JP2020055717A - Method of producing aluminum silicate - Google Patents

Method of producing aluminum silicate Download PDF

Info

Publication number
JP2020055717A
JP2020055717A JP2018188441A JP2018188441A JP2020055717A JP 2020055717 A JP2020055717 A JP 2020055717A JP 2018188441 A JP2018188441 A JP 2018188441A JP 2018188441 A JP2018188441 A JP 2018188441A JP 2020055717 A JP2020055717 A JP 2020055717A
Authority
JP
Japan
Prior art keywords
aluminum silicate
aluminum
producing
wet cake
silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018188441A
Other languages
Japanese (ja)
Inventor
恒孝 畑中
Tsunetaka Hatanaka
恒孝 畑中
平井 恭正
Yasumasa Hirai
恭正 平井
英隆 宮原
Hidetaka Miyahara
英隆 宮原
知美 三村
Tomomi Mimura
知美 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2018188441A priority Critical patent/JP2020055717A/en
Publication of JP2020055717A publication Critical patent/JP2020055717A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

To provide a method of producing aluminum silicate, in particular, a method of mass-producing an aluminum silicate complex consisting of low crystalline layered clay mineral and an amorphous aluminum silicate in a convenient and industrially advantageous manner.SOLUTION: The method comprises: (1) a first step of obtaining an aqueous suspension of a precursor material by mixing an aqueous solution of alkali silicate with an aqueous solution of aluminum sulfate and/or aluminum chloride, thereby making the molar ratio of Si/Al to 0.9 to 1.2 and adjusting its pH to 6 to 8 with an acid or alkali, (2) a second step of obtaining a wet cake by subjecting the aqueous suspension of the precursor material to solid-liquid separation, and (3) a third step of obtaining aluminum silicate by heating, in a closed container, the wet cake of the precursor material.SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウムケイ酸塩の製造方法に関する。   The present invention relates to a method for producing an aluminum silicate.

アルミニウムケイ酸塩は、主な構成元素をケイ素(Si)、アルミニウム(Al)、酸素(O)及び水素(H)とし、多数のSi−O−Al結合で組み立てられた水和ケイ酸アルミニウムである。このアルミニウムケイ酸塩としては、チューブ状アルミニウムケイ酸塩、非晶質アルミニウムケイ酸塩や、「ハスクレイ」(登録商標)として知られる低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体等が挙げられる。このようなアルミニウムケイ酸塩は、その特異な微細構造に基づき、水蒸気を大量に吸着するため、結露防止剤や水蒸気吸放湿剤等として有用であり、自律的調湿剤やデシカント空調用の除湿剤等として用いられる。また、優れた水蒸気吸放湿性を利用して、放湿状態とすることで熱を蓄え、必要に応じて吸湿状態とすることで熱を放出できる蓄熱材としても開発されている。更に、アルミニウムケイ酸塩は、種々のガスを大量に吸着するので、有害汚染物質吸着剤、脱臭剤、二酸化炭素やメタン等のガス貯蔵剤として有用である。   Aluminum silicate is a hydrated aluminum silicate composed of silicon (Si), aluminum (Al), oxygen (O) and hydrogen (H) as main constituent elements and assembled by a large number of Si-O-Al bonds. is there. The aluminum silicate may be a tubular aluminum silicate, an amorphous aluminum silicate, or a low crystalline layered clay mineral known as "Husclay" (registered trademark) and an amorphous aluminum silicate. Aluminum silicate composite and the like can be mentioned. Such aluminum silicate is useful as an anti-condensation agent or a water vapor absorption / desorption agent, etc., because it absorbs a large amount of water vapor based on its unique microstructure, and is used for autonomous humidity control and desiccant air conditioning. Used as a dehumidifier. Further, a heat storage material capable of storing heat in a moisture releasing state and releasing heat as needed in a moisture absorbing state has been developed by utilizing excellent water vapor absorbing and releasing properties. Furthermore, since aluminum silicate adsorbs various gases in large amounts, it is useful as a harmful pollutant adsorbent, a deodorant, and a gas storage agent for carbon dioxide, methane, and the like.

アルミニウムケイ酸塩の製造方法としては、種々の方法が提案されている。例えば、特許文献1には、無機ケイ素化合物と無機アルミニウム化合物の混合溶液中で、チューブ状アルミニウムケイ酸塩前駆体を成長させ、共存イオン除去後、酸性水溶液に分散させ100℃前後で加熱して、チューブ状アルミニウムケイ酸塩を得る方法が記載されている。   Various methods have been proposed for producing aluminum silicate. For example, in Patent Document 1, a tubular aluminum silicate precursor is grown in a mixed solution of an inorganic silicon compound and an inorganic aluminum compound, and after removing coexisting ions, dispersed in an acidic aqueous solution and heated at about 100 ° C. A method for obtaining a tubular aluminum silicate is described.

また、特許文献2には、モノケイ酸水溶液とアルミニウム溶液をSi/Alモル比が1.0〜3.0となるように混合し、酸又はアルカリにてpH6〜8に調整し、脱塩処理後、回収した前駆体を弱酸性〜弱アルカリ性水溶液に分散させ、加熱すると、非晶質アルミニウムケイ酸塩が得られることが記載されている。   Further, in Patent Document 2, a monosilicic acid aqueous solution and an aluminum solution are mixed so that the molar ratio of Si / Al becomes 1.0 to 3.0, adjusted to pH 6 to 8 with an acid or alkali, and desalted. Thereafter, it is described that when the recovered precursor is dispersed in a weakly acidic to weakly alkaline aqueous solution and heated, an amorphous aluminum silicate is obtained.

また、特許文献3には、モノケイ酸水溶液とアルミニウム溶液をSi/Alモル比が0.7〜1となるように混合し、酸又はアルカリにてpH6〜8に調整し、脱塩処理後、得られた前駆体物質を弱酸性〜弱アルカリ性水溶液に分散させた懸濁液を110℃以上の温度に加熱すると、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体を製造できることが記載されている。   Further, in Patent Document 3, a monosilicic acid aqueous solution and an aluminum solution are mixed so that the Si / Al molar ratio is 0.7 to 1, adjusted to pH 6 to 8 with an acid or an alkali, and desalted. When a suspension obtained by dispersing the obtained precursor substance in a weakly acidic to weakly alkaline aqueous solution is heated to a temperature of 110 ° C. or more, an aluminum silicate composed of a low-crystalline layered clay mineral and an amorphous aluminum silicate It is described that a conjugate can be produced.

特開2001-64010号公報JP 2001-64010 A 特開2008-179534号公報JP 2008-179534 A 国際公開第2009/084632号公報WO 2009/084632

従来のアルミニウムケイ酸塩の製造方法では、前駆体物質の水性懸濁液を加熱するため、大量のエネルギーが必要になるという課題がある。また、水性懸濁液には、多量の水分が含まれるため前駆体物質の含有量が少なく、1回当たりの反応におけるアルミニウムケイ酸塩の収量が少ないという課題もある。   The conventional method for producing an aluminum silicate has a problem that a large amount of energy is required to heat an aqueous suspension of a precursor substance. Further, since the aqueous suspension contains a large amount of water, there is also a problem that the content of the precursor substance is small and the yield of aluminum silicate in one reaction is small.

本発明者らは、アルミニウムケイ酸塩を簡便に、工業的有利に大量生産する方法について種々検討した。その結果、ケイ酸アルカリ水溶液と、硫酸アルミニウム及び/又は塩化アルミニウムの水溶液をSi/Alモル比が0.9〜1.2となるように混合し、酸又はアルカリにてpHを6〜8に調整して沈澱させた前駆体を固液分離し、次いで、得られた湿ケーキを密閉容器に入れて加熱すれば、従来法よりも高収率で、経済的にアルミニウムケイ酸塩が製造できることを見出し、本発明を完成した。   The present inventors have studied various methods for easily and industrially advantageously mass-producing aluminum silicate. As a result, an aqueous solution of an alkali silicate and an aqueous solution of aluminum sulfate and / or aluminum chloride are mixed such that the Si / Al molar ratio becomes 0.9 to 1.2, and the pH is adjusted to 6 to 8 with an acid or alkali. If the adjusted and precipitated precursor is subjected to solid-liquid separation and then the obtained wet cake is placed in a closed vessel and heated, aluminum silicate can be produced economically with higher yield than the conventional method. And completed the present invention.

即ち、上記課題を解決するための本発明は、以下の通りである。
[1]
(1)ケイ酸アルカリ水溶液と、硫酸アルミニウム及び/又は塩化アルミニウムの水溶液をSi/Alモル比が0.9〜1.2となるように混合し、酸又はアルカリにてpHを6〜8に調整して前駆体物質の水性懸濁液を得る第一工程、
(2)前駆体物質の水性懸濁液を固液分離して湿ケーキを得る第二工程、
(3)前記前駆体物質の湿ケーキを密閉容器に入れて加熱し、アルミニウムケイ酸塩を得る第三工程を含むアルミニウムケイ酸塩の製造方法。
[2] アルミニウムケイ酸塩が、チューブ状アルミニウムケイ酸塩、非晶質アルミニウムケイ酸塩及び、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体から成る群から選択される少なくとも一種である[1]に記載のアルミニウムケイ酸塩の製造方法。
[3] アルミニウムケイ酸塩が低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体である[1]に記載のアルミニウムケイ酸塩の製造方法。
[4] 160℃以上の温度で湿ケーキの加熱を行う[3]に記載のアルミニウムケイ酸塩の製造方法。
[5] 固液分離を遠心分離、濾過又は膜分離にて行う[1]〜[4]のいずれか一項に記載のアルミニウムケイ酸塩の製造方法。
[6] 加圧下にて、湿ケーキの加熱を行う[1]〜[5]のいずれか一項に記載のアルミニウムケイ酸塩の製造方法。
[7] ケイ酸アルカリが水ガラスである[1]〜[6]のいずれか一項に記載のアルミニウムケイ酸塩の製造方法。
That is, the present invention for solving the above problems is as follows.
[1]
(1) An aqueous solution of an alkali silicate and an aqueous solution of aluminum sulfate and / or aluminum chloride are mixed such that the Si / Al molar ratio is 0.9 to 1.2, and the pH is adjusted to 6 to 8 with an acid or an alkali. A first step of adjusting to obtain an aqueous suspension of the precursor substance,
(2) a second step of solid-liquid separation of the aqueous suspension of the precursor substance to obtain a wet cake,
(3) A method for producing an aluminum silicate, comprising a third step of heating the wet cake of the precursor substance in a closed container to obtain an aluminum silicate.
[2] The aluminum silicate is a group consisting of a tubular aluminum silicate, an amorphous aluminum silicate, and an aluminum silicate composite composed of a low-crystalline layered clay mineral and an amorphous aluminum silicate. The method for producing an aluminum silicate according to [1], which is at least one selected from the group consisting of:
[3] The method for producing an aluminum silicate according to [1], wherein the aluminum silicate is an aluminum silicate composite comprising a low-crystalline layered clay mineral and an amorphous aluminum silicate.
[4] The method for producing an aluminum silicate according to [3], wherein the wet cake is heated at a temperature of 160 ° C. or higher.
[5] The method for producing an aluminum silicate according to any one of [1] to [4], wherein the solid-liquid separation is performed by centrifugation, filtration, or membrane separation.
[6] The method for producing an aluminum silicate according to any one of [1] to [5], wherein the wet cake is heated under pressure.
[7] The method for producing an aluminum silicate according to any one of [1] to [6], wherein the alkali silicate is water glass.

