JP3609009B2 - 空気分離装置 - Google Patents

空気分離装置 Download PDF

Info

Publication number
JP3609009B2
JP3609009B2 JP2000206256A JP2000206256A JP3609009B2 JP 3609009 B2 JP3609009 B2 JP 3609009B2 JP 2000206256 A JP2000206256 A JP 2000206256A JP 2000206256 A JP2000206256 A JP 2000206256A JP 3609009 B2 JP3609009 B2 JP 3609009B2
Authority
JP
Japan
Prior art keywords
gas
air
pressure
refrigerator
pulse tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000206256A
Other languages
English (en)
Other versions
JP2001056177A (ja
Inventor
洋実 木山
篤 宮本
紹緯 朱
康浩 垣見
延尚 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP00483997A external-priority patent/JP3163024B2/ja
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2000206256A priority Critical patent/JP3609009B2/ja
Publication of JP2001056177A publication Critical patent/JP2001056177A/ja
Application granted granted Critical
Publication of JP3609009B2 publication Critical patent/JP3609009B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04278Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using external refrigeration units, e.g. closed mechanical or regenerative refrigeration units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1406Pulse-tube cycles with pulse tube in co-axial or concentric geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1419Pulse-tube cycles with pulse tube having a basic pulse tube refrigerator [PTR], i.e. comprising a tube with basic schematic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/908External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration
    • F25J2270/91External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by regenerative chillers, i.e. oscillating or dynamic systems, e.g. Stirling refrigerator, thermoelectric ("Peltier") or magnetic refrigeration using pulse tube refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、寒冷源として冷凍機を用いる空気分離装置に関するものである。
【0002】
【従来の技術】
一般に、深冷空気分離装置は、寒冷により空気を液化して各成分(N,O,Ar等)に精留分離したのち、所望の成分を気体状態または液体状態で取り出すようにしており、寒冷源として、膨張タービンや液体窒素等の冷熱エネルギーを利用している。このような深冷空気分離装置として、図9に示すような、膨脹タービンを利用した高純度窒素ガス製造装置がある。図において、21は原料空気(圧縮空気)を熱交換器22に供給する圧縮空気供給パイプである。この圧縮空気供給パイプ21を通る圧縮空気は、大気中の空気を空気圧縮機により取り込んで圧縮したのち、ドレン分離器,フロン冷却器および吸着筒を経由した圧縮空気である(図面では、これら空気圧縮機,ドレン分離器,フロン冷却器および吸着筒を省略している)。22は熱交換器であり、この内部に、吸着筒内部のモレキュラーシーブにより水分(HO)および炭酸ガス(CO)が吸着除去された圧縮空気が送り込まれ、超低温に冷却される。
【0003】
23は精留塔であり、熱交換器22により超低温に冷却され圧縮空気導入パイプ24を経て送り込まれる圧縮空気をさらに冷却し、その一部を液化し液体空気として底部に溜め、Nを気体状態で上部に溜めるようになっている。26は精留塔23の上方に配設された凝縮器27内蔵のコンデンサー(分縮器)である。この凝縮器27には、精留塔23の上部に溜るNガスの一部が第1還流液パイプ28aを介して送入される。このコンデンサー26内は、精留塔23内よりも減圧状態になっており、精留塔23の底部の貯留液体空気(N;50〜70%,O;30〜50%)25が膨脹弁29a付き送給パイプ29を経て送り込まれ、気化して内部温度を液体窒素(LN)の沸点以下の温度に冷却するようになっている。この冷却により、精留塔23から第1還流液パイプ28aを介して凝縮器27内に送入されたNガスが液化する。精留塔23の上部には、凝縮器27で生成したLNが第2還流液パイプ28bを流下して還流供給され、これがLN溜め(図示せず)を経て精留塔23内を下方に流下し、精留塔23の底部から上昇する圧縮空気と向流的に接触し冷却してその一部を液化するようになっている。この過程で圧縮空気中の高沸点成分(O)は液化されて精留塔23の底部に溜り、低沸点成分のNガスが精留塔23の上部に溜る。
【0004】
30は精留塔23の上部に溜まるNガスを製品Nガスとして取り出すNガス取出パイプであり、低温のNガスを熱交換器22内に案内し、そこに送り込まれる圧縮空気と熱交換させて常温にしメインパイプ31に送り込む作用をする。31aは一定量のNガスを所定の圧力で需要側に供給する製品Nガス供給弁である。32は放出パイプであり、コンデンサー26内の気化液体空気(排Nガス)の全部または一部を分岐パイプ34を経て膨脹タービン33の駆動部に送り込み他部を外部に放出する作用をする。32aは分岐パイプ34に供給する排Nガス量をコントロールすることにより寒冷量の調節を行う流量調節弁である。33は膨脹タービンであり、分岐パイプ34から供給された排Nガスを膨脹させて低温排Nガスを得たのち、戻しパイプ35を経て放出パイプ32の流量調節弁32a下流側部分に合流させる。これにより、分岐パイプ34を通る排Nガス、放出パイプ32を通る低温排Nガス,排NガスおよびNガス取出パイプ30から送り込まれる製品Nガスにより、熱交換器22内へ送り込まれる圧縮空気を低温に冷却するようになっている。
【0005】
36はLN貯蔵タンク(内部は精留塔23の圧力より1kg/cmG程度低い圧力に設定されている)であり、精留塔23の上部のLN溜めから導入弁37a付き導入パイプ37を経てLNが圧力差により供給されるようになっている。38はLN貯蔵タンク36の下部から延びる自己加圧蒸発器38a付きLN取出パイプである。このLN取出パイプ38を設けているため、バックアップ作動(メインパイプ31からの製品Nガスの供給量低下,供給不能等の場合に、LN貯蔵タンク36のLNを後述のバックアップ系パイプ42を通して気化し需要側に供給する)後に、LN貯蔵タンク36の上部圧力が降下して所定圧力を下回っても、開閉弁39が開き、LN貯蔵タンク36内のLNが自己加圧蒸発器38aに送り込まれて蒸発し体積膨張したのち、上部パイプ40を経てLN貯蔵タンク36の上部空間に導入される。これにより、LN貯蔵タンク36の上部圧力が上記所定圧力に戻り、開閉弁39は閉弁する。41は上部パイプ40から延びる開閉弁41a付き排出パイプであり、LN貯蔵タンク36の上部圧力が上記所定圧力を上回ると、開閉弁41aが開き、LN貯蔵タンク36内のLNが外部に放出されて所定圧力に戻るようになっている。42はLN貯蔵タンク36からメインパイプ31に延びるバックアップ系パイプであり、空気圧縮系ラインが故障等して、バックアップ系パイプ42内の圧力が所定圧力(製品Nガス圧力〔LN貯蔵タンク36の上部圧力と同じ〕より0.5kg/cmG程度低い圧力)に降下すると、開閉弁43が開き、LN貯蔵タンク36内のLNがバックアップ用蒸発器42aに送り込まれて蒸発し、製品Nガスとしてメインパイプ31に導入される。これにより、Nガスの供給が途絶えないようにしている。
【0006】
この装置は、つぎのようにして製品窒素ガスを製造する。すなわち、空気圧縮機により空気を圧縮し、ドレン分離器により圧縮された空気中のHOを除去してフロン冷却器により冷却し、その状態で吸着筒に送り込み、空気中のHOおよびCOを吸着除去する。ついで、HO,COが吸着除去された圧縮空気を、精留塔23からNガス取出パイプ30を経て送り込まれる製品Nガス,膨脹タービン33から送り込まれる低温排ガス等の冷媒によって冷やされている熱交換器22に送り込んで超低温に冷却し、その状態で精留塔23の下部内に投入する。つぎに、この投入圧縮空気をLN溜めからの溢流LNと接触させて冷却し、一部を液化して精留塔23の底部に液体空気25として溜める。この過程において、NとOの沸点の差により、圧縮空気中の高沸点成分であるOが液化し、Nが気体のまま残る。つぎに、この気体のまま残ったNをNガス取出パイプ30から取り出して熱交換器22に送り込み、常温近くまで昇温させメインパイプ31から製品Nガスとして送り出す。一方、精留塔23の下部に溜った液体空気25については、これをコンデンサー26内に送り込み凝縮器27を冷却させる。この冷却により、精留塔23の上部から凝縮器27に送入されたNガスが液化して精留塔23用の還流液となり、第2還流液パイプ28bを経て精留塔23に戻る。そして凝縮器27を冷却し終えた液体空気25は気化し、放出パイプ32により熱交換器22に送られてこの熱交換器22を冷やしたのち、空気中に放出される。他方、コンデンサー26から取り出した排Nガスの全部もしくは一部は熱交換器22を通ったのち膨脹タービン33の駆動部に送り込まれ、これを駆動し冷媒を循環させ、再度熱交換器22に送り込まれて、熱交換器22内へ送り込まれる圧縮空気を冷却するようになっている。
【0007】
【発明が解決しようとする課題】
しかしながら、上記装置に用いる膨張タービン33は、1分間に数万回と高速回転させるため、負荷変動に対する追従運転が困難であり、かつ故障が生じやすいという欠点等がある。そこで、比較的小型の空気分離装置では、膨張タービン33の代替として、外部からLNを供給するLN収容タンクを用い、このLN収容タンク内のLNを直接に精留塔23に供給している場合もある。ところが、このものでは、LNを消費するのみであり、LNの製造は不可能である。このため、LNの補給が必要となり、LN供給源の確保およびLNの輸送等のコストアップとなる。一方、膨脹タービン33を用いた空気分離装置では、LNの製造は、LNの還流液の一部を精留塔23のLN溜めからLN貯蔵タンク36に取り出すことにより行われているため、LN製造量と還流液量のバランスに変動が生じると、製品Nガスの純度に悪影響を及ぼす等運転が難しくなる。また、精留塔23からLNをLN貯蔵タンク36に減圧供給した場合にフラッシュロスが発生し、LNの収率が低下する等の欠点がある。しかも、LN貯蔵タンク36の上部圧力は精留塔23の圧力よりも少なくとも1kg/cmG程度低圧にする必要があり、Nガスのバックアップ時にはLN貯蔵タンク36の上部圧力をN供給圧力にまで上昇させなければならず、この上昇時間はバックアップが停止する。これを防ぐため、N供給圧力を精留塔23の圧力より1kg/cmG程度低い状態にしているが、精留塔23の状態は低圧運転の方が効率がよく、効率の悪い運転をしていることになる。
【0008】
本発明は、このような事情に鑑みなされたもので、寒冷源として膨脹タービンを用いることなく、LN等の製造が可能で、フラッシュの発生がなく、効率の良い運転をすることのできる空気分離装置の提供をその目的とする。
【0009】
【課題を解決するたの手段】
上記の目的を達成するため、本発明の空気分離装置は、外部より取り入れた空気を圧縮する空気圧縮手段と、この空気圧縮手段によって圧縮された圧縮空気中の不純物を除去する除去手段と、この除去手段を経た圧縮空気を冷却する熱交換器と、この熱交換器を経由し低温に冷却された圧縮空気を各成分の沸点差を利用して分離し所望の成分を気体状態で取り出す精留塔とを備えた空気分離装置であって、上記熱交換器を経由し低温に冷却された圧縮空気を精留塔の下部に供給し、この精留塔の下部の、精留塔の底部に溜まる液体空気より上方位置に、精留塔内の空気液化用の寒冷源として塔内冷却用冷凍機を設けたという構成をとる。
【0010】
すなわち、本発明では、精留塔の空気液化用の寒冷源として塔内冷却用冷凍機を用いている。したがって、従来例のように、膨脹タービンを用いた場合の欠点(すなわち、膨脹タービンは1分間に数万回と高速回転するため、負荷変動に対する追従運転が困難であり、かつ故障が生じやすいという欠点)がなくなる。また、本発明において、上記精留塔から気体状態で取り出した成分(N,O,Ar等)の一部を導入する貯蔵手段と、上記貯蔵手段に導入した気体状態の成分を液化して上記貯蔵手段内に溜めるタンク内冷却用冷凍機とを設けた場合には、液化成分(LN,LO,LAr等)の製造を行うこともできる。しかも、本発明では、精留塔にて上記の成分を気体状態で製造し、この気体状態の成分の一部を貯蔵手段に導入したのちタンク内冷却用冷凍機により液化し貯蔵しているため、従来例では生じたフラッシュロスが生じなくなり、収率が向上するうえ、上記の成分の製造量と還流液量のバランスに変動が生じなくなり、上記の成分の純度が劣化しない。さらに、精留塔の圧力(N等の発生圧力)と貯蔵手段内の圧力は同圧でよく、バックアップ時に貯蔵手段内の圧力を上昇させる必要がなくなる。このため、精留塔を低圧運転することができ、効率の良い運転が行える。また、貯蔵手段に溜めた液化成分を、装置の定期検査等で加温状態となった機器のクールダウンや装置停止等のガスバックアップ供給に利用することもできる。
【0011】
【発明の実施の形態】
つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。
【0012】
図1は本発明の空気分離装置の一実施の形態を示す構成図である。この実施の形態では、図9の空気分離装置において用いた膨脹タービン33の代替として、精留塔2に空気液化用のパルスチューブ冷凍機3を設けるようにしている。また、LN貯蔵タンク4にNガス液化用のパルスチューブ冷凍機6を設け、精留塔2で製造したNガスをLN貯蔵タンク4に導入したのち、パルスチューブ冷凍機6でLNにして貯蔵するようにしている。それ以外の部分は図9に示す空気分離装置と同様であり、同様の部分には同じ符号を付している。図1において、1は熱交換器である。この熱交換器1は、図9の熱交換器22と同様構造の熱交換器であり、同様の作用をする。ただし、この実施の形態では、膨脹タービン33を用いていないため、熱交換器1内を図9の分岐パイプ34が通っていない。これにより、熱交換器1内へ送り込まれる圧縮空気は、放出パイプ32を通る排NガスおよびNガス取出パイプ30から送り込まれる製品Nガスにより冷却されるようになっている。
【0013】
2は精留塔である。この精留塔2は、図9の精留塔23と同様構造の精留塔であり、同様の作用をする。ただし、この実施の形態では、精留塔2の下部周壁から筒体2aが上向きに突設されており、この筒体2aの上端開口を蓋する蓋体に空気液化用のパルスチューブ冷凍機3(Heを冷媒として利用している)が取り付けられている。このパルスチューブ冷凍機3は精留塔2内に寒冷を発生させるものであり、この寒冷により、圧縮空気導入パイプ24を経て精留塔2に送り込まれる圧縮空気を冷却し、その一部を液化し液体空気として底部に溜め、Nを気体状態で上部に溜めるようになっている。5は第1還流液パイプ28aから分岐する導出パイプであり、Nガス取出パイプ30を通るNガスの一部を第1還流液パイプ28aを介して取り出してLN貯蔵タンク4に導入する作用をする。5aはLN貯蔵タンク5への最大供給量を制限する導出弁であり、精留塔2のNの濃度が劣化した場合およびLN貯蔵タンク4のLNの液面が上限に達した場合に、閉じるようになっている。6はLN貯蔵タンク4の頂部に設けたNガス液化用のパルスチューブ冷凍機(Heを冷媒として利用している)であり、導出パイプ5を経て送り込まれる(液化温度近くの)Nガスを液化してLN貯蔵タンク4内に溜めるようになっている。7は供給弁7a付きLN供給パイプであり、寒冷エネルギー不足時等に供給弁7aを開いてLN貯蔵タンク4内のLNをコンデンサー26に供給する作用をする。8は断熱保冷箱であり、内部に熱交換器1,精留塔2,コンデンサー26およびLN貯蔵タンク4が収容されている。この断熱保冷箱8の内部は真空状態に保持されており、かつパーライト(図示せず)が充填されている。この実施の形態では、精留塔2の圧力,LN貯蔵タンク4の上部圧力および製品Nガス圧力が同一に設定されている。
【0014】
上記装置において、パルスチューブ冷凍機3の冷凍能力は、熱交換器1の温端温度差によるエンタルピーのロス分とヒートリークロス分でよく、また、パルスチューブ冷凍機6の冷凍能力はNの潜熱分とヒートリークロス分の冷凍能力でよく、両冷凍機3,6ともに、例えばNガス200Nm/hを発生する空気分離装置であれば、500W程度の冷凍能力で運転可能となる。この場合に、LN製造量は約7Nm/hとなる。また、通常運転時には、パルスチューブ冷凍機3はコンデンサー26の液体空気の液面を制御しながら運転され、パルスチューブ冷凍機6は貯蔵タンク4の上部圧力を制御しながら運転される。また、導出パイプ5によりLN貯蔵タンク4に供給される最大供給量はパルスチューブ冷凍機6の冷凍能力に左右される。
【0015】
この装置は、つぎのようにして製品窒素ガスを製造する。すなわち、圧縮機で圧縮した空気を吸着塔に送り、この吸着塔で空気中の不純物(HO,CO)を除去し、ついで熱交換器1で液化温度まで冷却したのち、精留塔2下部に供給する。精留塔2内では、供給された圧縮空気が上昇ガスになるとともに、圧縮空気の少量(約1〜2%)がパルスチューブ冷凍機3の寒冷により液化し、精留塔2底部の液体空気25と混合する。一方、精留塔2の底部に溜まる液体空気25を膨張弁29aで減圧し、コンデンサー26に供給する。このコンデンサー26では、凝縮器27により精留塔2上部のNガスの一部を液化するとともに、液体空気をガス化して排Nガスとして放出パイプ32に放出し、熱交換器1で冷熱を回収したのち、装置外へ排出する。凝縮器27で液化したLNを精留塔2上部から供給し還流液として精留塔2内を降下させる。一方、精留塔2上部のNガスの一部をNガス取出パイプ30,第1還流液パイプ28aおよび導出パイプ5を通してLN貯蔵タンク4の上部へ供給し、パルスチューブ冷凍機6で液化してLN貯蔵タンク4内に溜め、残りのNガスを熱交換器1で冷熱を回収したのち、メインパイプ31に供給する。
【0016】
この実施の形態では、精留塔2内の寒冷源としてパルスチューブ冷凍機3を用いているため、従来例のように膨脹タービン33を用いる必要がなく、負荷変動に対する追従運転が困難であるという欠点や、故障が生じやすいという欠点がなくなる。しかも、精留塔2で製造したN2 ガスをLN2 貯蔵タンク4に溜めている(すなわち、LN2 の製造が行える)ため、LN2 貯蔵タンク4へのLN2 の補給が不必要となり、LN2 供給源の確保およびLN2 の輸送等に費用がかからない。また、LN2 貯蔵タンク4のLN2 を装置の定期検査等により加温状態となった機器のクールダウンや装置停止時のN2 ガスのバックアップ供給にも利用することができる。さらに、LN2 貯蔵タンク4に精留塔2から取り出したN2 ガスを導入しているため、LN2 製造量と還流液量のバランスに変動が生じることがなく、製品N2 ガスの純度に悪影響を及ぼこともなく、装置の運転が容易になる。また、フラッシュロスが発生せず、LN2 の収率が低下しない。さらに、LN2 貯蔵タンク4内の圧力を高くすることができ、従来例のように、N2 ガスのバックアップ時にN2 供給圧力を保つため貯蔵タンク4の上部圧力を上昇させる必要がない。このため、精留塔2を低圧運転にすることができ、効率の良い運転を行うことができる。さらに、パルスチューブ冷凍機3を精留塔2の下部(精留塔2内の最も温度の高い部分)に取り付けているため、精留効率をアップさせることができる。また、通常運転時には、コンデンサー26の液体空気の液面が所定液面より高くなると、パルスチューブ冷凍機3の冷凍能力が低下し、逆に、上記液面が所定液面より低くなると、冷凍能力が上昇するように液面をコントロールしている。一方、貯蔵タンク4の上部圧力が所定圧力より高くなると、パルスチューブ冷凍機6の冷凍能力が上昇し、逆に、上記上部圧力が所定圧力より低くなると、冷凍能力が低下するようにしている。
【0017】
上記両パルスチューブ冷凍機3,6は、図2に示すように、円筒状のパルスチューブ10と、高圧Heガス溜め(高圧バッファタンク)11と、低圧Heガス溜め(低圧バッファタンク)12とを備えており、上記パルスチューブ10内でHeガスを膨張させることにより、寒冷を発生させるようにしている。このようなパルスチューブ10は、その冷端(低温側・ガスの入口側)10aが精留塔2の下部に配設されているとともに、その熱端(高温側)10bが精留塔2の外部に配設され放熱するようになっている。13a,13bは上記パルスチューブ10の冷端10aおよび熱端10bに配設される円盤状の層流化部材である。14a,14bは上記パルスチューブ10の冷端10aおよび熱端10bに取り付けられる蓋体である。15は上記冷端側蓋体14aの中央貫通穴14cに内嵌状に取り付けられた冷端側本管であり、給気バルブ16aを設けた給気管16と排気バルブ17aを設けた排気管17に分岐している。そして、上記給気管16の先端が高圧Heガス源(図示せず)に連通し、上記排気管17の先端が低圧Heガス源(図示せず)に連通している。18は上記熱端側蓋体14bの中央貫通穴14dに内嵌状に取り付けられた熱端側本管であり、第1バルブ19aを設けた第1分岐管19と第2バルブ20aを設けた第2分岐管20に分岐している。そして、上記第1分岐管19の先端が高圧Heガス溜め11に連通し、上記第2分岐管20が低圧Heガス溜め12に連通している。
【0018】
上記両パルスチューブ冷凍機3,6の作動は、つぎのサイクルを繰り返すことにより行う。まず、図3に示すように、給気バルブ16a,排気バルブ17aおよび第2バルブ20aを閉弁する。この状態で、パルスチューブ10内は低圧Heガス源の内圧と同一圧力となっている。ついで、第1バルブ19aを開弁すると、高圧Heガス溜め11内の高圧Heガスがパルスチューブ10の熱端10bに流れ込み、パルスチューブ10内のガス圧は高圧Heガス溜め11の圧力近くまで上昇する。この過程Pのパルスチューブ10内の気体分布が図3に示されている。図3において、Dは高圧Heガス溜め11から導入された高圧Heガスで、B,Cは低圧から高圧になったパルスチューブ10内のHeガスである。
【0019】
つぎに、図4に示すように、第1バルブ19aを開弁した状態で給気バルブ16aのみを開弁する(その他のバルブ17a,20aは元のまま)と、高圧Heガス源から高圧Heガスが供給されてパルスチューブ10の冷端10aに流入する。このとき、高圧Heガス源の給気圧力が高圧Heガス溜め11の圧力よりやや高く設定されており、上記過程Pでパルスチューブ10の熱端10bに流れ込んだ高圧Heガス溜め11の高圧ガスD(図3参照)はただちに高圧Heガス溜め11内に戻される。この過程Qは基本的には等圧給気過程であり、パルスチューブ10内の気体分布が図4に示されている。図4において、Aは高圧Heガス源からパルスチューブ10内に導入された高圧Heガスである。
【0020】
つぎに、図5に示すように、第1バルブ19aと給気バルブ16aを閉弁したのち(排気バルブ17aは閉弁したたまま)、第2バルブ20aを開弁すると、パルスチューブ10の熱端10bのガスC(図4参照)が低圧Heガス溜め12に流入する(戻る)ため、パルスチューブ10内の圧力が低圧ガス溜め12の圧力まで低下する。すなわち、上記過程Qにおいてパルスチューブ10の冷端10aに入った高圧HeガスAは、HeガスBとともに低圧Heガス溜め12の圧力まで膨脹し、温度降下してパルスチューブ10の冷端10a側を冷却する。この過程Rのパルスチューブ10内の気体分布が図5に示されている。
【0021】
つぎに、図6に示すように、排気バルブ17aを開弁する(その他のバルブ16a,19a,20aは元のまま)と、上記過程Rにおいてパルスチューブ10内で膨脹したHeガスAが低圧Heガス源に排出され、低圧Heガス溜め12の低圧Heガスがパルスチューブ10内に流入する。
【0022】
こうして1サイクルが終わり、ついで新たに上記過程Pが始まる。このように循環してワークするので、高圧Heガスは、不断に膨脹して低圧となる。気体のパルスチューブ10内における熱伝導、混合と、流動によるロスとを考慮しない場合、高圧Heガス溜め11内の圧力は高圧Heガス源の給気圧力に、また低圧Heガス溜め12内の圧力は低圧Heガス源の内圧にそれぞれ等しい。そして、上記の1サイクルが終わると、結局、HeガスAが高圧Heガス源からパルスチューブ10内に入り、このパルスチューブ10内で断熱膨脹し寒冷を発生したのち、低圧Heガス源内に排出されたことになる。また、HeガスBは常にパルスチューブ10内でガスピストンの役割を演じ、C,Dはそれぞれ各Heガス溜め11,12から出入りしているだけである。
【0023】
図7は本発明の空気分離装置の他の実施の形態を示している。この実施の形態では、図1の空気分離装置において、LN貯蔵タンク4から延びるLN供給パイプ7を精留塔2の上部に接続し、これにより、LN貯蔵タンク4内のLNを精留塔2のLN溜めに導入するようにしている。それ以外の部分は図1に示す空気分離装置と同様であり、同様の部分には同じ符号を付している。この実施の形態でも、上記実施の形態の同様に作用し、同様の効果を奏する。
【0024】
図8は本発明の空気分離装置のさらに他の実施の形態を示している。この実施の形態では、図1の空気分離装置において、LN貯蔵タンク4に供給弁9a付き外部LN供給パイプ9を取り付けている。それ以外の部分は図1に示す空気分離装置と同様であり、同様の部分には同じ符号を付している。この実施の形態でも、図1の実施の形態の同様に作用し、同様の効果を奏する。しかも、LN貯蔵タンク4に外部LN供給パイプ9を介して外部からLNを供給することができるため、装置のスタートアップ前にLN貯蔵タンク4に外部からLNを供給しておき、スタートアップ時にLN貯蔵タンク4からLNをコンデンサー26に供給することにより、スタートアップ時のクールダウンの時間短縮をすることができるようになる。
【0025】
なお、上記各実施の形態では、冷凍機として、パルスチューブ冷凍機3,6を用いているが、これに限定するものではなく、GM(ギフォード・マクマホン)冷凍機,スターリング冷凍機等を用いることができる。これら冷凍機の冷媒としては、Heが好適に用いられる。また、上記各実施の形態では、Nガスを製造する空気分離装置が示されているが、これに限定するものではなく、N以外にOやArを製造するようにしてもよい。
【0026】
また、各実施の形態において、パルスチューブ冷凍機3が故障した場合や、精留塔2のN発生量が増大した(原料空気が増大した)場合に、パルスチューブ冷凍機3の補助として、LN貯蔵タンク4のLNを精留塔2もしくはコンデンサー26に供給し、寒冷源として用いることができる。また、図8の実施の形態において、LN貯蔵タンク4から延びるLN供給パイプ7を精留塔2の上部に接続し、これにより、LN貯蔵タンク4内のLNを精留塔2のLN溜めに導入するようにしてもよい。また、上記パルスチューブ冷凍機3,6において、各バルブ16a,17a,19a,20aのタイプとして電動バルブ、電磁バルブ、気動バルブまたは回転バルブ等が用いられる。
【0027】
【発明の効果】
以上のように、本発明の空気分離装置によれば、精留塔の空気液化用の寒冷源として塔内冷却用冷凍機を用いている。したがって、従来例のように、膨脹タービンを用いた場合の欠点(すなわち、膨脹タービンは1分間に数万回と高速回転するため、負荷変動に対する追従運転が困難であり、かつ故障が生じやすいという欠点)がなくなる。また、本発明において、上記精留塔から気体状態で取り出した成分(N,O,Ar等)の一部を導入する貯蔵手段と、上記貯蔵手段に導入した気体状態の成分を液化して上記貯蔵手段内に溜めるタンク内冷却用冷凍機とを設けた場合には、液化成分(LN,LO,LAr等)の製造を行うこともできる。しかも、本発明では、精留塔にて上記の成分を気体状態で製造し、この気体状態の成分の一部を貯蔵手段に導入したのちタンク内冷却用冷凍機により液化し貯蔵しているため、従来例では生じたフラッシュロスが生じなくなり、収率が向上するうえ、上記の成分の製造量と還流液量のバランスに変動が生じなくなり、上記の成分の純度が劣化しない。さらに、精留塔の圧力(N等の発生圧力)と貯蔵手段内の圧力は同圧でよく、バックアップ時に貯蔵手段内の圧力を上昇させる必要がなくなる。このため、精留塔を低圧運転することができ、効率の良い運転が行える。また、貯蔵手段に溜めた液体状態の成分を、装置の定期検査等で加温状態となった機器のクールダウンや装置停止等のガスバックアップ供給に利用することもできる。
【図面の簡単な説明】
【図1】本発明の空気分離装置の一実施の形態を示す構成図である。
【図2】パルスチューブ冷凍機の説明図である。
【図3】上記パルスチューブ冷凍機の作用を示す説明図である。
【図4】上記パルスチューブ冷凍機の作用を示す説明図である。
【図5】上記パルスチューブ冷凍機の作用を示す説明図である。
【図6】上記パルスチューブ冷凍機の作用を示す説明図である。
【図7】本発明の空気分離装置の他の実施の形態を示す構成図である。
【図8】本発明の空気分離装置のさらに他の実施の形態を示す構成図である。
【図9】従来例を示す構成図である。
【符号の説明】
1 熱交換器
2 精留塔
3,6 パルスチューブ冷凍機
4 LN貯蔵タンク

Claims (5)

  1. 外部より取り入れた空気を圧縮する空気圧縮手段と、この空気圧縮手段によって圧縮された圧縮空気中の不純物を除去する除去手段と、この除去手段を経た圧縮空気を冷却する熱交換器と、この熱交換器を経由し低温に冷却された圧縮空気を各成分の沸点差を利用して分離し所望の成分を気体状態で取り出す精留塔とを備えた空気分離装置であって、上記熱交換器を経由し低温に冷却された圧縮空気を精留塔の下部に供給し、この精留塔の下部の、精留塔の底部に溜まる液体空気より上方位置に、精留塔内の空気液化用の寒冷源として塔内冷却用冷凍機を設けたことを特徴とする空気分離装置。
  2. 上記精留塔から気体状態で取り出した成分の一部を導入する貯蔵手段と、上記貯蔵手段に導入した気体状態の成分を液化して上記貯蔵手段内に溜めるタンク内冷却用冷凍機とを設けた請求項1記載の空気分離装置。
  3. 冷凍機がHe(ヘリウム)を利用した冷凍機である請求項1または2記載の空気分離装置。
  4. 冷凍機がGM冷凍機,スターリング冷凍機またはパルスチューブ冷凍機である請求項3記載の空気分離装置。
  5. 精留塔で取り出される成分がN2 ,O2 およびArの少なくとも1つである請求項1記載の空気分離装置。
JP2000206256A 1997-01-14 2000-07-07 空気分離装置 Expired - Fee Related JP3609009B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000206256A JP3609009B2 (ja) 1997-01-14 2000-07-07 空気分離装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP00483997A JP3163024B2 (ja) 1997-01-14 1997-01-14 空気分離装置
JP2000206256A JP3609009B2 (ja) 1997-01-14 2000-07-07 空気分離装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP00483997A Division JP3163024B2 (ja) 1997-01-14 1997-01-14 空気分離装置

Publications (2)

Publication Number Publication Date
JP2001056177A JP2001056177A (ja) 2001-02-27
JP3609009B2 true JP3609009B2 (ja) 2005-01-12

Family

ID=34117698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000206256A Expired - Fee Related JP3609009B2 (ja) 1997-01-14 2000-07-07 空気分離装置

Country Status (1)

Country Link
JP (1) JP3609009B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807288A (zh) * 2015-05-20 2015-07-29 西南石油大学 高压天然气的凝液回收方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269658B1 (en) * 2000-06-28 2001-08-07 Praxair Technology, Inc. Cryogenic rectification system with pulse tube refrigeration
US6668581B1 (en) * 2002-10-30 2003-12-30 Praxair Technology, Inc. Cryogenic system for providing industrial gas to a use point
CN106091575B (zh) * 2016-05-31 2018-08-28 浙江智海化工设备工程有限公司 一种配套于外压缩空分的膨胀空气旁通量降低装置及降低方法
FR3084736B1 (fr) * 2018-08-01 2022-04-15 Air Liquide Procede et appareil de production d'argon par distillation cryogenique de l'air
CN108870078A (zh) * 2018-08-22 2018-11-23 江苏核电有限公司 一种发电机氢气干燥器气动阀控制气源装置及其控制方法
CN115069057B (zh) * 2022-06-17 2023-07-04 中国空分工程有限公司 一种低温精馏提纯回收二氧化碳的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807288A (zh) * 2015-05-20 2015-07-29 西南石油大学 高压天然气的凝液回收方法
CN104807288B (zh) * 2015-05-20 2017-03-15 西南石油大学 高压天然气的凝液回收方法

Also Published As

Publication number Publication date
JP2001056177A (ja) 2001-02-27

Similar Documents

Publication Publication Date Title
JP5410443B2 (ja) 気体の膨張プロセスに基づく冷却システムの冷却能力の調整のための方法およびシステム
JP3947565B2 (ja) 加圧製品ガスの可変生成方法及び装置
US7121116B2 (en) Method and device for producing oxygen
WO1987001185A1 (en) Oxygen gas production unit
JP3609009B2 (ja) 空気分離装置
EP0158395B1 (en) Method of liquefying a gas and liquefier for carrying out the method
JP4276520B2 (ja) 空気分離装置の運転方法
JP2005083588A (ja) ヘリウムガス液化装置およびヘリウムガス回収・精製・液化装置
JP3217005B2 (ja) 空気分離方法およびそれに用いる装置
JPH0545050A (ja) 液化天然ガスの寒冷を利用した永久ガスの液化方法
JPH08254368A (ja) 低温破砕装置における被破砕物の冷却方法及び装置
JP3163024B2 (ja) 空気分離装置
WO2006137331A1 (ja) 窒素発生方法およびそれに用いる装置
JP3007581B2 (ja) 空気分離装置
JPH07234027A (ja) 多元冷凍装置
KR890001743B1 (ko) 질소가스 제조장치
US6668581B1 (en) Cryogenic system for providing industrial gas to a use point
US6484516B1 (en) Method and system for cryogenic refrigeration
JP2001108320A (ja) 極低温冷凍装置
JP3492955B2 (ja) 空気分離装置およびその運転方法
JPH06241647A (ja) 水素液化装置及びスラッシュ水素製造装置
JPH0719725A (ja) 高純度窒素ガス製造装置
JPH0611255A (ja) 高純度窒素ガス製造装置
JPH0882476A (ja) 高純度窒素ガス製造装置
JPH02225953A (ja) 家庭用冷蔵庫用の二重蒸発器付き冷凍システム

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041012

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees