KR101020106B1 - Three dimensional nanostructures of hydroxy phosphate-based materials and synthesis methods thereof - Google Patents

Three dimensional nanostructures of hydroxy phosphate-based materials and synthesis methods thereof Download PDF

Info

Publication number
KR101020106B1
KR101020106B1 KR1020080016915A KR20080016915A KR101020106B1 KR 101020106 B1 KR101020106 B1 KR 101020106B1 KR 1020080016915 A KR1020080016915 A KR 1020080016915A KR 20080016915 A KR20080016915 A KR 20080016915A KR 101020106 B1 KR101020106 B1 KR 101020106B1
Authority
KR
South Korea
Prior art keywords
dimensional nanostructure
compound
dimensional
nanostructure
nanostructures
Prior art date
Application number
KR1020080016915A
Other languages
Korean (ko)
Other versions
KR20090091571A (en
Inventor
조인선
배신태
이상욱
노준홍
조진무
안재설
임동균
노희석
노태훈
곽채현
홍국선
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020080016915A priority Critical patent/KR101020106B1/en
Publication of KR20090091571A publication Critical patent/KR20090091571A/en
Application granted granted Critical
Publication of KR101020106B1 publication Critical patent/KR101020106B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0038Manufacturing processes for forming specific nanostructures not provided for in groups B82B3/0014 - B82B3/0033
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 인산염계 수산화물의 삼차원 나노구조체 및 그 제조방법에 관한 것으로, 촉매 또는 광촉매로서 유해물질을 분해시킬 수 있는 삼차원 나노구조체를 제공하며, 이를 간단한 방법을 통하여 제조할 수 있는 삼차원 나노구조체의 제조방법을 제공함으로써, 경제적일뿐만 아니라 광흡수특성과 표면특성을 개선하며, 비표면적이 크고 화학적, 물리적으로 안정한 삼차원 나노구조체를 제공할 수 있다.The present invention relates to a three-dimensional nanostructure of the phosphate-based hydroxide and a method for manufacturing the same, to provide a three-dimensional nanostructure that can decompose harmful substances as a catalyst or photocatalyst, the production of a three-dimensional nanostructure that can be produced by a simple method By providing a method, it is possible to provide a three-dimensional nanostructure that is economical, improves light absorption and surface properties, and has a large specific surface area and is chemically and physically stable.

Description

인산염계 수산화물의 삼차원 나노구조체 및 그 제조방법{Three dimensional nanostructures of hydroxy phosphate-based materials and synthesis methods thereof}Three dimensional nanostructures of hydroxy phosphate-based materials and synthesis methods

본 발명은 인산염계 수산화물의 삼차원 나노구조체 및 그 제조방법에 관한 것으로, 촉매 또는 광촉매로서 유해물질을 분해시킬 수 있는 삼차원 나노구조체를 제공하며, 이를 간단한 방법을 통하여 제조할 수 있는 삼차원 나노구조체의 제조방법에 관한 것이다.The present invention relates to a three-dimensional nanostructure of the phosphate-based hydroxide and a method for manufacturing the same, to provide a three-dimensional nanostructure that can decompose harmful substances as a catalyst or photocatalyst, the production of a three-dimensional nanostructure that can be produced by a simple method It is about a method.

나노 기술은 벌크 크기에서는 나타나지 않는 새로운 현상을 찾아내고 그 현상을 이해하고 또 이를 직접 조작하려는 기술로서, 이러한 나노 기술은 차세대 메모리칩 및 인체에 삽입될 수 있는 나노머신 개발, 생명 공학분야 등 최첨단 과학 기술분야에서는 필수적인 연구로 인식되고 있다. 나노구조(nanostructure)는 일반적으로 1 내지 100nm 범위의 크기를 가진 나노입자 (nanoparticles), 나노막대(nanorods), 나노판(nanoplates) 등이 결합되어 이루어진 구조물(architecture)을 의미하며, 이러한 나노구조는 촉매, 의약분야, 페인트 산업, 자기응집(self-assembly) 소재, 비선형 광학소재 등 여러 분야에 걸쳐 광범위하게 사용될 수 있 다. 또한 나노구조체를 이룰 경우 그 크기가 수백nm ~ 수㎛ 정도로 커지기 때문에 다루기 쉽고, 또한 나노입자 일 때 나타냈던 여러 가지 성질을 그대로 가지고 있기 때문에 매우 유용하다. 이에 따라, 나노구조체에 대한 연구가 활발히 진행되고 있다. Nanotechnology is a technology that seeks to find new phenomena that do not appear in bulk size, to understand them, and to manipulate them directly.These nano technologies are cutting-edge science, including the development of next-generation memory chips and nanomachines that can be inserted into the human body. It is recognized as an essential research in the technical field. Nanostructure generally refers to an architecture in which nanoparticles, nanorods, nanoplates, etc., having sizes ranging from 1 to 100 nm are combined. It can be widely used in various fields such as catalysts, pharmaceuticals, paint industry, self-assembly materials and nonlinear optical materials. In addition, when the nanostructure is formed, the size of the nanoparticles is increased to about several hundred nm to several μm, so it is easy to handle, and it is very useful because it retains various properties that were exhibited when the nanoparticles were used. Accordingly, research on nanostructures is being actively conducted.

하지만 이러한 나노크기 입자들이 결합되어 이루어진 나노구조체를 제조하는데 있어서 계면활성제와 지지체와 같은 복잡한 공정이 필요할 뿐만아니라 그 형상 조절이 쉽지 않고 추가적인 세척공정이 불가피하다. 따라서 나노구조체의 합성에 관한 연구는 많이 보고되고 있으나, 그 제조된 양이 수 밀리그램 정도여서 실제 산업에 이용하기에는 많은 문제점이 있는 실정이다. However, in order to prepare a nanostructure consisting of these nano-size particles are combined, complex processes such as surfactants and supports are not only necessary, but also easy to control the shape and additional washing process is inevitable. Therefore, a lot of studies on the synthesis of nanostructures have been reported, but the amount produced is about several milligrams, there are many problems to use in the actual industry.