本発明は、ケイ酸アルカリ水溶液と硫酸アルミニウム及び/又は塩化アルミニウムの水溶液をSi/Alモル比が0.9〜1.2となるように混合し、酸又はアルカリにてpHを6〜8に調整して沈澱させた前駆体物質を固液分離し、次いで、得られた湿ケーキを密閉容器に入れて加熱することによって、アルミニウムケイ酸塩を製造する方法であり、加熱する湿ケーキは水性懸濁液と比べて固形分濃度が高く、水分濃度が低いため、目的物ではない水分の加熱に消費されるエネルギー量の削減が可能となる。また、同じ容積の反応容器を用いる場合、湿ケーキは水性懸濁液と比べて固形分の比率が高いため、1回当たりのアルミニウムケイ酸塩の収量を多くすることが可能となり、工業的に有利である。   In the present invention, an aqueous alkali silicate solution and an aqueous solution of aluminum sulfate and / or aluminum chloride are mixed so that the Si / Al molar ratio is 0.9 to 1.2, and the pH is adjusted to 6 to 8 with an acid or alkali. This is a method of producing an aluminum silicate by solid-liquid separation of the precursor substance that has been adjusted and precipitated, and then heating the obtained wet cake in a closed container, wherein the heated wet cake is aqueous. Since the solid concentration is high and the water concentration is low as compared with the suspension, the amount of energy consumed for heating the water that is not the target can be reduced. Further, when a reaction vessel having the same volume is used, the wet cake has a higher solid content ratio than the aqueous suspension, so that it is possible to increase the yield of aluminum silicate per batch, and industrially It is advantageous.

実施例1〜3の試料の粉末X線回折図である。It is a powder X-ray-diffraction figure of the sample of Examples 1-3. 比較例1〜3の試料の粉末X線回折図である。It is a powder X-ray diffraction diagram of the sample of Comparative Examples 1-3. 実施例で得られた固形分濃度24.0質量%(水分濃度76.0質量%)の湿ケーキの写真である。It is a photograph of the wet cake with a solid content concentration of 24.0 mass% (water content of 76.0 mass%) obtained in the example. 参考例で得られた固形分濃度14.0質量%(水分濃度86.0質量%)の水性懸濁液の写真である。It is a photograph of the aqueous suspension with a solid content concentration of 14.0 mass% (water content of 86.0 mass%) obtained in the reference example.

次に、本発明について更に詳細に説明する。
本発明において製造されるアルミニウムケイ酸塩は、主な構成元素をケイ素(Si)、アルミニウム(Al)、酸素(O)及び水素(H)とし、多数のSi−O−Al結合で組み立てられた水和ケイ酸アルミニウムである。このようなアルミニウムケイ酸塩としては、チューブ状アルミニウムケイ酸塩、非晶質アルミニウムケイ酸塩や、「ハスクレイ」(登録商標)として知られる低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体等が挙げられるが、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体が望ましい。この低結晶性層状粘土鉱物は、ケイ酸アルミニウムと考えられている。
Next, the present invention will be described in more detail.
The aluminum silicate produced in the present invention is composed of silicon (Si), aluminum (Al), oxygen (O) and hydrogen (H) as main constituent elements, and is assembled with a large number of Si-O-Al bonds. Hydrated aluminum silicate. Such aluminum silicates include tubular aluminum silicates, amorphous aluminum silicates, and low crystalline layered clay minerals known as "Husclay" (registered trademark) and amorphous aluminum silicates. An aluminum silicate composite comprising a low crystalline layered clay mineral and an amorphous aluminum silicate is preferred. This low crystalline layered clay mineral is considered to be aluminum silicate.

本発明の製造方法では、ケイ酸アルカリ水溶液と、硫酸アルミニウム及び/又は塩化アルミニウムの水溶液をSi/Alモル比が0.9〜1.2となるように混合し、酸又はアルカリにてpHを6〜8に調整して沈澱させた前駆体物質を固液分離し、次いで、得られた湿ケーキを密閉容器に入れて加熱し、アルミニウムケイ酸塩を製造する。この製造方法では、湿ケーキを加熱しているため、前駆体物質の水性懸濁液を加熱する場合よりも、熱効率がよくなり、短時間で反応温度に到達する。   In the production method of the present invention, an aqueous solution of an alkali silicate and an aqueous solution of aluminum sulfate and / or aluminum chloride are mixed so that the Si / Al molar ratio is 0.9 to 1.2, and the pH is adjusted with an acid or an alkali. The precursor substance adjusted to 6 to 8 and precipitated is subjected to solid-liquid separation, and then the obtained wet cake is placed in a closed vessel and heated to produce an aluminum silicate. In this production method, since the wet cake is heated, the thermal efficiency is higher than when an aqueous suspension of the precursor substance is heated, and the reaction temperature is reached in a short time.

(第一工程)
本発明では、ケイ酸アルカリ水溶液と硫酸アルミニウム及び/又は塩化アルミニウムの水溶液をSi/Alモル比が0.9〜1.2となるように混合する。ケイ酸アルカリ水溶液はケイ酸アルカリを水にて希釈し、硫酸アルミニウム及び/又は塩化アルミニウムの水溶液については硫酸アルミニウム、塩化アルミニウムを水に溶解させることにより、それぞれ所定の濃度の溶液を調製する。ケイ酸アルカリ水溶液中のケイ素の濃度は1〜2000mmol/Lとするのが好ましく、硫酸アルミニウム及び/又は塩化アルミニウムの水溶液中のアルミニウムの濃度は1〜2000mmol/Lとするのが好ましいが、100〜1500mmol/Lのケイ素化合物溶液と、100〜1500mmol/Lのアルミニウム化合物溶液とを混合することが更に好ましい。ケイ酸アルカリとしては、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、水ガラス等が挙げられるが、水ガラスが好ましい。Si/Alモル比は0.9〜1.1が好ましい。
(First step)
In the present invention, an aqueous solution of an alkali silicate and an aqueous solution of aluminum sulfate and / or aluminum chloride are mixed so that the molar ratio of Si / Al is 0.9 to 1.2. The aqueous solution of alkali silicate is prepared by diluting the alkali silicate with water, and dissolving aluminum sulfate and / or aluminum chloride in water for aqueous solutions of aluminum sulfate and / or aluminum chloride to prepare solutions having predetermined concentrations. The concentration of silicon in the aqueous alkali silicate solution is preferably 1 to 2000 mmol / L, and the concentration of aluminum in the aqueous solution of aluminum sulfate and / or aluminum chloride is preferably 1 to 2000 mmol / L. It is more preferable to mix a 1500 mmol / L silicon compound solution and a 100 to 1500 mmol / L aluminum compound solution. Examples of the alkali silicate include sodium orthosilicate, sodium metasilicate, and water glass, and water glass is preferable. The Si / Al molar ratio is preferably from 0.9 to 1.1.

ケイ酸アルカリ水溶液と硫酸アルミニウム及び/又は塩化アルミニウムの水溶液を混合した後、酸又はアルカリにてpH6〜8、好ましくは6.5〜7.5に調整して沈澱により前駆体物質を得る。酸としては硫酸、塩酸、硝酸、酢酸等の酸を用いることができ、アルカリとしては水酸化ナトリウム、水酸化カリム、アンモニア水等のアルカリを用いることができる。pH調整時の温度は、適宜設定することができ、例えば5〜35℃が好ましい。   After mixing the aqueous alkali silicate solution and the aqueous solution of aluminum sulfate and / or aluminum chloride, the pH is adjusted to 6 to 8, preferably 6.5 to 7.5 with an acid or alkali to obtain a precursor substance by precipitation. As the acid, an acid such as sulfuric acid, hydrochloric acid, nitric acid, and acetic acid can be used. As the alkali, an alkali such as sodium hydroxide, kalim hydroxide, and aqueous ammonia can be used. The temperature at the time of pH adjustment can be appropriately set, and is preferably, for example, 5 to 35 ° C.

(第二工程)
得られた前駆体物質は、遠心分離、濾過、膜分離等により水溶媒と固液分離した後、必要に応じて洗浄し、共存イオンの脱塩処理を行うのが好ましい。脱塩処理は電気伝導度が0.1S/mとなるまで洗浄するのが望ましい。固液分離した後、前駆体物質を湿ケーキの形で回収する。湿ケーキは、前駆体物質と水分を含んだもので、固液分離装置の条件(遠心速度、濾過のプレス圧、膜分離のプレス圧等)を調節することで水分含有量を調整することができる。また、前駆体物質は、剪断応力を受けた場合に粘度が低下する性質(擬塑性)を有する場合もある。湿ケーキの粘度(液温25℃にてB型粘度計(60rpm、No.4ロータ)で測定)が3,000mPa・s以上、好ましくは10,000mPa・s以上になるように調整するのが好ましい。この場合、湿ケーキが流動状態を示さず、粘度が測定できない状態も含み、水分含有量の少ない流動状態を示さない湿ケーキがより好ましい。湿ケーキの水分含有量は、85質量%以下とするのが好ましく、前駆体物質含有量は15質量%以上が好ましい。一方、水分量があまりに少ないと、発生する水蒸気量が少ないため第三工程の反応が十分な加圧状態となりにくいので、水分含有量の下限は、50質量%とするのが好ましく、前駆体物質含有量は50質量%以下が好ましい。
(Second step)
The obtained precursor substance is preferably subjected to solid-liquid separation from a water solvent by centrifugation, filtration, membrane separation, or the like, and then, if necessary, washed and desalted for coexisting ions. In the desalting treatment, it is desirable to wash the electric conductivity until the electric conductivity becomes 0.1 S / m. After solid-liquid separation, the precursor material is recovered in the form of a wet cake. A wet cake contains a precursor substance and moisture, and the moisture content can be adjusted by adjusting the conditions (centrifugal speed, press pressure for filtration, press pressure for membrane separation, etc.) of the solid-liquid separation device. it can. In some cases, the precursor substance has a property of decreasing the viscosity when subjected to shear stress (pseudoplasticity). The viscosity of the wet cake (measured by a B-type viscometer (60 rpm, No. 4 rotor) at a liquid temperature of 25 ° C.) should be adjusted to be 3,000 mPa · s or more, preferably 10,000 mPa · s or more. preferable. In this case, a wet cake which does not show a fluidized state and does not show a fluidized state with a low water content is more preferable, including a state where the viscosity cannot be measured. The moisture content of the wet cake is preferably not more than 85% by mass, and the content of the precursor substance is preferably not less than 15% by mass. On the other hand, if the amount of water is too small, the amount of water vapor generated is small and the reaction in the third step is hard to be in a sufficiently pressurized state. Therefore, the lower limit of the water content is preferably set to 50% by mass. The content is preferably 50% by mass or less.

後記参考例で示したように、前駆体物質の水性懸濁液の水分含有量と粘度の関係を調べたところ、水分含有量86質量%で、粘度が2775mPa・s(液温25℃にてB型粘度計(60rpm、No.4ロータ)で測定)であった。この結果から、粘度が3000mPa・s未満であれば水性懸濁状態を維持することができ、その際の水分含有量は86質量%以上、即ち前駆体物質含有量が14質量%以下であった。しかしながら、3,000mPa・s以上であれば、流動性をほとんど示さなくなり、10,000mPa・s以上になると、流動性を全く示さなくなり、B型粘度計で粘度を測定することもできない。このように、湿ケーキと水性懸濁液は水分含有量と流動性即ち粘度の違いにより、明確に区別できる。   As shown in the following Reference Example, the relationship between the water content and the viscosity of the aqueous suspension of the precursor substance was examined. B type viscometer (measured with a 60 rpm, No. 4 rotor). From this result, if the viscosity is less than 3000 mPa · s, the aqueous suspension state can be maintained, and the water content at that time was 86% by mass or more, that is, the precursor substance content was 14% by mass or less. . However, when the viscosity is 3,000 mPa · s or more, almost no fluidity is exhibited, and when it is 10,000 mPa · s or more, no fluidity is exhibited, and the viscosity cannot be measured with a B-type viscometer. Thus, wet cakes and aqueous suspensions can be clearly distinguished by differences in water content and fluidity, ie viscosity.

(第三工程)
固液分離によって得られた前駆体物質を含む湿ケーキは、密閉容器に入れて加熱することにより、所望のアルミニウムケイ酸塩とすることができる。加熱温度は90℃以上が好ましく、130℃以上がより好ましい。更に、160℃以上の温度で湿ケーキを加熱すると、水蒸気、二酸化炭素、メタン等のガス吸着性能が著しく優れた低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体を工業的に有利に生成させることができる。加熱温度の上限は300℃が好ましく、250℃がより好ましい。湿ケーキの加熱は、加圧下で行うのが望ましく、オートクレーブのような高圧用密閉容器が好ましい。所定温度での保持(熟成)時間は特に制限はないが、1〜50時間が好ましく、2〜30時間がより好ましい。密閉容器内で湿ケーキを加熱することにより、水が水蒸気になって加圧状態となり、反応が促進されアルミニウムケイ酸塩が生成すると考えられる。
このようにして得られたアルミニウムケイ酸塩は、密閉容器から取出し、必要に応じて乾燥して粉末にすることができる。
(Third step)
The desired aluminum silicate can be obtained by placing the wet cake containing the precursor substance obtained by the solid-liquid separation in a closed container and heating. The heating temperature is preferably at least 90 ° C, more preferably at least 130 ° C. Further, when the wet cake is heated at a temperature of 160 ° C. or more, an aluminum silicate composite comprising a low-crystalline layered clay mineral and an amorphous aluminum silicate, which has remarkably excellent gas adsorption performance for water vapor, carbon dioxide, methane, etc. The body can be produced industrially advantageously. The upper limit of the heating temperature is preferably 300 ° C, more preferably 250 ° C. The heating of the wet cake is preferably performed under pressure, and a high-pressure closed container such as an autoclave is preferable. The holding (aging) time at the predetermined temperature is not particularly limited, but is preferably 1 to 50 hours, more preferably 2 to 30 hours. It is considered that by heating the wet cake in the closed container, water is turned into water vapor to be in a pressurized state, and the reaction is promoted to produce aluminum silicate.
The aluminum silicate obtained in this way can be taken out of the closed vessel and, if necessary, dried to form a powder.

次に、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。  Next, the present invention will be specifically described based on examples and comparative examples, but the present invention is not limited by the following examples.

(実施例1〜3)
(1)Si/Alモル比が1.05となるように、3号水ガラス水溶液(Si換算で1250mmol/L)と、硫酸アルミニウム水溶液(Al換算で1040mmol/L)を混合し、合成用タンク中で70分間撹拌し、次いで、20質量%の水酸化ナトリウム水溶液を用いて、pHを7.0に調整して前駆体物質を沈澱させた。この懸濁液をフィルタープレスにて固液分離し、電気伝導度0.1S/mとなるまで洗浄を行い、前駆体物質の湿ケーキ(固形分濃度:24質量%)を得た。得られた湿ケーキは、流動性を示さず、B型粘度計(60rpm、No.4ロータ)(液温25℃)での粘度測定が不能であり、B型粘度計の測定限界(10,000mPa・s)を超える粘度を有していた。この湿ケーキの写真を図3に示す。
(Examples 1 to 3)
(1) A No. 3 water glass aqueous solution (1250 mmol / L in terms of Si) and an aqueous solution of aluminum sulfate (1040 mmol / L in terms of Al) are mixed so that the Si / Al molar ratio becomes 1.05, and a synthesis tank is prepared. And then the pH was adjusted to 7.0 with a 20% by weight aqueous sodium hydroxide solution to precipitate the precursor material. This suspension was subjected to solid-liquid separation with a filter press, and washed until the electric conductivity reached 0.1 S / m, to obtain a wet cake of precursor material (solid content: 24% by mass). The obtained wet cake did not show fluidity, the viscosity could not be measured with a B-type viscometer (60 rpm, No. 4 rotor) (liquid temperature 25 ° C.), and the measurement limit of the B-type viscometer (10, 000 mPa · s). FIG. 3 shows a photograph of the wet cake.

(2)(1)で得られた湿ケーキを、100ml高圧用反応容器に約7割程度充填し(容器内高さ65mmに対し、約45mm高さまで装填)、その後密閉した。次に、高圧用反応容器を予め所定温度(180℃、150℃、95℃の3水準)に予熱しておいた乾燥機に入れ、所定温度になってから16時間加熱熟成(180℃は18時間加熱熟成)した後、高圧用反応容器を取り出し、余熱による反応進行を止めるため氷水で常温になるまで急冷した。なお、高圧用反応容器は、密閉容器であるため、上記加熱熟成は、加圧下での反応となる。
次いで、高圧用反応容器から生成物を取出し、常圧下、150℃で16時間乾燥して、実施例1〜3の試料を得た。
(2) About 100% of the wet cake obtained in (1) was filled in a 100 ml high-pressure reaction vessel (to a height of about 45 mm with respect to a height of 65 mm in the vessel), and then sealed. Next, the high-pressure reactor is placed in a drier that has been preheated to a predetermined temperature (three levels of 180 ° C., 150 ° C., and 95 ° C.). After heating and aging), the high-pressure reaction vessel was taken out and rapidly cooled to normal temperature with ice water in order to stop the progress of the reaction due to residual heat. Since the high-pressure reaction vessel is a closed vessel, the heat aging is a reaction under pressure.
Next, the product was taken out from the high-pressure reactor and dried at 150 ° C. for 16 hours under normal pressure to obtain samples of Examples 1 to 3.

(比較例1〜3)
前記実施例に記載の(1)を行って、湿ケーキを得た。次いで、このものを水でリパルプした水性懸濁液(固形分濃度:10.3質量%)を100ml高圧用反応容器に約7割充填し(容器内高さ65mmに対し、約45mm高さまで装填)、その後密閉した。次に、高圧用反応容器を予め所定温度(180℃、150℃、95℃の3水準)に予熱しておいた乾燥機に入れ、試料が所定温度になってから16時間加熱熟成(180℃は18時間加熱熟成)した後、高圧用反応容器を取り出し、余熱による反応進行を止めるため氷水で常温になるまで急冷した。
次いで、高圧用反応容器から生成物を取出し、ブフナー漏斗を用いて脱水した後、常圧下、150℃で16時間乾燥して、比較試料を得た。
(Comparative Examples 1 to 3)
By performing (1) described in the above example, a wet cake was obtained. Next, 100 ml of an aqueous suspension (solid content concentration: 10.3% by mass) obtained by repulping this water into a 100 ml high pressure reaction vessel was filled (to a height of about 45 mm with respect to a height of 65 mm in the vessel). ) And then sealed. Next, the high-pressure reaction vessel is placed in a dryer that has been preheated to a predetermined temperature (three levels of 180 ° C., 150 ° C., and 95 ° C.). After heating and aging for 18 hours), the high-pressure reaction vessel was taken out and rapidly cooled to normal temperature with ice water in order to stop the progress of the reaction due to residual heat.
Next, the product was taken out from the high-pressure reaction vessel, dehydrated using a Buchner funnel, and dried at 150 ° C. under normal pressure for 16 hours to obtain a comparative sample.

実施例及び比較例で得られた乾燥試料の回収量は以下の第1表に示した通りであった。湿ケーキ加熱熟成のもの(実施例1〜3)は水性懸濁液加熱熟成のもの(比較例1〜3)と比較して、約2.5倍の回収量となった。湿ケーキは水性懸濁液と比べて固形分の比率が高いので、同じ容積の反応容器を用いて加熱熟成すると、多量の生成物の回収が可能となる。   The recovered amounts of the dried samples obtained in Examples and Comparative Examples were as shown in Table 1 below. The recovered amount of the heat-aged wet cake (Examples 1 to 3) was about 2.5 times as large as that of the aqueous suspension heat-aged (Comparative Examples 1 to 3). Since the wet cake has a higher solid content ratio than the aqueous suspension, it is possible to recover a large amount of the product by heating and aging using a reaction vessel having the same volume.

試験例1(X線回折測定)
Cu kα線(30kV/15mA)照射を使用する回折計(デスクトップX線回折装置MiniFlex2(株式会社リガク製))を用いて、実施例及び比較例で得られた試料をメノウ乳鉢で手粉砕して粉末X線回折分析法のパターンを測定した。それらのX線回折図を図1(湿ケーキ加熱熟成、実施例1〜3)及び図2(水性懸濁液加熱熟成、比較例1〜3)に示した。X線回折図で見る限り、同じ加熱熟成条件下では、湿ケーキも水性懸濁液スラリーもピーク位置に大きな差が見られなかった。180℃での加熱熟成条件下では、実施例1及び比較例1の試料でも、特許文献3の図1と同様のピークが観察された。これらピークは、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体の存在を示すものである。
Test Example 1 (X-ray diffraction measurement)
Using a diffractometer (desktop X-ray diffractometer MiniFlex2 (manufactured by Rigaku Corporation)) using Cu kα radiation (30 kV / 15 mA) irradiation, the samples obtained in the examples and comparative examples were hand-ground in an agate mortar. The pattern of the powder X-ray diffraction analysis was measured. The X-ray diffraction patterns are shown in FIG. 1 (wet cake heat aging, Examples 1 to 3) and FIG. 2 (aqueous suspension heat aging, Comparative Examples 1 to 3). As can be seen from the X-ray diffraction diagram, under the same heat aging conditions, no significant difference was found in the peak positions of the wet cake and the aqueous suspension slurry. Under the heat aging condition at 180 ° C., the same peaks as in FIG. 1 of Patent Document 3 were observed in the samples of Example 1 and Comparative Example 1. These peaks indicate the presence of an aluminum silicate complex consisting of a low crystalline layered clay mineral and an amorphous aluminum silicate.

試験例2(BET比表面積測定)
全自動比表面積測定装置(株式会社マウンテック製、製品名「Macsorb(登録商標) HM model−1210」)専用のセルに、実施例及び比較例の試料を所定量秤量し、前処理として200℃で30分間加熱脱気処理を行った。その後、セルを測定装置の所定の位置に備え付け、自動操作によりBET比表面積を測定し、結果を第1表に示した。なお、この装置の測定原理は、液体窒素の77Kでの吸着等温線を測定し、この吸着等温曲線から、BET(Brunauer−Emmett−Teller)法にて比表面積を測定する方法に従うものである。
実施例の試料の比表面積は、加熱温度に応じて高くなり、湿ケーキ加熱熟成(実施例1〜3)の比表面積は、同温度の水性懸濁液加熱熟成(比較例1〜3)に比べて増加傾向にある。
Test Example 2 (BET specific surface area measurement)
A predetermined amount of the samples of Examples and Comparative Examples was weighed into a cell dedicated to a fully automatic specific surface area measuring device (manufactured by Mountech Co., Ltd., product name “Macsorb (registered trademark) HM model-1210”), and pre-treated at 200 ° C. Heat deaeration treatment was performed for 30 minutes. Thereafter, the cell was mounted at a predetermined position of the measuring device, and the BET specific surface area was measured by an automatic operation. The results are shown in Table 1. The measuring principle of this apparatus is based on the method of measuring the adsorption isotherm of liquid nitrogen at 77 K and measuring the specific surface area from this adsorption isotherm by the BET (Brunauer-Emmett-Teller) method.
The specific surface area of the sample of the example increases according to the heating temperature, and the specific surface area of the wet cake heat aging (Examples 1 to 3) is the same as that of the aqueous suspension heat aging (Comparative Examples 1 to 3) at the same temperature. There is a tendency to increase.

試験例3(質量法による水蒸気吸着量測定)
実施例及び比較例で得られた試料を各々0.3gずつ秤量瓶に測り取り、前処理として60%、25℃の恒温恒湿機内で24時間吸湿させた後、100℃の乾燥機で24時間乾燥した。乾燥後のサンプルの質量(これを初期質量とする)を測定したのち、湿度60%、25℃の恒温恒湿機内で吸湿させ、吸湿2時間後、4時間後、6時間後、24時間後までの質量変化を記録した。初期質量を100とした場合の質量増加率を水蒸気吸着率として第1表に示した。実施例の湿ケーキ加熱熟成の水蒸気吸着量は、同温度の比較例の水性懸濁液加熱熟成に比べてほぼ同等の値となっている。
Test example 3 (measurement of water vapor adsorption by mass method)
0.3 g of each of the samples obtained in Examples and Comparative Examples was measured in a weighing bottle, and as a pretreatment, moisture was absorbed in a 60%, constant temperature / humidity chamber at 25 ° C. for 24 hours. Dried for hours. After measuring the mass of the sample after drying (this is referred to as the initial mass), the sample is absorbed in a constant temperature and humidity apparatus at a humidity of 60% and 25 ° C., and after 2 hours, 4 hours, 6 hours, and 24 hours. The change in mass up to was recorded. Table 1 shows the rate of increase in mass when the initial mass was 100, as the water vapor adsorption rate. The amount of water vapor adsorbed during the wet aging of the wet cake of the example is substantially equal to that of the aqueous suspension of the comparative example at the same temperature.

参考例
実施例に記載の(1)を行った得た湿ケーキを水でリパルプし、所定の固形分濃度の水性懸濁液を得た。このものの粘度をB型粘度計(60rpm、No.4ロータ)(液温25℃)で測定した結果を第2表に示した。固形分濃度14.0質量%(水分濃度86.0質量%、粘度2775mPa・s)のものは、図4のようなヨーグルト状で、流動性が著しく低いものではあるが、辛うじて水性懸濁液となった。
The wet cake obtained by performing (1) described in Reference Example was repulped with water to obtain an aqueous suspension having a predetermined solid content. Table 2 shows the results obtained by measuring the viscosity of this product with a B-type viscometer (60 rpm, No. 4 rotor) (liquid temperature: 25 ° C.). The solids concentration of 14.0% by mass (water concentration of 86.0% by mass, viscosity of 2775 mPa · s) is a yogurt-like material having a remarkably low fluidity as shown in FIG. It became.

アルミニウムケイ酸塩を、大量に、低コストでかつ容易に合成することを可能とする。また、本発明の製造方法は、水蒸気吸着剤、結露防止剤、防湿剤、有害汚染物質吸着剤、脱臭剤、ガス貯蔵剤又は蓄熱材としての機能を有するアルミニウムケイ酸塩の製造に適したものである。特に、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体の製造に適している。   It is possible to synthesize aluminum silicate in large quantities at low cost and easily. Further, the production method of the present invention is suitable for producing an aluminum silicate having a function as a water vapor adsorbent, a dew condensation inhibitor, a moisture proof agent, a harmful pollutant adsorbent, a deodorant, a gas storage agent or a heat storage material. It is. In particular, it is suitable for producing an aluminum silicate composite comprising a low crystalline layered clay mineral and an amorphous aluminum silicate.

Claims (7)

(1)ケイ酸アルカリ水溶液と、硫酸アルミニウム及び/又は塩化アルミニウムの水溶液をSi/Alモル比が0.9〜1.2となるように混合し、酸又はアルカリにてpHを6〜8に調整して前駆体物質の水性懸濁液を得る第一工程、
(2)前駆体物質の水性懸濁液を固液分離して湿ケーキを得る第二工程、
(3)前記前駆体物質の湿ケーキを密閉容器に入れて加熱し、アルミニウムケイ酸塩を得る第三工程を含むアルミニウムケイ酸塩の製造方法。
(1) An aqueous solution of an alkali silicate and an aqueous solution of aluminum sulfate and / or aluminum chloride are mixed such that the Si / Al molar ratio is 0.9 to 1.2, and the pH is adjusted to 6 to 8 with an acid or an alkali. A first step of adjusting to obtain an aqueous suspension of the precursor substance,
(2) a second step of solid-liquid separation of the aqueous suspension of the precursor substance to obtain a wet cake,
(3) A method for producing an aluminum silicate, comprising a third step of heating the wet cake of the precursor substance in a closed container to obtain an aluminum silicate.
アルミニウムケイ酸塩が、チューブ状アルミニウムケイ酸塩、非晶質アルミニウムケイ酸塩及び、低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体から成る群から選択される少なくとも一種である請求項1に記載のアルミニウムケイ酸塩の製造方法。   The aluminum silicate is selected from the group consisting of a tubular aluminum silicate, an amorphous aluminum silicate, and an aluminum silicate composite comprising a low crystalline layered clay mineral and an amorphous aluminum silicate. The method for producing an aluminum silicate according to claim 1, which is at least one of the following. アルミニウムケイ酸塩が低結晶性層状粘土鉱物と非晶質アルミニウムケイ酸塩からなるアルミニウムケイ酸塩複合体である請求項1に記載のアルミニウムケイ酸塩の製造方法。   The method for producing an aluminum silicate according to claim 1, wherein the aluminum silicate is an aluminum silicate composite comprising a low-crystalline layered clay mineral and an amorphous aluminum silicate. 160℃以上の温度で湿ケーキの加熱を行う請求項3に記載のアルミニウムケイ酸塩の製造方法。   The method for producing an aluminum silicate according to claim 3, wherein the wet cake is heated at a temperature of 160 ° C or higher. 固液分離を遠心分離、濾過又は膜分離にて行う請求項1〜4のいずれか一項に記載のアルミニウムケイ酸塩の製造方法。   The method for producing an aluminum silicate according to any one of claims 1 to 4, wherein the solid-liquid separation is performed by centrifugation, filtration, or membrane separation. 加圧下にて、湿ケーキの加熱を行う請求項1〜5のいずれか一項に記載のアルミニウムケイ酸塩の製造方法。   The method for producing an aluminum silicate according to any one of claims 1 to 5, wherein the wet cake is heated under pressure. ケイ酸アルカリが水ガラスである請求項1〜6のいずれか一項に記載のアルミニウムケイ酸塩の製造方法。   The method for producing an aluminum silicate according to any one of claims 1 to 6, wherein the alkali silicate is water glass.
JP2018188441A 2018-10-03 2018-10-03 Method of producing aluminum silicate Pending JP2020055717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018188441A JP2020055717A (en) 2018-10-03 2018-10-03 Method of producing aluminum silicate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018188441A JP2020055717A (en) 2018-10-03 2018-10-03 Method of producing aluminum silicate

Publications (1)

Publication Number Publication Date
JP2020055717A true JP2020055717A (en) 2020-04-09

Family

ID=70106371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018188441A Pending JP2020055717A (en) 2018-10-03 2018-10-03 Method of producing aluminum silicate

Country Status (1)

Country Link
JP (1) JP2020055717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193965A1 (en) 2020-03-26 2021-09-30 国立研究開発法人国立循環器病研究センター Antisense nucleic acid targeting apoc3

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0940417A (en) * 1995-05-24 1997-02-10 Agency Of Ind Science & Technol Production of crystalline microporous substance
JP2001064010A (en) * 1999-08-30 2001-03-13 Agency Of Ind Science & Technol Synthetic method of tubular aluminum silicate from high concentration inorganic solution
JP2008179534A (en) * 2006-12-27 2008-08-07 National Institute Of Advanced Industrial & Technology Amorphous aluminum silicate having excellent adsorption characteristic in high humidity range, and its manufacture method
JP2009067638A (en) * 2007-09-14 2009-04-02 National Institute Of Advanced Industrial & Technology Method for producing crystalline microporous body
WO2009084632A1 (en) * 2007-12-27 2009-07-09 National Institute Of Advanced Industrial Science And Technology Aluminum silicate complex, and high-performance adsorbent comprising the same
JP2013177312A (en) * 2005-10-12 2013-09-09 Basf Se Method of producing silicate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0940417A (en) * 1995-05-24 1997-02-10 Agency Of Ind Science & Technol Production of crystalline microporous substance
JP2001064010A (en) * 1999-08-30 2001-03-13 Agency Of Ind Science & Technol Synthetic method of tubular aluminum silicate from high concentration inorganic solution
JP2013177312A (en) * 2005-10-12 2013-09-09 Basf Se Method of producing silicate
JP2008179534A (en) * 2006-12-27 2008-08-07 National Institute Of Advanced Industrial & Technology Amorphous aluminum silicate having excellent adsorption characteristic in high humidity range, and its manufacture method
JP2009067638A (en) * 2007-09-14 2009-04-02 National Institute Of Advanced Industrial & Technology Method for producing crystalline microporous body
WO2009084632A1 (en) * 2007-12-27 2009-07-09 National Institute Of Advanced Industrial Science And Technology Aluminum silicate complex, and high-performance adsorbent comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193965A1 (en) 2020-03-26 2021-09-30 国立研究開発法人国立循環器病研究センター Antisense nucleic acid targeting apoc3

Similar Documents

Publication Publication Date Title
Alves et al. Green synthesis and characterization of biosilica produced from sugarcane waste ash
JP5212992B2 (en) Aluminum silicate complex and high performance adsorbent comprising the complex
US6514317B2 (en) Method for purifying hydrogen-based gas mixture
JP4576616B2 (en) Amorphous aluminum silicate with excellent moisture absorption and desorption characteristics in medium humidity range
JP5229916B2 (en) Carbon dioxide adsorbent that can be adsorbed and desorbed depending on the pressure above atmospheric pressure
Mureddu et al. MeO x/SBA-15 (Me= Zn, Fe): highly efficient nanosorbents for mid-temperature H 2 S removal
CN114272892B (en) CO (carbon monoxide)2Trapping adsorbent and preparation method and application thereof
JPWO2010026975A1 (en) Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same
Fiandini et al. Adsorption characteristics of submicron porous carbon particles prepared from rice husk
Jiang et al. Preparation of CaMgAl-LDHs and mesoporous silica sorbents derived from blast furnace slag for CO 2 capture
Jeoung et al. Effects of porous carbon additives on the CO2 absorption performance of lithium orthosilicate
Widiastuti et al. Synthesis of zeolite X-carbon from coal bottom ash for hydrogen storage material
Abdouss et al. Effect of the structure of the support and the aminosilane type on the adsorption of H 2 S from model gas
Ortiz-Landeros et al. Li2SiO3 fast microwave-assisted hydrothermal synthesis and evaluation of its water vapor and CO2 absorption properties
JP2020055717A (en) Method of producing aluminum silicate
Du et al. Preparation of zeolite NaA for CO 2 capture from nickel laterite residue
Rubio et al. Development of exfoliated layered stannosilicate for hydrogen adsorption
KR20120007882A (en) Method for preparation of zeolite 13x and mesoporous silica derived from power plant bottom ash, and carbon dioxide sorbents based on zeolite 13x and mesoporous silica prepared by the method
JP2017128499A (en) Amorphous aluminum silicate and manufacturing method therefor
JP6383188B2 (en) Method for producing α-sodium ferrites
JP4686889B2 (en) Method for purifying hydrogen gas
Majchrzak-Kucęba et al. Development of fly ash-based sorbent to capture CO 2 from flue gas
JP2012012267A (en) Method for producing aluminum silicate complex
Liu et al. Synthesis of fly ash-based microporous copper silicate for CO 2 capture from humid flue gases
KR102198162B1 (en) Process for preparing spherical zeolite granule having high strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220509