JP2001056177A - 空気分離装置 - Google Patents
空気分離装置Info
- Publication number
- JP2001056177A JP2001056177A JP2000206256A JP2000206256A JP2001056177A JP 2001056177 A JP2001056177 A JP 2001056177A JP 2000206256 A JP2000206256 A JP 2000206256A JP 2000206256 A JP2000206256 A JP 2000206256A JP 2001056177 A JP2001056177 A JP 2001056177A
- Authority
- JP
- Japan
- Prior art keywords
- air
- gas
- pressure
- pulse tube
- refrigerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/14—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
- F25B9/145—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
- F25J3/0426—The cryogenic component does not participate in the fractionation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04278—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/044—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1406—Pulse-tube cycles with pulse tube in co-axial or concentric geometrical arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1418—Pulse-tube cycles with valves in gas supply and return lines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1419—Pulse-tube cycles with pulse tube having a basic pulse tube refrigerator [PTR], i.e. comprising a tube with basic schematic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/72—Refluxing the column with at least a part of the totally condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
- F25J2270/908—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration
- F25J2270/91—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration using pulse tube refrigeration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/62—Details of storing a fluid in a tank
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
LN2 の製造が可能で、フラッシュの発生がなく、効率
の良い運転をすることのできる空気分離装置を提供す
る。 【解決手段】外部より取り入れた空気を圧縮する空気圧
縮機と、この空気圧縮機によって圧縮された圧縮空気中
の不純物を除去する吸着塔と、この吸着塔を経た圧縮空
気を超低温により冷却する熱交換器1と、この熱交換器
1を経由し超低温に冷却された圧縮空気を各成分の沸点
差を利用して分離し所望の成分を気体状態で取り出す精
留塔2を備えた空気分離装置である。そして、上記精留
塔2に、精留塔2内の空気液化用の寒冷源として塔内冷
却用のパルスチューブ冷凍機3を設けている。
Description
機を用いる空気分離装置に関するものである。
り空気を液化して各成分(N2 ,O2,Ar等)に精留
分離したのち、所望の成分を気体状態または液体状態で
取り出すようにしており、寒冷源として、膨張タービン
や液体窒素等の冷熱エネルギーを利用している。このよ
うな深冷空気分離装置として、図9に示すような、膨脹
タービンを利用した高純度窒素ガス製造装置がある。図
において、21は原料空気(圧縮空気)を熱交換器22
に供給する圧縮空気供給パイプである。この圧縮空気供
給パイプ21を通る圧縮空気は、大気中の空気を空気圧
縮機により取り込んで圧縮したのち、ドレン分離器,フ
