WO2013008787A1 - Rubber composition for tires and pneumatic tire - Google Patents

Rubber composition for tires and pneumatic tire Download PDF

Info

Publication number
WO2013008787A1
WO2013008787A1 PCT/JP2012/067496 JP2012067496W WO2013008787A1 WO 2013008787 A1 WO2013008787 A1 WO 2013008787A1 JP 2012067496 W JP2012067496 W JP 2012067496W WO 2013008787 A1 WO2013008787 A1 WO 2013008787A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
mass
rubber composition
adsorbent
parts
Prior art date
Application number
PCT/JP2012/067496
Other languages
French (fr)
Japanese (ja)
Inventor
靖世 小倉
尚博 佐坂
洋平 三舛
遼 三島
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011152008A external-priority patent/JP5913847B2/en
Priority claimed from JP2011211721A external-priority patent/JP5992156B2/en
Priority claimed from JP2011211930A external-priority patent/JP2013072004A/en
Priority claimed from JP2011222664A external-priority patent/JP2013082280A/en
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2013008787A1 publication Critical patent/WO2013008787A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0041Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers
    • B60C11/005Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers with cap and base layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to a rubber composition suitable for tires, and more specifically, a rubber composition for tires and a steel cord excellent in wet grip performance and wear resistance using a filler having high moisture absorption performance as a reinforcing filler. It is related with the pneumatic tire excellent in adhesiveness.
  • Patent Documents 1 to 3 require a relatively large amount of inorganic compound powder in order to obtain sufficient wet grip performance and fuel efficiency improvement effects. Therefore, a tire rubber composition that is further excellent in the balance of wet grip performance, wear resistance, and low fuel consumption has not been obtained.
  • Patent Documents 4 and 5 In order to improve the dispersibility and workability of silica, a silane coupling agent is used (Patent Documents 4 and 5). However, the coupling efficiency of the silane coupling agent is small, and in order to compensate for this, the amount is increased and blended. However, since the coupling agent is expensive, there is a problem in that the cost increases when the amount of coupling agent is increased.
  • Patent Document 4 discloses a silane coupling agent containing an alkoxyl group.
  • Silica and alkoxyl group-containing silane coupling agent react during kneading and generate alcohol as a by-product, but usually the reaction is not sufficient, and the reaction proceeds during subsequent extrusion processing, etc., and alcohol is generated, Bubbles become blistered and blisters are generated, which impairs the dimensional stability of the product and inevitably reduces the processing speed to suppress the generation of blisters. If the temperature at the time of kneading is raised, the reaction proceeds more, but if the temperature is raised too much, another problem such as gelation occurs due to vulcanization with sulfur derived from the coupling agent at the same time as the reaction. Further, if the amount of the coupling agent is reduced in order to reduce the generation of alcohol, problems such as an increase in viscosity due to poor dispersion of silica and a decrease in reinforcing properties occur.
  • Patent Document 6 discloses 100 parts by weight of a sulfur curable elastomer, 10 to 250 parts by weight of particulate precipitated silica, and 0.01 to 1.0 part by weight of organosilicon having a specific structure per 1 part by weight of the silica.
  • a rubber composition comprising a compound (silane coupling agent) and 10 to 250 parts by weight of sodium thiosulfate pentahydrate [Na 2 S 2 O 3 .5H 2 O] in a temperature range of 140 ° C. to 190 ° C.
  • a method for processing a rubber composition is disclosed, characterized by mixing thermomechanically at a temperature for 1 to 20 minutes.
  • the technique disclosed in this document is to improve the coupling efficiency of the silane coupling agent by adding sodium thiosulfate pentahydrate, so-called non-pro kneading process without sacrificing the properties of the final product.
  • the increase in viscosity and the decrease in scorch are remarkably unsuitable for practical use.
  • tin (Sn) compounds such as fatty acid tin are known as curing catalysts for silicon rubber.
  • Sn compounds accelerate the reaction of the silica-silane coupling agent, and at the same time, are undesirable silane coupling agents.
  • the reaction between the comrades is also promoted, and therefore, the bonds between the polymers and the silica also occur, the rubber viscosity increases, and it is not suitable for practical use.
  • Patent Document 5 discloses that it is effective to add sodium borate to the rubber composition in order to eliminate such problems in the reaction of the silane-silane coupling agent and prevent the generation of blisters during the extrusion process. Is disclosed.
  • Patent Document 8 a crystalline zeolite having pores with an average particle size of 0.1 to 500 ⁇ m and an average pore size of less than 2 nm is blended to adsorb water molecules on ice to improve the friction performance on ice. Sex is not enough.
  • Patent Documents 12 and 13 improve the adhesiveness between the steel cord and the rubber by blending a rubber composition with a hygroscopic porous inorganic filler
  • Patent Document 14 describes a hygroscopic porous inorganic filler.
  • a rubber composition containing a filler is used for the belt layer to prevent the ingress of moisture from the outside, to suppress wet heat deterioration and improve durability, but it is not sufficient, but further improvement Is desired.
  • JP 2002-338750 A JP 2003-55503 A JP 2005-213353 A JP-A-8-259736 JP-A-11-269313 JP-A-9-118784 JP 2007-182520 A JP 2000-44732 A JP 7-32810 A Japanese Patent Laid-Open No. 4-53845 International Publication No. WO97 / 49776 JP 2000-7838 A JP 2002-13083 A JP 2000-79807 A
  • the present invention has been made in view of such circumstances, and a rubber composition for tires and a steel having excellent wet grip performance and wear resistance and excellent extrudability using a filler with high moisture absorption performance as a reinforcing filler. It is an object of the present invention to provide a pneumatic tire with improved durability and excellent adhesion to a cord.
  • the rubber composition of the present invention is a rubber composition in which an adsorbent having a moisture absorption amount of 5% by mass or more is added as a reinforcing filler at 25 ° C. and a relative humidity of 60%.
  • an adsorbent having a moisture absorption amount of 5% by mass or more is added as a reinforcing filler at 25 ° C. and a relative humidity of 60%.
  • it is a rubber composition for tires that uses a low crystalline layered clay mineral and an amorphous aluminum silicate complex, which have been developed in recent years, as fillers.
  • a rubber composition excellent in wet grip performance and wear resistance can be obtained, and in a rubber composition containing silane and a silane coupling agent, the reaction efficiency of the silane coupling agent is good and the properties are stable.
  • a rubber composition for a tire having good extrudability can be obtained.
  • this rubber composition has excellent adhesiveness with a steel cord when used as a steel cord coating rubber.
  • the tire rubber composition of the present invention contains at least a rubber component and a filler having a high moisture absorption performance.
  • the moisture absorption performance of the filler is 5% by mass or more at 25 ° C. and 60% relative humidity, and 10% by mass or more, more preferably 15% by mass at 60% relative humidity. preferable.
  • the reinforcing filler used in the rubber composition of the present invention is not particularly limited as long as it has a moisture absorption amount of 5% by mass or more at 25 ° C. and a relative humidity of 60%.
  • Preferable examples include zeolite, natural imogolite, synthetic tubular aluminum silicate, and a recently developed low crystalline layered clay mineral and amorphous aluminum silicate complex. These may be used alone or in combination of two or more.
  • the synthetic tubular aluminum silicate forms a silica / alumina precursor in a solution in which an inorganic silicon compound solution and an inorganic aluminum solution are mixed so as to have a predetermined silicon / aluminum ratio, and then removes coexisting ions.
  • JP-A-2001-64010 discloses a production method of tubular aluminum silicate obtained by recovering and washing solid components produced and precipitated after heat aging.
  • the imogolite which is a natural tubular aluminum silicate can also be used, and a commercially available thing can be used.
  • the amorphous aluminum silicate of the low crystalline lamellar clay mineral and the amorphous aluminum silicate complex is hydrated aluminum silicate
  • the low crystalline lamellar clay mineral is a simple substance made of aluminum hydroxide. It is a low crystalline layered clay mineral that shows almost no gibbsite or several layers in the layer direction.
  • This composite is obtained by mixing an inorganic silicon compound solution and an inorganic aluminum solution so as to have a predetermined silicon / aluminum ratio, adjusting the pH, and then desalinating and heating at 10 ° C.
  • a highly adsorptive substance having the ability to adsorb moisture of 15% by mass or more at 20% relative humidity and 40% by mass or more at 60% is disclosed in, for example, WO2009 / 084632. Commercial products can also be purchased.
  • the 1st form discovered that the rubber composition containing at least the filler with high moisture absorption performance showed the tire performance excellent in wet grip property.
  • the filler of the highly hygroscopic filler used in the rubber composition of this form is a highly adsorptive substance having a performance of adsorbing 15% by mass or more of moisture at 25 ° C. and a relative humidity of 20%, and a relative humidity of 60%. It is preferable that it is 40 mass% or more. When the relative humidity is 20% and the moisture absorption is less than 15% by mass, sufficient wet grip performance cannot be obtained.
  • the compounding amount of these highly hygroscopic fillers is 1 to 30 parts by mass with respect to 100 parts by mass of the rubber component, and preferably 5 to 20 parts by mass with respect to 100 parts by mass of the rubber component. If the blending amount of the filler is within this range, a rubber composition having sufficient wet grip performance can be obtained without deteriorating processability due to an increase in the unvulcanized viscosity.
  • the tire rubber composition of the present embodiment contains carbon black (C / B) and silica in addition to the hygroscopic filler as a filler, and further uses other fillers used in the rubber composition. be able to.
  • Carbon black used as a filler is not particularly limited, and for example, SRF, GPF, FEF, HAF, ISAF, SAF, etc. are used, nitrogen adsorption specific surface area (N 2 SA) is 30 m 2 / g or more, and dibutyl phthalate Carbon black having an oil absorption (DBP) of 90 ml / 100 g or more is preferred.
  • DBP oil absorption
  • Carbon black may be used alone or in combination of two or more.
  • Silica preferably has a nitrogen adsorption specific surface area (N 2 SA) in the range of 100 to 270 m 2 / g, particularly preferably 170 to 270 m 2 / g. If this specific surface area is less than 100 m 2 / g, the wear resistance may be insufficient. On the other hand, if it exceeds 270 m 2 / g, a dispersion failure will occur and the low heat build-up, wear resistance and workability will be significantly reduced. It becomes.
  • the nitrogen adsorption specific surface area (N 2 SA) is a value measured according to ASTM D4820-93 after drying at 300 ° C. for 1 hour.
  • silica examples include, but are not limited to, precipitated amorphous silica, wet silica (hydrated silicic acid), dry silica (anhydrous silicic acid), fumed silica, calcium silicate, and aluminum silicate. Of these, precipitated, amorphous, wet-processed, hydrated silica is preferred.
  • the blending ratio when C / B and silica are used in combination can be arbitrarily changed according to the blending purpose.
  • the amount of silica used in the present embodiment is preferably 30 to 120 parts by mass, more preferably 30 to 100 parts by mass with respect to 100 parts by mass of the rubber component. Silica is blended so that the ratio of hygroscopic filler to the hygroscopic filler / silica is in the range of 0.12 to 0.18.
  • the amount of carbon black used is preferably 80 parts by mass or less with respect to 100 parts by mass of the rubber component, and the total amount of carbon black and silica combined is preferably 120 parts by mass or less. By setting the total amount to 120 parts by mass or less with respect to 100 parts by mass of the rubber component, the wear resistance can be sufficiently improved.
  • a silane coupling agent is used together with silica.
  • the silane coupling agent reacts with the silanol group remaining in the silica and the rubber component polymer to act as a bonding bridge between silica and rubber to form a reinforcing phase and improve dispersibility.
  • the silane coupling agent include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxysilyl).
  • Ethyl) tetrasulfide bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltri Methoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 2-triethoxysilyl Ethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazole tetrasulfide
  • one silane coupling agent may be used alone, or two or more silane coupling agents may be used in combination.
  • the blending amount is selected in the range of 1 to 25 parts by mass with respect to 100 parts by mass of the rubber component in terms of the total amount of silane coupling agent. If the blending amount of the silane coupling agent is within the above range, the effects of the present invention are sufficiently exhibited.
  • a preferred blending amount is in the range of 2 to 15 parts by mass.
  • the rubber components used in this embodiment are styrene-butadiene rubber, cis-1,4-polyisoprene, low cis-1,4-polybutadiene, high cis-1,4-polybutadiene, ethylene-propylene-diene rubber, butyl rubber, Examples include chloroprene rubber, halogenated butyl rubber, acrylonitrile-butadiene rubber, and natural rubber. Among them, diene rubber, particularly styrene-butadiene rubber is preferable, but not particularly limited thereto. These rubber components may be used alone or in combination of two or more.
  • a maleic acid monoester or an amine compound is added to the tire rubber composition of this embodiment.
  • the amount of maleic acid monoester or amine compound added is 1-8 parts by weight, preferably 3-5 parts by weight, per 100 parts by weight of the rubber component. If it is less than 1 part by mass, the low viscosity effect cannot be obtained, and if it exceeds 8 parts by mass, the wear resistance is deteriorated.
  • the maleic acid monoester is preferably a monoester of maleic anhydride and a (poly) oxyalkylene, particularly a polyoxypropylene derivative. By having a polyoxyalkylene group, compatibility with rubber is improved.
  • Monoesters of maleic anhydride and (poly) oxyalkylene derivatives can be obtained by reacting maleic anhydride with (poly) oxyalkylene derivatives.
  • the (poly) oxyalkylene derivative include polyoxypropylene lauryl ether, polyoxypropylene myristyl ether, polyoxypropylene decyl ether, polyoxypropylene octyl ether, polyoxypropylene-2-ethylhexyl ether, polyoxypropylene stearyl ether, polyoxypropylene stearyl ether, Polyoxypropylene aliphatic ethers such as oxypropylene oleyl ether; polyoxypropylene aromatic ethers such as polyoxypropylene benzyl ether, polyoxypropylene alkylphenyl ether, polyoxypropylene benzylated phenyl ether, and the like, among these, Polyoxypropylene aliphatic ether is preferred, and poly
  • the degree of polymerization of the oxyalkylene unit is 3 to 7, particularly 5, and the alkyl group or alkenyl group has 8 to 18 carbon atoms.
  • POA (r) is abbreviated as POA (r), and r is an average degree of polymerization.
  • Maleic acid monoesters may be used alone or in combination of two or more.
  • the amine compound added to the rubber composition of the present embodiment is not particularly limited, and examples thereof include N, N-dimethyl-n-octadecylamine, N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylene.
  • Amine-ketone such as diamine, 2,2,4-trimethyl-1,2-dihydroquinoline polymer, 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline, reaction product of diphenylamine and acetone Compounds, phenyl-1-naphthylamine, octylated diphenylamine, 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, p- (p-toluenesulfonylamido) diphenylamine, N, N′-di-2-naphthyl -P-ferylenediamine, N, N'-diphenyl-p-ferylenediamine, N-phenyl-N'-isopropyl And ru-p-ferenediamine, N-phenyl-N '-(3-methacryloyloxy-2-hydroxypropyl) -p-ferenediamine, and the like
  • a compounding agent usually used in the rubber industry for example, a vulcanizing agent, a vulcanization accelerator, a process oil, an anti-aging agent is used.
  • the manufacturing method of the tire rubber composition of the present embodiment is not particularly limited, and a hygroscopic filler is added to the rubber component alone by a commonly performed method, and together with other compounding components, a Banbury mixer, a roll, an internal mixer It is obtained by kneading using a kneader such as the like, vulcanized after molding, and used as tire rubber.
  • Second Embodiment A second embodiment of the present invention will be described.
  • a rubber composition containing silica and a silane coupling agent when a specific amount of an inorganic filler with high moisture absorption performance is blended, the reaction efficiency of the silica-silane coupling agent is increased, and other performances are not affected. In addition, generation of blisters can be prevented, and a rubber composition having stable wet properties and excellent properties can be obtained.
  • the rubber composition of this embodiment is a rubber composition containing silica and a silane coupling agent.
  • the rubber component is 100 parts by mass of a diene rubber, 10 to 100 parts by mass of silica, and 3 to 20 of the silane coupling agent with respect to silica. 1 to 30 parts by mass of an adsorbent having a moisture absorption amount of 5% by mass or more at 25% by mass, 25 ° C. and 60% relative humidity is blended.
  • NR natural rubber
  • diene synthetic rubber can be used alone or in combination.
  • the synthetic rubber include synthetic isoprene rubber, butadiene rubber (BR), and styrene-butadiene rubber (SBR).
  • the rubber component is 20 to 100% by mass of styrene-butadiene rubber (SBR). It is preferable.
  • N 2 SA nitrogen adsorption specific surface area
  • the nitrogen adsorption specific surface area (N 2 SA) is a value measured according to ASTM D4820-93 after drying at 300 ° C. for 1 hour.
  • silica examples include, but are not limited to, precipitated amorphous silica, wet silica (hydrated silicic acid), dry silica (anhydrous silicic acid), fumed silica, calcium silicate, and aluminum silicate. Of these, precipitated, amorphous, wet-processed, hydrated silica is preferred.
  • nip roll AQ manufactured by Nippon Silica Kogyo Co., Ltd., ULTRASIL VN3, BV3370GR manufactured by Degussa Germany, RP1165NP manufactured by Rhône-Poulenc, Zeosil 165GR, Zeosil 175NP, Hisil 233 manufactured by PPG, Hisil 200, Hisil 255 (all are trade names), but is not particularly limited.
  • the compounding amount of silica is 10 to 100 parts by mass, preferably 30 to 90 parts by mass with respect to 100 parts by mass of the rubber component. When the amount of silica is less than 10 parts by mass, the wet performance is inferior when the rubber composition is used in a tread of a tire, and when it exceeds 100 parts by mass, the viscosity is excessively increased.
  • a silane coupling agent is used for the rubber composition of this embodiment.
  • the silane coupling agent reacts with the silanol group remaining in the silica and the rubber component polymer to act as a bonding bridge between silica and rubber to form a reinforcing phase and improve dispersibility.
  • the silane coupling agent is preferably a silane coupling agent containing an alkoxyl group, but is not particularly limited.
  • the silane coupling agent the silane coupling agent mentioned in the first embodiment can be used.
  • the compounding amount of the silane coupling agent is 3 to 20% by mass, preferably 5 to 10% by mass with respect to the silica mass. If the blending amount of the silane coupling agent is less than 3% by mass, the reactivity with silica is insufficient, resulting in poor dispersion of the silica and a decrease in reinforcing property. If it exceeds 20% by mass, the viscosity of the rubber composition increases. Extrusion processability deteriorates.
  • the amount of these highly hygroscopic fillers to be blended is 1 to 30 parts by weight, preferably 10 to 20 parts by weight with respect to 100 parts by weight of the rubber component, and the blending ratio with respect to silica, filler / silica ⁇ 0. .12.
  • the blending amount of the filler is less than 1 part by mass, the effect of improving the property stability of the rubber composition in the processing step is insufficient, and when it exceeds 30 parts by mass, the processability deteriorates.
  • the highly hygroscopic filler increases the reaction efficiency of the silica-coupling agent, but has little effect on other unvulcanized physical properties (viscosity, scorch time) and vulcanized physical properties.
  • the rubber composition of the present embodiment includes, as necessary, a compounding agent that is usually used in the rubber composition, such as carbon black and other fillers.
  • a compounding agent that is usually used in the rubber composition, such as carbon black and other fillers.
  • Agents, softeners, anti-aging agents, vulcanizing agents, vulcanization accelerators, vulcanization acceleration aids, stearic acid, zinc white, and the like can be appropriately blended.
  • the anti-aging agent, vulcanization accelerator, and zinc white may be added in either the master batch or the final batch.
  • the third embodiment includes a carcass made of one or more carcass plies, and a belt made of two or more belt layers disposed on the outer side in the tire radial direction of the carcass, and the belt is a coating rubber.
  • a pneumatic tire including a layer made of a steel cord coated with an adhesive, an adsorbent having a moisture absorption amount of 5% by mass or more at 25 ° C. and a relative humidity of 60% as a filler for reinforcing the comb with respect to 100 parts of the rubber component
  • a tire using a belt layer is a pneumatic tire excellent in durability.
  • Such a highly hygroscopic filler contains some moisture due to its hygroscopicity and water absorption, so this moisture is released during vulcanization and is effective in forming an adhesive layer between the steel cord and the rubber phase. Acts on and improves initial adhesion.
  • the highly hygroscopic filler from which moisture is released absorbs moisture generated with the deterioration of the rubber over time, so that breakage of the adhesive layer due to moisture is suppressed and heat resistant deterioration adhesiveness is improved.
  • the blending amount of these hygroscopic fillers is 1 to 20 parts by mass with respect to 100 parts by mass of the rubber component, and preferably 5 to 10 parts by mass with respect to 100 parts by mass of the rubber component. If the blending amount of the filler is less than 1 part, the effect of improving the adhesiveness cannot be obtained, and if it is 20 parts or more, the viscosity of the unvulcanized rubber becomes high, and the calendar workability to the steel cord is deteriorated.
  • the rubber component in the coating rubber composition used in the tire of this embodiment natural rubber or synthetic rubber is used.
  • synthetic rubber for example, butadiene rubber, isoprene rubber, styrene / butadiene rubber (SBR), butyl rubber, and halogenated butyl rubber are preferable, and brominated butyl rubber and butyl rubber having a paramethylstyrene group (specifically, isobutylene and p-halogen).
  • Copolymers with methyl styrene), ethylene / propylene / diene rubber (EPDM) and the like can also be mentioned as suitable ones.
  • the rubber component is selected from natural rubber and the above-mentioned synthetic rubber, and one or more types are appropriately used.
  • the ratio of natural rubber is the resistance to fracture or steel cord.
  • the rubber fraction (mass%) is preferably 50 to 100 mass%, particularly preferably 60 to 100 mass%, and more preferably 100 mass%.
  • Synthetic rubbers other than the natural rubber are desirably blended at a ratio of 50% by mass or less, and the use exceeding 50% by mass lowers fracture resistance and adhesion with a steel cord.
  • adhesion promoters conventionally used in the rubber composition for steel cord coating can be appropriately added, so that the initial value when these are conventionally blended can be used. Adhesion and anti-degradation adhesion can be further improved.
  • Preferred examples of the adhesion promoter include metal salts of organic acids, particularly cobalt salts of organic acids.
  • the organic acid may be saturated, unsaturated, linear or branched, such as neodecanoic acid, stearic acid, naphthenic acid, rosin, tall oil acid, oleic acid, linoleic acid, linolenic acid, etc. Is mentioned.
  • a part of the organic acid can be substituted with a compound containing boron, boric acid, aluminum or the like.
  • a compound containing boron, boric acid, aluminum or the like Specifically, Rhône-Poulenc Manobond and the like can be used.
  • the compounding amount of the metal salt of the organic acid is preferably 0.1 to 0.2 parts by mass as the metal element content with respect to 100 parts by mass of the rubber.
  • the coating rubber composition used in this embodiment usually contains sulfur.
  • the sulfur content is preferably in the range of 3 to 8 parts by mass per 100 parts by mass of the rubber component. If this content is less than 3 parts by mass, it is not possible to provide sufficient sulfur for the production of Cu x S (generated by the reaction of copper and sulfur in the brass plating of the steel cord), which is the source of adhesive strength. , Adhesive strength may be insufficient. Moreover, since Cu x S is excessively generated when the amount exceeds 8 parts by mass, cohesive failure of the enlarged Cu x S occurs, the adhesive strength is lowered, and the heat aging resistance as a rubber property tends to be lowered. It is done.
  • compounding agents that are usually used in the rubber industry can be appropriately blended in the usual compounding amounts.
  • fillers such as carbon black, softeners such as aroma oil, guanidines such as diphenylguanidine, thiazoles such as mercaptobenzothiazole, N, N′-dicyclohexyl-2-benzothiazolylsulfenamide, etc.
  • fillers such as carbon black are known as reinforcing agents for increasing the tensile strength, breaking strength, tensile stress, hardness, etc. of vulcanized rubber, and improving wear resistance and tensile resistance.
  • Zinc oxide is known as a vulcanization acceleration aid which forms a complex compound with a fatty acid and enhances the vulcanization acceleration effect.
  • Carbon black used as a filler is not particularly limited, and for example, SRF, GPF, FEF, HAF, ISAF, SAF, etc. are used, nitrogen adsorption specific surface area (N 2 SA) is 30 m 2 / g or more, and dibutyl phthalate Carbon black having an oil absorption (DBP) of 90 ml / 100 g or more is preferred. By using carbon black, the effect of improving the fracture resistance is increased. Carbon black may be used alone or in combination of two or more. The amount of carbon black used is preferably 30 to 80 parts by mass, and preferably 45 to 70 parts by mass with respect to 100 parts by mass of the rubber component.
  • the steel cord applied to the tire of this embodiment is preferably plated with brass, zinc, or an alloy containing nickel or cobalt in order to improve adhesion to rubber, particularly brass. What has been plated is suitable.
  • the Cu content in the brass plating of the steel cord is 75% by weight or less, preferably 55 to 70% by weight, good and stable adhesion can be obtained.
  • the manufacturing method of the rubber composition for coating used in the tire of the present embodiment is not particularly limited, and a hygroscopic filler is added to the rubber component alone by a commonly performed method, and together with other compounding components, a Banbury mixer, a roll It is obtained by kneading using a kneader such as an internal mixer, vulcanized after molding, and used as tire rubber.
  • the fourth aspect is a pneumatic tire provided with a belt composed of at least two belt layers composed of a steel cord and a coating rubber covering the cord, and a rubber disposed on the outer side in the tire radial direction of the belt.
  • a rubber composition having a low water vapor transmission rate as a member, the pneumatic tire has suppressed moisture permeation from the tread surface and improved the wet heat durability of the belt layer.
  • the present embodiment includes a carcass made of one or more carcass plies, and a belt made of at least two belt layers made of a steel cord and a coating rubber covering the cord on the outer side in the tire radial direction of the carcass,
  • examples of the rubber member disposed on the outer side in the tire radial direction of the belt include a tread undercushion rubber and a base rubber in a tread having a cap / base structure.
  • the above rubber composition has a low water vapor permeability because the highly adsorbent filler inhibits the permeation of moisture.
  • the moisture content in the coating rubber that constitutes the belt layer is increased by the moisture that permeates from the tread surface during long-term storage, especially in high-temperature and high-humidity environments.
  • the distance from the groove bottom to the belt is a problem.
  • the rubber member using the rubber composition having a low water vapor permeability formed by blending the high adsorptive filler is disposed on the outer side in the tire radial direction of the belt. It is possible to suppress the permeation of moisture from the surface, prevent the adhesive force between the steel cord and the coating rubber from being lowered, and improve the durability of the belt.
  • Such a highly hygroscopic filler contains some moisture due to its hygroscopicity and water absorption, so this moisture is released during vulcanization and is effective in forming an adhesive layer between the steel cord and the rubber phase. Acts on and improves initial adhesion.
  • the highly hygroscopic filler from which moisture has been released prevents the permeation of moisture, in a tire in which a rubber member using a rubber composition blended therewith is disposed outside the belt in the tire radial direction, the belt layer The destruction of the adhesive layer due to the moisture is suppressed, and the adhesion durability of the belt is improved.
  • the blending amount of these highly hygroscopic fillers is 1 to 30 parts by mass with respect to 100 parts by mass of the rubber component, and preferably 5 to 20 parts by mass with respect to 100 parts by mass of the rubber component. If the blending amount of the filler is less than 1 part, the effect of improving the adhesiveness cannot be obtained, and if it is 30 parts or more, the viscosity of the unvulcanized rubber becomes high and the refining workability of the base rubber is deteriorated.
  • the rubber component of the rubber composition for a rubber member disposed on the outer side in the tire radial direction of the belt is not particularly limited, and examples thereof include natural rubber (NR) and diene synthetic rubber.
  • the diene-based synthetic rubber polyisoprene rubber (IR), polybutadiene rubber (BR), styrene / butadiene copolymer rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl type Rubber etc. are mentioned.
  • the butyl rubber include halogenated butyl rubber such as chlorinated butyl rubber and brominated butyl rubber in addition to butyl rubber (IIR). These rubber components may be used alone or in combination of two or more.
  • the rubber component preferably contains 10% by mass or more of butyl rubber, and more preferably 10-50% by mass.
  • the content of the butyl rubber in the rubber component is less than 10% by mass, the rubber member has a small effect of suppressing the permeation of moisture.
  • adjacent rubbers such as belt coating rubbers and caps are used. -Adhesive strength with cap rubber or the like in the tread of the base structure is insufficient, and peeling or the like may occur.
  • the belt layer is made of a steel cord and a coating rubber, and is not particularly limited, and a belt layer conventionally used for a belt layer of a steel cord reinforced tire can be used.
  • the rubber component of the rubber composition for the coating rubber include natural rubber and synthetic rubber.
  • the synthetic rubber include polybutadiene rubber, isoprene rubber, styrene / butadiene copolymer rubber, butyl rubber, halogenated butyl rubber, preferably bromine.
  • Butyl rubber having a paramethylstyrene group (specifically, a copolymer of isobutylene and p-halogenated methylstyrene), ethylene / propylene / diene rubber (EPDM), and the like.
  • the rubber component may be used singly or in combination of two or more. From the viewpoint of adhesiveness with a steel cord and breaking properties of coating rubber, 50 mass of natural rubber and / or isoprene rubber is used. % Or more is preferable.
  • a compounding agent usually used in the rubber industry may be appropriately blended in a normal compounding amount. it can.
  • fillers such as carbon black, softeners such as aroma oil, vulcanizing agents, guanidines such as diphenylguanidine, thiazoles such as mercaptobenzothiazole, N, N′-dicyclohexyl-2-benzothiazoli
  • Vulcanization accelerators such as sulfenamides such as rusulfenamide, thiurams such as tetramethylthiuram disulfide, vulcanization accelerators such as zinc oxide, poly (2,2,4-trimethyl-1,2-dihydro Quinoline), amines such as phenyl- ⁇ -naphthylamine, anti-aging agents, scorch inhibitors, stearic acid and the like.
  • FIG. 1 is a cross-sectional view showing an embodiment of the pneumatic tire of the present embodiment.
  • the tire shown in FIG. 1 has a pair of left and right bead portions 1 and a pair of sidewall portions 2, and a tread portion 3 connected to both sidewall portions 2, and a bead core embedded in the pair of bead portions 1.
  • a radial carcass 5 extending in a toroidal shape between the four to reinforce these parts 1, 2, and 3, and a belt 6 comprising at least two belt layers disposed on the outer side in the tire radial direction of the carcass 5.
  • the tread portion 3 in the illustrated example includes a cap rubber 7 positioned on the outermost side in the tire radial direction, a base rubber 8 on the inner side in the radial direction, and a tread undercushion rubber 9 on the inner side in the radial direction of the base rubber 8.
  • the cap rubber 7 and the base rubber 8 may form a single layer, and the tread undercushion rubber 9 may be omitted.
  • a rubber composition having a low water vapor transmission rate in which at least one of the base rubber 8 and the tread undercushion rubber 9 is blended with the above-described rubber component and a highly hygroscopic filler.
  • the method for producing the rubber composition for a rubber member to be arranged on the outer side in the tire radial direction of the belt of the tire of the present embodiment is not particularly limited, and a highly hygroscopic filler is added alone to the rubber component by a commonly performed method, It is obtained by kneading together with other compounding components using a kneading machine such as a Banbury mixer, a roll, an internal mixer, and the like, vulcanized after molding, and used as the rubber member.
  • a kneading machine such as a Banbury mixer, a roll, an internal mixer, and the like
  • a tire using the rubber composition of the present invention is produced by a usual method. That is, a rubber composition containing various compounding agents is processed into a tire at an unvulcanized stage, and is pasted and molded by a normal method on a tire molding machine to form a raw tire. The green tire is heated and pressed in a vulcanizer to obtain a tire. As a gas filled in the tire, an inert gas such as nitrogen can be used in addition to air.
  • Abrasion resistance A pneumatic tire having a tire size of 195 / 60R15 was prototyped using each rubber composition as a tread rubber. The prototype tire was mounted on four wheels of a passenger car with a displacement of 2000 cc, and after traveling 10,000 kilometers on the road surface, the remaining groove amount was measured. The measured values were displayed as an index with Comparative Example 1 being 100. It shows that abrasion resistance is so favorable that an index
  • the rubber composition of the present invention in which a hygroscopic filler is blended improves the workability, wet performance, and wear resistance in a well-balanced manner compared to the rubber composition outside the scope of the present invention.
  • Examples 5 to 13 and Comparative Examples 9 to 16 A rubber composition having a formulation according to Tables 2 and 3 was prepared by kneading with a Banbury mixer. Various physical properties of each rubber composition obtained in Examples and Comparative Examples were evaluated by the following measuring methods. The results are shown in Tables 2 and 3. (4) Generation
  • Examples 14 to 17 and Comparative Example 17 A rubber composition having a formulation according to Table 4 was prepared by kneading with a Banbury mixer. About the obtained rubber composition, initial adhesiveness and heat-resistant deterioration adhesiveness were measured by the following method. The results are shown in Table 4.
  • Hygroscopic filler 1 Imogolite (composition SiO 2 ⁇ Ai 2 O 3 ⁇ 2H 2 O) * 4 Hygroscopic filler 2: Low crystalline layered viscosity mineral and amorphous aluminum silicate complex (Hasclay HC500) [manufactured by Toda Kogyo Co., Ltd.] * 5 N-Isopropyl-N'-phenyl-p-phenylenediamine * 6 Manobond C (active ingredient: 22% as cobalt metal, Rhône-Poulenc trade name) * 7 N, N'-dicyclohexyl-2-benzothiazolylsulfenamide (Noxeller DZ) [Ouchi Shinsei Chemical Co., Ltd.]
  • the rubber composition for coating of the present invention is excellent in initial adhesiveness and heat-resistant deterioration adhesiveness to steel cords.
  • a tire using this rubber composition for the belt layer has excellent durability.
  • Examples 18 to 21 and Comparative Examples 18 to 22 Between the belt layer made of steel cord and coating rubber and the tread, a rubber sheet made of a rubber composition of the compounding formulation shown in Table 5 having a width of 158 mm and a thickness of 0.5 mm is attached as a tread undercushion rubber, and the tire Was vulcanized and molded.
  • the tire size is 185 / 60R14.
  • the vulcanized tire is deteriorated by leaving it in a constant temperature and humidity chamber maintained at a temperature of 100 ° C. and a humidity of 95% for 5 weeks to improve the heat resistance deterioration adhesion between the deteriorated steel cord and the coating rubber. It was determined as follows. Further, the unvulcanized viscosity of each rubber composition was determined as an index of workability. These results are shown in Table 5.
  • Hygroscopic filler 1 Imogolite (composition SiO 2 ⁇ Ai 2 O 3 ⁇ 2H 2 O) * 4 Hygroscopic filler 2: Low crystalline layered viscosity mineral and amorphous aluminum silicate complex (Hasclay HC500) [manufactured by Toda Kogyo Co., Ltd.] * 5 Antigen 6C (Sumitomo Chemical Co., Ltd.) * 6 Noxeller NS-P [Ouchi Shinsei Chemical Co., Ltd.]
  • the tires of Comparative Examples 19 to 22 are rubber compositions in which the rubber composition for the tread undercushion rubber is blended with a highly hygroscopic filler outside the scope of the present invention, and improves the adhesion between the steel cord and the coating rubber.
  • a rubber composition having good workability has not been obtained.
  • the rubber composition of the present invention can be suitably used for tire members, particularly tire treads. Moreover, the tire provided with the belt layer is excellent in deterioration resistance, and can be suitably used as a tire for passenger cars and heavy-duty vehicles.

Abstract

A rubber composition for tires, which contains, as a filler for reinforcing the rubber composition, 1-30 parts by mass of a highly moisture-absorbing filler per 100 parts by mass of the rubber component, said highly moisture-absorbing filler having a moisture absorption of 5% by weight or more at 25˚C at a relative humidity of 60%. A rubber composition which uses, as the highly moisture-absorbing filler, a composite of a low-crystallinity layered clay mineral and an amorphous aluminum silicate salt is suitable for steel cord coating rubbers for belt layers of tires, members that are on the radially outer side of belts in tires, and the like.

Description

タイヤ用ゴム組成物及び空気入りタイヤRubber composition for tire and pneumatic tire
 本発明は、タイヤ用として好適なゴム組成物に関し、さらに詳しくは、補強用の充填剤として吸湿性能の高い充填剤を使用したウエットグリップ性能および耐摩耗性優れたタイヤ用ゴム組成物及びスチールコードとの接着性に優れた空気入りタイヤに関する。 TECHNICAL FIELD The present invention relates to a rubber composition suitable for tires, and more specifically, a rubber composition for tires and a steel cord excellent in wet grip performance and wear resistance using a filler having high moisture absorption performance as a reinforcing filler. It is related with the pneumatic tire excellent in adhesiveness.
 近年、自動車の安全性への関心の高まりに伴い、低燃費性のみならず、操縦安定性についても要求が高まってきた。このような要求に対応するため、タイヤ性能についても転がり抵抗を減らした低発熱性ならびに湿潤路面及び乾燥路面での操縦安定性、耐摩耗性を高度に満足するタイヤが求められてきている。このような要求に対応するため、補強用充填剤を改良すること及びゴム成分を改良することが行われている。
 従来から、ゴム補強用充填剤としては、カーボンブラックが使用されている。これは、カーボンブラックがゴム組成物に高い耐摩耗性を付与し得るからであるが、カーボンブラックの単独使用でウエットグリップ性能、耐摩耗性、低燃費が高いレベルでバランスしたゴム組成物を得ることは困難であり、その改良法としてカーボンブラックの代わりにシリカを配合することが行われている。
 一般に、シリカはポリマーと相溶性が悪く、補強性に劣る上、ゴムへの分散が悪くなるためムーニー粘度値が大きくなり、押出加工性が悪くなる。
In recent years, with increasing interest in safety of automobiles, there has been a demand not only for low fuel consumption but also for handling stability. In order to meet such demands, there is a demand for tires that are highly satisfactory in terms of tire performance, such as low heat build-up with reduced rolling resistance, steering stability on wet and dry road surfaces, and wear resistance. In order to meet such demands, improvements have been made to reinforcing fillers and rubber components.
Conventionally, carbon black has been used as a filler for rubber reinforcement. This is because carbon black can impart high wear resistance to the rubber composition, but by using carbon black alone, a rubber composition that balances wet grip performance, wear resistance, and low fuel consumption at a high level is obtained. This is difficult, and silica is used instead of carbon black as an improved method.
In general, silica is incompatible with the polymer, inferior in reinforcing properties, and is poorly dispersed in rubber, resulting in a large Mooney viscosity value and poor extrudability.
 特許文献1~3には、耐摩耗性を低下させることなく低燃費性およびウエットグリップ性能に優れるゴム組成物を得る目的で、ゴム成分、kM1・xSiOy・zH2O(式中、M1はAl、Mg、TiおよびCaからなる群より選ばれた少なくとも1つの金属、または、該金属の酸化物もしくは水酸化物であり、kは1~5の整数、xは0~10の整数、yは2~5の整数、およびzは0~10の整数である)で表される無機化合物粉体、カーボンブラック、シリカ、シランカップリング剤を含むタイヤトレッド用ゴム組成物が提案されている。 In Patent Documents 1 to 3, a rubber component, kM 1 · xSiO y · zH 2 O (in the formula, M is used for the purpose of obtaining a rubber composition having excellent fuel economy and wet grip performance without reducing wear resistance. 1 is at least one metal selected from the group consisting of Al, Mg, Ti and Ca, or an oxide or hydroxide of the metal, k is an integer of 1 to 5, and x is an integer of 0 to 10 , Y is an integer of 2 to 5, and z is an integer of 0 to 10), and a rubber composition for tire treads containing carbon black, silica, and a silane coupling agent is proposed. Yes.
 しかしながら、特許文献1~3に記載されるゴム組成物は、ウエットグリップ性能および燃費の改善効果を十分得るためには無機化合物粉体を比較的多く配合する必要があり、その場合、耐摩耗性が低下し易い傾向があるため、ウエットグリップ性能、耐摩耗性および低燃費性のバランスにさらに優れたタイヤ用ゴム組成物は得られていない。 However, the rubber compositions described in Patent Documents 1 to 3 require a relatively large amount of inorganic compound powder in order to obtain sufficient wet grip performance and fuel efficiency improvement effects. Therefore, a tire rubber composition that is further excellent in the balance of wet grip performance, wear resistance, and low fuel consumption has not been obtained.
 シリカの分散性改良、作業性改善のために、シランカップリング剤を用いて解決している(特許文献4、5)。
 しかしながら、シランカップリング剤のカップリング効率は小さく、それを補うため、増量して配合しているのが現状である。しかし、カップリング剤は、高価なためカップリング剤の増量配合の場合は大幅なコストアップにつながるという問題がある。
In order to improve the dispersibility and workability of silica, a silane coupling agent is used (Patent Documents 4 and 5).
However, the coupling efficiency of the silane coupling agent is small, and in order to compensate for this, the amount is increased and blended. However, since the coupling agent is expensive, there is a problem in that the cost increases when the amount of coupling agent is increased.
 特許文献4には、アルコキシル基含有のシランカップリング剤が開示されている。シリカとアルコキシル基含有シランカップリング剤は混練中に反応し、副生成物としてアルコールを発生するが、通常その反応が充分でなく、その後の押出加工中等でも反応が進行してアルコールが発生し、気泡が大きくなって空洞化したブリスター等が生じ、製品の寸度安定性を損なったり、ブリスターの発生を抑えるべく加工スピードの低下等を余儀なくされる。混練時の温度を上げれば、反応はより進行するが、あまり温度を上げると、反応と同時にカップリング剤に由来する硫黄による加硫などでゲル化等の別の不具合が生じる。また、アルコールの発生を減らすため、カップリング剤の配合量を減らすと、シリカの分散不良による粘度アップ、補強性の低下などの不具合が生じる。 Patent Document 4 discloses a silane coupling agent containing an alkoxyl group. Silica and alkoxyl group-containing silane coupling agent react during kneading and generate alcohol as a by-product, but usually the reaction is not sufficient, and the reaction proceeds during subsequent extrusion processing, etc., and alcohol is generated, Bubbles become blistered and blisters are generated, which impairs the dimensional stability of the product and inevitably reduces the processing speed to suppress the generation of blisters. If the temperature at the time of kneading is raised, the reaction proceeds more, but if the temperature is raised too much, another problem such as gelation occurs due to vulcanization with sulfur derived from the coupling agent at the same time as the reaction. Further, if the amount of the coupling agent is reduced in order to reduce the generation of alcohol, problems such as an increase in viscosity due to poor dispersion of silica and a decrease in reinforcing properties occur.
 さらに、特許文献6には、硫黄硬化性エラストマー100重量部と、微粒子状沈降シリカ10~250重量部と、該シリカの1重量部当たり0.01から1.0重量部の特定構造の有機ケイ素化合物(シランカップリング剤)と、チオ硫酸ナトリウム・5水和物〔Na223・5H2O〕10~250重量部とからなるゴム組成物を140℃から190℃の範囲のゴム温度で1~20分の間熱機械的に混合することを特徴とするゴム組成物の加工方法が開示されている。 Further, Patent Document 6 discloses 100 parts by weight of a sulfur curable elastomer, 10 to 250 parts by weight of particulate precipitated silica, and 0.01 to 1.0 part by weight of organosilicon having a specific structure per 1 part by weight of the silica. A rubber composition comprising a compound (silane coupling agent) and 10 to 250 parts by weight of sodium thiosulfate pentahydrate [Na 2 S 2 O 3 .5H 2 O] in a temperature range of 140 ° C. to 190 ° C. A method for processing a rubber composition is disclosed, characterized by mixing thermomechanically at a temperature for 1 to 20 minutes.
 この文献に開示の技術は、その目的がチオ硫酸ナトリウム・5水和物の添加により、シランカップリング剤のカップリング効率を向上せしめ、最終製品の性質を犠牲にすることなしに所謂ノンプロ練り工程の混合/加工時間を短縮するものであるが、この方法では、粘度の増大、スコーチ(ゴムの早期加硫)タイムの減少が著しく、実用に適さない。 The technique disclosed in this document is to improve the coupling efficiency of the silane coupling agent by adding sodium thiosulfate pentahydrate, so-called non-pro kneading process without sacrificing the properties of the final product. However, in this method, the increase in viscosity and the decrease in scorch (early vulcanization time) are remarkably unsuitable for practical use.
 また、脂肪酸スズ等のスズ(Sn)化合物が、シリコンゴムの硬化触媒として知られているが、このようなSn化合物はシリカ-シランカップリング剤の反応を促進すると同時に、好ましくないシランカップリング剤同志の反応も促進し、そのため、ポリマー同志、シリカ同志の結合も生じ、ゴム粘度が上昇し、やはり実用に適さない。 In addition, tin (Sn) compounds such as fatty acid tin are known as curing catalysts for silicon rubber. Such Sn compounds accelerate the reaction of the silica-silane coupling agent, and at the same time, are undesirable silane coupling agents. The reaction between the comrades is also promoted, and therefore, the bonds between the polymers and the silica also occur, the rubber viscosity increases, and it is not suitable for practical use.
 このようなシラン-シランカップリング剤の反応における不具合を解消し、押出加工中のブリスターの発生を防止するために、ゴム組成物にホウ酸ナトリウムを配合することが有効であることが特許文献5に開示されている。 Patent Document 5 discloses that it is effective to add sodium borate to the rubber composition in order to eliminate such problems in the reaction of the silane-silane coupling agent and prevent the generation of blisters during the extrusion process. Is disclosed.
 さらに、低燃費性と湿潤路面でのグリップ性及び耐摩耗性を向上させるため、微細構造を有するアロフェン及び/又はイモゴライトを含有するアルミニウム珪酸塩をカーボンブラック及び/又はシリカとともにゴム組成物中に含有させることが提案されている。アロフェンは平均直径2~20nmの中空球状の、イモゴライトは平均外径1~5nm、内径0.5~2.0nm、長さ30nm~5μmの中空管状の粘土鉱物であり、ゴム組成物中でナノコンポジットを形成し、湿潤性能はよくなるものの、耐摩耗性に問題がある(特許文献7)。特許文献8では、平均粒径0.1~500μm、平均孔径2nm未満という細孔を有する結晶性ゼオライトを配合して氷上で水分子を吸着して氷上摩擦性能を向上させているが、耐摩耗性が十分でない。 Furthermore, in order to improve fuel economy and grip on wet road surfaces and wear resistance, aluminum silicate containing fine structure allophane and / or imogolite is contained in the rubber composition together with carbon black and / or silica. It has been proposed to let Allophane is a hollow spherical clay mineral having an average diameter of 2 to 20 nm, and imogolite is a hollow tubular clay mineral having an average outer diameter of 1 to 5 nm, an inner diameter of 0.5 to 2.0 nm, and a length of 30 nm to 5 μm. Although a composite is formed and the wet performance is improved, there is a problem in wear resistance (Patent Document 7). In Patent Document 8, a crystalline zeolite having pores with an average particle size of 0.1 to 500 μm and an average pore size of less than 2 nm is blended to adsorb water molecules on ice to improve the friction performance on ice. Sex is not enough.
 一方、補強材料としてスチールコードを用いたスチールコード補強タイヤにおいては、スチールコードと該コードを被覆するゴムとの接着性を確保することが重要であり、この接着層が破壊されれば致命的なタイヤ故障の原因となるので、スチールコードとゴムとの接着性を向上せたゴム組成物が提案されている(特許文献9及び10)。また、ゴムとの接着性を高め、その補強効果を高めるため、スチールコードには黄銅、亜鉛等でメッキを施し、ゴム組成物には接着促進剤として有機酸のコバルト塩等を配合することが行われている。 On the other hand, in a steel cord reinforced tire using a steel cord as a reinforcing material, it is important to ensure the adhesion between the steel cord and the rubber covering the cord. If this adhesive layer is destroyed, it is fatal. Since it causes a tire failure, a rubber composition having improved adhesion between a steel cord and rubber has been proposed (Patent Documents 9 and 10). In addition, in order to enhance the adhesion to rubber and enhance its reinforcing effect, the steel cord may be plated with brass, zinc, etc., and the rubber composition may contain a cobalt salt of an organic acid as an adhesion promoter. Has been done.
 しかしながら、この有機酸のコバルト塩を多量に用いる場合には、加硫直後の接着性、すなわち初期接着性には優れるものの、ゴムの熱劣化とそれによる水の生成が促進され、あるいは外部から侵入した水分によって接着層が劣化し、耐劣化接着性に劣るという不都合があった。最近では、加硫中に、スチールコード上の黄銅メッキとゴム層間に接着層を形成させるには適度の水分を必要とすることがわかり、例えば接着促進剤としてコバルト塩を除く特定の有機酸金属塩と含水無機塩とを含有させたスチールコード接着用ゴム組成物が提案されている(特許文献11)。しかし、かかる方法においても、初期接着性と耐熱劣化接着性における改良効果を発現するもののそのレベルは必ずしも満足すべきものではない。 However, when a large amount of this organic acid cobalt salt is used, the adhesiveness immediately after vulcanization, that is, the initial adhesiveness is excellent, but the thermal deterioration of the rubber and the generation of water thereby are promoted, or intrusion from the outside. The adhesive layer deteriorates due to the moisture, and there is an inconvenience that the deterioration-resistant adhesiveness is poor. Recently, during vulcanization, it has been found that a moderate amount of moisture is required to form an adhesive layer between the brass plating on the steel cord and the rubber layer, for example, certain organic acid metals except cobalt salts as adhesion promoters. A rubber composition for bonding steel cords containing a salt and a water-containing inorganic salt has been proposed (Patent Document 11). However, even in such a method, although the improvement effect in the initial adhesiveness and the heat-resistant deterioration adhesiveness is exhibited, the level is not necessarily satisfactory.
 また、特許文献12、13では、ゴム組成物に吸湿性の多孔質無機充填剤を配合することによりスチールコードとゴムとの接着性を向上させること、特許文献14には吸湿性の多孔質無機充填剤を配合したゴム組成物をベルト層に使用して外部からの水分の浸入を防止して、湿熱劣化を抑制し、耐久性を向上させることが行われているが十分ではなく、さらなる向上が望まれる。 Patent Documents 12 and 13 improve the adhesiveness between the steel cord and the rubber by blending a rubber composition with a hygroscopic porous inorganic filler, and Patent Document 14 describes a hygroscopic porous inorganic filler. A rubber composition containing a filler is used for the belt layer to prevent the ingress of moisture from the outside, to suppress wet heat deterioration and improve durability, but it is not sufficient, but further improvement Is desired.
特開2002-338750号公報JP 2002-338750 A 特開2003-55503号公報JP 2003-55503 A 特開2005-213353号公報JP 2005-213353 A 特開平8-259736号公報JP-A-8-259736 特開平11-269313号公報JP-A-11-269313 特開平9-118784号公報JP-A-9-118784 特開2007-182520号公報JP 2007-182520 A 特開2000-44732号公報JP 2000-44732 A 特開平7-32810号公報JP 7-32810 A 特開平4-53845号公報Japanese Patent Laid-Open No. 4-53845 国際公開WO97/49776号公報International Publication No. WO97 / 49776 特開2000-7838号公報JP 2000-7838 A 特開2002-13083号公報JP 2002-13083 A 特開2000-79807号公報JP 2000-79807 A
 本発明は、かかる実情に鑑みなされたもので、補強用充填剤としてとして吸湿性能の高い充填剤を使用したウエットグリップ性能および耐摩耗性に優れた押し出し加工性のよいタイヤ用ゴム組成物及びスチールコードとの接着性に優れた耐久性を向上させた空気入りタイヤを提供するものである。 The present invention has been made in view of such circumstances, and a rubber composition for tires and a steel having excellent wet grip performance and wear resistance and excellent extrudability using a filler with high moisture absorption performance as a reinforcing filler. It is an object of the present invention to provide a pneumatic tire with improved durability and excellent adhesion to a cord.
 本発明のゴム組成物は、補強用充填剤として25℃、相対湿度60%において、5質量%以上の吸湿量となる吸着剤を配合したゴム組成物である。特に、近年開発された低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩複合体を充填剤として使用するタイヤ用ゴム組成物である。 The rubber composition of the present invention is a rubber composition in which an adsorbent having a moisture absorption amount of 5% by mass or more is added as a reinforcing filler at 25 ° C. and a relative humidity of 60%. In particular, it is a rubber composition for tires that uses a low crystalline layered clay mineral and an amorphous aluminum silicate complex, which have been developed in recent years, as fillers.
 本発明によれば、ウエットグリップ性能および耐摩耗性に優れたゴム組成物が得られ、また、シランとシランカップリング剤を含むゴム組成物ではシランカップリング剤の反応効率がよく、性状が安定した押し出し加工性のよいタイヤ用ゴム組成物が得られる。さらに、このゴム組成物は、スチールコードコーティングゴムとして使用した場合にスチールコードとの接着性に優れるものある。 According to the present invention, a rubber composition excellent in wet grip performance and wear resistance can be obtained, and in a rubber composition containing silane and a silane coupling agent, the reaction efficiency of the silane coupling agent is good and the properties are stable. Thus, a rubber composition for a tire having good extrudability can be obtained. Furthermore, this rubber composition has excellent adhesiveness with a steel cord when used as a steel cord coating rubber.
本発明の空気入りタイヤの一実施態様を示す断面図である。It is sectional drawing which shows one embodiment of the pneumatic tire of this invention.
 本発明のタイヤ用ゴム組成物は、ゴム成分と吸湿性能の高い充填剤を少なくとも含有する。具体的には充填剤の吸湿性能は、25℃、相対湿度60%において、5質量%以上の吸湿量、さらに相対湿度60%において、10質量%以上、より好ましくは15質量%であることが好ましい。 The tire rubber composition of the present invention contains at least a rubber component and a filler having a high moisture absorption performance. Specifically, the moisture absorption performance of the filler is 5% by mass or more at 25 ° C. and 60% relative humidity, and 10% by mass or more, more preferably 15% by mass at 60% relative humidity. preferable.
 本発明のゴム組成物に使用する補強用充填剤は、25℃、相対湿度60%において、5質量%以上の吸湿量を有するものであればよく、特に制限はないが、例えば、例えばシリカゲル、ゼオライト、天然イモゴライト、合成チューブ状アルミニウムケイ酸塩および近年開発された低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩複合体などを好ましく挙げることができる。これらは単独でもよく、2種以上組合せて用いてもよい。
 ここで、合成チューブ状アルミニウムケイ酸塩は、無機ケイ素化合物溶液と無機アルミニウム溶液を所定のケイ素/アルミニウム比率になるよう混合した溶液中でシリカ・アルミナ系前駆体を形成した後、共存イオンを取り除いて、加熱熟成後生成、析出する固形分を回収、洗浄して得られるチューブ状アルミニウムケイ酸塩で、例えば特開2001-64010に製造方法が開示されている。
 また、天然のチューブ状アルミニウムケイ酸塩であるイモゴライトも使用でき、市販のものを使用することができる。
The reinforcing filler used in the rubber composition of the present invention is not particularly limited as long as it has a moisture absorption amount of 5% by mass or more at 25 ° C. and a relative humidity of 60%. Preferable examples include zeolite, natural imogolite, synthetic tubular aluminum silicate, and a recently developed low crystalline layered clay mineral and amorphous aluminum silicate complex. These may be used alone or in combination of two or more.
Here, the synthetic tubular aluminum silicate forms a silica / alumina precursor in a solution in which an inorganic silicon compound solution and an inorganic aluminum solution are mixed so as to have a predetermined silicon / aluminum ratio, and then removes coexisting ions. For example, JP-A-2001-64010 discloses a production method of tubular aluminum silicate obtained by recovering and washing solid components produced and precipitated after heat aging.
Moreover, the imogolite which is a natural tubular aluminum silicate can also be used, and a commercially available thing can be used.
 次に、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩複合体の非晶質アルミニウムケイ酸塩は水和ケイ酸アルミニウムであり、低結晶性層状粘土鉱物は、水酸化アルミニウムからなる単層または数層程度のギブサイトあるいは層方向の積層をほとんど示さない低結晶性の層状粘土鉱物である。この複合体は、無機ケイ素化合物溶液と無機アルミニウム溶液を所定のケイ素/アルミニウム比率になるよう混合し、pH調整したあと脱塩処理したものを10℃以上で加熱することにより得られ、25℃、相対湿度20%で15質量%以上、60%で40質量%以上の水分を吸着する性能を有する高吸着性物質で、例えばWO2009/084632に開示されている。市販品を購入することもできる。 Next, the amorphous aluminum silicate of the low crystalline lamellar clay mineral and the amorphous aluminum silicate complex is hydrated aluminum silicate, and the low crystalline lamellar clay mineral is a simple substance made of aluminum hydroxide. It is a low crystalline layered clay mineral that shows almost no gibbsite or several layers in the layer direction. This composite is obtained by mixing an inorganic silicon compound solution and an inorganic aluminum solution so as to have a predetermined silicon / aluminum ratio, adjusting the pH, and then desalinating and heating at 10 ° C. or higher, 25 ° C., A highly adsorptive substance having the ability to adsorb moisture of 15% by mass or more at 20% relative humidity and 40% by mass or more at 60% is disclosed in, for example, WO2009 / 084632. Commercial products can also be purchased.
 次に、本発明の吸湿性能の高い充填剤を少なくとも含有するゴム組成物の適用形態について説明する。
 第一の形態
 第一の形態は、吸湿性能の高い充填剤を少なくとも含有するゴム組成物は、ウエットグリップ性に優れたタイヤ性能が現されることを見出したものである。
 この形態のゴム組成物に使用する高吸湿性充填剤の充填剤は、25℃、相対湿度20%で15質量%以上の水分を吸着する性能を有する高吸着性物質であり、相対湿度60%で40質量%以上であることが好ましい。相対湿度20%において、吸湿量15質量%未満では、十分なウエットグリップ性能が得られない。
 これらの高吸湿性充填剤の配合量は、ゴム成分100質部に対して、1~30質量部であり、好ましくは、ゴム成分100質量部に対して、5~20質量部である。充填剤の配合量がこの範囲であれば、未加硫粘度が上昇することにより加工性が悪くなることなく、十分なウエットグリップ性能を有するゴム組成物が得られる。
Next, an application mode of the rubber composition containing at least the filler having high moisture absorption performance of the present invention will be described.
1st form The 1st form discovered that the rubber composition containing at least the filler with high moisture absorption performance showed the tire performance excellent in wet grip property.
The filler of the highly hygroscopic filler used in the rubber composition of this form is a highly adsorptive substance having a performance of adsorbing 15% by mass or more of moisture at 25 ° C. and a relative humidity of 20%, and a relative humidity of 60%. It is preferable that it is 40 mass% or more. When the relative humidity is 20% and the moisture absorption is less than 15% by mass, sufficient wet grip performance cannot be obtained.
The compounding amount of these highly hygroscopic fillers is 1 to 30 parts by mass with respect to 100 parts by mass of the rubber component, and preferably 5 to 20 parts by mass with respect to 100 parts by mass of the rubber component. If the blending amount of the filler is within this range, a rubber composition having sufficient wet grip performance can be obtained without deteriorating processability due to an increase in the unvulcanized viscosity.
 本形態のタイヤ用ゴム組成物は、充填剤として上記吸湿性充填剤の外、カーボンブラック(C/B)、シリカを含み、さらに、その他ゴム組成物に使用される充填剤を併せて使用することができる。
 充填剤として用いられるカーボンブラックとしては特に制限はなく、例えばSRF、GPF、FEF、HAF、ISAF、SAFなどが用いられ、窒素吸着比表面積(NSA)が30m/g以上、かつジブチルフタレート吸油量(DBP)が90ml/100g以上のカーボンブラックが好ましい。カーボンブラックを用いることにより、グリップ性能および耐破壊特性の改良効果は大きくなるが、耐摩耗性に優れるHAF、ISAF、SAFが特に好ましい。
 カーボンブラックは、1種用いてもよく2種以上を組み合わせて用いてもよい。
The tire rubber composition of the present embodiment contains carbon black (C / B) and silica in addition to the hygroscopic filler as a filler, and further uses other fillers used in the rubber composition. be able to.
Carbon black used as a filler is not particularly limited, and for example, SRF, GPF, FEF, HAF, ISAF, SAF, etc. are used, nitrogen adsorption specific surface area (N 2 SA) is 30 m 2 / g or more, and dibutyl phthalate Carbon black having an oil absorption (DBP) of 90 ml / 100 g or more is preferred. By using carbon black, the effect of improving grip performance and fracture resistance is increased, but HAF, ISAF, and SAF, which are excellent in wear resistance, are particularly preferable.
Carbon black may be used alone or in combination of two or more.
 シリカは、窒素吸着比表面積(NSA)が100~270m/gの範囲にあるものが好ましく、特に好ましくは170~270m/gであるものが用いられる。この比表面積が100m/g未満では耐摩耗性が不十分になる虞があり、一方、270m/gを超えると分散不良を起こし、低発熱性、耐摩耗性及び作業性が著しく下がる原因となる。上記の窒素吸着比表面積(NSA)は、300℃で1時間乾燥後、ASTM D4820-93に準拠して測定した値である。
 このようなシリカとして、沈降非晶質シリカ、湿潤シリカ(水和した珪酸)、乾燥シリカ(無水珪酸)、ヒュームド・シリカ、珪酸カルシウム、ケイ酸アルミニウムなどが挙げられるが、これらに限定されない。これらのうち、沈降、非晶質、湿潤処理(wet-process)の水和したシリカが好ましい。C/Bとシリカとを併用する場合の配合比は、配合目的に応じて任意に変化させることができる。
 本形態で用いるシリカの使用量は、好ましくはゴム成分100質量部に対して、30~120質量部、より好ましくは30~100質量部である。また、シリカは、吸湿性充填剤との比率が、吸湿性充填剤/シリカで0.12~0.18の範囲で配合する。
Silica preferably has a nitrogen adsorption specific surface area (N 2 SA) in the range of 100 to 270 m 2 / g, particularly preferably 170 to 270 m 2 / g. If this specific surface area is less than 100 m 2 / g, the wear resistance may be insufficient. On the other hand, if it exceeds 270 m 2 / g, a dispersion failure will occur and the low heat build-up, wear resistance and workability will be significantly reduced. It becomes. The nitrogen adsorption specific surface area (N 2 SA) is a value measured according to ASTM D4820-93 after drying at 300 ° C. for 1 hour.
Examples of such silica include, but are not limited to, precipitated amorphous silica, wet silica (hydrated silicic acid), dry silica (anhydrous silicic acid), fumed silica, calcium silicate, and aluminum silicate. Of these, precipitated, amorphous, wet-processed, hydrated silica is preferred. The blending ratio when C / B and silica are used in combination can be arbitrarily changed according to the blending purpose.
The amount of silica used in the present embodiment is preferably 30 to 120 parts by mass, more preferably 30 to 100 parts by mass with respect to 100 parts by mass of the rubber component. Silica is blended so that the ratio of hygroscopic filler to the hygroscopic filler / silica is in the range of 0.12 to 0.18.
 カーボンブラックの使用量は、好ましくはゴム成分100質量部に対して80質量部以下で、カーボンブラックとシリカを合わせた総配合量が120質量部以下であることが好ましい。総配合量をゴム成分100質量部に対して120質量部以下とすることで、耐摩耗性を十分に向上させることができる。 The amount of carbon black used is preferably 80 parts by mass or less with respect to 100 parts by mass of the rubber component, and the total amount of carbon black and silica combined is preferably 120 parts by mass or less. By setting the total amount to 120 parts by mass or less with respect to 100 parts by mass of the rubber component, the wear resistance can be sufficiently improved.
 本このタイヤ用ゴム組成物には、シリカと共にシランカップリング剤を使用する。シランカップリング剤は、シリカに残存するシラノール基とゴム成分ポリマーと反応して、シリカとゴムとの結合橋として作用し補強相を形成するとともに、分散性を向上させる。
 該シランカップリング剤としては、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾールテトラスルフィド等が挙げられ、これらの中でも、補強性改善効果の観点から、ビス(3-トリエトキシシリルプロピル)テトラスルフィド及び3-トリメトキシシリルプロピルベンゾチアゾールテトラスルフィドが好ましく、市販品としてMomentive Performance Materials社製、商標「NXT Low-V Silane」、「NXT Ultra Low-V Silane」、「NXT-Z」(3-オクタノイルチオプロピルトリエトキシシラン)やデクッサ社製Si69、Si75等が使用できる。
In this tire rubber composition, a silane coupling agent is used together with silica. The silane coupling agent reacts with the silanol group remaining in the silica and the rubber component polymer to act as a bonding bridge between silica and rubber to form a reinforcing phase and improve dispersibility.
Examples of the silane coupling agent include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxysilyl). Ethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltri Methoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 2-triethoxysilyl Ethyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-trimethoxysilylpropylbenzothiazole tetrasulfide, 3-triethoxysilylpropylbenzothiazole tetrasulfide, 3-triethoxysilylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl Methacrylate monosulfide, bis (3-diethoxymethylsilylpropyl) tetrasulfide, 3-mercaptopropyldimethoxymethylsilane, dimethoxymethylsilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, dimethoxymethylsilylpropylbenzothiazole tetrasulfide, etc. Among these, bis (3-triethoxysilylpropyl) tetrasulfide and 3-trimethoxysilyl from the viewpoint of reinforcing effect Propylbenzothiazole tetrasulfide is preferred, and commercially available from Momentive Performance Materials, trademarks “NXT Low-V Silane”, “NXT Ultra Low-V Silane”, “NXT-Z” (3-octanoylthiopropyltriethoxysilane) ) Or Dexsa Si69, Si75, etc. can be used.
 本形態においては、シランカップリング剤は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、その配合量は、ゴム成分100質量部に対して、シランカップリング剤総量で1~25質量部の範囲で選定される。当該シランカップリング剤の配合量が上記範囲にあれば、前記本発明の効果が充分に発揮される。好ましい配合量は2~15質量部の範囲である。 In this embodiment, one silane coupling agent may be used alone, or two or more silane coupling agents may be used in combination. The blending amount is selected in the range of 1 to 25 parts by mass with respect to 100 parts by mass of the rubber component in terms of the total amount of silane coupling agent. If the blending amount of the silane coupling agent is within the above range, the effects of the present invention are sufficiently exhibited. A preferred blending amount is in the range of 2 to 15 parts by mass.
 本形態に使用されるゴム成分は、スチレン-ブタジエンゴム、シス-1,4-ポリイソプレン、低シス-1,4-ポリブタジエン、高シス-1,4-ポリブタジエン、エチレン-プロピレン-ジエンゴム、ブチルゴム、クロロプレンゴム、ハロゲン化ブチルゴム、アクリロニトリル-ブタジエンゴム、天然ゴム等が挙げられ、なかでもジエン系ゴム、特にスチレン-ブタジエンゴムが好ましいが、特にこれらに限定されるものではない。これらのゴム成分は、1種類又は2種類以上組合わせてもよい。 The rubber components used in this embodiment are styrene-butadiene rubber, cis-1,4-polyisoprene, low cis-1,4-polybutadiene, high cis-1,4-polybutadiene, ethylene-propylene-diene rubber, butyl rubber, Examples include chloroprene rubber, halogenated butyl rubber, acrylonitrile-butadiene rubber, and natural rubber. Among them, diene rubber, particularly styrene-butadiene rubber is preferable, but not particularly limited thereto. These rubber components may be used alone or in combination of two or more.
 本形態のタイヤ用ゴム組成物には、作業性をよくするため、マレイン酸モノエステルまたはアミン化合物を添加する。
 マレイン酸モノエステルまたはアミン化合物の添加量は、ゴム成分100質量部に対して1~8質量部、好ましくは3~5質量部である。1質量部未満では、低粘度効果が得られず、8質量部を超えると耐摩耗性が悪化する。
 マレイン酸モノエステルは、無水マレイン酸と(ポリ)オキシアルキレン、特にポリオキシプロピレン誘導体とのモノエステルが望ましい。ポリオキシアルキレン基を有することによってゴムとの相溶性が良好となる。
In order to improve workability, a maleic acid monoester or an amine compound is added to the tire rubber composition of this embodiment.
The amount of maleic acid monoester or amine compound added is 1-8 parts by weight, preferably 3-5 parts by weight, per 100 parts by weight of the rubber component. If it is less than 1 part by mass, the low viscosity effect cannot be obtained, and if it exceeds 8 parts by mass, the wear resistance is deteriorated.
The maleic acid monoester is preferably a monoester of maleic anhydride and a (poly) oxyalkylene, particularly a polyoxypropylene derivative. By having a polyoxyalkylene group, compatibility with rubber is improved.
 無水マレイン酸と(ポリ)オキシアルキレン誘導体とのモノエステルは、無水マレイン酸と、(ポリ)オキシアルキレン誘導体とを反応させることで得られる。(ポリ)オキシアルキレン誘導体としては、例えばポリオキシプロピレンラウリルエーテル、ポリオキシプロピレンミリスチルエーテル、ポリオキシプロピレンデシルエーテル、ポリオキシプロピレンオクチルエーテル、ポリオキシプロピレン-2-エチルヘキシルエーテル、ポリオキシプロピレンステアリルエーテル、ポリオキシプロピレンオレイルエーテル等のポリオキシプロピレン脂肪族エーテル;ポリオキシプロピレンベンジルエーテル、ポリオキシプロピレンアルキルフェニルエーテル、ポリオキシプロピレンベンジル化フェニルエーテル等のポリオキシプロピレン芳香族エーテル等が挙げられ、これらの中でも、ポリオキシプロピレン脂肪族エーテルが好ましく、ポリオキシプロピレンラウリルエ-テルが特に好ましい。 Monoesters of maleic anhydride and (poly) oxyalkylene derivatives can be obtained by reacting maleic anhydride with (poly) oxyalkylene derivatives. Examples of the (poly) oxyalkylene derivative include polyoxypropylene lauryl ether, polyoxypropylene myristyl ether, polyoxypropylene decyl ether, polyoxypropylene octyl ether, polyoxypropylene-2-ethylhexyl ether, polyoxypropylene stearyl ether, polyoxypropylene stearyl ether, Polyoxypropylene aliphatic ethers such as oxypropylene oleyl ether; polyoxypropylene aromatic ethers such as polyoxypropylene benzyl ether, polyoxypropylene alkylphenyl ether, polyoxypropylene benzylated phenyl ether, and the like, among these, Polyoxypropylene aliphatic ether is preferred, and polyoxypropylene lauryl ether is particularly preferred.
 また、オキシアルキレン単位の重合度が3~7、特に5で、アルキル基又はアルケニル基の炭素数が8~18であるのが更に好ましい。具体的には、ポリオキシアルキレンをPOA(r)と略し、rを各々平均重合度とすれば、POA(3)オクチルエーテル、POA(4)2-エチルヘキシルエーテル、POA(3)デシルエーテル、POA(5)デシルエーテル、POA(3)ラウリルエーテル、POA(5)ラウリルエーテル、POA(8)ラウリルエーテル、POA(1)ステアリルエーテル、POA(5)ミリスチルエーテル等が挙げられる。
 マレイン酸モノエステルは、単独で用いてもよく、また2種以上を併用してもよい。
More preferably, the degree of polymerization of the oxyalkylene unit is 3 to 7, particularly 5, and the alkyl group or alkenyl group has 8 to 18 carbon atoms. Specifically, POA (r) is abbreviated as POA (r), and r is an average degree of polymerization. POA (3) octyl ether, POA (4) 2-ethylhexyl ether, POA (3) decyl ether, POA (5) Decyl ether, POA (3) lauryl ether, POA (5) lauryl ether, POA (8) lauryl ether, POA (1) stearyl ether, POA (5) myristyl ether and the like.
Maleic acid monoesters may be used alone or in combination of two or more.
 本形態のゴム組成物に添加するアミン化合物としては、特に制限はなく、例えばN,N-ジメチル-n-オクタデシルアミン、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、2,2,4-トリメチル-1,2-ジヒドロキノリン重合体、6-エトキシ-1,2-ジヒドロ-2,2,4-トリメチルキノリン、ジフェニルアミンとアセトンとの反応物等のアミン-ケトン系化合物、フェニル-1-ナフチルアミン、オクチル化ジフェニルアミン、4,4’-ビス(α、α-ジメチルベンジル)ジフェニルアミン、p-(p-トルエンスルホニルアミド)ジフェニルアミン、N,N’-ジ-2-ナフチル-p-フェレンジアミン、N,N’-ジフェニル-p-フェレンジアミン、N-フェニル-N’-イソプロピル-p-フェレンジアミン、N-フェニル-N’-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)-p-フェレンジアミン等が挙げられる。これらの中でも、N,N-ジメチル-n-オクタデシルアミンが好ましい。これらのアミン化合物は1種単独で用いても良く、2種以上併用してもよい。 The amine compound added to the rubber composition of the present embodiment is not particularly limited, and examples thereof include N, N-dimethyl-n-octadecylamine, N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylene. Amine-ketone such as diamine, 2,2,4-trimethyl-1,2-dihydroquinoline polymer, 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline, reaction product of diphenylamine and acetone Compounds, phenyl-1-naphthylamine, octylated diphenylamine, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine, p- (p-toluenesulfonylamido) diphenylamine, N, N′-di-2-naphthyl -P-ferylenediamine, N, N'-diphenyl-p-ferylenediamine, N-phenyl-N'-isopropyl And ru-p-ferenediamine, N-phenyl-N '-(3-methacryloyloxy-2-hydroxypropyl) -p-ferenediamine, and the like. Among these, N, N-dimethyl-n-octadecylamine is preferable. These amine compounds may be used alone or in combination of two or more.
 本形態のタイヤ用ゴム組成物には、本発明の目的が損なわれない範囲で、所望により、通常ゴム工業界で用いられる配合剤、例えば加硫剤、加硫促進剤、プロセス油、老化防止剤、スコーチ防止剤、亜鉛華、ステアリン酸等を含有させることができる。 In the tire rubber composition of the present embodiment, as long as the object of the present invention is not impaired, a compounding agent usually used in the rubber industry, for example, a vulcanizing agent, a vulcanization accelerator, a process oil, an anti-aging agent is used. Agent, scorch inhibitor, zinc white, stearic acid and the like.
 本形態のタイヤ用ゴム組成物の製造方法は、特に限定されず、通常行なわれる方法により、吸湿性充填剤を単独でゴム成分に添加し、他の配合成分と共にバンバリーミキサー、ロール、インターナルミキサー等の混練り機を用いて混練りすることによって得られ、成形加工後、加硫を行い、タイヤ用ゴムとして用いられる。 The manufacturing method of the tire rubber composition of the present embodiment is not particularly limited, and a hygroscopic filler is added to the rubber component alone by a commonly performed method, and together with other compounding components, a Banbury mixer, a roll, an internal mixer It is obtained by kneading using a kneader such as the like, vulcanized after molding, and used as tire rubber.
 第二の形態
 本発明の第二の形態について説明する。
 シリカとシランカップリング剤を含むゴム組成物において、吸湿性能の高い無機充填剤を特定量配合すると、シリカ-シランカップリング剤の反応効率が上がり、他の性能に影響を及ぼさず、押出し加工中にブリスターの発生が防止でき、性状の安定したウエット性能に優れたゴム組成物が得られる。
 本形態のゴム組成物は、シリカとシランカップリング剤を含むゴム組成物において、ジエン系ゴムからなるゴム成分100質量部、シリカ10~100質量部、シリカに対してシランカップリング剤3~20質量%、25℃、相対湿度60%において5質量%以上の吸湿量となる吸着剤を1~30質量部配合し配合してなることを特徴とするものである。
Second Embodiment A second embodiment of the present invention will be described.
In a rubber composition containing silica and a silane coupling agent, when a specific amount of an inorganic filler with high moisture absorption performance is blended, the reaction efficiency of the silica-silane coupling agent is increased, and other performances are not affected. In addition, generation of blisters can be prevented, and a rubber composition having stable wet properties and excellent properties can be obtained.
The rubber composition of this embodiment is a rubber composition containing silica and a silane coupling agent. The rubber component is 100 parts by mass of a diene rubber, 10 to 100 parts by mass of silica, and 3 to 20 of the silane coupling agent with respect to silica. 1 to 30 parts by mass of an adsorbent having a moisture absorption amount of 5% by mass or more at 25% by mass, 25 ° C. and 60% relative humidity is blended.
 本形態に用いられるゴム成分としては、天然ゴム(NR)又はジエン系合成ゴムを単独又はこれらをブレンドして使用することができる。合成ゴムとしては、例えば、合成イソプレンゴム、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)等が挙げられ、特に、ゴム成分として、スチレン-ブタジエンゴム(SBR)が20~100質量%であることが好ましい。 As the rubber component used in this embodiment, natural rubber (NR) or diene synthetic rubber can be used alone or in combination. Examples of the synthetic rubber include synthetic isoprene rubber, butadiene rubber (BR), and styrene-butadiene rubber (SBR). Particularly, the rubber component is 20 to 100% by mass of styrene-butadiene rubber (SBR). It is preferable.
 本形態において使用するシリカとしては、窒素吸着比表面積(NSA)が80~270m/gの範囲にあるものが好ましく用いられる。この比表面積が80m/g未満ではゴム組成物の耐摩耗性が不十分になる虞があり、一方、270m/gを超えると分散不良を起こし、作業性が著しく下がる原因となる。好ましくは100~250m/gである。
 上記の窒素吸着比表面積(NSA)は、300℃で1時間乾燥後、ASTM D4820-93に準拠して測定した値である。
 このようなシリカとして、沈降非晶質シリカ、湿潤シリカ(水和した珪酸)、乾燥シリカ(無水珪酸)、ヒュームド・シリカ、珪酸カルシウム、ケイ酸アルミニウムなどが挙げられるがこれらに限定されない。これらのうち、沈降、非晶質、湿潤処理(wet-process)の水和したシリカが好ましい。具体的には、日本シリカ工業(株)製のニップロールAQ、ドイツデグサ社製のULTRASIL VN3、BV3370GR、ローヌ・プーラン社製のRP1165NP、Zeosil 165GR、Zeosil 175NP、PPG社製のHisil 233、Hisil 200、Hisil 255等(いずれも商品名)が挙げられるが、特に限定されるものではない。
 シリカの配合量は、ゴム成分100質量部に対して、10~100質量部、好ましくは30~90質量部である。シリカの配合量が10質量部未満では、本ゴム組成物をタイヤのトレッドに用いた場合ウエット性能が劣り、100質量部を超えると粘度が上昇しすぎて好ましくない。
As the silica used in this embodiment, those having a nitrogen adsorption specific surface area (N 2 SA) in the range of 80 to 270 m 2 / g are preferably used. If the specific surface area is less than 80 m 2 / g, the wear resistance of the rubber composition may be insufficient. On the other hand, if the specific surface area exceeds 270 m 2 / g, poor dispersion is caused and the workability is remarkably lowered. 100 to 250 m 2 / g is preferable.
The nitrogen adsorption specific surface area (N 2 SA) is a value measured according to ASTM D4820-93 after drying at 300 ° C. for 1 hour.
Examples of such silica include, but are not limited to, precipitated amorphous silica, wet silica (hydrated silicic acid), dry silica (anhydrous silicic acid), fumed silica, calcium silicate, and aluminum silicate. Of these, precipitated, amorphous, wet-processed, hydrated silica is preferred. Specifically, nip roll AQ manufactured by Nippon Silica Kogyo Co., Ltd., ULTRASIL VN3, BV3370GR manufactured by Degussa Germany, RP1165NP manufactured by Rhône-Poulenc, Zeosil 165GR, Zeosil 175NP, Hisil 233 manufactured by PPG, Hisil 200, Hisil 255 (all are trade names), but is not particularly limited.
The compounding amount of silica is 10 to 100 parts by mass, preferably 30 to 90 parts by mass with respect to 100 parts by mass of the rubber component. When the amount of silica is less than 10 parts by mass, the wet performance is inferior when the rubber composition is used in a tread of a tire, and when it exceeds 100 parts by mass, the viscosity is excessively increased.
 本形態のゴム組成物には、シランカップリング剤使用する。シランカップリング剤は、シリカに残存するシラノール基とゴム成分ポリマーと反応して、シリカとゴムとの結合橋として作用し補強相を形成するとともに、分散性を向上させる。シランカップリング剤としては、アルコキシル基を含有するシランカップリング剤が好ましいが、特に限定されるものではない。シランカップリング剤としては、第一の形態で挙げたシランカップリング剤が使用できる。 A silane coupling agent is used for the rubber composition of this embodiment. The silane coupling agent reacts with the silanol group remaining in the silica and the rubber component polymer to act as a bonding bridge between silica and rubber to form a reinforcing phase and improve dispersibility. The silane coupling agent is preferably a silane coupling agent containing an alkoxyl group, but is not particularly limited. As the silane coupling agent, the silane coupling agent mentioned in the first embodiment can be used.
 シランカップリング剤の配合量は、シリカ質量に対し3~20質量%、好ましくは、5~10質量%である。シランカップリング剤の配合量が3質量%未満では、シリカとの反応性が不十分でシリカの分散不良、補強性の低下が生じ、20質量%を超えると、ゴム組成物の粘度が高くなり、押出し加工性が悪化する。 The compounding amount of the silane coupling agent is 3 to 20% by mass, preferably 5 to 10% by mass with respect to the silica mass. If the blending amount of the silane coupling agent is less than 3% by mass, the reactivity with silica is insufficient, resulting in poor dispersion of the silica and a decrease in reinforcing property. If it exceeds 20% by mass, the viscosity of the rubber composition increases. Extrusion processability deteriorates.
 本形態においては、吸湿性能の高い吸着剤(高吸湿性充填剤)をシリカとシランカップリング剤の反応を促進せしめるために使用する。吸着剤の吸湿性能は、25℃、相対湿度60%において、5質量%以上の吸湿量、好ましくは、10質量%以上、より好ましくは15質量%以上である。5質量%未満では、加工工程におけるゴム組成物の性状安定性向上効果が得られない。
 高吸湿性充填剤としては、先に挙げたものが使用できる。このうち、シリカゲルにはA型とB型があるが、B型の方が好ましい。
In this embodiment, an adsorbent having a high hygroscopic performance (high hygroscopic filler) is used to promote the reaction between silica and the silane coupling agent. The moisture absorption performance of the adsorbent is 5% by mass or more, preferably 10% by mass or more, more preferably 15% by mass or more at 25 ° C. and a relative humidity of 60%. If it is less than 5% by mass, the property stability improving effect of the rubber composition in the processing step cannot be obtained.
As the highly hygroscopic filler, those listed above can be used. Among these, silica gel includes A type and B type, and B type is preferred.
 これらの高吸湿性充填剤の配合量は、ゴム成分100質部に対して、1~30質量部、好ましくは10~20質量部であり、シリカに対して配合比率、充填剤/シリカ≧0.12である。充填剤の配合量が1質量部未満では加工工程におけるゴム組成物の性状安定性向上効果が不十分であり、30質量部を超えると加工性が悪化する。
 高吸湿性充填剤は、シリカ-カップリング剤の反応効率を上げるが、その他の未加硫物性(粘度、スコーチタイム)、加硫物性にはほとんど影響しない。
The amount of these highly hygroscopic fillers to be blended is 1 to 30 parts by weight, preferably 10 to 20 parts by weight with respect to 100 parts by weight of the rubber component, and the blending ratio with respect to silica, filler / silica ≧ 0. .12. When the blending amount of the filler is less than 1 part by mass, the effect of improving the property stability of the rubber composition in the processing step is insufficient, and when it exceeds 30 parts by mass, the processability deteriorates.
The highly hygroscopic filler increases the reaction efficiency of the silica-coupling agent, but has little effect on other unvulcanized physical properties (viscosity, scorch time) and vulcanized physical properties.
 本形態のゴム組成物には、上記のゴム成分、シリカ、シランカップリング剤、高吸湿性充填剤以外に、必要に応じて、ゴム組成物に通常用いられる配合剤、例えばカーボンブラックその他の充填剤、軟化剤、老化防止剤、加硫剤、加硫促進剤、加硫促進助剤、ステアリン酸、亜鉛華等を適宜配合することができる。老化防止剤、加硫促進剤、亜鉛華は、マスターバッチ、ファイナルバッチのどちらのステージで入れてもよい。 In addition to the rubber component, silica, silane coupling agent, and high hygroscopic filler, the rubber composition of the present embodiment includes, as necessary, a compounding agent that is usually used in the rubber composition, such as carbon black and other fillers. Agents, softeners, anti-aging agents, vulcanizing agents, vulcanization accelerators, vulcanization acceleration aids, stearic acid, zinc white, and the like can be appropriately blended. The anti-aging agent, vulcanization accelerator, and zinc white may be added in either the master batch or the final batch.
 ゴムの混練りは、通常用いられるインターナルミキサーやロールを用いて実施される。インターナルミキサーを用いる場合、通常、充填剤を混合するステージ(ノンプロ練り)と加硫剤を混合するステージ(プロ練り)の2ステージ以上に分けて混練りされる。高吸湿性充填剤は、シリカと同一ステージで混合されることが望ましいが、限定されるものではない。混練り温度は特に規定されないが、本発明の目的であるシリカ-シランカップリング剤の反応促進のためには、140℃以上が好ましく、180℃以下がよい。 Rubber kneading is performed using a commonly used internal mixer or roll. When an internal mixer is used, it is usually kneaded in two or more stages: a stage for mixing a filler (non-pro kneading) and a stage for mixing a vulcanizing agent (pro kneading). The highly hygroscopic filler is desirably mixed at the same stage as the silica, but is not limited thereto. The kneading temperature is not particularly defined, but is preferably 140 ° C. or higher and preferably 180 ° C. or lower for promoting the reaction of the silica-silane coupling agent which is the object of the present invention.
 第三の形態
 第三の形態は、一枚以上のカーカスプライからなるカーカスと、該カーカスのタイヤ半径方向外側に配設した2枚以上のベルト層からなるベルトとを備え、該ベルトがコーティングゴムで被覆したスチールコードよりなる層を含む空気入りタイヤにおいて、コムの補強用充填剤として25℃、相対湿度60%において、5質量%以上の吸湿量となる吸着剤をゴム成分100部に対して、1~20部配合したゴム組成物をコーティングゴムに用いたタイヤである。特に、低結晶性層状粘土鉱物と非晶質物質アルミニウムケイ酸塩複合体を充填剤として使用するとゴムとスチールコードとの初期接着性及び耐熱劣化接着性に優れたゴム組成物が得られ、これをベルト層に用いたタイヤは耐久性に優れた空気入りタイヤである。
Third Embodiment The third embodiment includes a carcass made of one or more carcass plies, and a belt made of two or more belt layers disposed on the outer side in the tire radial direction of the carcass, and the belt is a coating rubber. In a pneumatic tire including a layer made of a steel cord coated with an adhesive, an adsorbent having a moisture absorption amount of 5% by mass or more at 25 ° C. and a relative humidity of 60% as a filler for reinforcing the comb with respect to 100 parts of the rubber component A tire using a rubber composition containing 1 to 20 parts as a coating rubber. In particular, when a low crystalline layered clay mineral and an amorphous aluminum silicate composite are used as a filler, a rubber composition excellent in initial adhesion between rubber and steel cord and heat-resistant deterioration adhesiveness is obtained. A tire using a belt layer is a pneumatic tire excellent in durability.
 このような高吸湿性充填剤は、その吸湿性や吸水性により多少水分を含んでいるため、加硫時にこの水分が放出されて、スチールコードとゴム相との間の接着層の形成に有効に作用し、初期接着性を向上させる。また、水分が放出された高吸湿性充填剤は、経時によるゴム劣化に伴って生成する水分を吸収するので、水分による接着層の破壊が抑制され耐熱劣化接着性が向上するものと考えられる。 Such a highly hygroscopic filler contains some moisture due to its hygroscopicity and water absorption, so this moisture is released during vulcanization and is effective in forming an adhesive layer between the steel cord and the rubber phase. Acts on and improves initial adhesion. In addition, it is considered that the highly hygroscopic filler from which moisture is released absorbs moisture generated with the deterioration of the rubber over time, so that breakage of the adhesive layer due to moisture is suppressed and heat resistant deterioration adhesiveness is improved.
 これらの吸湿性充填剤の配合量は、ゴム成分100質部に対して、1~20質量部であり、好ましくは、ゴム成分100質量部に対して、5~10質量部である。充填剤の配合量が1部未満では接着性向上効果が得られず、20部以上では未加硫ゴムの粘度が高くなり、スチールコードへのカレンダー作業性が悪くなる。 The blending amount of these hygroscopic fillers is 1 to 20 parts by mass with respect to 100 parts by mass of the rubber component, and preferably 5 to 10 parts by mass with respect to 100 parts by mass of the rubber component. If the blending amount of the filler is less than 1 part, the effect of improving the adhesiveness cannot be obtained, and if it is 20 parts or more, the viscosity of the unvulcanized rubber becomes high, and the calendar workability to the steel cord is deteriorated.
 本形態のタイヤに使用するコーティング用ゴム組成物におけるゴム成分としては、天然ゴムや合成ゴムが用いられる。合成ゴムとしては、例えばブタジエンゴム、イソプレンゴム、スチレン・ブタジエンゴム(SBR)、ブチルゴム、ハロゲン化ブチルゴムが好ましく、さらに臭素化ブチルゴム,パラメチルスチレン基を有するブチルゴム(具体的にはイソブチレンとp-ハロゲン化メチルスチレンとの共重合体等)、エチレン・プロピレン・ジエンゴム(EPDM)なども好適なものとして挙げることができる。
 ゴム成分は、天然ゴム及び上記合成ゴムの中から、適宜1種又は2種以上選択して用いられるが、天然ゴムを主成分として用いることが望ましく、天然ゴムの割合は耐破壊性やスチールコードとの接着性の点でゴム分率(質量%)の50乃至100質量%であることが好ましく、特に60乃至100質量%が好ましく、更には100質量%であることが好ましい。上記天然ゴム以外の合成ゴムは50質量%以下の割合でブレンド使用することが望ましく、50質量%を超える使用は耐破壊性やスチールコードとの接着を低下させる。
As the rubber component in the coating rubber composition used in the tire of this embodiment, natural rubber or synthetic rubber is used. As the synthetic rubber, for example, butadiene rubber, isoprene rubber, styrene / butadiene rubber (SBR), butyl rubber, and halogenated butyl rubber are preferable, and brominated butyl rubber and butyl rubber having a paramethylstyrene group (specifically, isobutylene and p-halogen). Copolymers with methyl styrene), ethylene / propylene / diene rubber (EPDM) and the like can also be mentioned as suitable ones.
The rubber component is selected from natural rubber and the above-mentioned synthetic rubber, and one or more types are appropriately used. It is desirable to use natural rubber as a main component, and the ratio of natural rubber is the resistance to fracture or steel cord. From the viewpoint of adhesiveness, the rubber fraction (mass%) is preferably 50 to 100 mass%, particularly preferably 60 to 100 mass%, and more preferably 100 mass%. Synthetic rubbers other than the natural rubber are desirably blended at a ratio of 50% by mass or less, and the use exceeding 50% by mass lowers fracture resistance and adhesion with a steel cord.
 本形態のタイヤに使用するコーティング用ゴム組成物においては、所望により、従来スチールコードコーティング用ゴム組成物において慣用されている各種接着促進剤を適宜含有させることにより、従来これらを配合した場合の初期接着性および耐劣化接着性を一段と向上させることができる。この接着促進剤としては、例えば有機酸の金属塩、特に有機酸のコバルト塩が好ましく挙げられる。有機酸としては、飽和、不飽和、あるいは直鎖状、分岐状のいずれであってもよく、例えばネオデカン酸、ステアリン酸、ナフテン酸、ロジン、トール油酸、オレイン酸、リノール酸、リノレン酸などが挙げられる。また、かかる有機酸は金属が多価の場合はその一部をホウ素、ホウ酸あるいはアルミニウムなどを含有する化合物と置換することもできる。具体的には、ローヌプーラン社製マノボンド等が使用できる。
 有機酸の金属塩の配合量は、ゴム100質量部に対して、金属元素含有量として、0.1~0.2質量部を配合することが好ましい。
In the rubber composition for coating used in the tire according to the present embodiment, if desired, the various kinds of adhesion promoters conventionally used in the rubber composition for steel cord coating can be appropriately added, so that the initial value when these are conventionally blended can be used. Adhesion and anti-degradation adhesion can be further improved. Preferred examples of the adhesion promoter include metal salts of organic acids, particularly cobalt salts of organic acids. The organic acid may be saturated, unsaturated, linear or branched, such as neodecanoic acid, stearic acid, naphthenic acid, rosin, tall oil acid, oleic acid, linoleic acid, linolenic acid, etc. Is mentioned. In addition, when the metal is polyvalent, a part of the organic acid can be substituted with a compound containing boron, boric acid, aluminum or the like. Specifically, Rhône-Poulenc Manobond and the like can be used.
The compounding amount of the metal salt of the organic acid is preferably 0.1 to 0.2 parts by mass as the metal element content with respect to 100 parts by mass of the rubber.
 本形態で使用するコーティング用ゴム組成物には、通常硫黄が含有される。この硫黄の含有量は、前記ゴム成分100質量部当たり、3~8質量部の範囲が好ましい。この含有量が3質量部未満では接着力発現の元となるCuS(スチールコードの黄銅メッキ中の銅と硫黄との反応により生成する)の生成に充分な硫黄を提供することができず、接着力が不充分になるおそれがある。また、8質量部を超えるとCuSが過剰に生成するため、肥大化したCuSの凝集破壊が起こり、接着力が低下するとともに、ゴム物性としての耐熱老化性も低下する傾向がみられる。 The coating rubber composition used in this embodiment usually contains sulfur. The sulfur content is preferably in the range of 3 to 8 parts by mass per 100 parts by mass of the rubber component. If this content is less than 3 parts by mass, it is not possible to provide sufficient sulfur for the production of Cu x S (generated by the reaction of copper and sulfur in the brass plating of the steel cord), which is the source of adhesive strength. , Adhesive strength may be insufficient. Moreover, since Cu x S is excessively generated when the amount exceeds 8 parts by mass, cohesive failure of the enlarged Cu x S occurs, the adhesive strength is lowered, and the heat aging resistance as a rubber property tends to be lowered. It is done.
 さらに、本形態で使用するコーティング用ゴム組成物には、前記各成分以外に、ゴム業界で通常使用される配合剤を通常の配合量で適宜配合することができる。具体的には、カーボンブラック等の充填剤、アロマオイル等の軟化剤、ジフェニルグアニジン等のグアニジン類、メルカプトベンゾチアゾール等のチアゾール類、N,N’-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド等のスルフェンアミド類、テトラメチルチウラムジスルフィド等のチウラム類などの加硫促進剤、酸化亜鉛等の加硫促進助剤、ポリ(2,2,4-トリメチル-1,2-ジヒドロキノリン)、フェニル-α-ナフチルアミン等のアミン類などの老化防止剤等である。 Furthermore, in the coating rubber composition used in the present embodiment, in addition to the above-mentioned components, compounding agents that are usually used in the rubber industry can be appropriately blended in the usual compounding amounts. Specifically, fillers such as carbon black, softeners such as aroma oil, guanidines such as diphenylguanidine, thiazoles such as mercaptobenzothiazole, N, N′-dicyclohexyl-2-benzothiazolylsulfenamide, etc. Sulfenamides, vulcanization accelerators such as thiurams such as tetramethylthiuram disulfide, vulcanization accelerators such as zinc oxide, poly (2,2,4-trimethyl-1,2-dihydroquinoline), phenyl Anti-aging agents such as amines such as -α-naphthylamine.
 これらのうち、カーボンブラックなどの充填剤は加硫ゴムの引張り強さ、破断強度、引張応力、硬さなどの増加、及び耐摩耗性、引張り抵抗性の向上などの補強剤として知られており、酸化亜鉛は脂肪酸と錯化合物を形成し、加硫促進効果を高める加硫促進助剤として知られている。 Among these, fillers such as carbon black are known as reinforcing agents for increasing the tensile strength, breaking strength, tensile stress, hardness, etc. of vulcanized rubber, and improving wear resistance and tensile resistance. Zinc oxide is known as a vulcanization acceleration aid which forms a complex compound with a fatty acid and enhances the vulcanization acceleration effect.
 充填剤として用いられるカーボンブラックとしては特に制限はなく、例えばSRF、GPF、FEF、HAF、ISAF、SAFなどが用いられ、窒素吸着比表面積(NSA)が30m/g以上、かつジブチルフタレート吸油量(DBP)が90ml/100g以上のカーボンブラックが好ましい。カーボンブラックを用いることにより、耐破壊特性の改良効果は大きくなる。
 カーボンブラックは、1種用いてもよく2種以上を組み合わせて用いてもよい。
 カーボンブラックの使用量は、好ましくはゴム成分100質量部に対して30~80質量部、好ましくは45~70質量部である。
Carbon black used as a filler is not particularly limited, and for example, SRF, GPF, FEF, HAF, ISAF, SAF, etc. are used, nitrogen adsorption specific surface area (N 2 SA) is 30 m 2 / g or more, and dibutyl phthalate Carbon black having an oil absorption (DBP) of 90 ml / 100 g or more is preferred. By using carbon black, the effect of improving the fracture resistance is increased.
Carbon black may be used alone or in combination of two or more.
The amount of carbon black used is preferably 30 to 80 parts by mass, and preferably 45 to 70 parts by mass with respect to 100 parts by mass of the rubber component.
 また、本形態のタイヤに適用されるスチールコードは、ゴムとの接着を良好にするために黄銅、亜鉛、あるいはこれにニッケルやコバルトを含有する合金でメッキ処理されていることが好ましく、特に黄銅メッキ処理が施されているものが好適である。スチールコードの黄銅メッキ中のCu含有率が75重量%以下、好ましくは55~70重量%で、良好で安定な接着が得られる。なお、スチールコードの撚り構造については特に制限はない。 In addition, the steel cord applied to the tire of this embodiment is preferably plated with brass, zinc, or an alloy containing nickel or cobalt in order to improve adhesion to rubber, particularly brass. What has been plated is suitable. When the Cu content in the brass plating of the steel cord is 75% by weight or less, preferably 55 to 70% by weight, good and stable adhesion can be obtained. In addition, there is no restriction | limiting in particular about the twist structure of a steel cord.
 本形態のタイヤに使用するコーティング用ゴム組成物の製造方法は、特に限定されず、通常行なわれる方法により、吸湿性充填剤を単独でゴム成分に添加し、他の配合成分と共にバンバリーミキサー、ロール、インターナルミキサー等の混練り機を用いて混練りすることによって得られ、成形加工後、加硫を行い、タイヤ用ゴムとして用いられる。 The manufacturing method of the rubber composition for coating used in the tire of the present embodiment is not particularly limited, and a hygroscopic filler is added to the rubber component alone by a commonly performed method, and together with other compounding components, a Banbury mixer, a roll It is obtained by kneading using a kneader such as an internal mixer, vulcanized after molding, and used as tire rubber.
 第四の形態
 第四の形態は、スチールコードと該コードを被覆するコーティングゴムで構成した少なくとも2枚のベルト層からなるベルトを備えた空気入りタイヤにおいて、ベルトのタイヤ半径方向外側に配置するゴム部材に水蒸気透過度の低いゴム組成物を用いることで、トレッド表面からの水分の透過を抑制し、ベルト層の湿熱耐久性を向上させた空気入りタイヤである。
Fourth aspect The fourth aspect is a pneumatic tire provided with a belt composed of at least two belt layers composed of a steel cord and a coating rubber covering the cord, and a rubber disposed on the outer side in the tire radial direction of the belt. By using a rubber composition having a low water vapor transmission rate as a member, the pneumatic tire has suppressed moisture permeation from the tread surface and improved the wet heat durability of the belt layer.
 本形態は、一枚以上のカーカスプライからなるカーカスと、該カーカスのタイヤ半径方向外側にスチールコードと該コードを被覆するコーティングゴムで構成した少なくとも2枚以上のベルト層からなるベルトとを備え、該ベルトのタイヤ半径方向外側に配置するゴム部材に、25℃、相対湿度60%での吸着量が5質量%以上の高吸湿性充填剤を配合したゴム組成物を用いるものである。ここで、ベルトのタイヤ半径方向外側に配置するゴム部材としては、トレッドアンダークッションゴム及びキャップ・ベース構造のトレッドにおけるベースゴム等が挙げられる。 The present embodiment includes a carcass made of one or more carcass plies, and a belt made of at least two belt layers made of a steel cord and a coating rubber covering the cord on the outer side in the tire radial direction of the carcass, A rubber composition in which a highly hygroscopic filler having an adsorption amount of 5% by mass or more at 25 ° C. and a relative humidity of 60% is used in a rubber member arranged on the outer side in the tire radial direction of the belt. Here, examples of the rubber member disposed on the outer side in the tire radial direction of the belt include a tread undercushion rubber and a base rubber in a tread having a cap / base structure.
 上記のゴム組成物は、高吸着性充填剤が水分の透過を阻害するため、水蒸気透過度が低い。従来、長期間放置、特に高温高湿度環境下での長期放置の間に、トレッド表面から透過してくる水分によって、ベルト層を構成するコーティングゴム中の水分率が増加し、スチールコードとコーティングゴムとの接着力が低下し、特に、トレッドの溝底部では、該溝底部からベルトまでの距離が短いため問題であった。これに対し、本形態のタイヤにおいては、高吸着性充填剤を配合してなる水蒸気透過度の低いゴム組成物を用いたゴム部材が、ベルトのタイヤ半径方向外側に配置されているため、トレッド表面からの水分の透過を抑制して、スチールコードとコーティングゴムとの接着力が低下するのを防止し、ベルトの耐久性を向上させることができる。 The above rubber composition has a low water vapor permeability because the highly adsorbent filler inhibits the permeation of moisture. Conventionally, the moisture content in the coating rubber that constitutes the belt layer is increased by the moisture that permeates from the tread surface during long-term storage, especially in high-temperature and high-humidity environments. In particular, at the groove bottom of the tread, the distance from the groove bottom to the belt is a problem. On the other hand, in the tire according to this embodiment, the rubber member using the rubber composition having a low water vapor permeability formed by blending the high adsorptive filler is disposed on the outer side in the tire radial direction of the belt. It is possible to suppress the permeation of moisture from the surface, prevent the adhesive force between the steel cord and the coating rubber from being lowered, and improve the durability of the belt.
 上記ゴム部材用ゴム組成物に用いる高吸着性充填剤は、25℃、相対湿度60%において5質量%、好ましくは50%において、5質量%以上、より好ましくは10質量%以上の吸着量となる吸着剤である。使用できる吸着剤は、25℃、相対湿度60%において、5質量%以上の吸着量を有するものであればよく、先に挙げた高吸着性充填剤が使用できる。これらは単独でもよく、2種以上組合せて用いてもよい。
 これらの吸着剤を上記ゴム部材用ゴム組成物の充填剤として使用すると水蒸気透過度の低く、ゴムとスチールコードとの接着力の低下を防止に優れたゴム組成物が得られ、ベルトの耐久性を向上させる。
The high adsorptive filler used in the rubber composition for a rubber member has an adsorption amount of 5% by mass at 25 ° C. and 60% relative humidity, preferably 5% by mass at 50%, more preferably 10% by mass or more. Is an adsorbent. The adsorbent that can be used only needs to have an adsorption amount of 5% by mass or more at 25 ° C. and a relative humidity of 60%, and the above-described highly adsorbent fillers can be used. These may be used alone or in combination of two or more.
When these adsorbents are used as fillers in the rubber composition for rubber members, a rubber composition having a low water vapor permeability and excellent in preventing a decrease in adhesive strength between rubber and a steel cord can be obtained. To improve.
 このような高吸湿性充填剤は、その吸湿性や吸水性により多少水分を含んでいるため、加硫時にこの水分が放出されて、スチールコードとゴム相との間の接着層の形成に有効に作用し、初期接着性を向上させる。また、水分が放出された高吸湿性充填剤は、水分の透過を阻止するので、これを配合したゴム組成物を用いたゴム部材をベルトのタイヤ半径方向外側に配置されたタイヤでは、ベルト層の水分による接着層の破壊が抑制され、ベルトの接着耐久性が向上する。 Such a highly hygroscopic filler contains some moisture due to its hygroscopicity and water absorption, so this moisture is released during vulcanization and is effective in forming an adhesive layer between the steel cord and the rubber phase. Acts on and improves initial adhesion. In addition, since the highly hygroscopic filler from which moisture has been released prevents the permeation of moisture, in a tire in which a rubber member using a rubber composition blended therewith is disposed outside the belt in the tire radial direction, the belt layer The destruction of the adhesive layer due to the moisture is suppressed, and the adhesion durability of the belt is improved.
 これらの高吸湿性充填剤の配合量は、ゴム成分100質部に対して、1~30質量部であり、好ましくは、ゴム成分100質量部に対して、5~20質量部である。充填剤の配合量が1部未満では接着性向上効果が得られず、30部以上では未加硫ゴムの粘度が高くなり、ベースゴムの精錬作業性が悪くなる。 The blending amount of these highly hygroscopic fillers is 1 to 30 parts by mass with respect to 100 parts by mass of the rubber component, and preferably 5 to 20 parts by mass with respect to 100 parts by mass of the rubber component. If the blending amount of the filler is less than 1 part, the effect of improving the adhesiveness cannot be obtained, and if it is 30 parts or more, the viscosity of the unvulcanized rubber becomes high and the refining workability of the base rubber is deteriorated.
 上記ベルトのタイヤ半径方向外側に配置するゴム部材用ゴム組成物のゴム成分としては、特に制限はないが、天然ゴム(NR)やジエン系合成ゴムが挙げられる。ここで、該ジエン系合成ゴムとしては、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレン・ブタジエン共重合体ゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチル系ゴム等が挙げられる。なお、ブチル系ゴムとしては、ブチルゴム(IIR)の他、塩素化ブチルゴム、臭素化ブチルゴム等のハロゲン化ブチルゴムがある。これらゴム成分は単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The rubber component of the rubber composition for a rubber member disposed on the outer side in the tire radial direction of the belt is not particularly limited, and examples thereof include natural rubber (NR) and diene synthetic rubber. Here, as the diene-based synthetic rubber, polyisoprene rubber (IR), polybutadiene rubber (BR), styrene / butadiene copolymer rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl type Rubber etc. are mentioned. Examples of the butyl rubber include halogenated butyl rubber such as chlorinated butyl rubber and brominated butyl rubber in addition to butyl rubber (IIR). These rubber components may be used alone or in combination of two or more.
 上記ゴム成分は、ブチル系ゴムを10質量%以上含むのが好ましく、10~50質量%含むのが更に好ましい。ゴム成分中のブチル系ゴムの含有量が10質量%未満では、上記ゴム部材が水分の透過を抑制する効果が小さく、50質量%を超えると、隣接するゴム、例えば、ベルトのコーティングゴムやキャップ・ベース構造のトレッドにおけるキャップゴム等との接着力が不足し、剥離等が起こり得る。 The rubber component preferably contains 10% by mass or more of butyl rubber, and more preferably 10-50% by mass. When the content of the butyl rubber in the rubber component is less than 10% by mass, the rubber member has a small effect of suppressing the permeation of moisture. When the content exceeds 50% by mass, adjacent rubbers such as belt coating rubbers and caps are used. -Adhesive strength with cap rubber or the like in the tread of the base structure is insufficient, and peeling or the like may occur.
 一方、ベルト層は、スチールコードとコーティングゴムとからなり、特に制限はなく、従来スチールコード補強タイヤのベルト層に慣用されているものを用いることができる。コーティングゴム用ゴム組成物のゴム成分としては、天然ゴムや合成ゴムが挙げられ、合成ゴムとしては、例えばポリブタジエンゴム、イソプレンゴム、スチレン・ブタジエン共重合体ゴム、ブチルゴム、ハロゲン化ブチルゴム、好ましくは臭素化ブチルゴム、パラメチルスチレン基を有するブチルゴム(具体的にはイソブチレンとp-ハロゲン化メチルスチレンとの共重合体等)、エチレン・プロピレン・ジエンゴム(EPDM)等が挙げられる。該ゴム成分は、一種単独で用いても、二種以上を組み合わせて用いてもよいが、スチールコードとの接着性及びコーティングゴムの破壊特性の観点から、天然ゴム及び/又はイソプレンゴムを50質量%以上含有するのが好ましい。 On the other hand, the belt layer is made of a steel cord and a coating rubber, and is not particularly limited, and a belt layer conventionally used for a belt layer of a steel cord reinforced tire can be used. Examples of the rubber component of the rubber composition for the coating rubber include natural rubber and synthetic rubber. Examples of the synthetic rubber include polybutadiene rubber, isoprene rubber, styrene / butadiene copolymer rubber, butyl rubber, halogenated butyl rubber, preferably bromine. Butyl rubber having a paramethylstyrene group (specifically, a copolymer of isobutylene and p-halogenated methylstyrene), ethylene / propylene / diene rubber (EPDM), and the like. The rubber component may be used singly or in combination of two or more. From the viewpoint of adhesiveness with a steel cord and breaking properties of coating rubber, 50 mass of natural rubber and / or isoprene rubber is used. % Or more is preferable.
 さらに、上記コーティングゴム用ゴム組成物には、従来スチールコードのコーティングゴム用ゴム組成物において慣用されている各種接着促進剤を適宜配合することができる。接着促進剤としては、有機酸の金属塩、RHS系(レゾルシノール-ヘキサメトキシメチルメラミン/シリカ)等が挙げられ、このなかでも、有機酸金属塩が好ましく、有機酸のコバルト塩が特に好ましい。有機酸としては、飽和、不飽和、あるいは直鎖状、分岐状の何れでもよく、具体的には、ネオデカン酸、ステアリン酸、ナフテン酸、ロジン、トール油酸、オレイン酸、リノール酸、リノレン酸等が挙げられる。 Furthermore, various adhesion promoters conventionally used in rubber compositions for steel cord coating rubber can be appropriately blended with the rubber composition for coating rubber. Examples of the adhesion promoter include organic acid metal salts, RHS (resorcinol-hexamethoxymethylmelamine / silica), and among them, organic acid metal salts are preferable, and cobalt salts of organic acids are particularly preferable. The organic acid may be saturated, unsaturated, linear or branched. Specifically, neodecanoic acid, stearic acid, naphthenic acid, rosin, tall oil acid, oleic acid, linoleic acid, linolenic acid Etc.
 また、本形態のタイヤに使用するゴム部材用ゴム組成物及びコーティング用ゴム組成物には、前記各成分以外に、ゴム業界で通常使用される配合剤を通常の配合量で適宜配合することができる。具体的には、カーボンブラック等の充填剤、アロマオイル等の軟化剤、加硫剤、ジフェニルグアニジン等のグアニジン類、メルカプトベンゾチアゾール等のチアゾール類、N,N’-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド等のスルフェンアミド類、テトラメチルチウラムジスルフィド等のチウラム類などの加硫促進剤、酸化亜鉛等の加硫促進助剤、ポリ(2,2,4-トリメチル-1,2-ジヒドロキノリン)、フェニル-α-ナフチルアミン等のアミン類などの老化防止剤、スコーチ防止剤、ステアリン酸等である。 Moreover, in the rubber composition for rubber members and the rubber composition for coating used in the tire of this embodiment, in addition to the above-mentioned components, a compounding agent usually used in the rubber industry may be appropriately blended in a normal compounding amount. it can. Specifically, fillers such as carbon black, softeners such as aroma oil, vulcanizing agents, guanidines such as diphenylguanidine, thiazoles such as mercaptobenzothiazole, N, N′-dicyclohexyl-2-benzothiazoli Vulcanization accelerators such as sulfenamides such as rusulfenamide, thiurams such as tetramethylthiuram disulfide, vulcanization accelerators such as zinc oxide, poly (2,2,4-trimethyl-1,2-dihydro Quinoline), amines such as phenyl-α-naphthylamine, anti-aging agents, scorch inhibitors, stearic acid and the like.
 ベルト層を構成するスチールコードとしては、コーティングゴムとの接着性を良好にするために、黄銅,亜鉛、あるいはこれにニッケルやコバルトを含有する合金でメッキ処理されているものが好ましく、黄銅メッキ処理が施されているものが特に好ましい。黄銅メッキ中のCu含有率は、良好で安定な接着性を実現する観点から、75質量%以下が好ましく、55~70質量%が更に好ましい。なお、スチールコードの撚り構造については特に制限はない。 The steel cord constituting the belt layer is preferably plated with brass, zinc, or an alloy containing nickel or cobalt in order to improve the adhesion to the coating rubber, and is plated with brass. Particularly preferred are those to which The Cu content in the brass plating is preferably 75% by mass or less, and more preferably 55 to 70% by mass from the viewpoint of realizing good and stable adhesiveness. In addition, there is no restriction | limiting in particular about the twist structure of a steel cord.
 次に、本形態のタイヤの実施態様を図面に基づき説明する。図1は、本形態の空気入りタイヤの一実施態様を示す断面図である。
 図1に示すタイヤは、左右一対の一対のビード部1及び一対のサイドウォール部2と、両サイドウォール部2に連なるトレッド部3とを有し、前記一対のビード部1内に埋設したビードコア4間にトロイド状に延在して、これら各部1、2、3を補強するラジアルカーカス5と、該カーカス5のタイヤ半径方向外側に配置された少なくとも2枚のベルト層からなるベルト6とを具える。図示例のトレッド部3は、タイヤ半径方向最外側に位置するキャップゴム7と、その半径方向内側のベースゴム8と、該ベースゴム8の半径方向内側のトレッドアンダークッションゴム9とを有する。本発明のタイヤは、キャップゴム7とベースゴム8とが単一層を形成していてもよく、トレッドアンダークッションゴム9が省略されていてもよい。
Next, embodiments of the tire according to the present embodiment will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of the pneumatic tire of the present embodiment.
The tire shown in FIG. 1 has a pair of left and right bead portions 1 and a pair of sidewall portions 2, and a tread portion 3 connected to both sidewall portions 2, and a bead core embedded in the pair of bead portions 1. A radial carcass 5 extending in a toroidal shape between the four to reinforce these parts 1, 2, and 3, and a belt 6 comprising at least two belt layers disposed on the outer side in the tire radial direction of the carcass 5. Have. The tread portion 3 in the illustrated example includes a cap rubber 7 positioned on the outermost side in the tire radial direction, a base rubber 8 on the inner side in the radial direction, and a tread undercushion rubber 9 on the inner side in the radial direction of the base rubber 8. In the tire of the present invention, the cap rubber 7 and the base rubber 8 may form a single layer, and the tread undercushion rubber 9 may be omitted.
 本形態のタイヤにおいては、上記ベースゴム8及びトレッドアンダークッションゴム9の少なくとも一方に、上述したゴム成分に高吸湿性充填剤を配合してなる水蒸気透過度の低いゴム組成物を用いるのが好ましく、これにより、トレッド表面からの水分の透過を抑制して、ベルトを構成するスチールコードとコーティングゴムとの接着力が低下するのを防止する。 In the tire of this embodiment, it is preferable to use a rubber composition having a low water vapor transmission rate, in which at least one of the base rubber 8 and the tread undercushion rubber 9 is blended with the above-described rubber component and a highly hygroscopic filler. Thereby, the permeation | transmission of the water | moisture content from the tread surface is suppressed, and it prevents that the adhesive force of the steel cord and coating rubber which comprises a belt falls.
 本形態のタイヤのベルトのタイヤ半径方向外側に配置するゴム部材用ゴム組成物の製造方法は、特に限定されず、通常行なわれる方法により、高吸湿性充填剤を単独でゴム成分に添加し、他の配合成分と共にバンバリーミキサー、ロール、インターナルミキサー等の混練り機を用いて混練りすることによって得られ、成形加工後、加硫を行い、該ゴム部材として用いられる。 The method for producing the rubber composition for a rubber member to be arranged on the outer side in the tire radial direction of the belt of the tire of the present embodiment is not particularly limited, and a highly hygroscopic filler is added alone to the rubber component by a commonly performed method, It is obtained by kneading together with other compounding components using a kneading machine such as a Banbury mixer, a roll, an internal mixer, and the like, vulcanized after molding, and used as the rubber member.
 本発明のゴム組成物を用いたタイヤは、通常の方法によって製造される。すなわち、各種配合剤を含有させたゴム組成物が未加硫の段階でタイヤに加工され、タイヤ成型機上で通常の方法により貼り付け成型され、生タイヤが成型される。この生タイヤを加硫機中で加熱加圧して、タイヤが得られる。
 このタイヤに充填する気体としては、空気の外、窒素等の不活性ガスが使用できる。
A tire using the rubber composition of the present invention is produced by a usual method. That is, a rubber composition containing various compounding agents is processed into a tire at an unvulcanized stage, and is pasted and molded by a normal method on a tire molding machine to form a raw tire. The green tire is heated and pressed in a vulcanizer to obtain a tire.
As a gas filled in the tire, an inert gas such as nitrogen can be used in addition to air.
 以下、実施例及び比較例により本発明を更に詳しく説明するが、本発明は下記実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
実施例1~4及び比較例1~8
 表1に従う配合処方のゴム組成物をバンバリーミキサーにて混練して調製した。
 実施例、比較例において、得られたゴム組成物の未加硫ゴム組成物の粘度及びタイヤのウエット性能、耐摩耗性を下記の方法により測定、評価した。
 その結果を表1に示す。
Examples 1 to 4 and Comparative Examples 1 to 8
A rubber composition having a formulation according to Table 1 was prepared by kneading with a Banbury mixer.
In Examples and Comparative Examples, the viscosity of the unvulcanized rubber composition, the tire wet performance, and the wear resistance of the obtained rubber composition were measured and evaluated by the following methods.
The results are shown in Table 1.
(1)未加硫粘度
 JIS K6300-1994に従い、Lローターを使用して、予熱1分、ローター作動時間4分、温度130℃の条件でムーニー粘度(ML1+4、130℃)を測定し、比較例1を100として指数で表示した。この数値が大きい程、未加硫粘度が低く作業性が良好である。
(2)ウエット性能
 各ゴム組成物をトレッドゴムとして使用し、タイヤサイズ195/60R15の空気入りタイヤを試作した。試作したタイヤを排気量2000ccの乗用車の四輪に装着し、テストコースのウエット評価路にてブレーキ停止距離を測定した。測定値を比較例1を100として指数で表示した。この数値が大きい程、ウエット性能が良好である。
(3)耐摩耗性
 各ゴム組成物をトレッドゴムとして使用し、タイヤサイズ195/60R15の空気入りタイヤを試作した。試作したタイヤを排気量2000ccの乗用車の四輪に装着し、路面を1万キロメートル走行後、残溝量を測定した。測定値を比較例1を100として指数表示した。指数が大きい程、耐摩耗性が良好であることを示す。
(1) Unvulcanized viscosity According to JIS K6300-1994, Mooney viscosity (ML 1 + 4 , 130 ° C) was measured using L rotor under conditions of preheating 1 minute, rotor operating time 4 minutes, temperature 130 ° C. Comparative example 1 was set as 100 and indicated as an index. The larger this value, the lower the unvulcanized viscosity and the better the workability.
(2) Wet performance A pneumatic tire having a tire size of 195 / 60R15 was prototyped using each rubber composition as a tread rubber. The prototype tire was mounted on four wheels of a passenger car with a displacement of 2000 cc, and the brake stop distance was measured on the wet evaluation road of the test course. The measured value was displayed as an index with Comparative Example 1 as 100. The larger this value, the better the wet performance.
(3) Abrasion resistance A pneumatic tire having a tire size of 195 / 60R15 was prototyped using each rubber composition as a tread rubber. The prototype tire was mounted on four wheels of a passenger car with a displacement of 2000 cc, and after traveling 10,000 kilometers on the road surface, the remaining groove amount was measured. The measured values were displayed as an index with Comparative Example 1 being 100. It shows that abrasion resistance is so favorable that an index | exponent is large.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 注*1 JSR社製、E-SBR、#1723
*2 N134(NSA:146m/g)
*3 日本シリカ工業(株)製、ニップシールAQ,BET表面積=210m/g
*4 デグッサ製Si75(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
*5 吸湿性充填剤1:シリカゲル(B型)
*6 吸湿性充填剤2:低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩複合体(ハスクレイHC500)〔戸田工業(株)製〕
*7 作業性改良剤1:マレイン酸モノ(ポリオキシプロピレンラウリルエーテル)エステル
*8 作業性改良剤2:N,N-ジメチル-n-オクタデシルアミン
*9 N-イソプロピル-N’-フェニル-p-フェニレンジアミン
*10 ジベンゾチアジルジスルフィド
*11 N-シクロヘキシル-2-ベンゾジアゾールスルフェンアミド
Note * 1 JSR, E-SBR, # 1723
* 2 N134 (N 2 SA: 146 m 2 / g)
* 3 Nippon Silica Kogyo Co., Ltd., nip seal AQ, BET surface area = 210 m 2 / g
* 4 Si75 (bis (3-triethoxysilylpropyl) disulfide) manufactured by Degussa
* 5 Hygroscopic filler 1: Silica gel (Type B)
* 6 Hygroscopic filler 2: Low crystalline layered clay mineral and amorphous aluminum silicate complex (Hasclay HC500) [manufactured by Toda Kogyo Co., Ltd.]
* 7 Workability improver 1: Maleic acid mono (polyoxypropylene lauryl ether) ester * 8 Workability improver 2: N, N-dimethyl-n-octadecylamine * 9 N-isopropyl-N'-phenyl-p- Phenylenediamine * 10 Dibenzothiazyl disulfide * 11 N-cyclohexyl-2-benzodiazolesulfenamide
 表1の示す結果から、吸湿性充填剤を配合した本発明のゴム組成物は、本発明の範囲外のゴム組成物に比較して、作業性及びウエット性能、耐摩耗性がバランス良く向上していることがわかる。 From the results shown in Table 1, the rubber composition of the present invention in which a hygroscopic filler is blended improves the workability, wet performance, and wear resistance in a well-balanced manner compared to the rubber composition outside the scope of the present invention. You can see that
実施例5~13及び比較例9~16
 表2、3に従う配合処方のゴム組成物をバンバリーミキサーにて混練して調製した。
 実施例、比較例で得られた各ゴム組成物につき、下記測定方法により各種物性を評価した。その結果を表2及び3に示す。
(4)ブリスターの発生
 約10mmの厚さの練り生地を120℃のオーブン中に15分間静置し、ブリスターの発生を目視により評価した。ブリスターの発生が多い場合を1とし、ブリスターの発生なしを10として10段階で評価した。3以下では押出し作業が不可となるレベルである。
(5)未加硫粘度
 上記(1)未加硫粘度の測定と同じ方法で測定し、比較例9を100として指数で表示した。この数値が大きい程、未加硫粘度が低く押出し加工性が良好である。
Examples 5 to 13 and Comparative Examples 9 to 16
A rubber composition having a formulation according to Tables 2 and 3 was prepared by kneading with a Banbury mixer.
Various physical properties of each rubber composition obtained in Examples and Comparative Examples were evaluated by the following measuring methods. The results are shown in Tables 2 and 3.
(4) Generation | occurrence | production of blister About 10 mm-thick kneaded material | dough was left still for 15 minutes in 120 degreeC oven, and generation | occurrence | production of the blister was evaluated visually. The evaluation was made on a 10-point scale, where 1 was the number of occurrences of blisters and 10 was the absence of blisters. If it is 3 or less, it is a level at which extrusion work is impossible.
(5) Unvulcanized viscosity Measured by the same method as the measurement of the above (1) unvulcanized viscosity. The larger this value, the lower the unvulcanized viscosity and the better the extrudability.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
 注(表2、3共)
*1 JSR社製,E-SBR,#1712
*2 N134(NSA:146m/g)
*3 日本シリカ工業(株)製,ニップシールAQ,BET表面積=210m/g
*4 デグッサ製Si75(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
*5 吸湿性充填剤1:シリカゲル(B型)
*6 吸湿性充填剤2:ゼオライト
*7 吸湿性充填剤3:イモゴライト(組成SiO・Ai・2HO)
*8 吸湿性充填剤4:低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩複合体(ハスクレイHC500)〔戸田工業(株)製〕
*9 N-イソプロピル-N’-フェニル-p-フェニレンジアミン
*10 ジフェニルグアニジン
*11 ジベンゾチアジルジスルフィド
*12 N-シクロヘキシル-2-ベンゾジアゾールスルフェンアミド
Note (Tables 2 and 3)
* 1 JSR, E-SBR, # 1712
* 2 N134 (N 2 SA: 146 m 2 / g)
* 3 Nippon Silica Kogyo Co., Ltd., nip seal AQ, BET surface area = 210 m 2 / g
* 4 Si75 (bis (3-triethoxysilylpropyl) disulfide) manufactured by Degussa
* 5 Hygroscopic filler 1: Silica gel (Type B)
* 6 hygroscopic filler 2: Zeolite * 7 hygroscopic filler 3: imogolite (composition SiO 2 · Ai 2 O 3 · 2H 2 O)
* 8 Hygroscopic filler 4: Low crystalline layered clay mineral and amorphous aluminum silicate complex (Hasclay HC500) [manufactured by Toda Kogyo Co., Ltd.]
* 9 N-isopropyl-N'-phenyl-p-phenylenediamine * 10 Diphenylguanidine * 11 Dibenzothiazyl disulfide * 12 N-cyclohexyl-2-benzodiazolesulfenamide
 表2、3の示す結果から、高吸湿性充填剤を配合したゴム組成物は、ゴム性状に大きな影響を与えることなく、ブリスターの発生を抑制していることがわかる。 From the results shown in Tables 2 and 3, it can be seen that the rubber composition containing the highly hygroscopic filler suppresses the generation of blisters without significantly affecting the rubber properties.
実施例14~17及び比較例17
 表4に従う配合処方のゴム組成物をバンバリーミキサーにて混練して調製した。
 得られたゴム組成物について、初期接着性と耐熱劣化接着性を下記の方法で測定した。その結果を表4に示す。
Examples 14 to 17 and Comparative Example 17
A rubber composition having a formulation according to Table 4 was prepared by kneading with a Banbury mixer.
About the obtained rubber composition, initial adhesiveness and heat-resistant deterioration adhesiveness were measured by the following method. The results are shown in Table 4.
(6)初期接着性
 黄銅メッキ(Cu:63重量%,Zn:37重量%)したスチールコード(1×5構造、素線径0.25mm)を12.5mm間隔で平行に並べ、このスチールコードを両側から各ゴム組成物からなるシートでコーティングして、これを160℃×20分間の条件で加硫し、厚さ12.5mmのサンプルを作製し、ASTM-D-2229に準拠して、スチールコードを引抜き、その際の引抜き力を測定し、比較例17の値を100として指数表示した。数値が大きいほど良好である。
(7)耐熱劣化接着性
 上記(6)と同様にして、160℃×20分間の条件で加硫し、厚さ12.5mmのサンプルを作製し、これを空気中にて100℃で7日間放置して劣化させたのち、ASTM-D-2229に準拠して、スチールコードを引抜き、その際の引抜き力を測定し、比較例17の値を100として指数表示した。数値が大きいほど良好である。
(6) Initial adhesiveness Steel cords (1 × 5 structure, wire diameter 0.25 mm) plated with brass (Cu: 63 wt%, Zn: 37 wt%) are arranged in parallel at 12.5 mm intervals. Is coated with a sheet made of each rubber composition from both sides, and vulcanized under conditions of 160 ° C. × 20 minutes to produce a sample having a thickness of 12.5 mm, in accordance with ASTM-D-2229, The steel cord was pulled out, the pulling force at that time was measured, and the value of Comparative Example 17 was taken as 100 and displayed as an index. The larger the value, the better.
(7) Heat-resistant deterioration adhesiveness In the same manner as (6) above, vulcanization was carried out under the conditions of 160 ° C. × 20 minutes to prepare a sample having a thickness of 12.5 mm, and this was carried out in air at 100 ° C. for 7 days After leaving to deteriorate, the steel cord was pulled out in accordance with ASTM-D-2229, and the pulling force at that time was measured. The larger the value, the better.
Figure JPOXMLDOC01-appb-T000004
 

*1 天然ゴム RSS#3
*2 N330〔東海カーボン(株)製〕
*3 吸湿性充填剤1:イモゴライト(組成SiO・Ai・2HO)
*4 吸湿性充填剤2:低結晶性層状粘度鉱物と非晶質アルミニウムケイ塩複合体(ハスクレイHC500)〔戸田工業(株)製〕
*5 N-イソプロピル-N’-フェニル-p-フェニレンジアミン
*6 マノボンドC(有効成分:コバルト金属として22%、ローヌプーラン社商品名)
*7 N,N’-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(ノクセラーDZ)〔大内新興化学工業(株)製〕
Figure JPOXMLDOC01-appb-T000004

Note * 1 Natural rubber RSS # 3
* 2 N330 [manufactured by Tokai Carbon Co., Ltd.]
* 3 Hygroscopic filler 1: Imogolite (composition SiO 2 · Ai 2 O 3 · 2H 2 O)
* 4 Hygroscopic filler 2: Low crystalline layered viscosity mineral and amorphous aluminum silicate complex (Hasclay HC500) [manufactured by Toda Kogyo Co., Ltd.]
* 5 N-Isopropyl-N'-phenyl-p-phenylenediamine * 6 Manobond C (active ingredient: 22% as cobalt metal, Rhône-Poulenc trade name)
* 7 N, N'-dicyclohexyl-2-benzothiazolylsulfenamide (Noxeller DZ) [Ouchi Shinsei Chemical Co., Ltd.]
 表4の示す結果から、本発明のコーティング用ゴム組成物は、スチールコードに対する初期接着性及び耐熱劣化接着性に優れている。このゴム組成物をベルト層に使用したタイヤは、耐久性に優れたものとなる。 From the results shown in Table 4, the rubber composition for coating of the present invention is excellent in initial adhesiveness and heat-resistant deterioration adhesiveness to steel cords. A tire using this rubber composition for the belt layer has excellent durability.
実施例18~21及び比較例18~22
 スチールコードとコーティングゴムとからなるベルト層とトレッドとの間に、トレッドアンダークッションゴムとして、幅158mm、厚さ0.5mmの表5に示す配合処方のゴム組成物からなるゴムシートを貼り、タイヤを加硫成形した。該タイヤのサイズは185/60R14である。次に、加硫成形されたタイヤを、温度100℃、湿度95%に保持した恒温恒湿槽中に5週間放置して劣化させ、劣化後のスチールコードとコーティングゴムとの耐熱劣化接着性を以下のようにして求めた。
 また、作業性の指標として各ゴム組成物の未加硫粘度を求めた。
 これらの結果を表5に示す。
Examples 18 to 21 and Comparative Examples 18 to 22
Between the belt layer made of steel cord and coating rubber and the tread, a rubber sheet made of a rubber composition of the compounding formulation shown in Table 5 having a width of 158 mm and a thickness of 0.5 mm is attached as a tread undercushion rubber, and the tire Was vulcanized and molded. The tire size is 185 / 60R14. Next, the vulcanized tire is deteriorated by leaving it in a constant temperature and humidity chamber maintained at a temperature of 100 ° C. and a humidity of 95% for 5 weeks to improve the heat resistance deterioration adhesion between the deteriorated steel cord and the coating rubber. It was determined as follows.
Further, the unvulcanized viscosity of each rubber composition was determined as an index of workability.
These results are shown in Table 5.
(8)耐熱劣化接着性
 ASTM D4776-1996に準拠して、スチールコードを引抜いた際の引抜き力を測定し、比較例18を100として指数表示した。指数値が大きくなる程、スチールコードとコーティングゴムとの接着力が強いことをさす。
(9)未加硫粘度
 上記(1)未加硫粘度の測定と同じ方法で測定し、比較例18を100として指数で表示した。この数値が大きい程、未加硫粘度が低く作業性が良好である。
(8) Heat-resistant deterioration adhesiveness The pulling force when the steel cord was pulled was measured according to ASTM D4776-1996, and the index was displayed with Comparative Example 18 as 100. The larger the index value, the stronger the adhesion between the steel cord and the coating rubber.
(9) Unvulcanized viscosity Measured by the same method as the measurement of the above (1) unvulcanized viscosity. The larger this value, the lower the unvulcanized viscosity and the better the workability.
Figure JPOXMLDOC01-appb-T000005
 

*1 BR01〔JSR(株)製〕
*2 N550〔東海カーボン(株)製〕
*3 吸湿性充填剤1:イモゴライト(組成SiO・Ai・2HO)
*4 吸湿性充填剤2:低結晶性層状粘度鉱物と非晶質アルミニウムケイ酸塩複合体(ハスクレイHC500)〔戸田工業(株)製〕
*5 アンチゲン6C〔住友化学(株)製〕
*6 ノクセラーNS-P〔大内新興化学工業(株)製〕
Figure JPOXMLDOC01-appb-T000005

* 1 BR01 [manufactured by JSR Corporation]
* 2 N550 [manufactured by Tokai Carbon Co., Ltd.]
* 3 Hygroscopic filler 1: Imogolite (composition SiO 2 · Ai 2 O 3 · 2H 2 O)
* 4 Hygroscopic filler 2: Low crystalline layered viscosity mineral and amorphous aluminum silicate complex (Hasclay HC500) [manufactured by Toda Kogyo Co., Ltd.]
* 5 Antigen 6C (Sumitomo Chemical Co., Ltd.)
* 6 Noxeller NS-P [Ouchi Shinsei Chemical Co., Ltd.]
 表5の実施例から、高吸湿性充填剤を配合したゴム組成物をトレッドアンダークッションゴムに用いることにより、該トレッドアンダークッションゴムの水蒸気透過性が低いため、比較例18に比べ、高温・高湿度環境下放置後のスチールコードとコーティングゴムとの接着力を向上させることができ、しかもゴム組成物の加工性も良好なことが分かる。 From the examples in Table 5, the use of a rubber composition containing a highly hygroscopic filler for the tread undercushion rubber results in a low water vapor permeability of the tread undercushion rubber. It can be seen that the adhesive strength between the steel cord and the coating rubber after being left in a humidity environment can be improved, and the processability of the rubber composition is also good.
 一方、比較例19~22のタイヤは、トレッドアンダークッションゴム用ゴム組成物が高吸湿性充填剤を本発明の範囲外で配合したゴム組成物で、スチールコードとコーティングゴムとの接着力を向上し、かつ作業性が良好なゴム組成物は得られていない。 On the other hand, the tires of Comparative Examples 19 to 22 are rubber compositions in which the rubber composition for the tread undercushion rubber is blended with a highly hygroscopic filler outside the scope of the present invention, and improves the adhesion between the steel cord and the coating rubber. However, a rubber composition having good workability has not been obtained.
 本発明のゴム組成物は、タイヤ部材、特にタイヤトレッドに好適に使用できる。また、ベルト層を備えたタイヤは耐劣化性に優れ、乗用自動車や重荷重車両のタイヤとして好適に利用できる。 The rubber composition of the present invention can be suitably used for tire members, particularly tire treads. Moreover, the tire provided with the belt layer is excellent in deterioration resistance, and can be suitably used as a tire for passenger cars and heavy-duty vehicles.
1 ビード部
2 サイドウォール部
3 トレッド部
4 ビードコア
5 ラジアルカーカス
6 ベルト
7 キャップゴム
8 ベースゴム
9 トレッドアンダークッションゴム
 
 
1 Bead part 2 Side wall part 3 Tread part 4 Bead core 5 Radial carcass 6 Belt 7 Cap rubber 8 Base rubber 9 Tread under cushion rubber

Claims (28)

  1.  天然ゴム及びジエン系合成ゴムの少なくとも1種からなるゴム成分、シリカを含むゴム組成物において、ゴム成分100質量部に対して、高吸湿性充填剤として25℃、相対湿度60%において、5質量%以上の吸湿量の吸着剤を1~30部を配合したことを特徴とするタイヤ用ゴム組成物。 In a rubber composition comprising at least one rubber component of natural rubber and diene-based synthetic rubber and silica, 5 mass at 25 ° C. and 60% relative humidity as a highly hygroscopic filler with respect to 100 mass parts of the rubber component. A rubber composition for tires comprising 1 to 30 parts of an adsorbent having a moisture absorption amount of at least%.
  2.  吸着剤が、相対湿度20%において、15質量%以上の吸湿量の吸着剤であることを特徴とする請求項1に記載のタイヤ用ゴム組成物。 The tire rubber composition according to claim 1, wherein the adsorbent is an adsorbent having a moisture absorption amount of 15% by mass or more at a relative humidity of 20%.
  3.  吸着剤が、吸湿量が相対湿度60%において、15質量%以上の吸着剤であることを特徴とする請求項1に記載のタイヤ用ゴム組成物。 2. The tire rubber composition according to claim 1, wherein the adsorbent is an adsorbent having a moisture absorption of 15% by mass or more at a relative humidity of 60%.
  4.  吸着剤が低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩複合体である請求項1~3のいずれかに記載のタイヤ用ゴム組成物。 The tire rubber composition according to any one of claims 1 to 3, wherein the adsorbent is a low crystalline layered clay mineral and an amorphous aluminum silicate complex.
  5.  吸着剤がシリカゲルである請求項3に記載のタイヤ用ゴム組成物。 The tire rubber composition according to claim 3, wherein the adsorbent is silica gel.
  6.  吸着剤がアルミニウムケイ酸塩である請求項3に記載のタイヤ用ゴム組成物。 The tire rubber composition according to claim 3, wherein the adsorbent is aluminum silicate.
  7.  吸着剤がゼオライトである請求項6に記載のタイヤ用ゴム組成物。 The tire rubber composition according to claim 6, wherein the adsorbent is zeolite.
  8.  吸着剤が天然イモゴライトである請求項6に記載のタイヤ用ゴム組成物。 The tire rubber composition according to claim 6, wherein the adsorbent is natural imogolite.
  9.  吸着剤が合成チューブ状アルミニウムケイ酸塩である請求項6に記載のタイヤ用ゴム組成物。 The tire rubber composition according to claim 6, wherein the adsorbent is a synthetic tubular aluminum silicate.
  10.  シリカの配合量がゴム成分100質量部に対して、30~120質量部配合したことを特徴とする請求項1又は2に記載のタイヤ用ゴム組成物。 The rubber composition for tires according to claim 1 or 2, wherein the amount of silica blended is 30 to 120 parts by mass with respect to 100 parts by mass of the rubber component.
  11.  ゴム成分100質量部に対して、シリカ10~100質量部、シランカップリング剤をシリカに対して3~20質量%配合したことを特徴とする請求項1に記載のタイヤ用ゴム。 The tire rubber according to claim 1, wherein 10 to 100 parts by mass of silica and 3 to 20% by mass of a silane coupling agent are blended with respect to silica with respect to 100 parts by mass of the rubber component.
  12.  シリカの配合量が吸着剤に対して、質量比で0.12以上である請求項1~11のいずれかに記載のタイヤ用ゴム組成物。 The rubber composition for a tire according to any one of claims 1 to 11, wherein a compounding amount of silica is 0.12 or more by mass ratio with respect to the adsorbent.
  13.  シリカの配合量が吸着剤に対して、質量比で0.12-0.18である請求項12に記載のタイヤ用ゴム組成物。 The rubber composition for tires according to claim 12, wherein the compounding amount of silica is 0.12-0.18 in mass ratio with respect to the adsorbent.
  14.  ゴム成分として、少なくともスチレン-ブタジエンゴムを含むことを特徴とする請求項1~13のいずれかに記載のタイヤ用ゴム組成物。 The tire rubber composition according to any one of claims 1 to 13, wherein the rubber component contains at least styrene-butadiene rubber.
  15.  ゴム成分100質量部に対して、マレイン酸モノ(ポリオキシプロピレンラウリルエーテル)エステルを1~8質量部配合したことを特徴とする請求項1~2、4及び12~14のいずれかに記載のタイヤ用ゴム組成物。 The maleic acid mono (polyoxypropylene lauryl ether) ester is blended in an amount of 1 to 8 parts by mass with respect to 100 parts by mass of the rubber component, according to any one of claims 1 to 2, 4 and 12 to 14. Rubber composition for tires.
  16.  シランカップリング剤として、3-オクタノイルチオプロピルトリエトキシシランを配合したことを特徴とする請求項11~15のいずれかに記載のタイヤ用ゴム組成物。  The tire rubber composition according to any one of claims 11 to 15, wherein 3-octanoylthiopropyltriethoxysilane is blended as a silane coupling agent.
  17.  カーカスと、該カーカスのタイヤ半径方向外側に配設したベルトとを備え、該ベルトがコーティングゴムで被覆したスチールコードよりなる層を含む空気入りタイヤにおいて、補強用充填剤として25℃、相対湿度60%において、5質量%以上の吸湿量となる吸着剤をゴム成分100部に対して、1~20部配合したゴム組成物をコーティングゴムに用いた空気入りタイヤ。 In a pneumatic tire comprising a carcass and a belt disposed on the outer side in the tire radial direction of the carcass, the belt including a layer made of a steel cord covered with a coating rubber, a reinforcing filler at 25 ° C. and a relative humidity of 60 %, A pneumatic tire in which a rubber composition in which 1 to 20 parts of an adsorbent having a moisture absorption amount of 5% by mass or more is blended with 100 parts of a rubber component is used as a coating rubber.
  18.  1枚以上のカーカスプライからなるカーカスと、該カーカスのタイヤ半径方向外側に配設した2枚以上のベルト層からなるベルトとを備え、該ベルト層がコーティングゴムで被覆したスチールコードよりなる空気入りタイヤにおいて、該ベルトのタイヤ半径方向外側に、25℃、相対湿度60%において、5質量%以上の吸湿量となる吸着剤をゴム成分100質量部に対して、1~30部配合したゴム組の成物からなるゴム部材を配置したことを特徴とする空気入りタイヤ。 A pneumatic structure comprising a carcass made of one or more carcass plies and a belt made of two or more belt layers disposed on the outer side in the tire radial direction of the carcass, wherein the belt layer is made of a steel cord covered with a coating rubber. In the tire, a rubber assembly in which 1 to 30 parts of an adsorbent having a moisture absorption amount of 5% by mass or more at 25 ° C. and a relative humidity of 60% is blended on the outer side in the tire radial direction of the belt with respect to 100 parts by mass of the rubber component. A pneumatic tire comprising a rubber member made of the following composition.
  19.  吸着剤が、吸着量15質量%以上の吸着剤であることを特徴とする請求項17または18に記載の空気入りタイヤ。 The pneumatic tire according to claim 17 or 18, wherein the adsorbent is an adsorbent having an adsorption amount of 15% by mass or more.
  20.  吸着剤が、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩複合体である請求項17~19のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 17 to 19, wherein the adsorbent is a low crystalline layered clay mineral and an amorphous aluminum silicate complex.
  21.  吸着剤が、アルミニウムケイ酸塩である請求項17~19のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 17 to 19, wherein the adsorbent is aluminum silicate.
  22.  吸着剤が、天然イモゴライトである請求項21に記載の空気入りタイヤ。 The pneumatic tire according to claim 21, wherein the adsorbent is natural imogolite.
  23.  吸着剤が、合成チューブ状アルミニウムケイ酸塩である請求項21に記載の空気入りタイヤ。 The pneumatic tire according to claim 21, wherein the adsorbent is a synthetic tubular aluminum silicate.
  24.  吸着剤をゴム成分100部に対して、5~10部配合したゴム組成物をコーティングゴムに用いた請求項17及び19~23のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 17 and 19 to 23, wherein a rubber composition containing 5 to 10 parts of an adsorbent with respect to 100 parts of a rubber component is used as a coating rubber.
  25.  コーティングゴムが、ゴム成分100質量部に対して接着促進剤を0.1~0.2質量部含有したゴム組成物である請求項17及び19~24のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 17 and 19 to 24, wherein the coating rubber is a rubber composition containing 0.1 to 0.2 parts by mass of an adhesion promoter with respect to 100 parts by mass of the rubber component.
  26.  吸着剤をゴム成分100質量部に対して、5~20質量部配合したゴム組成物を前記ゴム部材に用いた請求項18~23のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 18 to 23, wherein a rubber composition containing 5 to 20 parts by mass of an adsorbent with respect to 100 parts by mass of a rubber component is used for the rubber member.
  27.  ゴム部材がトレッドアンダークッションであることを特徴とする請求項18~23及び26のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 18 to 23 and 26, wherein the rubber member is a tread undercushion.
  28.  ゴム部材がキャップ・ベース構造のトレッドにおけるベースゴムであることを特徴とする請求項18~23及び26のいずれかに記載の空気入りタイヤ。 The pneumatic tire according to any one of claims 18 to 23 and 26, wherein the rubber member is a base rubber in a tread having a cap-base structure.
PCT/JP2012/067496 2011-07-08 2012-07-09 Rubber composition for tires and pneumatic tire WO2013008787A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-152008 2011-07-08
JP2011152008A JP5913847B2 (en) 2011-07-08 2011-07-08 Rubber composition for tire
JP2011-211721 2011-09-28
JP2011211721A JP5992156B2 (en) 2011-09-28 2011-09-28 Pneumatic tire
JP2011211930A JP2013072004A (en) 2011-09-28 2011-09-28 Rubber composition for tread and tire using the same
JP2011-211930 2011-09-28
JP2011-222664 2011-10-07
JP2011222664A JP2013082280A (en) 2011-10-07 2011-10-07 Pneumatic tire

Publications (1)

Publication Number Publication Date
WO2013008787A1 true WO2013008787A1 (en) 2013-01-17

Family

ID=47506071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067496 WO2013008787A1 (en) 2011-07-08 2012-07-09 Rubber composition for tires and pneumatic tire

Country Status (1)

Country Link
WO (1) WO2013008787A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438452A (en) * 1987-08-05 1989-02-08 Bridgestone Corp Rubber composition
JP2000044732A (en) * 1998-07-29 2000-02-15 Sumitomo Rubber Ind Ltd Rubber composition for tire tread
JP2000079807A (en) * 1998-07-08 2000-03-21 Bridgestone Corp Steel code reinforced-pneumatic tire
JP2001064010A (en) * 1999-08-30 2001-03-13 Agency Of Ind Science & Technol Synthetic method of tubular aluminum silicate from high concentration inorganic solution
JP2002013083A (en) * 2000-06-29 2002-01-18 Bridgestone Corp Rubber-steel cord composite
JP2002146097A (en) * 2000-11-16 2002-05-22 Tokai Carbon Co Ltd Carbon black and its rubber composition
JP2004091716A (en) * 2002-09-03 2004-03-25 Bridgestone Corp Tire
JP2007182520A (en) * 2006-01-10 2007-07-19 Sumitomo Rubber Ind Ltd Rubber composition for tire and method for producing the same
WO2009084632A1 (en) * 2007-12-27 2009-07-09 National Institute Of Advanced Industrial Science And Technology Aluminum silicate complex, and high-performance adsorbent comprising the same
JP2010189613A (en) * 2009-02-20 2010-09-02 Bridgestone Corp Tire
JP2010260920A (en) * 2009-04-30 2010-11-18 Bridgestone Corp Tire

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438452A (en) * 1987-08-05 1989-02-08 Bridgestone Corp Rubber composition
JP2000079807A (en) * 1998-07-08 2000-03-21 Bridgestone Corp Steel code reinforced-pneumatic tire
JP2000044732A (en) * 1998-07-29 2000-02-15 Sumitomo Rubber Ind Ltd Rubber composition for tire tread
JP2001064010A (en) * 1999-08-30 2001-03-13 Agency Of Ind Science & Technol Synthetic method of tubular aluminum silicate from high concentration inorganic solution
JP2002013083A (en) * 2000-06-29 2002-01-18 Bridgestone Corp Rubber-steel cord composite
JP2002146097A (en) * 2000-11-16 2002-05-22 Tokai Carbon Co Ltd Carbon black and its rubber composition
JP2004091716A (en) * 2002-09-03 2004-03-25 Bridgestone Corp Tire
JP2007182520A (en) * 2006-01-10 2007-07-19 Sumitomo Rubber Ind Ltd Rubber composition for tire and method for producing the same
WO2009084632A1 (en) * 2007-12-27 2009-07-09 National Institute Of Advanced Industrial Science And Technology Aluminum silicate complex, and high-performance adsorbent comprising the same
JP2010189613A (en) * 2009-02-20 2010-09-02 Bridgestone Corp Tire
JP2010260920A (en) * 2009-04-30 2010-11-18 Bridgestone Corp Tire

Similar Documents

Publication Publication Date Title
US8293833B2 (en) Rubber composition and tire having tread and/or sidewall using same
JP4663687B2 (en) Rubber composition and tire having tread and / or sidewall using the same
JP5006617B2 (en) Rubber composition and tire having tread using the same
EP1582561B1 (en) Rubber composition for bead and pneumatic tire
EP2042544B1 (en) Manufacturing method of rubber composition and pneumatic tire
RU2614121C1 (en) Tire
EP2019123B1 (en) Rubber composition for bead apex and tire obtained with the same
JP5451125B2 (en) Rubber composition and tire for sidewall reinforcing layer
WO2016021467A1 (en) Rubber composition and tire
JP2008031244A (en) Tire tread rubber composition and pneumatic tire using the same
EP1803766B1 (en) Rubber composition for coating textile cord and tire using the same
EP1792937B1 (en) Rubber composition for a tire and tire having a tread using the same
JP2007284575A (en) Rubber composition for tire sidewall and pneumatic tire
JP2007284542A (en) Rubber composition and pneumatic tire
JP5211886B2 (en) Pneumatic tire
JP2004143187A (en) Rubber composition and pneumatic tire
JP4268946B2 (en) Side reinforcing rubber composition and run-flat tire using the same
JP4805556B2 (en) Rubber composition for tire
WO2013008787A1 (en) Rubber composition for tires and pneumatic tire
JP5457006B2 (en) Rubber composition and tire for base tread
JP2008297457A (en) Rubber composition for sidewall reinforcing layer of run flat tire
JP2013072004A (en) Rubber composition for tread and tire using the same
JP5913847B2 (en) Rubber composition for tire
JP7471881B2 (en) Method for producing rubber composition
EP4275916A1 (en) Tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811797

Country of ref document: EP

Kind code of ref document: A1