본 발명은 실내등, 태양광과 같은 가시광을 포함하는 빛에 감응할 수 있는 광촉매로써 적용되어 실내에서도 휘발성 유기화합물이나 오/폐수와 같은 환경오염물질을 분해할 수 있는 삼차원 나노구조체를 제공하고자 한다.The present invention is to provide a three-dimensional nanostructure that can be applied as a photocatalyst that can be sensitive to light including visible light, such as indoor light, sunlight can decompose environmental pollutants such as volatile organic compounds or waste water / waste water in the room.

또한 본 발명은 인산염계 수산화물을 이용하여 계면활성제 또는 지지체를 사용하지 않고 간단한 공정으로 나노구조체를 제조할 수 있는 삼차원 나노구조체 제조방법을 제공하고자 한다.In another aspect, the present invention is to provide a three-dimensional nanostructure manufacturing method that can be prepared in a simple process using a phosphate-based hydroxide without using a surfactant or a support.

본 발명은 바람직한 제 1 구현예로서, 금속화합물과 인화합물을 칭량하여 혼합하는 단계; 혼합된 화합물의 페하(pH)를 3~9가 되도록 조절하는 단계; 및 페하(pH)가 조절된 화합물을 반응시키는 단계를 포함하여 하기 식 1의 화합물을 제조하는 삼차원 나노구조체 제조방법을 제공한다.According to a first preferred embodiment of the present invention, there is provided a method comprising: weighing and mixing a metal compound and a phosphorus compound; Adjusting the pH of the mixed compound to 3-9; And it provides a method for producing a three-dimensional nanostructure for producing a compound of the formula 1 including the step of reacting the pH controlled peha (pH).

<식 1><Equation 1>

(A2-xA'x)PO4OH(A 2-x A ' x ) PO 4 OH

상기 식에서, A 및 A'는 전이금속 중 선택된 서로 같거나 다른 금속이며, x는 0 ≤ x ≤ 2임. Wherein A and A 'are the same or different metals selected from transition metals, and x is 0 ≦ x ≦ 2.

상기 구현예에서, 전이금속은 Cu, Ni, Co, Fe, Zn 및 Mn 중 선택된 것일 수 있다.In the above embodiment, the transition metal may be selected from Cu, Ni, Co, Fe, Zn and Mn.

상기 구현예에서, 페하(pH)가 조절된 화합물을 반응시키는 단계는 40~90℃에서 반응시키는 것일 수 있다.In the above embodiment, the step of reacting the compound under pH (pH) may be to react at 40 ~ 90 ℃.

본 발명은 바람직한 제 2 구현예로서, 상기의 제조방법으로 제조된 삼차원 나노구조체를 제공한다.As a second preferred embodiment of the present invention, it provides a three-dimensional nanostructure produced by the above production method.

본 발명은 바람직한 제 3 구현예로서, 하기 식 1로 표현되는 삼차원 나노구조체를 제공한다.As a third preferred embodiment of the present invention, it provides a three-dimensional nanostructure represented by the following formula (1).

<식 1><Equation 1>

(A2-xA'x)PO4OH(A 2-x A ' x ) PO 4 OH

상기 식에서, A 및 A'는 전이금속 중 선택된 서로 같거나 다른 금속이며, x는 0 ≤ x ≤ 2임.Wherein A and A 'are the same or different metals selected from transition metals, and x is 0 ≦ x ≦ 2.

상기 구현예에서, 전이금속은 Cu, Ni, Co, Fe, Zn 및 Mn 중 선택된 것일 수 있다.In the above embodiment, the transition metal may be selected from Cu, Ni, Co, Fe, Zn and Mn.

상기 구현예에 따른 삼차원 나노구조체는 입경이 1㎛~5㎛인 것일 수 있다.Three-dimensional nanostructures according to the embodiment may have a particle diameter of 1㎛ ~ 5㎛.

상기 구현예에 따른 삼차원 나노구조체는 비표면적이 1~100㎡/g인 것일 수 있다.Three-dimensional nanostructure according to the embodiment may have a specific surface area of 1 ~ 100㎡ / g.

상기 구현예에 따른 삼차원 나노구조체는 광흡수파장이 380nm 이상인 것일 수 있다.Three-dimensional nanostructure according to the embodiment may have a light absorption wavelength of 380nm or more.

본 발명은 바람직한 제 4 구현예로서, 상기의 삼차원 나노구조체를 포함하는 광촉매 조성물을 제공한다.As a fourth preferred embodiment, the present invention provides a photocatalyst composition comprising the three-dimensional nanostructure.

상기 구현예에서, 상기 삼차원 나노구조체에 대하여 산화촉매(H2O2)를 0.1~5중량% 포함하는 것일 수 있다.In the above embodiment, the oxidation catalyst (H 2 O 2 ) may be 0.1 to 5% by weight based on the three-dimensional nanostructure.

본 발명은 광흡수 특성 및 표면특성이 개선되어 형광등, 태양광과 같은 가시광을 포함하는 빛에 감응할 수 있는 광촉매로써 적용되어 실내에서도 휘발성 유기화합물이나 오/폐수와 같은 환경오염물질을 분해할 수 있는 삼차원 나노구조체를 제공할 수 있다.The present invention is applied as a photocatalyst capable of responding to light including visible light such as fluorescent light and solar light by improving the light absorption characteristics and surface properties can decompose environmental pollutants such as volatile organic compounds and waste water / waste water indoors Can provide a three-dimensional nanostructure.

또한 본 발명은 인산염계 수산화물을 이용하여 계면활성제 또는 지지체를 사용하지 않고 간단한 공정으로 나노구조체를 제조할 수 있는 삼차원 나노구조체 제조방법을 제공할 수 있다.In another aspect, the present invention can provide a three-dimensional nanostructure manufacturing method that can be produced in a simple process using a phosphate-based hydroxide without using a surfactant or a support.

본 발명은 하기 식 1로 표현되는 삼차원 나노구조체에 관한 것이다.The present invention relates to a three-dimensional nanostructure represented by the following formula (1).

<식 1><Equation 1>

(A2-xA'x)PO4OH(A 2-x A ' x ) PO 4 OH

상기 식에서, A 및 A'는 전이금속 중 선택된 서로 같거나 다른 금속이며, x는 0 ≤ x ≤ 2임. Wherein A and A 'are the same or different metals selected from transition metals, and x is 0 ≦ x ≦ 2.

상기 전이금속은 Cu, Ni, Co, Fe, Zn 및 Mn 중 선택된 것이 광흡수특성 및 흡착특성을 증진시킨다는 점에서 바람직하다.The transition metal is preferably selected from Cu, Ni, Co, Fe, Zn and Mn in that it enhances light absorption characteristics and adsorption characteristics.

상기 화학식 1로 표현되는 삼차원 나노구조체는 인산염계 수산화물로서 구조내에 수산기를 포함하는 것을 특징으로 하고 다양한 전이금속을 치환할 수 있으며 화학적, 물리적으로 안정한 물질이다. The three-dimensional nanostructure represented by the formula (1) is a phosphate-based hydroxide, characterized in that it includes a hydroxyl group in the structure and can substitute a variety of transition metals and is a chemical and physically stable material.

이 때 상기 식 1의 화합물은 분말을 다루기 쉽고 또한 높은 비표면적을 감안하여 1㎛~5㎛인 삼차원 나노구조체인 것이 바람직하다. In this case, the compound of Formula 1 is preferably a three-dimensional nanostructure of 1㎛ ~ 5㎛ in consideration of the high specific surface area and easy to handle the powder.

또한 촉매반응이 표면반응인 것을 감안하여 비표면적이 1~100㎡/g인 것이 바람직하고 더욱 바람직하게는 20~100 m2/g로 큰 것이 좋다.In addition, it is preferable that the specific surface area is 1 to 100 m 2 / g, more preferably 20 to 100 m 2 / g in view of the catalytic reaction being a surface reaction.

그리고 본 발명의 삼차원 나노구조체는 광흡수파장이 380nm 이상인 것일 수 있는데, 삼차원 나노구조가 아닌 인산염계 수산화물의 경우 광흡수파장이 380㎚에 미치지 못하여 가시광을 흡수하지 못하였었으나, 본 발명의 삼차원 나노구조체는 그 이상의 파장의 광을 흡수할 수 있어 가시광이나 형광등에도 반응하여 유해물질을 분해할 수 있으므로 산업적으로 보다 넓은 범위에 활용될 수 있다.And the three-dimensional nanostructure of the present invention may have a light absorption wavelength of more than 380nm, in the case of the phosphate-based hydroxide which is not a three-dimensional nanostructure light absorption wavelength did not reach 380nm, but the three-dimensional nanostructure of the present invention Since the structure can absorb light of more wavelengths and can react to visible or fluorescent light to decompose harmful substances, it can be utilized in a wider range of industries.

상기 식 1로 표현되는 화합물을 제조하는 방법은 액상법을 이용할 수 있는데, 먼저 출발물질로 금속화합물과 인화합물을 칭량하여 각각 증류수에 녹인 후 두 용액을 혼합한다. 이 때 금속화합물과 인화합물은 몰비가 (A+A'):P = 2:1되도록 칭량한다.Method for preparing a compound represented by the formula 1 can be used a liquid phase method, first weighing the metal compound and phosphorus compound as a starting material and dissolved in distilled water, respectively, and then mixed the two solutions. At this time, the metal compound and the phosphorus compound are weighed such that the molar ratio is (A + A '): P = 2: 1.

상기 금속화합물로는 금속질화물 또는 금속염화물이 바람직하며, 인화합물로 는 인산(H3PO4) 또는 암모늄포스페이트((NH4)2HPO4 or NH4H2PO4))를 사용할 수 있다. The metal compound is preferably a metal nitride or metal chloride, and as the phosphorus compound, phosphoric acid (H 3 PO 4 ) or ammonium phosphate ((NH 4 ) 2 HPO 4 or NH 4 H 2 PO 4 )) may be used.

상기 금속질화물로는, 예를들면, Cu(NO3)2ㆍ3H2O, Ni(NO3)2ㆍ6H2O, Co(NO3)2ㆍ6H2O, Zn(NO3)2ㆍ6H2O, Mn(NO3)2ㆍ6H2O, FeNO3)3ㆍ9H2O 등을 사용할 수 있으며, 상기 금속염화물로는, 예를들면, CuCl2ㆍ2H2O, NiCl2ㆍ6H2O, CoCl2ㆍ6H2O 등을 사용할 수 있다.Examples of the metal nitrides include Cu (NO 3 ) 2 3H 2 O, Ni (NO 3 ) 2 6H 2 O, Co (NO 3 ) 2 6H 2 O, Zn (NO 3 ) 2. 6H 2 O, Mn (NO 3 ) 2 .6H 2 O, FeNO 3 ) 3 .9H 2 O and the like can be used. Examples of the metal chlorides include CuCl 2 2H 2 O, NiCl 2 6H 2 O, and the like. , CoCl 2 .6H 2 O and the like can be used.

상기 혼합된 화합물의 페하(pH)를 3~9가 되도록 조절하도록 한다. 이 때 삼차원 나노구조체의 형상을 조절하기위해 산 또는 염기 적정용액을 사용하여 페하(pH)를 조절하는 것이 바람직하다. 상기 적정용액은 암모니아수(NH4OH), 소듐하이드록사이드용액 (NaOH), 포타슘하이드록사이드용액(KOH), 질산용액(HNO3) 등을 두루 사용할 수 있다. The pH of the mixed compound is adjusted to be 3-9. At this time, in order to control the shape of the three-dimensional nanostructure, it is preferable to adjust the pH (pH) using an acid or base titration solution. The titration solution may include ammonia water (NH 4 OH), sodium hydroxide solution (NaOH), potassium hydroxide solution (KOH), nitric acid solution (HNO 3 ) and the like.

이상의 방법으로 페하(pH)가 조절된 화합물을 40~90℃에서 1~24시간 반응시킨다. 이 단계에서는 결정화가 일어나도록 가열하는 단계로써 수열합성법과 같은 고온/고압을 사용하지 않고, 상압 및 비교적 저온, 즉 40~90℃에서 합성하는 것이 비표면적인 큰 삼차원 나노구조체를 얻을 수 있는데 있어서 바람직하다. By the above method, the compound controlled by pH (pH) is reacted at 40 to 90 ° C. for 1 to 24 hours. In this step, it is preferable to synthesize at a normal pressure and relatively low temperature, that is, 40 to 90 ° C., without using high temperature / high pressure, such as hydrothermal synthesis, to heat crystallization to obtain a large surface specific three-dimensional nanostructure. Do.

이 후 최종적으로 분리, 세척 및 건조를 통해 분말을 얻는 단계를 포함할 수 있는데, 반응이 끝난 후 얻어진 슬러리를 원심분리기를 사용하거나 단순 침전을 통하여 분리할 수 있으며, 이를 증류수 등으로 세척하고, 동결건조나 오븐건조의 방 법으로 건조할 수 있다.Thereafter, finally, may include the step of obtaining a powder through separation, washing and drying, the slurry obtained after the reaction can be separated using a centrifuge or by a simple precipitation, it is washed with distilled water and the like, and frozen It can be dried by drying or oven drying.

상기 방법으로 제조된 화합물은 삼차원 나노구조체의 형상이 되는데 적정 페하 또는 적정용액에 따라 막대형, 나노막대가 결합된 밤송이형, 엘립소이드형, 꽃형, 호두형 등의 다양한 형상을 갖는다(도 2). The compound prepared by the above method has a shape of a three-dimensional nanostructure, and has various shapes such as rod-shaped, nanorod-coupled chestnut-shaped, ellipsoidal, floral, and walnut-type according to a proper pH or a proper solution (FIG. 2). ).

상기와 같이 제조된 나노구조체는 광촉매로 적용할 수 있는데, 이를 이용하여 다양한 유해물질분해에 적용할 수 있다. 예를 들면, 페놀, 염료 등의 액상분해의 경우 상기 분말을 포함하는 수용액을 준비하고 이에 형광등, 할로겐램프, 제논램프, 태양광 등 다양한 가시광선을 포함하는 빛 에너지를 가하여 유해물질분해에 적용할 수 있다. Nanostructures prepared as described above can be applied as a photocatalyst, it can be applied to the decomposition of various harmful substances using this. For example, in the case of liquid phase decomposition such as phenol and dye, an aqueous solution containing the powder may be prepared and applied to the decomposition of harmful substances by adding light energy including various visible rays such as fluorescent lamps, halogen lamps, xenon lamps, and sunlight. Can be.

한편, 본 발명의 삼차원 나노구조체는 단독으로 광촉매로 사용할 수도 있으며, 산화촉매를 더 첨가하여 사용할 수도 있다. 이 경우 산화촉매를 상기 식 1의 삼차원 나노구조체에 대하여 0.1~5 중량% 포함하는 것이 바람직하다. 5 중량%이상 첨가 될 경우 급격한 반응에 의한 열 때문에 바람직하지 않다. 상기 산화촉매는 특별히 한정되는 것은 아니나, 과산화수소(H2O2), 산소(O2)등을 사용하는 것이 바람직하다.Meanwhile, the three-dimensional nanostructure of the present invention may be used alone as a photocatalyst, or may be used by further adding an oxidation catalyst. In this case, the oxidation catalyst is preferably included 0.1 to 5% by weight based on the three-dimensional nanostructure of the formula (1). If more than 5% by weight is added, it is not preferable because of the heat caused by the rapid reaction. The oxidation catalyst is not particularly limited, but hydrogen peroxide (H 2 O 2 ), oxygen (O 2 ), or the like is preferably used.

상기 분말을 포함하는 수용액의 형태 이외에도 기판에 코팅하는 방법을 사용하여도 좋다. 또한 아세트알데히드, 악취물질 등과 같은 기상분해의 경우 분말형태, 기판에 코팅하는 방법, 반응용기에 코팅하는 방법과 같은 방법을 두루 포함하 여 사용할 수도 있다.In addition to the form of the aqueous solution containing the powder, a method of coating the substrate may be used. In addition, in the case of gas phase decomposition such as acetaldehyde, odorous substances, etc., it may be used including a powder form, a method of coating on a substrate, a method of coating on a reaction vessel.

본 발명에 의해 제조된 삼차원 나노구조체의 경우, 화학적으로 안정할 뿐만 아니라, 촉매반응 전후에 변화가 없으며 액상 혹은 기상 유해물질 분해에 효과적으로 적용할 수 있는 장점이 있다.In the case of the three-dimensional nanostructure manufactured by the present invention, it is not only chemically stable, there is no change before and after the catalytic reaction, and there is an advantage that it can be effectively applied to decomposition of liquid or gaseous harmful substances.

이하, 본 발명의 실시예로 더욱 상세히 설명하나, 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다.Hereinafter, examples of the present invention will be described in more detail, but the scope of the present invention is not limited to these examples.

<실시예 1~21, 비교예 1~3><Examples 1-21, Comparative Examples 1-3>

표 1의 조성대로 하기 식 1로 표현되는 조성물을 제조하였으며, 실시예 1~11, 비교예 1~3은 하기 식 1에서 x는 0인 경우이며, 실시예 12~21은 x가 0이 아닌 경우이다. 그 제조 공정과 제조된 화합물의 비표면적, 광흡수특성, 분해특성을 평가하여 표 1에 나타내었다. The composition represented by the following formula 1 was prepared according to the composition of Table 1, Examples 1 to 11, Comparative Examples 1 to 3 is a case in which x is 0 in the following formula 1, Examples 12 to 21 is not x is 0 If it is. The preparation process and the specific surface area, light absorption characteristics, and decomposition characteristics of the prepared compound were evaluated and shown in Table 1.

<식 1><Equation 1>

(A2-xA'x)PO4OH(A 2-x A ' x ) PO 4 OH

상기 식에서, A 및 A'는 전이금속 중 선택된 서로 같거나 다른 금속이며, x는 0 ≤ x ≤ 2임. Wherein A and A 'are the same or different metals selected from transition metals, and x is 0 ≦ x ≦ 2.

우선 출발물질로 순도 99.9%의 A에 해당하는 금속질화물, 예를 들면, Cu(NO3)2ㆍ3H2O, Ni(NO3)2ㆍ6H2O, Co(NO3)2ㆍ6H2O, Zn(NO3)2ㆍ6H2O, Mn(NO3)2ㆍ6H2O, FeNO3)3ㆍ9H2O 또는 금속염화물, 예를들면, CuCl2ㆍ2H2O, NiCl2ㆍ6H2O, CoCl2ㆍ6H2O 등과 암모늄포스페이트((NH4)2HPO4)또는 인산(H3PO4)중에서 선택된 하나를 (A+A'):P = 2:1되도록 칭량하고, 각각 증류수에 교반하면서 녹였다. 그 다음 금속질화물 또는 금속염화물 용액을 인산 또는 암모늄포스페이트 용액에 섞은 후 적정용액, 예를 들면, 암모니아수(NH4OH), 소듐하이드록사이드용액 (NaOH), 포타슘하이드록사이드용액(KOH), 질산용액(HNO3) 등을 사용하여 페하를 조절하였다. 10분에서 30분정도 더 교반한 다음 적정 온도로 가열하여 반응시켰다. 반응이 끝난 후 얻어진 슬러리를 원심분리 또는 단순 침전을 통해 분리한 후 증류수로 세척하고 동결건조기나 90℃ 오븐에서 건조하는 과정을 거쳤다. 완전히 건조된 분말을 X-선회절(XRD), 전자주사현미경(SEM) 분석을 통해 상확인 및 삼차원 나노구조형상 유무를 확인하였다. 제조된 다양한 화합물의 분말 SEM사진 중 일부를 도 2에 나타내었다. First, a metal nitride having a purity of 99.9% A as a starting material, for example, Cu (NO 3 ) 2 ㆍ 3H 2 O, Ni (NO 3 ) 2 ㆍ 6H 2 O, Co (NO 3 ) 2 ㆍ 6H 2 O, Zn (NO 3 ) 2 ㆍ 6H 2 O, Mn (NO 3 ) 2 ㆍ 6H 2 O, FeNO 3 ) 3 · 9H 2 O or metal chlorides, such as CuCl 2 2H 2 O, NiCl 2 6H 2 One selected from O, CoCl 2 6H 2 O, and ammonium phosphate ((NH 4 ) 2 HPO 4 ) or phosphoric acid (H 3 PO 4 ) is weighed such that (A + A '): P = 2: 1, respectively, and distilled water It was dissolved while stirring. The metal nitride or metal chloride solution is then mixed with a phosphoric acid or ammonium phosphate solution and then titrated, such as aqueous ammonia (NH 4 OH), sodium hydroxide (NaOH), potassium hydroxide (KOH), nitric acid PH was adjusted using a solution (HNO 3 ) and the like. The reaction was further stirred for 10 to 30 minutes and then heated to an appropriate temperature. After the reaction, the resulting slurry was separated by centrifugation or simple precipitation, washed with distilled water, and dried in a freeze dryer or an oven at 90 ° C. The completely dried powder was identified through X-ray diffraction (XRD) and electron scanning microscope (SEM) to confirm phase identification and the presence of three-dimensional nanostructures. Some of the powder SEM photographs of various compounds prepared are shown in FIG. 2.

빛을 이용한 액상분해의 경우 상기 삼차원 나노구조체 분말 0.3g을 칭량하고, 쿼츠 글래스 용기(120 ml)에 Methylene blue (MB) (47.8 μmol) 100 ml 용액에 넣은 후 흡착/탈착 평형상태를 얻기 위해 어둠속에서 약 30분간 교반하였다. 그 후 420 nm UV cut-off 필터가 장착된 300와트 제논램프장비(Max302, Ashahi, Japan)를 사용하여 빛을 조사한 다음, 일정시간 간격으로 샘플링하고, 원심분리 또는 필터링 등으로 용액 속에 남아 있는 분말을 제거한 후 UV-vis spectroscopy로 분해정도를 측정하였다.In the case of liquid phase decomposition using light, 0.3 g of the three-dimensional nanostructure powder was weighed and placed in a 100 ml solution of Methylene blue (MB) (47.8 μmol) in a quartz glass vessel (120 ml), followed by darkness to obtain adsorption / desorption equilibrium. Stir for about 30 minutes. Then, the light was irradiated using a 300-watt xenon lamp unit (Max302, Ashahi, Japan) equipped with a 420 nm UV cut-off filter, sampled at regular intervals, and the powder remaining in the solution by centrifugation or filtering. After removal, the degree of degradation was measured by UV-vis spectroscopy.

또한 상기 광촉매를 이용한 분해 반응에서 빛을 조사하기 직전에 30%의 과산화수소(H2O2)를 상기 나노구조체에 대하여 0.3중량% 첨가할 경우 그 분해 효율이 급격히 증가하였다. 이는 상기 조성물이 과산화수소를 분해하여 산소(O2)와 물(H2O)을 생산하는데 촉매로 쓰여서 이 과정에서 생성된 하이드록시라디칼(OHㆍ)이 분해반응을 촉진시킨 것이다.In addition, when 0.3% by weight of 30% hydrogen peroxide (H 2 O 2 ) was added to the nanostructure immediately before irradiation with light in the decomposition reaction using the photocatalyst, the decomposition efficiency increased rapidly. This is because the composition decomposes hydrogen peroxide to produce oxygen (O 2 ) and water (H 2 O) as a catalyst, and the hydroxy radicals (OH ·) produced in this process promote the decomposition reaction.

실시예Example A2-xA'XPO4OHA 2-x A ' X PO 4 OH pHpH 형상shape 광흡수
파장(nm)
Light absorption
Wavelength (nm)
비표면적
(m2/g)
Specific surface area
(m 2 / g)
과산화수소무첨가시 Without hydrogen peroxide 과산화수소
첨가시 (0.3 wt%)
Hydrogen peroxide
When added (0.3 wt%)
xx AA A'A ' 3시간 후 MB분해효율 (%)MB degradation efficiency after 3 hours (%) 3시간 후 MB분해효율 (%)MB degradation efficiency after 3 hours (%) 실시예1Example 1 00 CuCu -- 44 밤송이형Chestnut type 395,650395,650 3.23.2 7575 8989 실시예2Example 2 -- 55 엘립소이드형Ellipsoid type 410,650410,650 17.017.0 8080 9090 실시예3Example 3 -- 77 호두형Walnut 530530 37.037.0 9898 100100 실시예4Example 4 00 CoCo -- 44 밤송이형Chestnut type 430,670430,670 4.24.2 3535 5050 실시예5Example 5 -- 55 꽃형Flower 460,670460,670 8.18.1 4444 5353 실시예6Example 6 -- 77 호두형Walnut 462,678462,678 30.230.2 9090 9898 실시예7Example 7 00 NiNi -- 44 나노막대형Nano rod type 370,560370,560 2.22.2 2222 4343 실시예8Example 8 -- 55 엘립소이드형Ellipsoid type 380,560380,560 3.13.1 4040 5252 실시예9Example 9 -- 88 호두형Walnut 400,560400,560 24.324.3 8080 9090 실시예10Example 10 00 ZnZn -- 77 꽃형Flower 380380 4.34.3 6060 6565 실시예11Example 11 00 MnMn -- 77 꽃형Flower 420, 630420, 630 2.52.5 2020 3030 실시예12Example 12 0.10.1 CuCu NiNi 77 호두형Walnut 560560 35.035.0 9797 100100 실시예13Example 13 CoCo 77 530530 28.528.5 9999 100100 실시예14Example 14 ZnZn 77 500500 25.225.2 9595 100100 실시예15Example 15 FeFe 77 545,695545,695 39.339.3 9999 100100 실시예16Example 16 0.30.3 CuCu NiNi 77 호두형Walnut 565565 32.132.1 8080 9191 실시예17Example 17 CoCo 77 520520 27.227.2 7575 8585 실시예18Example 18 FeFe 77 540,690540,690 38.538.5 9999 100100 실시예19Example 19 0.50.5 CuCu NiNi 77 호두형Walnut 565565 33.033.0 8080 8585 실시예20Example 20 CoCo 77 500500 27.127.1 7070 7575 실시예21Example 21 ZnZn 77 500,690500,690 33.533.5 9494 9595 비교예1Comparative Example 1 00 CuCu -- 2.52.5 마이크로막대형Micro Rod Type 370370 0.80.8 1010 2525 비교예2Comparative Example 2 00 CoCo -- 2.52.5 마이크로막대형Micro Rod Type 410,670410,670 1.81.8 1515 3030 비교예3Comparative Example 3 00 NiNi -- 2.52.5 마이크로막대형Micro Rod Type 380,560380,560 1.01.0 2020 3030

표 1에서 알 수 있듯이, 페하가 2.5인 비교예 1 내지 3의 경우에는 나노구조체가 아닌 긴 막대형의 구조물이 얻어졌으며, 페하가 증가할수록 둥근형태의 나노입자(20~50nm)가 뭉쳐져서 생긴 호두형상 또는 꽃형상의 나노구조체가 얻어졌다. 또한 높은 페하에서 제조된 나노구조체가 더 많은 가시광을 흡수하였다. 비교예 1 내지 3에서 알 수 있듯이, 나노구조체가 아닌 경우에는 비표면적이 매우 낮고 광흡수 특성도 좋지 않다. 이로 인해 분해효율이 매우 낮음을 알 수 있다. 그리고 Cu2PO4OH가 가장 분해효과가 좋았으며 그중에서도 페하가 7에서 제조된 호두형상의 나노구조체일 경우 높은 비표면적과 광흡수특성이 좋아져서 분해효율이 가장 좋게 나타났다. As can be seen in Table 1, in the case of Comparative Examples 1 to 3 with a peh 2.5, a long rod-shaped structure was obtained instead of a nanostructure, and as the pehs increased, rounded nanoparticles (20-50 nm) were formed by agglomeration. Walnut- or flower-shaped nanostructures were obtained. In addition, nanostructures made under high pH absorbed more visible light. As can be seen from Comparative Examples 1 to 3, in the case of non-nanostructures, the specific surface area is very low and the light absorption characteristics are not good. This shows that the decomposition efficiency is very low. Cu 2 PO 4 OH had the best decomposition effect. Among them, the walnut-shaped nanostructure manufactured in Peha 7 showed the highest specific surface area and light absorption characteristics, resulting in the highest decomposition efficiency.

또한 과산화수소가 나노구조체에 대하여 0.3wt% 첨가되었을 때 분해효율은 급격히 증가함을 알 수 있다.Also, when 0.3 wt% of hydrogen peroxide is added to the nanostructure, it can be seen that the decomposition efficiency increases rapidly.

결과적으로, 계면활성제나 지지체 없이 간단한 공정을 이용하여 반응시 페하를 조절함으로써 인산염계 수산화물의 다양한 나노구조체를 제조하였고, 이들의 비표면적, 광흡수특성 및 분해특성을 평가한 결과 우수한 특성을 나타내었으며, 과산화수소가 소량 첨가될 경우 분해효율은 급격히 증가하였다.As a result, various nanostructures of phosphate-based hydroxides were prepared by controlling the pH during the reaction using a simple process without a surfactant or a support, and evaluated their specific surface area, light absorption characteristics and decomposition characteristics. In the case of addition of small amounts of hydrogen peroxide, the decomposition efficiency increased rapidly.

한편, Cu 자리에 Ni, Co, Zn 및 Fe 가 치환되는 경우, 분해효율이 우수한 것을 볼 수 있으며, 그 중에서도 Cu 자리에 Ni, Co, Zn 및 Fe의 치환량은 10 mol% (x ≤0.1)이하인 것이 보다 바람직하며, 또한 치환 조성물의 경우 합성 온도가 그렇지 않은 경우보다 좀더 높은 온도에서 삼차원 나노구조체를 제조할 수 있었다. 마찬가지로 과산화수소가 첨가될 경우 분해효율은 급격히 증가하였다.On the other hand, when Ni, Co, Zn and Fe is substituted in the Cu site, it can be seen that the decomposition efficiency is excellent, and among them, the substitution amount of Ni, Co, Zn and Fe in the Cu site is 10 mol% (x ≤0.1) or less It is more preferable, and in the case of the substitution composition, the three-dimensional nanostructure can be produced at a higher temperature than the synthesis temperature otherwise. Likewise, when hydrogen peroxide was added, the decomposition efficiency increased rapidly.

결론적으로, 본 발명은 인산염계 수산화물의 제조시에 반응온도와 반응 페하를 조절함으로써 다양한 형상의 삼차원 나노구조체를 제조할 수 있으며, 이를 이용하여 광촉매 등과 같은 환경유해물질 분해에 적용할 수 있다. 본 발명으로 제조된 삼차원 나노구조체 분말의 경우 광흡수 특성, 유기물 흡착특성이 우수하고 비표면적 또한 크게 증가하였다. 뿐만아니라 나노입자(20~50nm)가 결합되어 1~5㎛ 정도 크기를 가지면서 동시에 높은 비표면적을 가지기 때문에 다루기 쉽고, 제조공정 뿐만아니라 원료분말의 가격 또한 저렴하여 그 응용가치가 크다 하겠다. 또한 상기 분말의 경우 화학적/물리적으로 상당히 안정하고, 과산화수소와 같은 산화반응촉매와 같이 사용하였을 때 더 높은 분해효율을 나타내기 때문에 비단 광촉매 반응 뿐만아니라 다양한 촉매반응에의 활용이 기대된다.In conclusion, the present invention can prepare a three-dimensional nanostructures of various shapes by adjusting the reaction temperature and the reaction under the production of phosphate-based hydroxide, it can be applied to the decomposition of environmentally harmful substances such as photocatalyst. In the case of the three-dimensional nanostructure powder prepared according to the present invention, the light absorption characteristics and the organic substance absorption characteristics were excellent, and the specific surface area was also greatly increased. In addition, nanoparticles (20 to 50nm) are combined to have a size of about 1 to 5㎛ and at the same time have a high specific surface area, which is easy to handle, and not only the manufacturing process but also the raw material powder is low in price, and its application value is large. In addition, the powder is considerably stable chemically and physically, and when used with an oxidation reaction catalyst such as hydrogen peroxide, exhibits higher decomposition efficiency. Therefore, the powder is expected to be used not only for photocatalytic reaction but also for various catalytic reactions.

도 1은 본 발명의 삼차원 나노구조체의 제조방법을 설명한 공정도,1 is a process chart illustrating a method of manufacturing a three-dimensional nanostructure of the present invention;

도 2는 본 발명의 실시예 및 비교예에서 제조된 화합물인 인산염계 수산화물의 SEM 사진들로써, (a) pH 2.5~2.9에서 제조된 마이크로막대형 분말, (b) pH 3.0~4.0에서 제조된 밤송이형 삼차원 나노구조체 분말, (c) pH 4.0~5.0에서 제조된 밤송이형 삼차원 나노구조체 분말, (d) pH 5.0~6.0에서 제조된 엘립소이드형 삼차원 나노구조체 분말, (e) pH 7.0~8.0에서 제조된 호두형 삼차원 나노구조체 분말을 나타낸 사진이다.Figure 2 is a SEM photograph of the phosphate-based hydroxides of the compounds prepared in Examples and Comparative Examples of the present invention, (a) micro-rod-shaped powder prepared at pH 2.5 ~ 2.9, (b) chestnut prepared at pH 3.0 ~ 4.0 Type three-dimensional nanostructure powder, (c) chestnut-shaped three-dimensional nanostructure powder prepared at pH 4.0-5.0, (d) ellipsoidal three-dimensional nanostructure powder prepared at pH 5.0-6.0, (e) at pH 7.0-8.0 Photo shows the prepared walnut-shaped three-dimensional nanostructure powder.

Claims (11)

금속화합물과 인화합물을 몰비가 (A+A'):P=2:1이 되도록 칭량하여 혼합하는 단계;Weighing and mixing the metal compound and the phosphorus compound such that the molar ratio is (A + A ′): P = 2: 1; 혼합된 화합물의 페하(pH)를 3~9가 되도록 조절하는 단계; 및Adjusting the pH of the mixed compound to 3-9; And 페하(pH)가 조절된 화합물을 40 내지 90℃에서 1 내지 24시간 동안 가열하여 반응시키는 단계를 포함하여 하기 식 1의 화합물을 제조하고, To prepare a compound of the following formula 1 comprising the step of reacting the pH controlled peha (pH) controlled at 40 to 90 ℃ for 1 to 24 hours, 하기 식 1의 화합물은 밤송이형, 엘립소이드형, 호두형, 꽃형, 나노막대형 중에서 선택된 어느 하나의 형상을 가지는 삼차원 나노구조체이고, 입경이 1000 내지 5000㎚인 삼차원 나노구조체 제조방법.The compound of Formula 1 is a three-dimensional nanostructure having any one shape selected from chestnut-shaped, ellipsoidal, walnut, floral, nano-rod type, the particle size of 1000 to 5000nm three-dimensional nanostructure manufacturing method. <식 1><Equation 1> (A2-xA'x)PO4OH(A 2-x A ' x ) PO 4 OH 상기 식에서, A 및 A'는 전이금속 중 선택된 서로 같거나 다른 금속이며, x는 0 ≤ x ≤ 2임. Wherein A and A 'are the same or different metals selected from transition metals, and x is 0 ≦ x ≦ 2. 제 1 항에 있어서,The method of claim 1, 전이금속은 Cu, Ni, Co, Fe, Zn 및 Mn 중 선택된 것임을 특징으로 하는 삼차원 나노구조체 제조방법.Transition metal is a method of producing a three-dimensional nanostructures, characterized in that selected from among Cu, Ni, Co, Fe, Zn and Mn. 삭제delete 제 1 항 내지 제 2 항 중 어느 한 항의 제조방법으로 제조된 삼차원 나노구조체.A three-dimensional nanostructure produced by the method of any one of claims 1 to 2. 삭제delete 삭제delete 삭제delete 제 4 항에 있어서,The method of claim 4, wherein 비표면적은 1~100㎡/g인 것임을 특징으로 하는 삼차원 나노구조체.Three-dimensional nanostructure, characterized in that the specific surface area is 1 ~ 100㎡ / g. 제 4 항에 있어서,The method of claim 4, wherein 광흡수파장은 380nm 이상인 것임을 특징으로 하는 삼차원 나노구조체.Light absorption wavelength is three-dimensional nanostructure, characterized in that more than 380nm. 제 4 항에 따른 삼차원 나노구조체를 포함하는 광촉매 조성물.Photocatalyst composition comprising the three-dimensional nanostructure according to claim 4. 제 10 항에 있어서,The method of claim 10, 삼차원 나노구조체에 대하여 산화촉매를 0.1~5중량% 포함하는 것을 특징으로 하는 광촉매 조성물.A photocatalyst composition comprising 0.1 to 5% by weight of an oxidation catalyst relative to the three-dimensional nanostructure.
KR1020080016915A 2008-02-25 2008-02-25 Three dimensional nanostructures of hydroxy phosphate-based materials and synthesis methods thereof KR101020106B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080016915A KR101020106B1 (en) 2008-02-25 2008-02-25 Three dimensional nanostructures of hydroxy phosphate-based materials and synthesis methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080016915A KR101020106B1 (en) 2008-02-25 2008-02-25 Three dimensional nanostructures of hydroxy phosphate-based materials and synthesis methods thereof

Publications (2)

Publication Number Publication Date
KR20090091571A KR20090091571A (en) 2009-08-28
KR101020106B1 true KR101020106B1 (en) 2011-03-09

Family

ID=41208950

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080016915A KR101020106B1 (en) 2008-02-25 2008-02-25 Three dimensional nanostructures of hydroxy phosphate-based materials and synthesis methods thereof

Country Status (1)

Country Link
KR (1) KR101020106B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080006928A (en) * 2006-07-14 2008-01-17 주식회사 엘지화학 Method of manufacturing lithium iron phosphate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080006928A (en) * 2006-07-14 2008-01-17 주식회사 엘지화학 Method of manufacturing lithium iron phosphate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Shigeru Sugiyama et al., Bull. Chem. Soc. Jpn., 2003, Vol. 76, pp. 2419-2422*

Also Published As

Publication number Publication date
KR20090091571A (en) 2009-08-28

Similar Documents

Publication Publication Date Title
JP6004528B2 (en) Method for producing porous silica-encapsulated particles and porous silica
Chakraborty et al. Facile synthesis of CuO nanoparticles deposited zeolitic imidazolate frameworks (ZIF-8) for efficient photocatalytic dye degradation
US8791044B2 (en) Doped titanium dioxide as a visible and sun light photo catalyst
Dong et al. Controlled synthesis, growth mechanism and highly efficient solar photocatalysis of nitrogen-doped bismuth subcarbonate hierarchical nanosheets architectures
JP4714931B2 (en) Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same
Das et al. Morphology control of ZnO with citrate: a time and concentration dependent mechanistic insight
Zhang et al. Facile hydrothermal synthesis and photocatalytic activity of rod-like nanosized silver tungstate
Maji et al. Single-source precursor approach for the preparation of CdS nanoparticles and their photocatalytic and intrinsic peroxidase like activity
Yufanyi et al. CdO nanoparticles by thermal decomposition of a cadmium-hexamethylenetetramine complex
AU2010263314A1 (en) Doped catalytic carbonaceous composite materials and uses thereof
Vu et al. Photocatalytic degradation of methylene blue (MB) over α-Fe2O3 nanospindles prepared by a hydrothermal route
Padervand et al. Effective photocatalytic degradation of an azo dye over nanosized Ag/AgBr-modified TiO2 loaded on zeolite
Ali et al. Effect of pretreatment temperature on the photocatalytic activity of microwave irradiated porous nanocrystalline ZnO
Chauhan et al. Utilization of ZnO nanocones for the photocatalytic degradation of acridine orange
Abd Elkodous et al. C-dots dispersed macro-mesoporous TiO2 phtocatalyst for effective waste water treatment
CN113649029B (en) Preparation method and application of BiOCl nano photocatalyst with high visible light catalytic activity
Zhu et al. Solvothermal synthesis of bismuth molybdate hollow microspheres with high photocatalytic activity
Ding et al. Controlled synthesis of CeVO 4 hierarchical hollow microspheres with tunable hollowness and their efficient photocatalytic activity
Bijanzad et al. Photocatalytic activity of mesoporous microbricks of ZnO nanoparticles prepared by the thermal decomposition of bis (2-aminonicotinato) zinc (II)
Pal et al. Highly ordered Zn-doped mesoporous silica: An efficient catalyst for transesterification reaction
Kowsari et al. Synthesis of rose-like ZnO hierarchical nanostructures in the presence of ionic liquid/Mg2+ for air purification and their shape-dependent photodegradation of SO2, NOx, and CO
Adhikari et al. Synthesis and photocatalytic performance of quasi-fibrous ZnO
Alorku et al. Nanomixture of 0-D ternary metal oxides (TiO2–SnO2–Al2O3) cooperating with 1-D hydroxyapatite (HAp) nanorods for RhB removal from synthetic wastewater and hydrogen evolution via water splitting
Tu et al. A facile and fast solution chemistry synthesis of porous ZnO nanoparticles for high efficiency photodegradation of tartrazine
Preethi et al. Influence of chitosan–PEG binary template on the crystallite characteristics of sol–gel synthesized mesoporous nano-titania photocatalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140212

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150212

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180129

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190201

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20200203

Year of fee payment: 10