ロン冷却器および吸着筒を経由した圧縮空気である(図
面では、これら空気圧縮機,ドレン分離器,フロン冷却
器および吸着筒を省略している)。22は熱交換器であ
り、この内部に、吸着筒内部のモレキュラーシーブによ
り水分(H2 O)および炭酸ガス(CO2 )が吸着除去
された圧縮空気が送り込まれ、超低温に冷却される。
超低温に冷却され圧縮空気導入パイプ24を経て送り込
まれる圧縮空気をさらに冷却し、その一部を液化し液体
空気として底部に溜め、N2 を気体状態で上部に溜める
ようになっている。26は精留塔23の上方に配設され
た凝縮器27内蔵のコンデンサー(分縮器)である。こ
の凝縮器27には、精留塔23の上部に溜るN2 ガスの
一部が第1還流液パイプ28aを介して送入される。こ
のコンデンサー26内は、精留塔23内よりも減圧状態
になっており、精留塔23の底部の貯留液体空気
(N2 ;50〜70%,O2 ;30〜50%)25が膨
脹弁29a付き送給パイプ29を経て送り込まれ、気化
して内部温度を液体窒素(LN2 )の沸点以下の温度に
冷却するようになっている。この冷却により、精留塔2
3から第1還流液パイプ28aを介して凝縮器27内に
送入されたN2 ガスが液化する。精留塔23の上部に
は、凝縮器27で生成したLN2 が第2還流液パイプ2
8bを流下して還流供給され、これがLN2 溜め(図示
せず)を経て精留塔23内を下方に流下し、精留塔23
の底部から上昇する圧縮空気と向流的に接触し冷却して
その一部を液化するようになっている。この過程で圧縮
空気中の高沸点成分(O2 )は液化されて精留塔23の
底部に溜り、低沸点成分のN2 ガスが精留塔23の上部
に溜る。
を製品N2 ガスとして取り出すN2ガス取出パイプであ
り、低温のN2 ガスを熱交換器22内に案内し、そこに
送り込まれる圧縮空気と熱交換させて常温にしメインパ
イプ31に送り込む作用をする。31aは一定量のN2
ガスを所定の圧力で需要側に供給する製品N2 ガス供給
弁である。32は放出パイプであり、コンデンサー26
内の気化液体空気(排N2 ガス)の全部または一部を分
岐パイプ34を経て膨脹タービン33の駆動部に送り込
み他部を外部に放出する作用をする。32aは分岐パイ
プ34に供給する排N2 ガス量をコントロールすること
により寒冷量の調節を行う流量調節弁である。33は膨
脹タービンであり、分岐パイプ34から供給された排N
2 ガスを膨脹させて低温排N2 ガスを得たのち、戻しパ
イプ35を経て放出パイプ32の流量調節弁32a下流
側部分に合流させる。これにより、分岐パイプ34を通
る排N2 ガス、放出パイプ32を通る低温排N2 ガス,
排N2 ガスおよびN2 ガス取出パイプ30から送り込ま
れる製品N2 ガスにより、熱交換器22内へ送り込まれ
る圧縮空気を低温に冷却するようになっている。
3の圧力より1kg/cm2 G程度低い圧力に設定され
ている)であり、精留塔23の上部のLN2 溜めから導
入弁37a付き導入パイプ37を経てLN2 が圧力差に
より供給されるようになっている。38はLN2 貯蔵タ
ンク36の下部から延びる自己加圧蒸発器38a付きL
N2 取出パイプである。このLN2 取出パイプ38を設
けているため、バックアップ作動(メインパイプ31か
らの製品N2 ガスの供給量低下,供給不能等の場合に、
LN2 貯蔵タンク36のLN2 を後述のバックアップ系
パイプ42を通して気化し需要側に供給する)後に、L
N2 貯蔵タンク36の上部圧力が降下して所定圧力を下
回っても、開閉弁39が開き、LN2 貯蔵タンク36内
のLN2が自己加圧蒸発器38aに送り込まれて蒸発し
体積膨張したのち、上部パイプ40を経てLN2 貯蔵タ
ンク36の上部空間に導入される。これにより、LN2
貯蔵タンク36の上部圧力が上記所定圧力に戻り、開閉
弁39は閉弁する。41は上部パイプ40から延びる開
閉弁41a付き排出パイプであり、LN2 貯蔵タンク3
6の上部圧力が上記所定圧力を上回ると、開閉弁41a
が開き、LN2 貯蔵タンク36内のLN2 が外部に放出
されて所定圧力に戻るようになっている。42はLN2
貯蔵タンク36からメインパイプ31に延びるバックア
ップ系パイプであり、空気圧縮系ラインが故障等して、
バックアップ系パイプ42内の圧力が所定圧力(製品N
2 ガス圧力〔LN2 貯蔵タンク36の上部圧力と同じ〕
より0.5kg/cm2 G程度低い圧力)に降下する
と、開閉弁43が開き、LN2 貯蔵タンク36内のLN
2 がバックアップ用蒸発器42aに送り込まれて蒸発
し、製品N2 ガスとしてメインパイプ31に導入され
る。これにより、N2 ガスの供給が途絶えないようにし
ている。
スを製造する。すなわち、空気圧縮機により空気を圧縮
し、ドレン分離器により圧縮された空気中のH2 Oを除
去してフロン冷却器により冷却し、その状態で吸着筒に
送り込み、空気中のH2 OおよびCO2 を吸着除去す
る。ついで、H2 O,CO2 が吸着除去された圧縮空気
を、精留塔23からN2 ガス取出パイプ30を経て送り
込まれる製品N2 ガス,膨脹タービン33から送り込ま
れる低温排ガス等の冷媒によって冷やされている熱交換
器22に送り込んで超低温に冷却し、その状態で精留塔
