume or less of the whole sintered body.
It is preferable to select a composition component according to a use or a shape. In particular, it includes nitrides, carbonitrides, oxynitrides, oxycarbonitrides, carbides, nitrides, tungsten carbide, tantalum nitride, magnesium oxide, Sc, and Y containing Ti and Al, which are elements of Group 4a of the periodic table. At least one selected from oxides of rare earth elements and mutual solid solutions thereof;
When it is composed of a seed, the third substance is uniformly dispersed in the sintered body, so that a dense sintered body can be easily obtained, and the heat shock resistance and the thermal crack resistance are remarkably excellent. That is. These aluminum nitrides,
There is no problem even if the titanium compound and the third substance consist of a stoichiometric composition or a non-stoichiometric composition.

【0010】このような構成でなる本発明のセラミック
ス焼結体を基材とし、この基材の少なくとも一部の面に
周期律表の4a,5a,6a族元素,Al,Siの炭化
物、窒化物、酸化物およびこれらの相互固溶体、もしく
はダイヤモンド、ダイヤモンド状カーボン、立方晶窒化
硼素、硬質窒化硼素の中から選ばれた1種の単層、また
は2種以上の積層でなる硬質膜を被覆した被覆セラミッ
クス焼結体にすると、耐摩耗性、耐久性および長寿命性
が達成されることから好ましいことである。
The ceramic sintered body of the present invention having such a structure is used as a base material, and at least a part of the surface of the base material is made of a group 4a, 5a, or 6a element of the periodic table, a carbide of Al or Si, or nitrided. , Oxides and their mutual solid solutions, or coated with a hard film composed of one single layer selected from diamond, diamond-like carbon, cubic boron nitride, and hard boron nitride, or a laminate of two or more types The coated ceramic sintered body is preferable because wear resistance, durability and long life are achieved.

【0011】このときの硬質膜を含む被膜構成は、基材
に隣接して直接硬質膜を被覆させるような構成でもよ
く、または硬質膜と基材との間に硬質膜以外の物質でな
る単層、または多層の中間層を形成させる被膜構成とす
ることも好ましいことである。この中間層は、金属,合
金からなる場合、具体的には、例えばチタン、タンタ
ル、タングステンなどの周期律表の4a,5a,6a族
金属,珪素、これらの合金の中の1種の単層、または2
種以上の多層からなる場合を代表例として挙げることが
できる。この中間層は、硬質膜と基材との付着性、密着
性の向上、および硬質膜を形成させるための核生成の促
進や硬質膜の結晶促進としての作用を発揮することから
好ましいことである。この中間層が介在した被膜構成の
場合には、中間層を構成する金属元素が硬質膜中に拡散
した状態になることもあり、このときは、中間層と硬質
膜との付着性がより一層すぐれることから好ましいこと
である。
[0011] At this time, the coating structure including the hard film may be such that the hard film is directly coated adjacent to the base material, or a single material made of a substance other than the hard film is provided between the hard film and the base material. It is also preferable to adopt a film configuration in which a layer or a multilayer intermediate layer is formed. When the intermediate layer is made of a metal or an alloy, specifically, for example, a single layer of one of the metals of the 4a, 5a, and 6a group of the periodic table, such as titanium, tantalum, and tungsten, silicon, and alloys thereof Or 2
A typical example is a case of a multi-layer composed of more than one kind. This intermediate layer is preferable because it exhibits an effect of improving adhesion and adhesion between the hard film and the base material, and promoting nucleation for forming the hard film and promoting crystallization of the hard film. . In the case of the film configuration in which the intermediate layer is interposed, the metal element constituting the intermediate layer may be diffused into the hard film, and in this case, the adhesion between the intermediate layer and the hard film is further improved. This is preferable because it is excellent.

【0012】これらの被膜構成は、具体的には、例えば
TiC,TiN,TiCN,(Ti,Al)N,Al2
3,ダイヤモンド,ダイヤモンド状カーボン,立方晶
窒化硼素,硬質硼素の中の1種の単層、TiN−Al2
3−TiN,Ti(C,N)−TiC−Al23,T
iN−(Ti,Al)N,Si−ダイヤモンド,Wーダ
イヤモンド,TiN−cBN,の中の1種の多層を代表
例として挙げることができる。
[0012] Specifically, these coating structures are, for example, TiC, TiN, TiCN, (Ti, Al) N, Al 2
A single layer of O 3 , diamond, diamond-like carbon, cubic boron nitride, hard boron, TiN—Al 2
O 3 —TiN, Ti (C, N) —TiC—Al 2 O 3 , T
One type of multilayer among iN- (Ti, Al) N, Si-diamond, W-diamond and TiN-cBN can be mentioned as a representative example.

【0013】このときの硬質膜の膜厚さ、および中間層
が介在した場合の中間層の膜厚さは、被膜の構成、硬質
膜や中間層のそれぞれの膜質、用途、形状などにより選
定することが好ましいことである。このうち、硬質膜
は、耐摩耗性、耐久性および長寿命性の効果を引き出さ
せて、かつ膜の耐剥離性を低下させないようにするため
に、0.5〜20μm膜厚さ、好ましくは1〜10μm
膜厚さでなることである。また、中間層は、上述のよう
な作用効果を引き出させることと、製造工程の短縮化な
どから、2μm以下の膜厚さ、好ましくは1μm以下の
膜厚さからなるものである。
At this time, the thickness of the hard film and the thickness of the intermediate layer in the case where the intermediate layer is interposed are selected depending on the constitution of the coating, the film quality, application, shape, etc. of the hard film and the intermediate layer. Is preferable. Among them, the hard film has a thickness of 0.5 to 20 μm, preferably, in order to bring out the effects of abrasion resistance, durability and long life and not to decrease the peeling resistance of the film. 1 to 10 μm
That is to say, it is a film thickness. Further, the intermediate layer has a thickness of 2 μm or less, preferably 1 μm or less, in order to bring out the above-mentioned functions and effects and to shorten the manufacturing process.

【0014】本発明のセラミックス焼結体および被覆セ
ラミックス焼結体は、従来の酸化アルミニウム系セラミ
ックス焼結体が実用されている用途から、さらに従来の
酸化アルミニウム系セラミックス焼結体よりも耐熱衝撃
性、耐サーマルクラック性および高熱伝導性を必要とす
るような用途にまで実用可能となるものである。これら
の本発明のセラミックス焼結体および被覆セラミックス
焼結体は、用途の中でも工具部材として、工具部材の中
でも切削工具として使用されることが好ましく、切削工
具の中でも鋳鉄加工用の切削工具として使用されると、
靱性、耐摩耗性、耐熱衝撃性、耐サーマルクラック性、
高熱伝導性が発揮されて、長寿命となることから、特に
好ましいことである。
The ceramic sintered body and the coated ceramic sintered body of the present invention are more resistant to thermal shock than conventional aluminum oxide-based ceramic sintered bodies because of their practical use. It can be practically used for applications requiring thermal crack resistance and high thermal conductivity. The ceramic sintered body and the coated ceramic sintered body of the present invention are preferably used as a tool member among applications, as a cutting tool among tool members, and used as a cutting tool for cutting cast iron among cutting tools. When done
Toughness, abrasion resistance, thermal shock resistance, thermal crack resistance,
This is particularly preferable because high thermal conductivity is exhibited and the life is extended.

【0015】これらの本発明のセラミックス焼結体およ
び被覆セラミックス焼結体は、従来の粉末冶金法による
セラミックス焼結体の製法、および従来の硬質膜の被覆
法により作製することが可能である。具体的には、例え
ば所定の組成成分でなる混合粉砕粉末を用いて、金型成
形、押し出し成形、射出成形、鋳込み成形、および機械
加工成形などにより所定形状の粉末成形体とした後、真
空または非酸化性雰囲気で加熱焼結することによりセラ
ミックス焼結体を作製することができる。このセラミッ
クス焼結体を基材として、焼結肌の状態、もしくは表面
を機械加工または/および腐蝕処理などを施した状態
で、従来から行われている化学蒸着法(以下、「CVD
法」という)、物理蒸着法(以下、「PVD法」とい
う)、プラズマCVD法に代表される1種または2種以
上を組み合わせた方法により、基材表面に硬質膜を被覆
して被覆セラミックス焼結体を作製することができる。
The ceramic sintered body and the coated ceramic sintered body of the present invention can be manufactured by a conventional method of manufacturing a ceramic sintered body by powder metallurgy and a conventional method of coating a hard film. Specifically, for example, using a mixed and crushed powder of a predetermined composition component, after molding into a powder molded body of a predetermined shape by die molding, extrusion molding, injection molding, cast molding, and machining, and then vacuum or A ceramic sintered body can be produced by heating and sintering in a non-oxidizing atmosphere. Using this ceramic sintered body as a base material, a conventional chemical vapor deposition method (hereinafter, referred to as “CVD”) in a state of a sintered surface or a state in which the surface is subjected to machining or / and corrosion treatment.
Method), a physical vapor deposition method (hereinafter, referred to as a “PVD method”), and a method of combining one or two or more types represented by a plasma CVD method to coat a hard film on a substrate surface and fire the coated ceramic. A unity can be made.

【0016】[0016]

【作用】本発明のセラミックス焼結体および被覆セラミ
ックス焼結体は、焼結体中に含有している高窒素含有量
のチタン化合物が高温領域において、鉄系材料などとの
摩擦抵抗および反応を抑制する作用となり、もう一つの
必須成分である窒化アルミニウムが熱伝導性を高める作
用をし、かつ窒化アルミニウムが均一分散されることに
より、これらの両成分によるシナジー作用が高まり、特
に高温領域における耐摩耗性,靱性、耐熱衝撃性、耐サ
ーマルクラック性を向上させているものである。
The ceramic sintered body and the coated ceramic sintered body of the present invention have a high nitrogen content titanium compound contained in the sintered body, and exhibit a high frictional resistance and a reaction with an iron-based material in a high temperature region. Aluminum nitride, which is another essential component, has the effect of increasing thermal conductivity, and the uniform dispersion of aluminum nitride enhances the synergistic effect of both components, especially in high-temperature regions. It improves abrasion, toughness, thermal shock resistance, and thermal crack resistance.

【0017】[0017]

【実施試験1】平均粒径が約1.3〜1.8μmの窒化
チタン、炭化チタン、各種の炭窒化チタンおよび炭窒酸
化チタンと、平均粒径が約2.5μmの窒化アルミニウ
ムとの各粉末を出発原料として使用し、表1に示した本
発明品1〜10用および比較品1〜4用の配合組成成分
に秤量した。この表1に示した各種の配合組成成分の試
料を、アセトン溶媒と超硬合金製ボールとともにボール
ミル用ポットに装入し、湿式混合粉砕を行った。こうし
て得たそれぞれの混合粉末に成形助剤であるパラフィン
ワックスを外掛けで5重量%添加混合および乾燥した
後、金型を使用し、ISO規格のSNGN120408
形状となるように成形し、粉末成形体を得た。これらの
粉末成形体を予備焼結してパラフィンワックスを除去し
た後、アルゴン雰囲気中、1800℃で1時間保持の条
件により焼結し、さらに1000気圧のアルゴン雰囲気
中、1700℃で1時間保持の条件により熱間静水圧
(以下、「HIP」という)処理を行い、本発明品1〜
10および比較品1〜4を得た。
Example 1 Titanium nitride, titanium carbide, various types of titanium carbonitride and titanium carbonitride having an average particle size of about 1.3 to 1.8 μm, and aluminum nitride having an average particle size of about 2.5 μm The powder was used as a starting material, and weighed into the composition components for the present invention products 1 to 10 and comparative products 1 to 4 shown in Table 1. Samples of the various composition components shown in Table 1 were charged into a ball mill pot together with an acetone solvent and a cemented carbide ball, and wet-mixed and pulverized. To each of the mixed powders thus obtained, a paraffin wax as a molding aid was added in an amount of 5% by weight over an outer periphery, mixed and dried, and then, using a mold, a SNGN120408 according to ISO standard was used.
It was molded into a shape to obtain a powder compact. After pre-sintering these powder compacts to remove paraffin wax, sintering was carried out in an argon atmosphere at 1800 ° C. for 1 hour, and further kept in an argon atmosphere at 1000 atm at 1700 ° C. for 1 hour. A hot isostatic pressure (hereinafter, referred to as “HIP”) treatment is performed according to conditions, and the products 1 to 5 of the present invention
10 and Comparative products 1-4 were obtained.

【0018】こうして得た本発明品1〜10および比較
品1〜4について、鋳鉄との反応性,ビッカース硬さ,
靱性,熱伝導率の焼結体特性を求めて、その結果を表2
に示した。このときの鋳鉄との反応性は、各試料と鋳鉄
板とを重ねて、約2.5kPaの加圧、約1300℃で
ホットプレスによる反応試験を行った。反応性の判断
は、鋳鉄に含有の金属成分が試料側へ拡散されている拡
散距離を観察し、拡散距離の大,中,小により区別し
た。
The products 1 to 10 of the present invention and the comparative products 1 to 4 thus obtained were tested for reactivity with cast iron, Vickers hardness,
Table 2 shows the characteristics of the sintered body such as toughness and thermal conductivity.
It was shown to. The reactivity with the cast iron at this time was determined by superimposing each sample on a cast iron plate and performing a reaction test by hot pressing at about 1300 ° C. under a pressure of about 2.5 kPa. The reactivity was determined by observing the diffusion distance in which the metal component contained in the cast iron was diffused to the sample side, and discriminating between large, medium and small diffusion distances.

【0019】次いで、本発明品1〜10および比較品1
〜4について、切削試験を行った。切削試験は、被削
材:FCD700,切削速度:400m/min,切り
込み:2mm,送り:0.3mm/rev,切削時間:
3min,切削油:水溶性切削油使用,工具形状:SN
GN120408,ホーニング:0.15×ー25度,
により連続旋削試験を行い、このときの境界摩耗量(V
N)を求めて、その結果を表2に併記した。また、被削
材:FCD600,切削速度:150m/min,切り
込み:1.5mm,初期送り:0.2mm/rev,工
具形状:SNGN120408,ホーニング:0.15
×ー25度,により乾式によるフライス切削試験を行
い、1passで欠損しない場合は送りを0.03mm
/revづつ増加させ、工具が欠損したときの最大送り
を求めて、その結果を表2に併記した。
Next, products 1 to 10 of the present invention and comparative product 1
A cutting test was performed for the samples No. to No. 4. In the cutting test, the work material: FCD700, cutting speed: 400 m / min, cutting depth: 2 mm, feed: 0.3 mm / rev, cutting time:
3min, Cutting oil: Use water-soluble cutting oil, Tool shape: SN
GN120408, honing: 0.15x-25 degrees,
A continuous turning test was carried out according to
N ) was determined, and the results are shown in Table 2. Work material: FCD600, cutting speed: 150 m / min, depth of cut: 1.5 mm, initial feed: 0.2 mm / rev, tool shape: SNGN120408, honing: 0.15
Milling test by dry method at × -25 degrees, feed is 0.03mm if there is no breakage at 1 pass
/ Rev, and the maximum feed when the tool was broken was determined. The results are also shown in Table 2.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【実施試験3】実施試験1で得た本発明品1〜3および
比較品1と、実施試験2で得た本発明品14、16とを
基材として、それぞれの基材の表面に、従来から行われ
ているCVD法およびPVD法(イオンプレーチング
法)により表5に示した硬質膜を被覆し、被覆セラミッ
クス焼結体を得た。表5に示した硬質膜は、基材側から
表面に向かって第1層、第2層、第3層として被覆し
た。表5に示した本発明品17の基材は、本発明品1
を、本発明品18の基材は、本発明品2を、本発明品1
9の基材は、本発明品3を、本発明品20の基材は、本
発明品16を、本発明品21の基材は、本発明品14
を、比較品5の基材は、比較品1を使用した。こうして
得た本発明品17〜21および比較品5の硬質膜厚さと
硬質膜組成は、X線回折、走査型電子顕微鏡(SEM)
により確認し、その結果を表5に示した。また、本発明
品17〜21および比較品5について、実施試験1にお
ける連続旋削試験とフライス切削試験を行い、それぞれ
境界摩耗量と欠損までの最大送りを求めて、その結果を
表5に併記した。
[Test 3] Using the products 1 to 3 of the present invention obtained in the test 1 and the comparative product 1 and the products 14 and 16 of the present invention obtained in the test 2 as base materials, a conventional method was applied to the surface of each base material. The hard films shown in Table 5 were coated by a CVD method and a PVD method (ion plating method) performed from the above to obtain a coated ceramic sintered body. The hard films shown in Table 5 were coated as a first layer, a second layer, and a third layer from the substrate side toward the surface. The base material of the inventive product 17 shown in Table 5 is the inventive product 1
The base material of the product 18 of the present invention is the product 2 of the present invention and the product 1 of the present invention.
The base material 9 is the product 3 of the present invention, the base material of the product 20 is the product 16 of the present invention, and the base material of the product 21 is the product 14 of the present invention.
As a base material of Comparative Product 5, Comparative Product 1 was used. The hard film thickness and the hard film composition of the inventive products 17 to 21 and the comparative product 5 thus obtained were determined by X-ray diffraction and scanning electron microscope (SEM).
And the results are shown in Table 5. In addition, a continuous turning test and a milling test were performed on the products 17 to 21 of the present invention and the comparative product 5 in the execution test 1, and the maximum feed to the boundary wear amount and the fracture were obtained, respectively. .

【0025】[0025]

【表5】 [Table 5]

【0026】[0026]

【発明の効果】本発明のセラミックス焼結体および被覆
セラミックス焼結体は、最近似でなる従来のチタン化合
物系セラミックス焼結体に対比して、鉄系材料との反応
性が低く(親和性が劣る)、靱性および熱伝導性が高い
傾向にあり、その効果として、特に高温領域における耐
摩耗性,耐熱衝撃性,耐サーマルクラック性,耐熱塑性
変形性に優れる傾向を示し、切削工具として使用した場
合に、耐摩耗性および耐欠損性が顕著に優れるという効
果を有しているものである。このことから、本発明のセ
ラミックス焼結体および被覆セラミックス焼結体は、旋
削工具、フライス工具、ドリル、エンドミルに代表され
る切削工具、スリッター、プッシュ、ガイド、ノズル、
ボール(ペンボール、ボールバルブなど)、切断工具、
裁断工具に代表される耐摩耗工具、エンジン部品、ロー
ター部品、精密機械部品に代表される機械工具部品、ベ
アリング(ボール、保持器など)、スライダーに代表さ
れる摺動工具部品、炉用治具、成形用治具に代表される
構造工具部品として効果を発揮できるものである。
The ceramic sintered body and the coated ceramic sintered body of the present invention have lower reactivity with an iron-based material (affinity) than a conventional titanium compound-based ceramic sintered body which is the closest approximation. Inferiority), high toughness and high thermal conductivity. As an effect, it shows a tendency to excel in abrasion resistance, thermal shock resistance, thermal crack resistance, and thermal plastic deformation, especially in the high temperature range. In this case, the wear resistance and the fracture resistance are remarkably excellent. From this, the ceramic sintered body and the coated ceramic sintered body of the present invention are a turning tool, a milling tool, a drill, a cutting tool represented by an end mill, a slitter, a push, a guide, a nozzle,
Balls (pen balls, ball valves, etc.), cutting tools,
Wear-resistant tools represented by cutting tools, engine parts, rotor parts, machine tool parts represented by precision machine parts, bearings (balls, cages, etc.), sliding tool parts represented by sliders, furnace jigs Thus, the present invention can exert an effect as a structural tool component represented by a molding jig.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年9月22日(1999.9.2
2)
[Submission date] September 22, 1999 (September 9, 1999
2)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0008】[0008]

【発明の実施態様】本発明のセラミックス焼結体は、1
〜25体積%の窒化アルミニウムと、75〜99体積%
のチタン化合物と不可避不純物とからなる組成成分でな
る場合、または1〜25体積%の窒化アルミニウムと7
5〜99体積のチタン化合物との体積比率でなる両物質
の合計を50体積%以上と、好ましくは70体積%以上
と、残り第3物質が含有されている場合でもよい。この
ときのチタン化合物としては、窒化チタン、炭窒化チタ
ン、窒酸化チタン、炭窒酸化チタンの中の少なくとも1
種からなるものであり、これらのうち窒化チタンおよび
/または炭窒化チタンからなる場合には、摩擦抵抗が抑
制されて、例えば切削工具として使用したときに切り屑
による損傷が抑制されることから好ましいことである。
この窒化アルミニウムとチタン化合物との体積比率は、
窒化アルミニウムが1体積%未満になると、窒化アルミ
ニウム自体の保有している熱伝導性が発揮され難くな
り、逆に窒化アルミニウムが25体積%を越えて多くな
ると、靱性および強度の低下が顕著となる。
BEST MODE FOR CARRYING OUT THE INVENTION The ceramic sintered body of the present invention comprises:
~ 25% by volume aluminum nitride and 75 ~ 99% by volume
Of a titanium compound and an unavoidable impurity, or 1 to 25% by volume of aluminum nitride and 7
The total of the two substances in a volume ratio of 5 to 99 volumes of the titanium compound may be 50% by volume or more, preferably 70% by volume or more, and the remaining third substance may be contained. As the titanium compound at this time, at least one of titanium nitride, titanium carbonitride, titanium nitride oxide, and titanium carbonitride
It is preferable to use titanium nitride and / or titanium carbonitride, since frictional resistance is suppressed, and damage caused by chips when used as a cutting tool is suppressed. That is.
The volume ratio between the aluminum nitride and the titanium compound is:
When the content of aluminum nitride is less than 1% by volume, the thermal conductivity possessed by aluminum nitride itself is difficult to exhibit, and when the content of aluminum nitride exceeds 25% by volume, the toughness and strength are significantly reduced. .

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0020】[0020]

【表1】 [Table 1]

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】窒化アルミニウムを1〜25体積%と、T
i(Cx,Ny,Oz)で表される少なくとも1種のチ
タン化合物を75〜99体積%とを含有してなるセラミ
ックス焼結体。(ただし、Tiはチタン元素、Cは炭素
元素、Nは窒素元素、Oは酸素元素を表し、x,y,z
はC,N,Oのそれぞれの原子比を表し、x+y+z=
1,0≦x≦0.4,0.6≦y≦1.0,0≦z≦
0.05の関係を満足する)
1. An aluminum nitride containing 1 to 25% by volume of
A ceramic sintered body containing 75 to 99% by volume of at least one titanium compound represented by i (Cx, Ny, Oz). (Where Ti is a titanium element, C is a carbon element, N is a nitrogen element, O is an oxygen element, x, y, z
Represents the atomic ratio of each of C, N, and O, and x + y + z =
1,0 ≦ x ≦ 0.4,0.6 ≦ y ≦ 1.0,0 ≦ z ≦
Satisfies the relationship of 0.05)
【請求項2】上記チタン化合物は、窒化チタンおよび/
または炭窒化チタンからなる請求項1に記載のセラミッ
クス焼結体。
2. The method according to claim 1, wherein the titanium compound is titanium nitride and / or titanium nitride.
2. The ceramic sintered body according to claim 1, comprising titanium carbonitride.
【請求項3】上記窒化アルミニウムと、上記チタン化合
物との合計を50体積%以上と、TiとAlを含む窒化
物、炭窒化物、窒酸化物、炭窒酸化物、周期律表の4
a,5a,6a族元素の炭化物、窒化物、酸化物、周期
律表の2a族元素の酸化物およびこれらの相互固溶体の
中から選ばれた少なくとも1種からなる第3物質を50
体積%以下とを含有してなる請求項1または2に記載の
セラミックス焼結体。
3. A total of 50% by volume or more of said aluminum nitride and said titanium compound, and nitrides, carbonitrides, oxynitrides, oxycarbonitrides containing Ti and Al, and 4 of the periodic table.
A third substance consisting of at least one selected from the group consisting of carbides, nitrides, oxides of Group a, 5a, and 6a elements, oxides of Group 2a elements of the periodic table, and mutual solid solutions thereof is used.
3. The ceramic sintered body according to claim 1, wherein the ceramic sintered body contains at most 30% by volume.
【請求項4】上記第3物質は、TiとAlを含む窒化
物、炭窒化物、窒酸化物、炭窒酸化物、周期律表の4a
族元素の炭化物、窒化物、炭化タングステン、窒化タン
タル、酸化マグネシウムおよびこれらの相互固溶体の中
から選ばれた少なくとも1種からなる請求項3に記載の
セラミックス焼結体。
4. The third substance is a nitride containing Ti and Al, a carbonitride, a nitride oxide, a carbonitride, 4a of the periodic table.
4. The ceramic sintered body according to claim 3, comprising at least one selected from the group consisting of carbides, nitrides, tungsten carbide, tantalum nitride, magnesium oxide, and mutual solid solutions thereof.
【請求項5】上記第3物質は、上記焼結体全体に対し、
30体積%以下からなる請求項3または4に記載のセラ
ミックス焼結体
5. The sintered body according to claim 3, wherein the third substance is
5. The ceramic sintered body according to claim 3, comprising 30% by volume or less.
【請求項6】上記請求項1〜5のいずれか1項に記載の
セラミックス焼結体は、工具部材として用いられるセラ
ミックス焼結体。
6. A ceramic sintered body according to any one of claims 1 to 5, wherein the ceramic sintered body is used as a tool member.
【請求項7】上記工具部材は、切削工具である請求項6
に記載のセラミックス焼結体。
7. The cutting tool according to claim 6, wherein said tool member is a cutting tool.
3. The ceramic sintered body according to item 2.
【請求項8】上記切削工具は、鋳鉄加工用である請求項
7に記載のセラミックス焼結体。
8. The ceramic sintered body according to claim 7, wherein said cutting tool is for processing cast iron.
【請求項9】請求項1〜8のいずれか1項に記載のセラ
ミックス焼結体を基材とし、該基材の少なくとも一部の
表面に周期律表の4a,5a,6a族元素,Al,Si
の炭化物、窒化物、酸化物およびこれらの相互固溶体、
もしくはダイヤモンド、ダイヤモンド状カーボン、立方
晶窒化硼素、硬質窒化硼素、の中から選ばれた1種の単
層または2種以上の積層でなる硬質膜が被覆されている
被覆セラミックス焼結体。
9. The ceramic sintered body according to any one of claims 1 to 8 as a base material, wherein at least a part of the surface of the base material includes a 4a, 5a, 6a group element of the periodic table, Al , Si
Carbides, nitrides, oxides and their mutual solid solutions,
Alternatively, a coated ceramic sintered body coated with a hard film composed of one kind of single layer selected from diamond, diamond-like carbon, cubic boron nitride and hard boron nitride, or a laminate of two or more kinds.
【請求項10】上記硬質膜は、炭化チタン、窒化チタ
ン、炭窒化チタン、酸化アルミニウム、チタンとアルミ
ニウムを含む複合窒化物、複合炭窒化物、複合窒酸化
物、複合炭窒酸化物の中から選ばれた1種の単層または
2種以上の積層でなる請求項9に記載の被覆セラミック
ス焼結体。
10. The hard film is selected from titanium carbide, titanium nitride, titanium carbonitride, aluminum oxide, a composite nitride containing titanium and aluminum, a composite carbonitride, a composite carbonitride, and a composite carbonitride. The coated ceramic sintered body according to claim 9, wherein the coated ceramic sintered body is formed of one selected single layer or two or more layers.
JP25378099A 1999-09-08 1999-09-08 Ceramic sintered body and coated ceramic sintered body Expired - Fee Related JP3519324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25378099A JP3519324B2 (en) 1999-09-08 1999-09-08 Ceramic sintered body and coated ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25378099A JP3519324B2 (en) 1999-09-08 1999-09-08 Ceramic sintered body and coated ceramic sintered body

Publications (2)

Publication Number Publication Date
JP2001080953A true JP2001080953A (en) 2001-03-27
JP3519324B2 JP3519324B2 (en) 2004-04-12

Family

ID=17256055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25378099A Expired - Fee Related JP3519324B2 (en) 1999-09-08 1999-09-08 Ceramic sintered body and coated ceramic sintered body

Country Status (1)

Country Link
JP (1) JP3519324B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5361866B2 (en) * 2008-03-24 2013-12-04 京セラ株式会社 Ceramics for decorative parts and decorative parts using the same
CN113418949A (en) * 2020-12-16 2021-09-21 中航复合材料有限责任公司 Preparation method and test method of standard-size sample for X-ray test of composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5361866B2 (en) * 2008-03-24 2013-12-04 京セラ株式会社 Ceramics for decorative parts and decorative parts using the same
CN113418949A (en) * 2020-12-16 2021-09-21 中航复合材料有限责任公司 Preparation method and test method of standard-size sample for X-ray test of composite material
CN113418949B (en) * 2020-12-16 2024-02-23 中航复合材料有限责任公司 Standard size sample preparation method and test method for composite material X-ray test

Also Published As

Publication number Publication date
JP3519324B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
JPH08119774A (en) Combined material having high hardness for tool
JP2006305721A (en) Coated tool
JPH08209336A (en) Coated hard alloy
JPH10182233A (en) Titanium aluminum nitride-base sintered material and its production
JP2000328170A (en) Cubic boron nitride-containing hard member and its production
JP3611184B2 (en) Ceramic sintered body cutting tool for cast iron machining and coated ceramic sintered body cutting tool for cast iron machining
JP4191663B2 (en) Composite high hardness material for tools
JP4069749B2 (en) Cutting tool for roughing
JP3519324B2 (en) Ceramic sintered body and coated ceramic sintered body
JP3170993B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent fracture resistance
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JP3235259B2 (en) Coated cemented carbide member and method of manufacturing the same
JPS644989B2 (en)
JP2001089242A (en) Ceramic sintered member and coated ceramic sintered member
JP5321360B2 (en) Surface coated cutting tool
JP2849055B2 (en) Sialon-based sintered body and coated sintered body
JP2020132972A (en) Cemented carbide and cutting tool
WO2023188871A1 (en) Sintered body and cutting tool
JP4428805B2 (en) Aluminum oxide-containing composite ceramic sintered body and coated composite ceramic sintered body
WO2023188875A1 (en) Sintered body and cutting tool
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP3368367B2 (en) Tungsten carbide based cemented carbide and cutting tools
JPH06298568A (en) Whisker-reinforced sialon-based sintered compact and sintered and coated material
JP7170965B2 (en) Cemented Carbide and Coated Cemented Carbide
JP2782524B2 (en) High density phase boron nitride based reaction sintered body and method for producing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040128

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees