JP2001064010A - Synthetic method of tubular aluminum silicate from high concentration inorganic solution - Google Patents

Synthetic method of tubular aluminum silicate from high concentration inorganic solution

Info

Publication number
JP2001064010A
JP2001064010A JP24256599A JP24256599A JP2001064010A JP 2001064010 A JP2001064010 A JP 2001064010A JP 24256599 A JP24256599 A JP 24256599A JP 24256599 A JP24256599 A JP 24256599A JP 2001064010 A JP2001064010 A JP 2001064010A
Authority
JP
Japan
Prior art keywords
solution
aluminum silicate
tubular aluminum
inorganic
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24256599A
Other languages
Japanese (ja)
Other versions
JP3146360B1 (en
Inventor
Masaya Suzuki
正哉 鈴木
Fumihiko Ohashi
文彦 大橋
Keiichi Inukai
恵一 犬飼
Masaki Maeda
雅喜 前田
Shinji Watamura
信治 渡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP24256599A priority Critical patent/JP3146360B1/en
Application granted granted Critical
Publication of JP3146360B1 publication Critical patent/JP3146360B1/en
Publication of JP2001064010A publication Critical patent/JP2001064010A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for synthesizing a tubular aluminum silicate inexpensively, safely and in a large quantity, applicable for a fuel storage material, an autonomous humidity control material, a deodorizing material, an organic contaminant adsorbing material or the like. SOLUTION: The objective high purity tubular aluminum silicate is produced by forming a precursor from a solution prepared by mixing an inorganic silicon compound solution having 1-500 mmol concentration with an inorganic aluminum compound solution having 1-1,000 mmol concentration to be a prescribed silicon/ aluminum molar ratio and, after removing coexisting ions to reduce the concentration of the ions in the solution, the aging by heating and recovering and cleaning the formed and deposited solid portion. The tubular aluminum silicate is synthesized more inexpensively, safely and in a large quantity compared to the conventional method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高濃度の無機原料
溶液からチューブ状アルミニウムケイ酸塩を合成する方
法であり、高い表面活性により吸着機能やイオン交換能
に優れ、高比表面積と細孔およびその形態を利用するこ
とにより、天然ガスの貯蔵や生活環境の湿度を自律的に
制御する湿度調節材、有害汚染物質吸着材や脱臭材等に
応用可能なチューブ状アルミニウムケイ酸塩を無機原料
溶液から安価でかつ安全に、大量に合成する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing a tubular aluminum silicate from a high-concentration inorganic raw material solution. In addition, the use of aluminum silicate as an inorganic raw material that can be used as a humidity control material that autonomously controls the storage of natural gas and the humidity of the living environment, a harmful pollutant adsorbent, a deodorant, etc. The present invention relates to a method for inexpensively and safely synthesizing a large amount from a solution.

【0002】[0002]

【従来の技術】チューブ状アルミニウムケイ酸塩は、天
然においてイモゴライトとして産出するが、イモゴライ
トは土壌中に存在するものであり、主に九州地方の火山
灰由来の土壌に産することが明らかにされている。ま
た、天然のイモゴライトは、類縁鉱物であるアロフェン
と並んで、土壌における養分や水分の移動および植物へ
の供給、さらに有害な汚染物質の集積や残留などに対し
て影響を与えるものである。
2. Description of the Related Art Tubular aluminum silicate is naturally produced as imogolite, but imogolite is present in soil and has been shown to be produced mainly in volcanic ash-derived soil in the Kyushu region. I have. Natural imogolite, along with its related mineral allophane, has an effect on the movement of nutrients and water in the soil, supply to plants, and accumulation and residue of harmful pollutants.

【0003】チューブ状アルミニウムケイ酸塩であるイ
モゴライトの特異な形状および物性は、工業的にも有用
であると思われる。しかし、天然のイモゴライトが産す
る土壌の地域は限られており、また、産出量も少ない。
さらに、天然土壌中から産出されるイモゴライトは、表
面に酸化鉄の皮膜が存在しており、その皮膜は粘土から
遊離酸化鉄を取り除く処理を行っても完全に取り除くこ
とはできず、したがって、天然土壌中から高純度のチュ
ーブ状アルミニウムケイ酸塩を得ることは不可能であっ
た。
[0003] The unique shape and physical properties of imogolite, which is a tubular aluminum silicate, are considered to be industrially useful. However, the area of soil where natural imogolite is produced is limited, and the yield is small.
Furthermore, imogolite produced from natural soil has a film of iron oxide on its surface, and the film cannot be completely removed even if a treatment for removing free iron oxide from clay is performed. It was impossible to obtain high-purity tubular aluminum silicate from soil.

【0004】このようなことから、高純度のチューブ状
アルミニウムケイ酸塩を得るため、人工的に合成するこ
とが試みられた。単量体ケイ酸化合物溶液とアルミニウ
ム化合物溶液にpHが5になるまで水酸化ナトリウム水
溶液を添加し、約100℃で加熱することによりチュー
ブ状アルミニウムケイ酸塩を得ていた(Farmer:
British Patent,1574954,19
77)。
[0004] In view of the above, artificial synthesis has been attempted to obtain a high-purity tubular aluminum silicate. A tubular aluminum silicate was obtained by adding an aqueous sodium hydroxide solution to the monomer silicate compound solution and the aluminum compound solution until the pH reached 5, and heating at about 100 ° C. (Farmer:
British Patent, 1574954, 19
77).

【0005】上記のような合成法が確立されているが、
高濃度でチューブ状アルミニウムケイ酸塩を合成する際
には共存イオンがチューブ状アルミニウムケイ酸塩の生
成を抑制するため、アルミ源として高価な有機アルミニ
ウム化合物を用いたり、危険性のある過塩素酸アルミニ
ウムと過塩素酸を用いたりして合成が行われている。し
たがって、安価でかつ安全に高濃度溶液からチューブ状
アルミニウムケイ酸塩を合成することは不可能であっ
た。
Although the above-mentioned synthetic methods have been established,
When synthesizing tubular aluminum silicate at a high concentration, coexisting ions suppress the formation of tubular aluminum silicate, so expensive organic aluminum compounds may be used as the aluminum source, or dangerous perchloric acid may be used. The synthesis is performed using aluminum and perchloric acid. Therefore, it has not been possible to synthesize tubular aluminum silicate from a highly concentrated solution at low cost and safely.

【0006】[0006]

【発明が解決しようとする課題】上記の如くチューブ状
アルミニウムケイ酸塩の合成方法は開発されているが、
従来の方法ではチューブ状アルミニウムケイ酸塩はアル
ミ源として高価な有機アルミニウムや危険性のある過塩
素酸アルミニウムを用いて合成されている等の問題点を
残しているため、工業的に利用できる大量合成法として
は不適当であった。
As described above, a method of synthesizing a tubular aluminum silicate has been developed.
In the conventional method, the tubular aluminum silicate has a problem that it is synthesized using expensive organic aluminum or dangerous aluminum perchlorate as an aluminum source. It was unsuitable as a synthesis method.

【0007】このような状況の中で、本発明者らは、上
記従来技術に鑑みて、高純度のチューブ状アルミニウム
ケイ酸塩を低コストでかつ安全に、大量に得ることを可
能とする新しい合成方法を開発することを目標として鋭
意研究を重ねた結果、高濃度の無機ケイ素化合物溶液と
無機アルミニウム化合物溶液を混合して調製した溶液中
の共存イオンを取り除いて溶液中の不要イオン濃度を低
下させた後に、これを加熱することにより、高純度のチ
ューブ状アルミニウムケイ酸塩が生成されることを見出
し、本発明を完成するに至った。本発明は、チューブ状
アルミニウムケイ酸塩を従来の方法よりも安価でかつ安
全に、大量に合成する方法を提供するものである。
[0007] Under such circumstances, the present inventors have considered in view of the above-mentioned prior art, and have developed a new high-purity tubular aluminum silicate which can be obtained safely and in large quantities at low cost. As a result of intensive research aimed at developing a synthesis method, the coexisting ions in a solution prepared by mixing a high-concentration inorganic silicon compound solution and an inorganic aluminum compound solution are removed to reduce the unnecessary ion concentration in the solution After heating, it was found that a high-purity tubular aluminum silicate was produced, and the present invention was completed. The present invention provides a method for synthesizing a large amount of tubular aluminum silicate at lower cost and more safely than conventional methods.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明は、高濃度の無機ケイ素化合物溶液と無機アルミニウ
ム化合物溶液を、所定のケイ素/アルミニウムのモル比
率になるように混合して調整した溶液中でシリカ・アル
ミ系前駆体を生成し、共存イオンを取り除いて溶液中の
不要イオン濃度を低下させた後に、加熱熟成を行い、生
成・析出する固形分を回収、洗浄することにより高純度
のチューブ状アルミニウムケイ酸塩を大量に合成する方
法である。また、本発明は、1〜500mmolの無機
ケイ素化合物溶液と1〜1000mmolの無機アルミ
ニウム化合物溶液を混合する上記のチューブ状アルミニ
ウムケイ酸塩の合成法を望ましい態様とするものであ
る。さらに、本発明は、無機ケイ素化合物溶液と無機ア
ルミニウム化合物溶液をケイ素/アルミニウムのモル比
率が0.5〜0.75になるように混合する上記のチュ
ーブ状アルミニウムケイ酸塩の合成法を望ましい態様と
するものである。
According to the present invention, there is provided a solution prepared by mixing a high concentration of an inorganic silicon compound solution and a high concentration of an inorganic aluminum compound solution so as to have a predetermined silicon / aluminum molar ratio. After generating a silica-aluminum precursor in the solution and removing co-existing ions to reduce the concentration of unnecessary ions in the solution, heat aging is performed, and solids generated and precipitated are collected and washed to achieve high purity. This is a method for synthesizing a large amount of tubular aluminum silicate. Further, the present invention is a desirable embodiment of the above-described method for synthesizing a tubular aluminum silicate in which 1 to 500 mmol of an inorganic silicon compound solution and 1 to 1000 mmol of an inorganic aluminum compound solution are mixed. Further, the present invention provides a desirable embodiment of the above-mentioned method for synthesizing a tubular aluminum silicate, which comprises mixing an inorganic silicon compound solution and an inorganic aluminum compound solution such that the molar ratio of silicon / aluminum is 0.5 to 0.75. It is assumed that.

【0009】[0009]

【発明の実施の形態】次に、本発明についてさらに詳述
する。本発明方法では、原料として無機ケイ素化合物と
無機アルミニウム化合物が用いられる。ケイ素源として
使用される試剤は、モノケイ酸であればよく、具体的に
は、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、
無定形コロイド状二酸化ケイ素(エアロジルなど)など
が好適なものとして挙げられる。また、上記ケイ酸塩分
子と結合させるアルミニウム源としては、アルミニウム
イオンであればよく、具体的には、例えば塩化アルミニ
ウム、硝酸アルミニウムなどのアルミニウム化合物が挙
げられる。これらのケイ素源およびアルミニウム源は、
上記の化合物に限定されるものではなく、それらと同効
のものであれば同様に使用することができる。
Next, the present invention will be described in more detail. In the method of the present invention, an inorganic silicon compound and an inorganic aluminum compound are used as raw materials. The reagent used as the silicon source may be monosilicic acid, specifically, sodium orthosilicate, sodium metasilicate,
Suitable examples include amorphous colloidal silicon dioxide (eg, Aerosil). The aluminum source to be bonded to the silicate molecule may be any aluminum ion, and specific examples include aluminum compounds such as aluminum chloride and aluminum nitrate. These silicon and aluminum sources are:
The compounds are not limited to the above compounds, and any compounds having the same effect can be used.

【0010】これらの原料を適切な水溶液に溶解させ、
所定の濃度の溶液を調整する。これらの溶液を任意の比
率で混合しても前駆体の形成において問題はないが、好
適にはケイ素/アルミニウム比は0.5〜0.75にな
るように混合する。溶液中のケイ素化合物の濃度は1〜
500mmolでアルミニウム化合物の溶液の濃度は1
〜1000mmolであるが、好適な濃度としては1〜
100mmolのケイ素化合物溶液と1〜200mmo
lのアルミニウム化合物溶液を混合することが好まし
い。これらの比率および濃度により、アルミニウム化合
物溶液にケイ素化合物溶液を混合し、前駆体が形成され
たのち、遠心分離、濾過、膜分離等により、溶液中の共
存イオンを取り除き、その後、回収した前駆体を酸性水
溶液に分散させた後、加熱合成することにより生成され
る固形分が目的とするチューブ状アルミニウムケイ酸塩
である。前駆体を分散させる酸性溶液としては、塩酸、
硫酸、硝酸などが挙げられる。チューブ状アルミニウム
ケイ酸塩は、好適には、加熱時の溶液のpHが3〜4ぐ
らいの範囲で合成される。中和反応に必要なアルカリ性
溶液としては、水酸化ナトリウム、水酸化カリウム、ア
ンモニアなどが挙げられる。好適には、予めアルカリを
加えておいたアルカリ性のモノケイ酸水溶液と酸性のア
ルミニウム水溶液を混合する。加熱の方法および条件は
マントルヒーターやオートクレーブを用いて、水が蒸発
しないように加熱を行えばよく、また、温度の範囲は5
0℃〜120℃であるが、好適には100℃前後が望ま
しい。加熱後、生成、析出した固形分を遠心分離、濾過
等により分離回収することにより、本発明のチューブ状
アルミニウムケイ酸塩が分離回収される。生成物の洗浄
は、純水にて数回洗浄を行う。乾燥は、室温から200
℃の範囲であるが、好適には40℃〜80℃で1日乾燥
することが望ましい。得られた生成物は、粉末X線回
折、電子顕微鏡観察等の結果、チューブ状アルミニウム
ケイ酸塩であることが確認された。
[0010] These raw materials are dissolved in an appropriate aqueous solution,
Adjust the solution to the desired concentration. There is no problem in the formation of the precursor even if these solutions are mixed at an arbitrary ratio, but preferably, they are mixed so that the silicon / aluminum ratio is 0.5 to 0.75. The concentration of the silicon compound in the solution is 1 to
At 500 mmol, the concentration of the aluminum compound solution is 1
~ 1000 mmol, but preferred concentrations are
100 mmol of silicon compound solution and 1 to 200 mmo
It is preferred to mix 1 aluminum compound solution. According to these ratios and concentrations, the silicon compound solution is mixed with the aluminum compound solution, and after the precursor is formed, the coexisting ions in the solution are removed by centrifugation, filtration, membrane separation, etc., and then the recovered precursor Is dispersed in an acidic aqueous solution, and the solid content generated by heat synthesis is the target tubular aluminum silicate. As the acidic solution for dispersing the precursor, hydrochloric acid,
Sulfuric acid, nitric acid and the like. The tubular aluminum silicate is preferably synthesized with the pH of the solution upon heating in the range of about 3-4. Examples of the alkaline solution required for the neutralization reaction include sodium hydroxide, potassium hydroxide, and ammonia. Preferably, an alkaline monosilicic acid aqueous solution to which alkali has been added in advance and an acidic aluminum aqueous solution are mixed. The heating method and conditions may be such that heating is carried out using a mantle heater or an autoclave so that water does not evaporate.
The temperature is from 0 ° C to 120 ° C, preferably around 100 ° C. After heating, the formed and precipitated solids are separated and collected by centrifugation, filtration, and the like, whereby the tubular aluminum silicate of the present invention is separated and collected. The product is washed several times with pure water. Dry from room temperature to 200
Although it is the range of ° C, it is desirable to dry at 40 ° C to 80 ° C for one day. As a result of powder X-ray diffraction, observation with an electron microscope, and the like, the obtained product was confirmed to be a tubular aluminum silicate.

【0011】[0011]

【実施例】次に、本発明を実施例に基づいて具体的に説
明するが、本発明は当該実施例のみに限定されるもので
はない。 実施例 (1)合成方法 SiO2 濃度が20mmolになるように純水で希釈し
たオルトケイ酸ナトリウム水溶液250mlを調整した
後、1N水酸化ナトリウム水溶液4mlを加えた。ま
た、これとは別に塩化アルミニウムを純水に溶解させ、
30mmol水溶液250mlを調整した。塩化アルミ
ニウム水溶液にオルトケイ酸ナトリウム水溶液を混合
し、マグネティックスターラーで撹拌した。このときの
ケイ素/アルミニウム比は0.67である。この溶液を
0.1μm孔径のミリポアフィルターにより濾過を行い
共存イオンを除去した。濾過により回収された前駆体を
0.001Nの塩酸500mlに分散させた後、マント
ルヒーターを用いて100℃で2日間加熱した。加熱
後、生成物を0.025μm孔径のミリポアフィルター
により濾過を行い、この濾過により回収した生成物を、
40℃の乾燥器で約1日乾燥した。得られた生成物につ
いて、そのX線回折パターン、形態、および細孔分布を
解析した。
Next, the present invention will be specifically described based on examples, but the present invention is not limited to only the examples. Example (1) Synthesis Method After adjusting 250 ml of a sodium orthosilicate aqueous solution diluted with pure water so that the SiO 2 concentration became 20 mmol, 4 ml of a 1N sodium hydroxide aqueous solution was added. Also, separately from this, aluminum chloride is dissolved in pure water,
250 ml of a 30 mmol aqueous solution was prepared. An aqueous solution of sodium orthosilicate was mixed with the aqueous solution of aluminum chloride and stirred with a magnetic stirrer. The silicon / aluminum ratio at this time is 0.67. This solution was filtered through a 0.1 μm pore size Millipore filter to remove coexisting ions. The precursor collected by filtration was dispersed in 500 ml of 0.001N hydrochloric acid, and then heated at 100 ° C. for 2 days using a mantle heater. After heating, the product was filtered through a 0.025 μm pore size Millipore filter, and the product collected by this filtration was
It was dried for about 1 day in a dryer at 40 ° C. The obtained product was analyzed for its X-ray diffraction pattern, morphology, and pore distribution.

【0012】(2)結果 以上の方法によって得られた生成物は、粉末X線回折に
おいて2θ=4,9.5,14,27,40°付近にピ
ークを有し、チューブ状アルミニウムケイ酸塩特有のX
線回折パターンを示した。また、電子顕微鏡観察におい
て、約2.5nmの直径をもつチューブ状の形態を示し
た。さらに、細孔分布曲線では、約1.5nmと3nm
および5nmにピークを有しており、約1.5nmの細
孔はチューブ内部の細孔に、約3nmおよび5nmの細
孔はチューブとチューブの隙間に由来するものである。
(2) Results The product obtained by the above method has a peak at around 2θ = 4, 9.5, 14, 27, and 40 ° in powder X-ray diffraction, and is a tubular aluminum silicate. Specific X
The line diffraction pattern was shown. In addition, observation with an electron microscope showed a tubular shape having a diameter of about 2.5 nm. In addition, the pore distribution curves show that about 1.5 nm and 3 nm
And 5 nm, with about 1.5 nm pores coming from the pores inside the tube, and about 3 nm and 5 nm pores coming from the gap between the tubes.

【0013】比較例 比較例として、従来の合成方法の例を示す。従来の方法
によると、SiO2 濃度が1.4mmolのモノケイ酸
水溶液と2.4mmolの塩化アルミニウム水溶液を調
整し、両溶液を混合した後、pHが5になるまでゆっく
りと水酸化ナトリウム水溶液を加え、95℃で5日間加
熱することによりチューブ状アルミニウムケイ酸塩を得
ている(Farmer: British Paten
t,1574954,1977)。しかし、従来の方法
では、塩化アルミニウム水溶液の濃度が8mmolを越
えると、チューブ状アルミニウムケイ酸塩は合成できな
かったため、2.4mmol塩化アルミニウム水溶液と
いう薄い溶液からしか無機溶液からの合成は行われてい
なかった。
Comparative Example As a comparative example, an example of a conventional synthesis method will be described. According to the conventional method, a monosilicic acid aqueous solution having a SiO 2 concentration of 1.4 mmol and an aluminum chloride aqueous solution having a concentration of 2.4 mmol were prepared, and after mixing both solutions, an aqueous solution of sodium hydroxide was slowly added until the pH reached 5. For 5 days at 95 ° C. to give a tubular aluminum silicate (Farmer: British Patent
t, 1574954, 1977). However, in the conventional method, when the concentration of the aluminum chloride aqueous solution exceeds 8 mmol, the tubular aluminum silicate could not be synthesized. Therefore, the synthesis from the inorganic solution was performed only from a thin solution of 2.4 mmol aluminum chloride aqueous solution. Did not.

【0014】[0014]

【発明の効果】以上に説明したように、本発明は、高濃
度の無機原料溶液からチューブ状アルミニウムケイ酸塩
を合成する方法に係り、高い表面活性により吸着機能や
イオン交換能に優れ、高比表面積と細孔およびその形態
を利用した天然ガスの貯蔵や生活環境の湿度を自律的に
制御する湿度調節材、有害汚染物質吸着材や脱臭材等に
応用可能な、チューブ状アルミニウムケイ酸塩を無機原
料溶液から大量合成することを可能としたものであり、
本発明により、従来の合成法よりも安価でかつ安全に、
そして大量にチューブ状アルミニウムケイ酸塩を合成す
る方法を提供することができる。本発明によって合成さ
れるチューブ状アルミニウムケイ酸塩は、燃料貯蔵材や
自律的調湿材、また、脱臭材や有害汚染物質吸着材とし
て広範な産業分野での利用が可能である。よって、本発
明は高機能多孔質材料の提供に寄与する技術として、業
界に寄与するところは極めて大きいものである。
As described above, the present invention relates to a method for synthesizing a tubular aluminum silicate from a high-concentration inorganic raw material solution. Tubular aluminum silicate that can be applied to natural gas storage using its specific surface area and pores and its form, as well as humidity control materials that autonomously control the humidity of living environments and harmful pollutant adsorbents and deodorants Can be synthesized in large quantities from inorganic raw material solutions,
By the present invention, it is cheaper and safer than conventional synthesis methods,
And a method of synthesizing a large amount of tubular aluminum silicate can be provided. The tubular aluminum silicate synthesized according to the present invention can be used in a wide range of industrial fields as a fuel storage material, an autonomous humidity control material, a deodorant and a harmful pollutant adsorbent. Therefore, the present invention greatly contributes to the industry as a technique contributing to the provision of a highly functional porous material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例で得られた生成物のX線回折パ
ターンによる測定結果を示す。
FIG. 1 shows the results of measurement by X-ray diffraction pattern of a product obtained in an example of the present invention.

【図2】本発明の実施例で得られた生成物の電子顕微鏡
写真を示す。
FIG. 2 shows an electron micrograph of a product obtained in an example of the present invention.

【図3】本発明の実施例で得られた生成物の細孔径分布
曲線を示す。
FIG. 3 shows a pore size distribution curve of a product obtained in an example of the present invention.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年6月5日(2000.6.5)[Submission date] June 5, 2000 (2006.5.5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】このような状況の中で、本発明者らは、上
記従来技術に鑑みて、高純度のチューブ状アルミニウム
ケイ酸塩を低コストでかつ安全に、大量に得ることを可
能とする新しい合成方法を開発することを目標として鋭
意研究を重ねた結果、高濃度の無機ケイ素化合物溶液と
無機アルミニウム化合物溶液を混合して調製した溶液中
の共存イオンを取り除いて溶液中の不要イオン濃度を低
下させた後に、これを加熱することにより、高純度のチ
ューブ状アルミニウムケイ酸塩が生成されることを見出
し、本発明を完成するに至った。本発明は、チューブ状
アルミニウムケイ酸塩を従来の方法よりも安価でかつ安
全に、大量に合成する方法を提供するものである。
下、本明細書において、mmolはmmol/lを意味
する。
[0007] Under such circumstances, the present inventors have considered in view of the above-mentioned prior art, and have developed a new high-purity tubular aluminum silicate which can be obtained safely and in large quantities at low cost. As a result of intensive research aimed at developing a synthesis method, the coexisting ions in a solution prepared by mixing a high-concentration inorganic silicon compound solution and an inorganic aluminum compound solution are removed to reduce the unnecessary ion concentration in the solution After heating, it was found that a high-purity tubular aluminum silicate was produced, and the present invention was completed. The present invention provides a method for synthesizing a large amount of tubular aluminum silicate at lower cost and more safely than conventional methods. Less than
Below, in this specification, mmol means mmol / l
I do.

【手続補正書】[Procedure amendment]

【提出日】平成12年10月26日(2000.10.
26)
[Submission date] October 26, 2000 (2000.10.
26)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 雅喜 愛知県知多郡阿久比町大字草木字東郷54番 地 (72)発明者 渡村 信治 愛知県名古屋市千種区南ヶ丘1−7−12 Fターム(参考) 4G066 AA13D AA30A AA30B AA32A BA23 BA31 CA02 FA05 FA21 FA37 4G073 BA04 BA57 BA63 BD30 CM02 FB01 FB02 FC24 FC25 FD01 GA01 UA06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masaki Maeda 54, Togo, Kusagi-ku, Agui-cho, Chita-gun, Aichi Prefecture Term (reference) 4G066 AA13D AA30A AA30B AA32A BA23 BA31 CA02 FA05 FA21 FA37 4G073 BA04 BA57 BA63 BD30 CM02 FB01 FB02 FC24 FC25 FD01 GA01 UA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高濃度の無機原料溶液からチューブ状ア
ルミニウムケイ酸塩を合成する方法であって、無機ケイ
素化合物溶液と無機アルミニウム化合物溶液を混合しチ
ューブ状アルミニウムケイ酸塩前駆体を成長させた後、
溶液中の共存イオンを取り除きイオン濃度を低下させ、
その後、加熱を行うことにより生成される固形分を回収
することを特徴とするチューブ状アルミニウムケイ酸塩
の合成法。
1. A method for synthesizing a tubular aluminum silicate from a high-concentration inorganic raw material solution, comprising mixing an inorganic silicon compound solution and an inorganic aluminum compound solution to grow a tubular aluminum silicate precursor. rear,
Remove co-existing ions in the solution to reduce ion concentration,
Thereafter, a solid content generated by heating is recovered, and a method for synthesizing a tubular aluminum silicate.
【請求項2】 1〜500mmolの無機ケイ素化合物
溶液と1〜1000mmolの無機アルミニウム化合物
溶液を混合する請求項1記載のチューブ状アルミニウム
ケイ酸塩の合成法。
2. The method for synthesizing a tubular aluminum silicate according to claim 1, wherein 1 to 500 mmol of the inorganic silicon compound solution and 1 to 1000 mmol of the inorganic aluminum compound solution are mixed.
【請求項3】 無機ケイ素化合物溶液と無機アルミニウ
ム化合物溶液をケイ素/アルミニウムのモル比率が0.
5〜0.75になるように混合する請求項1記載のチュ
ーブ状アルミニウムケイ酸塩の合成法。
3. An inorganic silicon compound solution and an inorganic aluminum compound solution having a silicon / aluminum molar ratio of 0.
The method for synthesizing a tubular aluminum silicate according to claim 1, wherein the mixing is performed so as to be 5 to 0.75.
JP24256599A 1999-08-30 1999-08-30 Synthesis of tubular aluminum silicate from highly concentrated inorganic solutions Expired - Lifetime JP3146360B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24256599A JP3146360B1 (en) 1999-08-30 1999-08-30 Synthesis of tubular aluminum silicate from highly concentrated inorganic solutions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24256599A JP3146360B1 (en) 1999-08-30 1999-08-30 Synthesis of tubular aluminum silicate from highly concentrated inorganic solutions

Publications (2)

Publication Number Publication Date
JP3146360B1 JP3146360B1 (en) 2001-03-12
JP2001064010A true JP2001064010A (en) 2001-03-13

Family

ID=17090980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24256599A Expired - Lifetime JP3146360B1 (en) 1999-08-30 1999-08-30 Synthesis of tubular aluminum silicate from highly concentrated inorganic solutions

Country Status (1)

Country Link
JP (1) JP3146360B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008081605A1 (en) 2006-12-27 2008-07-10 National Institute Of Advanced Industrial Science And Technology Amorphous aluminum silicate and adsorbent each having excellent moisture adsorption/desorption characteristics in medium-humidity range
WO2009084632A1 (en) 2007-12-27 2009-07-09 National Institute Of Advanced Industrial Science And Technology Aluminum silicate complex, and high-performance adsorbent comprising the same
JP2009173490A (en) * 2008-01-25 2009-08-06 National Institute Of Advanced Industrial & Technology Amorphous substance comprising composite of proto-imogolite and phosphoric acid, and adsorbent for desiccant air-conditioning and dew condensation preventing agent using the same
WO2010026975A1 (en) 2008-09-02 2010-03-11 独立行政法人産業技術総合研究所 Amorphous aluminum silicate salt manufacturing method, aluminum silicate salt obtained with said method, and adsorption agent using same
JP2012012267A (en) * 2010-07-05 2012-01-19 National Institute Of Advanced Industrial Science & Technology Method for producing aluminum silicate complex
US8227377B2 (en) 2007-04-13 2012-07-24 National Institute Of Advanced Industrial Science And Technology Carbon dioxide adsorbent capable of adsorption and desorption in dependence on pressure of atmospheric pressure or higher
JP2012148241A (en) * 2011-01-19 2012-08-09 Hitachi Chemical Co Ltd Manufacturing method of volatile organic compound adsorbent and volatile organic compound adsorbent manufactured by the method
US8287779B2 (en) 2008-02-21 2012-10-16 Commissariat A L'Energie Atomique Et Aux Energies Alternative Aluminosilicate polymer as fire retardant
WO2013008787A1 (en) * 2011-07-08 2013-01-17 株式会社ブリヂストン Rubber composition for tires and pneumatic tire
JP2013018837A (en) * 2011-07-08 2013-01-31 Bridgestone Corp Rubber composition for tire
WO2013073400A1 (en) * 2011-11-15 2013-05-23 新神戸電機株式会社 Positive electrode for lithium ion secondary batteries and lithium ion secondary battery using same
WO2013073594A1 (en) * 2011-11-15 2013-05-23 日立化成株式会社 Lithium-ion rechargeable battery material and use thereof
JP2013105673A (en) * 2011-11-15 2013-05-30 Hitachi Chemical Co Ltd Lithium ion secondary battery
JP2013127955A (en) * 2011-11-15 2013-06-27 Hitachi Chemical Co Ltd Separator for lithium-ion secondary battery
JP2015117148A (en) * 2013-12-18 2015-06-25 コニカミノルタ株式会社 Tubular aluminum silicate and method of producing aluminum silicate
JP2020055717A (en) * 2018-10-03 2020-04-09 石原産業株式会社 Method of producing aluminum silicate

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7887770B2 (en) 2006-12-27 2011-02-15 National Institute Of Advanced Industrial Science And Technology Amorphous aluminum silicate and adsorbent each having excellent moisture adsorption/desorption characteristics in medium-humidity range
WO2008081605A1 (en) 2006-12-27 2008-07-10 National Institute Of Advanced Industrial Science And Technology Amorphous aluminum silicate and adsorbent each having excellent moisture adsorption/desorption characteristics in medium-humidity range
US8227377B2 (en) 2007-04-13 2012-07-24 National Institute Of Advanced Industrial Science And Technology Carbon dioxide adsorbent capable of adsorption and desorption in dependence on pressure of atmospheric pressure or higher
JP5212992B2 (en) * 2007-12-27 2013-06-19 独立行政法人産業技術総合研究所 Aluminum silicate complex and high performance adsorbent comprising the complex
WO2009084632A1 (en) 2007-12-27 2009-07-09 National Institute Of Advanced Industrial Science And Technology Aluminum silicate complex, and high-performance adsorbent comprising the same
EP2233438A4 (en) * 2007-12-27 2012-02-22 Nat Inst Of Advanced Ind Scien Aluminum silicate complex, and high-performance adsorbent comprising the same
US8865020B2 (en) 2007-12-27 2014-10-21 National Institute Of Advanced Industrial Science And Technology Aluminum silicate complex and high-performance adsorbent comprising the same
JP2009173490A (en) * 2008-01-25 2009-08-06 National Institute Of Advanced Industrial & Technology Amorphous substance comprising composite of proto-imogolite and phosphoric acid, and adsorbent for desiccant air-conditioning and dew condensation preventing agent using the same
US8287779B2 (en) 2008-02-21 2012-10-16 Commissariat A L'Energie Atomique Et Aux Energies Alternative Aluminosilicate polymer as fire retardant
WO2010026975A1 (en) 2008-09-02 2010-03-11 独立行政法人産業技術総合研究所 Amorphous aluminum silicate salt manufacturing method, aluminum silicate salt obtained with said method, and adsorption agent using same
US8202360B2 (en) 2008-09-02 2012-06-19 National Institute Of Advanced Industrial Science And Technology Method of producing amorphous aluminum silicate, amorphous aluminum silicate obtained with said method, and adsorbent using the same
JP2012012267A (en) * 2010-07-05 2012-01-19 National Institute Of Advanced Industrial Science & Technology Method for producing aluminum silicate complex
JP2012148241A (en) * 2011-01-19 2012-08-09 Hitachi Chemical Co Ltd Manufacturing method of volatile organic compound adsorbent and volatile organic compound adsorbent manufactured by the method
JP2013018837A (en) * 2011-07-08 2013-01-31 Bridgestone Corp Rubber composition for tire
WO2013008787A1 (en) * 2011-07-08 2013-01-17 株式会社ブリヂストン Rubber composition for tires and pneumatic tire
WO2013073400A1 (en) * 2011-11-15 2013-05-23 新神戸電機株式会社 Positive electrode for lithium ion secondary batteries and lithium ion secondary battery using same
WO2013073594A1 (en) * 2011-11-15 2013-05-23 日立化成株式会社 Lithium-ion rechargeable battery material and use thereof
JP2013105677A (en) * 2011-11-15 2013-05-30 Hitachi Chemical Co Ltd Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2013105673A (en) * 2011-11-15 2013-05-30 Hitachi Chemical Co Ltd Lithium ion secondary battery
JP2013127955A (en) * 2011-11-15 2013-06-27 Hitachi Chemical Co Ltd Separator for lithium-ion secondary battery
JP2015117148A (en) * 2013-12-18 2015-06-25 コニカミノルタ株式会社 Tubular aluminum silicate and method of producing aluminum silicate
JP2020055717A (en) * 2018-10-03 2020-04-09 石原産業株式会社 Method of producing aluminum silicate

Also Published As

Publication number Publication date
JP3146360B1 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
JP3146360B1 (en) Synthesis of tubular aluminum silicate from highly concentrated inorganic solutions
JP4714931B2 (en) Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same
US7887770B2 (en) Amorphous aluminum silicate and adsorbent each having excellent moisture adsorption/desorption characteristics in medium-humidity range
JP3200623B2 (en) Method for producing hollow spherical silicate cluster
CN108745289A (en) The preparation method and application of LDH and SWCNT nanocomposites
JP3163360B1 (en) High concentration synthesis of tubular aluminum silicate by continuous addition of precursor
JP4269050B2 (en) Method for producing aluminum silicate tubular structure
JP4113943B2 (en) Tubular structure made of amorphous aluminum silicate, method for producing the same, and adsorbent using the same
JP3521225B2 (en) High concentration synthesis of tubular aluminum silicate by stepwise precursor addition in batch heating method
JP3376826B2 (en) Plate-like calcium carbonate-based spherical composite and method for producing the same
JP2008184368A (en) Crystalline aluminum phosphate porous structure and its manufacturing method
JP2007296464A (en) Humic substance adsorbent and its manufacturing method
JP3292865B2 (en) Synthesis of spherical aluminosilicate from highly concentrated solution
JP2005238087A (en) Boron adsorbent and its producing method
JP4631022B2 (en) Novel aluminum silicate and its synthesis method
JP4538626B2 (en) Method for producing tubular aluminum silicate having fine pores
JP2003054943A (en) Spherical composite body of plate-like calcium carbonate and production method therefor
JP4941963B2 (en) Tubular aluminum silicate, gel material comprising the same, and method for preparing the same
JP2003146656A (en) Method of manufacturing spherical composite of planar calcium carbonate
JP2009280423A (en) Aluminum silicate that regularly arranges water molecule, and method for synthesizing the same
JP2020142230A (en) Adsorbent of nitrate nitrogen, and production method thereof
JP2010155217A (en) Boron adsorbent based on silicate inorganic polymer and method for manufacturing the same
JP2006347866A (en) Mesoporous silica
KR101020106B1 (en) Three dimensional nanostructures of hydroxy phosphate-based materials and synthesis methods thereof
JP2001080916A (en) Mel type crystalline metallosilicate and its production

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3146360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term