23の下部内に投入する。つぎに、この投入圧縮空気を
LN2 溜めからの溢流LN2 と接触させて冷却し、一部
を液化して精留塔23の底部に液体空気25として溜め
る。この過程において、N2 とO2 の沸点の差により、
圧縮空気中の高沸点成分であるO2が液化し、N2 が気
体のまま残る。つぎに、この気体のまま残ったN2 をN
2 ガス取出パイプ30から取り出して熱交換器22に送
り込み、常温近くまで昇温させメインパイプ31から製
品N2 ガスとして送り出す。一方、精留塔23の下部に
溜った液体空気25については、これをコンデンサー2
6内に送り込み凝縮器27を冷却させる。この冷却によ
り、精留塔23の上部から凝縮器27に送入されたN2
ガスが液化して精留塔23用の還流液となり、第2還流
液パイプ28bを経て精留塔23に戻る。そして凝縮器
27を冷却し終えた液体空気25は気化し、放出パイプ
32により熱交換器22に送られてこの熱交換器22を
冷やしたのち、空気中に放出される。他方、コンデンサ
ー26から取り出した排N2 ガスの全部もしくは一部は
熱交換器22を通ったのち膨脹タービン33の駆動部に
送り込まれ、これを駆動し冷媒を循環させ、再度熱交換
器22に送り込まれて、熱交換器22内へ送り込まれる
圧縮空気を冷却するようになっている。
置に用いる膨張タービン33は、1分間に数万回と高速
回転させるため、負荷変動に対する追従運転が困難であ
り、かつ故障が生じやすいという欠点等がある。そこ
で、比較的小型の空気分離装置では、膨張タービン33
の代替として、外部からLN2 を供給するLN2 収容タ
ンクを用い、このLN2 収容タンク内のLN2 を直接に
精留塔23に供給している場合もある。ところが、この
ものでは、LN2 を消費するのみであり、LN2 の製造
は不可能である。このため、LN2 の補給が必要とな
り、LN2 供給源の確保およびLN2 の輸送等のコスト
アップとなる。一方、膨脹タービン33を用いた空気分
離装置では、LN2 の製造は、LN2 の還流液の一部を
精留塔23のLN2 溜めからLN 2 貯蔵タンク36に取
り出すことにより行われているため、LN2 製造量と還
流液量のバランスに変動が生じると、製品N2 ガスの純
度に悪影響を及ぼす等運転が難しくなる。また、精留塔
23からLN2 をLN2 貯蔵タンク36に減圧供給した
場合にフラッシュロスが発生し、LN2 の収率が低下す
る等の欠点がある。しかも、LN2 貯蔵タンク36の上
部圧力は精留塔23の圧力よりも少なくとも1kg/c
m2 G程度低圧にする必要があり、N2 ガスのバックア
ップ時にはLN2 貯蔵タンク36の上部圧力をN2 供給
圧力にまで上昇させなければならず、この上昇時間はバ
ックアップが停止する。これを防ぐため、N2 供給圧力
を精留塔23の圧力より1kg/cm2 G程度低い状態
にしているが、精留塔23の状態は低圧運転の方が効率
がよく、効率の悪い運転をしていることになる。
もので、寒冷源として膨脹タービンを用いることなく、
LN2 等の製造が可能で、フラッシュの発生がなく、効
率の良い運転をすることのできる空気分離装置の提供を
その目的とする。
め、本発明の空気分離装置は、外部より取り入れた空気
を圧縮する空気圧縮手段と、この空気圧縮手段によって
圧縮された圧縮空気中の不純物を除去する除去手段と、
この除去手段を経た圧縮空気を冷却する熱交換器と、こ
の熱交換器を経由し低温に冷却された圧縮空気を各成分
の沸点差を利用して分離し所望の成分を気体状態で取り
出す精留塔とを備えた空気分離装置であって、当該装置
内に、精留塔内の空気液化用の寒冷源として塔内冷却用
冷凍機を設けたという構成をとる。
用の寒冷源として塔内冷却用冷凍機を用いている。した
がって、従来例のように、膨脹タービンを用いた場合の
欠点(すなわち、膨脹タービンは1分間に数万回と高速
回転するため、負荷変動に対する追従運転が困難であ
り、かつ故障が生じやすいという欠点)がなくなる。ま
た、本発明において、上記精留塔から気体状態で取り出
した成分(N2 ,O2 ,Ar等)の一部を導入する貯蔵
手段と、上記貯蔵手段に導入した気体状態の成分を液化
して上記貯蔵手段内に溜めるタンク内冷却用冷凍機とを
設けた場合には、液化成分(LN2 ,LO2 ,LAr
等)の製造を行うこともできる。しかも、本発明では、
精留塔にて上記の成分を気体状態で製造し、この気体状
態の成分の一部を貯蔵手段に導入したのちタンク内冷却
用冷凍機により液化し貯蔵しているため、従来例では生
じたフラッシュロスが生じなくなり、収率が向上するう
え、上記の成分の製造量と還流液量のバランスに変動が
生じなくなり、上記の成分の純度が劣化しない。さら
に、精留塔の圧力(N2 等の発生圧力)と貯蔵手段内の
圧力は同圧でよく、バックアップ時に貯蔵手段内の圧力
を上昇させる必要がなくなる。このため、精留塔を低圧
運転することができ、効率の良い運転が行える。また、
貯蔵手段に溜めた液化成分を、装置の定期検査等で加温
状態となった機器のクールダウンや装置停止等のガスバ
ックアップ供給に利用することもできる。
面にもとづいて詳しく説明する。
態を示す構成図である。この実施の形態では、図9の空
気分離装置において用いた膨脹タービン33の代替とし
て、精留塔2に空気液化用のパルスチューブ冷凍機3を
設けるようにしている。また、LN2 貯蔵タンク4にN
2 ガス液化用のパルスチューブ冷凍機6を設け、精留塔
2で製造したN2 ガスをLN2 貯蔵タンク4に導入した
のち、パルスチューブ冷凍機6でLN2 にして貯蔵する
ようにしている。それ以外の部分は図9に示す空気分離
装置と同様であり、同様の部分には同じ符号を付してい
る。図1において、1は熱交換器である。この熱交換器
1は、図9の熱交換器22と同様構造の熱交換器であ
り、同様の作用をする。ただし、この実施の形態では、
膨脹タービン33を用いていないため、熱交換器1内を
図9の分岐パイプ34が通っていない。これにより、熱
交換器1内へ送り込まれる圧縮空気は、放出パイプ32
を通る排N2 ガスおよびN2 ガス取出パイプ30から送
り込まれる製品N2 ガスにより冷却されるようになって
いる。
の精留塔23と同様構造の精留塔であり、同様の作用を
する。ただし、この実施の形態では、精留塔2の下部周
壁から筒体2aが上向きに突設されており、この筒体2
aの上端開口を蓋する蓋体に空気液化用のパルスチュー
ブ冷凍機3(Heを冷媒として利用している)が取り付
けられている。このパルスチューブ冷凍機3は精留塔2
内に寒冷を発生させるものであり、この寒冷により、圧
縮空気導入パイプ24を経て精留塔2に送り込まれる圧
縮空気を冷却し、その一部を液化し液体空気として底部
に溜め、N2 を気体状態で上部に溜めるようになってい
る。5は第1還流液パイプ28aから分岐する導出パイ
プであり、N2 ガス取出パイプ30を通るN2 ガスの一
部を第1還流液パイプ28aを介して取り出してLN2
貯蔵タンク4に導入する作用をする。5aはLN2 貯蔵
タンク5への最大供給量を制限する導出弁であり、精留
塔2のN2 の濃度が劣化した場合およびLN2 貯蔵タン
ク4のLN2 の液面が上限に達した場合に、閉じるよう
になっている。6はLN2 貯蔵タンク4の頂部に設けた
N2 ガス液化用のパルスチューブ冷凍機(Heを冷媒と
して利用している)であり、導出パイプ5を経て送り込
まれる(液化温度近くの)N2 ガスを液化してLN2 貯
蔵タンク4内に溜めるようになっている。7は供給弁7
a付きLN2供給パイプであり、寒冷エネルギー不足時
等に供給弁7aを開いてLN2 貯蔵タンク4内のLN2
をコンデンサー26に供給する作用をする。8は断熱保
冷箱であり、内部に熱交換器1,精留塔2,コンデンサ
ー26およびLN2 貯蔵タンク4が収容されている。こ
の断熱保冷箱8の内部は真空状態に保持されており、か
つパーライト(図示せず)が充填されている。この実施
の形態では、精留塔2の圧力,LN2 貯蔵タンク4の上
部圧力および製品N2 ガス圧力が同一に設定されてい
る。
3の冷凍能力は、熱交換器1の温端温度差によるエンタ
ルピーのロス分とヒートリークロス分でよく、また、パ
ルスチューブ冷凍機6の冷凍能力はN2 の潜熱分とヒー
トリークロス分の冷凍能力でよく、両冷凍機3,6とも
に、例えばN2 ガス200Nm3 /hを発生する空気分
離装置であれば、500W程度の冷凍能力で運転可能と
なる。この場合に、LN2 製造量は約7Nm3 /hとな
る。また、通常運転時には、パルスチューブ冷凍機3は
コンデンサー26の液体空気の液面を制御しながら運転
され、パルスチューブ冷凍機6は貯蔵タンク4の上部圧
力を制御しながら運転される。また、導出パイプ5によ
りLN2 貯蔵タンク4に供給される最大供給量はパルス
チューブ冷凍機6の冷凍能力に左右される。
スを製造する。すなわち、圧縮機で圧縮した空気を吸着
塔に送り、この吸着塔で空気中の不純物(H2 O,CO
2 )を除去し、ついで熱交換器1で液化温度まで冷却し
たのち、精留塔2下部に供給する。精留塔2内では、供
給された圧縮空気が上昇ガスになるとともに、圧縮空気
の少量(約1〜2%)がパルスチューブ冷凍機3の寒冷
により液化し、精留塔2底部の液体空気25と混合す
る。一方、精留塔2の底部に溜まる液体空気25を膨張
弁29aで減圧し、コンデンサー26に供給する。この
コンデンサー26では、凝縮器27により精留塔2上部
のN2 ガスの一部を液化するとともに、液体空気をガス
化して排N2 ガスとして放出パイプ32に放出し、熱交
換器1で冷熱を回収したのち、装置外へ排出する。凝縮
器27で液化したLN2 を精留塔2上部から供給し還流
液として精留塔2内を降下させる。一方、精留塔2上部
のN 2 ガスの一部をN2 ガス取出パイプ30,第1還流
液パイプ28aおよび導出パイプ5を通してLN2 貯蔵
タンク4の上部へ供給し、パルスチューブ冷凍機6で液
化してLN2 貯蔵タンク4内に溜め、残りのN2 ガスを
熱交換器1で冷熱を回収したのち、メインパイプ31に
供給する。
としてパルスチューブ冷凍機3を用いているため、従来
例のように膨脹タービン33を用いる必要がなく、負荷
変動に対する追従運転が困難であるという欠点や、故障
が生じやすいという欠点がなくなる。しかも、精留塔2
で製造したN2 ガスをLN2 貯蔵タンク4に溜めている
(すなわち、LN2 の製造が行える)ため、LN2 貯蔵
タンク4へのLN2 の補給が不必要となり、LN2 供給
源の確保およびLN2 の輸送等に費用がかからない。ま
た、LN2 貯蔵タンク4のLN2 を装置の定期検査等に
より加温状態となった機器のクールダウンや装置停止時
のN2 ガスのバックアップ供給にも利用することができ
る。さらに、LN2 貯蔵タンク4に精留塔2から取り出
したN2ガスを導入しているため、LN2 製造量と還流
液量のバランスに変動が生じることがなく、製品N2 ガ
スの純度に悪影響を及ぼこともなく、装置の運転が容易
になる。また、フラッシュロスが発生せず、LN2 の収
率が低下しない。さらに、LN2 貯蔵タンク4内の圧力
を高くすることができ、従来例のように、N2 ガスのバ
ックアップ時にN2 供給圧力を保つため貯蔵タンク4の
上部圧力を上昇させる必要がない。このため、精留塔2
を低圧運転にすることができ、効率の良い運転を行うこ
とができる。さらに、パルスチューブ冷凍機3を精留塔
2の下部(精留塔2内の最も温度の高い部分)に取り付
けているため、精留効率をアップさせることができる。
また、パルスチューブ冷凍機3を精留塔2の上部に設け
て、LN2 の還流量を増加させてもよい。また、通常運
転時には、コンデンサー26の液体空気の液面が所定液
面より高くなると、パルスチューブ冷凍機3の冷凍能力
が低下し、逆に、上記液面が所定液面より低くなると、
冷凍能力が上昇するように液面をコントロールしてい
る。一方、貯蔵タンク4の上部圧力が所定圧力より高く
なると、パルスチューブ冷凍機6の冷凍能力が上昇し、
逆に、上記上部圧力が所定圧力より低くなると、冷凍能
力が低下するようにしている。
2に示すように、円筒状のパルスチューブ10と、高圧
Heガス溜め(高圧バッファタンク)11と、低圧He
ガス溜め(低圧バッファタンク)12とを備えており、
上記パルスチューブ10内でHeガスを膨張させること
により、寒冷を発生させるようにしている。このような
パルスチューブ10は、その冷端(低温側・ガスの入口
側)10aが精留塔2の下部に配設されているととも
に、その熱端(高温側)10bが精留塔2の外部に配設
され放熱するようになっている。13a,13bは上記
パルスチューブ10の冷端10aおよび熱端10bに配
設される円盤状の層流化部材である。14a,14bは
上記パルスチューブ10の冷端10aおよび熱端10b
に取り付けられる蓋体である。15は上記冷端側蓋体1
4aの中央貫通穴14cに内嵌状に取り付けられた冷端
側本管であり、給気バルブ16aを設けた給気管16と
排気バルブ17aを設けた排気管17に分岐している。
そして、上記給気管16の先端が高圧Heガス源(図示
せず)に連通し、上記排気管17の先端が低圧Heガス
源(図示せず)に連通している。18は上記熱端側蓋体
14bの中央貫通穴14dに内嵌状に取り付けられた熱
端側本管であり、第1バルブ19aを設けた第1分岐管
19と第2バルブ20aを設けた第2分岐管20に分岐
している。そして、上記第1分岐管19の先端が高圧H
eガス溜め11に連通し、上記第2分岐管20が低圧H
eガス溜め12に連通している。
は、つぎのサイクルを繰り返すことにより行う。まず、
図3に示すように、給気バルブ16a,排気バルブ17
aおよび第2バルブ20aを閉弁する。この状態で、パ
ルスチューブ10内は低圧Heガス源の内圧と同一圧力
となっている。ついで、第1バルブ19aを開弁する
と、高圧Heガス溜め11内の高圧Heガスがパルスチ
ューブ10の熱端10bに流れ込み、パルスチューブ1
0内のガス圧は高圧Heガス溜め11の圧力近くまで上
昇する。この過程Pのパルスチューブ10内の気体分布
が図3に示されている。図3において、Dは高圧Heガ
ス溜め11から導入された高圧Heガスで、B,Cは低
圧から高圧になったパルスチューブ10内のHeガスで
ある。
9aを開弁した状態で給気バルブ16aのみを開弁する
(その他のバルブ17a,20aは元のまま)と、高圧
Heガス源から高圧Heガスが供給されてパルスチュー
ブ10の冷端10aに流入する。このとき、高圧Heガ
ス源の給気圧力が高圧Heガス溜め11の圧力よりやや
高く設定されており、上記過程Pでパルスチューブ10
の熱端10bに流れ込んだ高圧Heガス溜め11の高圧
ガスD(図3参照)はただちに高圧Heガス溜め11内
に戻される。この過程Qは基本的には等圧給気過程であ
り、パルスチューブ10内の気体分布が図4に示されて
いる。図4において、Aは高圧Heガス源からパルスチ
ューブ10内に導入された高圧Heガスである。
9aと給気バルブ16aを閉弁したのち(排気バルブ1
7aは閉弁したたまま)、第2バルブ20aを開弁する
と、パルスチューブ10の熱端10bのガスC(図4参
照)が低圧Heガス溜め12に流入する(戻る)ため、
パルスチューブ10内の圧力が低圧ガス溜め12の圧力
まで低下する。すなわち、上記過程Qにおいてパルスチ
ューブ10の冷端10aに入った高圧HeガスAは、H
eガスBとともに低圧Heガス溜め12の圧力まで膨脹
し、温度降下してパルスチューブ10の冷端10a側を
冷却する。この過程Rのパルスチューブ10内の気体分
布が図5に示されている。
7aを開弁する(その他のバルブ16a,19a,20
aは元のまま)と、上記過程Rにおいてパルスチューブ
10内で膨脹したHeガスAが低圧Heガス源に排出さ
れ、低圧Heガス溜め12の低圧Heガスがパルスチュ
ーブ10内に流入する。
に上記過程Pが始まる。このように循環してワークする
ので、高圧Heガスは、不断に膨脹して低圧となる。気
体のパルスチューブ10内における熱伝導、混合と、流
動によるロスとを考慮しない場合、高圧Heガス溜め1
1内の圧力は高圧Heガス源の給気圧力に、また低圧H
eガス溜め12内の圧力は低圧Heガス源の内圧にそれ
ぞれ等しい。そして、上記の1サイクルが終わると、結
局、HeガスAが高圧Heガス源からパルスチューブ1
0内に入り、このパルスチューブ10内で断熱膨脹し寒
冷を発生したのち、低圧Heガス源内に排出されたこと
になる。また、HeガスBは常にパルスチューブ10内
でガスピストンの役割を演じ、C,Dはそれぞれ各He
ガス溜め11,12から出入りしているだけである。
形態を示している。この実施の形態では、図1の空気分
離装置において、LN2 貯蔵タンク4から延びるLN2
供給パイプ7を精留塔2の上部に接続し、これにより、
LN2 貯蔵タンク4内のLN 2 を精留塔2のLN2 溜め
に導入するようにしている。それ以外の部分は図1に示
す空気分離装置と同様であり、同様の部分には同じ符号
を付している。この実施の形態でも、上記実施の形態の
同様に作用し、同様の効果を奏する。
実施の形態を示している。この実施の形態では、図1の
空気分離装置において、LN2 貯蔵タンク4に供給弁9
a付き外部LN2 供給パイプ9を取り付けている。それ
以外の部分は図1に示す空気分離装置と同様であり、同
様の部分には同じ符号を付している。この実施の形態で
も、図1の実施の形態の同様に作用し、同様の効果を奏
する。しかも、LN2貯蔵タンク4に外部LN2 供給パ
イプ9を介して外部からLN2 を供給することができる
ため、装置のスタートアップ前にLN2 貯蔵タンク4に
外部からLN2を供給しておき、スタートアップ時にL
N2 貯蔵タンク4からLN2 をコンデンサー26に供給
することにより、スタートアップ時のクールダウンの時
間短縮をすることができるようになる。
て、パルスチューブ冷凍機3,6を用いているが、これ
に限定するものではなく、GM(ギフォード・マクマホ
ン)冷凍機,スターリング冷凍機等を用いることができ
る。これら冷凍機の冷媒としては、Heが好適に用いら
れる。また、上記各実施の形態では、N2 ガスを製造す
る空気分離装置が示されているが、これに限定するもの
ではなく、N2 以外にO2 やArを製造するようにして
もよい。
ーブ冷凍機3が故障した場合や、精留塔2のN2 発生量
が増大した(原料空気が増大した)場合に、パルスチュ
ーブ冷凍機3の補助として、LN2 貯蔵タンク4のLN
2 を精留塔2もしくはコンデンサー26に供給し、寒冷
源として用いることができる。また、図8の実施の形態
において、LN2 貯蔵タンク4から延びるLN2 供給パ
イプ7を精留塔2の上部に接続し、これにより、LN2
貯蔵タンク4内のLN2 を精留塔2のLN2 溜めに導入
するようにしてもよい。また、上記パルスチューブ冷凍
機3,6において、各バルブ16a,17a,19a,
20aのタイプとして電動バルブ、電磁バルブ、気動バ
ルブまたは回転バルブ等が用いられる。
よれば、精留塔の空気液化用の寒冷源として塔内冷却用
冷凍機を用いている。したがって、従来例のように、膨
脹タービンを用いた場合の欠点(すなわち、膨脹タービ
ンは1分間に数万回と高速回転するため、負荷変動に対
する追従運転が困難であり、かつ故障が生じやすいとい
う欠点)がなくなる。また、本発明において、上記精留
塔から気体状態で取り出した成分(N2 ,O2 ,Ar
等)の一部を導入する貯蔵手段と、上記貯蔵手段に導入
した気体状態の成分を液化して上記貯蔵手段内に溜める
タンク内冷却用冷凍機とを設けた場合には、液化成分
(LN2 ,LO2 ,LAr等)の製造を行うこともでき
る。しかも、本発明では、精留塔にて上記の成分を気体
状態で製造し、この気体状態の成分の一部を貯蔵手段に
導入したのちタンク内冷却用冷凍機により液化し貯蔵し
ているため、従来例では生じたフラッシュロスが生じな
くなり、収率が向上するうえ、上記の成分の製造量と還
流液量のバランスに変動が生じなくなり、上記の成分の
純度が劣化しない。さらに、精留塔の圧力(N2 等の発
生圧力)と貯蔵手段内の圧力は同圧でよく、バックアッ
プ時に貯蔵手段内の圧力を上昇させる必要がなくなる。
このため、精留塔を低圧運転することができ、効率の良
い運転が行える。また、貯蔵手段に溜めた液体状態の成
分を、装置の定期検査等で加温状態となった機器のクー
ルダウンや装置停止等のガスバックアップ供給に利用す
ることもできる。
成図である。
である。
である。
である。
である。
構成図である。
を示す構成図である。
Claims (5)
- 【請求項1】 外部より取り入れた空気を圧縮する空気
圧縮手段と、この空気圧縮手段によって圧縮された圧縮
空気中の不純物を除去する除去手段と、この除去手段を
経た圧縮空気を冷却する熱交換器と、この熱交換器を経
由し低温に冷却された圧縮空気を各成分の沸点差を利用
して分離し所望の成分を気体状態で取り出す精留塔とを
備えた空気分離装置であって、当該装置内に、精留塔内
の空気液化用の寒冷源として塔内冷却用冷凍機を設けた
ことを特徴とする空気分離装置。 - 【請求項2】 上記精留塔から気体状態で取り出した成
分の一部を導入する貯蔵手段と、上記貯蔵手段に導入し
た気体状態の成分を液化して上記貯蔵手段内に溜めるタ
ンク内冷却用冷凍機とを設けた請求項1記載の空気分離
装置。 - 【請求項3】 冷凍機がHe(ヘリウム)を利用した冷
凍機である請求項1または2記載の空気分離装置。 - 【請求項4】 冷凍機がGM冷凍機,スターリング冷凍
機またはパルスチューブ冷凍機である請求項3記載の空
気分離装置。 - 【請求項5】 精留塔で取り出される成分がN2 ,O2
およびArの少なくとも1つである請求項1記載の空気
分離装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000206256A JP3609009B2 (ja) | 1997-01-14 | 2000-07-07 | 空気分離装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00483997A JP3163024B2 (ja) | 1997-01-14 | 1997-01-14 | 空気分離装置 |
JP2000206256A JP3609009B2 (ja) | 1997-01-14 | 2000-07-07 | 空気分離装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00483997A Division JP3163024B2 (ja) | 1997-01-14 | 1997-01-14 | 空気分離装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001056177A true JP2001056177A (ja) | 2001-02-27 |
JP3609009B2 JP3609009B2 (ja) | 2005-01-12 |
Family
ID=34117698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000206256A Expired - Fee Related JP3609009B2 (ja) | 1997-01-14 | 2000-07-07 | 空気分離装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3609009B2 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1167904A1 (en) * | 2000-06-28 | 2002-01-02 | Praxair Technology, Inc. | Cryogenic rectification system with pulse tube refrigeration |
EP1429097A3 (en) * | 2002-10-30 | 2004-11-17 | Praxair Technology, Inc. | Cryogenic system for providing industrial gas to a use point |
CN106091575A (zh) * | 2016-05-31 | 2016-11-09 | 浙江智海化工设备工程有限公司 | 一种配套于外压缩空分的膨胀空气旁通量降低装置及降低方法 |
CN108870078A (zh) * | 2018-08-22 | 2018-11-23 | 江苏核电有限公司 | 一种发电机氢气干燥器气动阀控制气源装置及其控制方法 |
CN110793271A (zh) * | 2018-08-01 | 2020-02-14 | 乔治洛德方法研究和开发液化空气有限公司 | 用于通过空气的低温蒸馏来生产氩的方法和设备 |
CN115069057A (zh) * | 2022-06-17 | 2022-09-20 | 中国空分工程有限公司 | 一种低温精馏提纯回收二氧化碳的方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104807288B (zh) * | 2015-05-20 | 2017-03-15 | 西南石油大学 | 高压天然气的凝液回收方法 |
-
2000
- 2000-07-07 JP JP2000206256A patent/JP3609009B2/ja not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1167904A1 (en) * | 2000-06-28 | 2002-01-02 | Praxair Technology, Inc. | Cryogenic rectification system with pulse tube refrigeration |
EP1429097A3 (en) * | 2002-10-30 | 2004-11-17 | Praxair Technology, Inc. | Cryogenic system for providing industrial gas to a use point |
CN106091575A (zh) * | 2016-05-31 | 2016-11-09 | 浙江智海化工设备工程有限公司 | 一种配套于外压缩空分的膨胀空气旁通量降低装置及降低方法 |
CN106091575B (zh) * | 2016-05-31 | 2018-08-28 | 浙江智海化工设备工程有限公司 | 一种配套于外压缩空分的膨胀空气旁通量降低装置及降低方法 |
CN110793271A (zh) * | 2018-08-01 | 2020-02-14 | 乔治洛德方法研究和开发液化空气有限公司 | 用于通过空气的低温蒸馏来生产氩的方法和设备 |
CN108870078A (zh) * | 2018-08-22 | 2018-11-23 | 江苏核电有限公司 | 一种发电机氢气干燥器气动阀控制气源装置及其控制方法 |
CN115069057A (zh) * | 2022-06-17 | 2022-09-20 | 中国空分工程有限公司 | 一种低温精馏提纯回收二氧化碳的方法 |
Also Published As
Publication number | Publication date |
---|---|
JP3609009B2 (ja) | 2005-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5410443B2 (ja) | 気体の膨張プロセスに基づく冷却システムの冷却能力の調整のための方法およびシステム | |
US3407052A (en) | Natural gas liquefaction with controlled b.t.u. content | |
JP3947565B2 (ja) | 加圧製品ガスの可変生成方法及び装置 | |
CN100510574C (zh) | 深冷液化/制冷方法和系统 | |
JP4276520B2 (ja) | 空気分離装置の運転方法 | |
JP3609009B2 (ja) | 空気分離装置 | |
JP2005083588A (ja) | ヘリウムガス液化装置およびヘリウムガス回収・精製・液化装置 | |
JP3208547B2 (ja) | 液化天然ガスの寒冷を利用した永久ガスの液化方法 | |
US8549878B2 (en) | Method of generating nitrogen and apparatus for use in the same | |
JP3163024B2 (ja) | 空気分離装置 | |
JP3217005B2 (ja) | 空気分離方法およびそれに用いる装置 | |
JPH11316059A (ja) | 低沸点流体の熱サイクルを用いた冷凍プロセスおよびプラント | |
JP3007581B2 (ja) | 空気分離装置 | |
JPH07234027A (ja) | 多元冷凍装置 | |
US6668581B1 (en) | Cryogenic system for providing industrial gas to a use point | |
JPS6119902B2 (ja) | ||
JPH06241647A (ja) | 水素液化装置及びスラッシュ水素製造装置 | |
JP2711879B2 (ja) | 低温冷凍機 | |
JP2000180051A (ja) | 超高純度窒素製造法 | |
JP4879606B2 (ja) | 冷熱供給システム | |
JPH0882476A (ja) | 高純度窒素ガス製造装置 | |
JP2003526065A (ja) | 相転移無熱冷却方法および装置 | |
JP3021389B2 (ja) | 高純度窒素ガス製造装置 | |
JPH0611255A (ja) | 高純度窒素ガス製造装置 | |
JPH01127862A (ja) | 極低温冷凍装置における膨張弁の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040928 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041012 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071022 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081022 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091022 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101022 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111022 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121022 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131022 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |