CN104807288A - 高压天然气的凝液回收方法 - Google Patents

高压天然气的凝液回收方法 Download PDF

Info

Publication number
CN104807288A
CN104807288A CN201510260853.3A CN201510260853A CN104807288A CN 104807288 A CN104807288 A CN 104807288A CN 201510260853 A CN201510260853 A CN 201510260853A CN 104807288 A CN104807288 A CN 104807288A
Authority
CN
China
Prior art keywords
pressure
gas
enters
dethanizer
natural gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510260853.3A
Other languages
English (en)
Other versions
CN104807288B (zh
Inventor
蒋洪
黄思宇
朱聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201510260853.3A priority Critical patent/CN104807288B/zh
Publication of CN104807288A publication Critical patent/CN104807288A/zh
Application granted granted Critical
Publication of CN104807288B publication Critical patent/CN104807288B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

本发明公开了一种高压天然气凝液回收方法,涉及天然气加工工艺技术领域,所述方法在膨胀机制冷-双塔工艺的基础上,利用低含丙烷液烃作为吸收剂,设置高压吸收塔,采用高压低温吸收、气化制冷原理对膨胀机出口的气相中丙烷及比丙烷更重的凝液组分进行回收,流程中冷箱采用多股的高效板翅式换热器,脱乙烷塔采用三股进料,形成膨胀机制冷—高压吸收—凝液分馏的高压天然气凝液回收方法。所述方法降低了外输气增压机组压缩功率和装置系统能耗,改善了吸收塔的分离效果和操作稳定性,提高了系统冷热利用率和丙烷回收率,提升了装置运行的经济效益。

Description

高压天然气的凝液回收方法
技术领域
本发明涉及天然气加工工艺技术领域,尤其涉及一种高压天然气凝液回收方法。
背景技术
近年来,随着我国天然气工业的发展,应用膨胀机制冷回收天然气凝液技术得到迅猛发展,膨胀机制冷工艺的特点是利用原料气压差获得冷量,膨胀比越大,膨胀机出口压力越低,其系统冷量越多,其凝液回收率就越高。现有典型双塔丙烷回收流程图如图2所示,它是由吸收塔和脱乙烷塔组成的双塔流程,采用膨胀机制冷,可回收天然气中丙烷及丙烷以上的凝液组分。双塔流程的工艺特点是吸收塔T21的操作压力比脱乙烷塔T22的操作压力低(大约低200kPa~350kPa)。脱乙烷塔顶馏出物气相经冷箱E22换热降温部分冷凝后,进入吸收塔顶部,低温泵P21将吸收塔塔底的液烃送到脱乙烷塔顶部进料中,以期达到高丙烷回收率。
任何丙烷回收装置的设计目标就是达到所要求回收率的前提下尽量降低基建投资和运行成本。对于透平膨胀机制冷的丙烷回收流程,实现上述目标的主要措施是吸收塔具有较高的操作压力,降低外输干气再压缩的能量消耗。然而,传统双塔流程中的吸收塔操作压力上限由脱乙烷塔的压力决定。为了避免脱乙烷塔的分离效率降低,保持塔操作的稳定性(避免处于临界条件),脱乙烷塔的操作压力不宜过高,一般来说,脱乙烷塔的最大操作压力是2.90MPa~3.3MPa。对于进气压力处于4.0MPa~6.9MPa的原料气,双塔工艺流程可获得较高的丙烷回收率,外输气压缩机的功率较小。对于进气压力高于7.0MPa的原料气,双塔流程的膨胀机压降是由允许的脱乙烷塔操作压力决定,膨胀机产生的压降将比满足丙烷回收率目标所要求的压降高,流程中冷量过剩,同时需要较高的外输气再压缩功率和脱乙烷塔重沸器热负荷,系统能耗显著增加。
为了克服双塔流程的不足,降低高压天然气凝液回收装置的系统能耗,本发明针对进气压力高于7.0MPa的原料气,开发了一种高压天然气凝液回收的方法,回收天然气中丙烷及丙烷以上的凝液。
发明内容
本发明所要解决的技术问题是提供一种高压天然气凝液回收方法,所述方法降低了外输气增压机组压缩功率和装置系统能耗,改善了吸收塔的分离效果和操作稳定性,提高了系统冷热利用率和丙烷回收率。
为解决上述技术问题,本发明所采取的技术方案是:一种高压天然气凝液回收方法,其特征在于脱水后的原料气经冷箱E11降温后进入低温分离器V11,低温分离器V11分离出来的气相经膨胀机组K11的膨胀端降压降温后,其气液混合物进入吸收塔T11底部;脱乙烷塔T12塔顶分馏气相经冷箱E11换热降温进入脱乙烷塔回流罐V12分离,其回流罐分离的液相经脱乙烷塔回流泵P11升压后的低温液烃分成两路,一路液烃作为低温吸收剂进入高压吸收塔T11的顶部,另一路液烃经调压进入脱乙烷塔T12顶部作为脱乙烷塔的回流,其回流罐V12的气相经冷箱E11换热升温后进入脱乙烷回流罐气相压缩机K12增压,其增压后的气体与高压吸收塔T11分馏出来的气相(经冷箱E11换热升温后)混合;高压吸收塔T11的塔底低温凝液经调压进入冷箱E11换热升温后,进入脱乙烷塔T12的中上部;低温分离器V11的液相经调压进入冷箱E11换热升温后,进入脱乙烷塔T12的中部;高压吸收塔T11塔顶出来的气相进入冷箱E11换热升温后与增压后的脱乙烷塔回流罐V12气相混合,再依次进入膨胀机组K11的增压端增压、空冷器A11冷却后,再进入外输气压缩机K13增压、空冷器A12冷却后外输。
进一步的技术方案在于:所述脱乙烷塔回流罐V12分离的液相经脱乙烷塔回流泵P11升压后的低温液烃分成两路,其一路液烃作为吸收塔的吸收剂进入吸收塔T11的顶部,其流量占回流罐V12总液相流量的40%-60%。
进一步的技术方案在于:所述高压吸收塔T11的压力比脱乙烷塔的压力高0.5MPa~1.5MPa,吸收塔T11与脱乙烷塔T12的压力可独立设置。
进一步的技术方案在于:高压吸收塔T11的压力与原料气的压力、气质和丙烷回收率有关,当原料气气质较贫时,高压吸收塔T11的压力设置范围为3.8-4.5MPa,吸收塔T11与脱乙烷塔T12的操作压力通过工艺流程模拟决定。
进一步的技术方案在于:所述回流罐气相压缩机K12轴功率较小,其轴功率为外输气压缩机K13轴功率的5%-10%,用于将经冷箱E11换热后的脱乙烷塔回流罐气相增压与高压吸收塔塔顶出来的气体经冷箱E11换热后混合。
进一步的技术方案在于:所述冷箱E11采用多股板翅式换热器,用于将三股热流与三股冷流集成于冷箱中。
进一步的技术方案在于:所述三股热流分别为原料气、脱乙烷塔塔顶气相、脱乙烷塔回流罐气相。
进一步的技术方案在于:所述三股冷流分别为低温分离器液相、高压吸收塔顶气相及塔底液烃。
采用上述技术方案所产生的有益效果在于:流程中设置高压吸收塔,应用高压低温、气化吸收制冷原理提高丙烷回收率,降低外输气压缩机功率和脱乙烷塔重沸器热负荷;采用低含丙烷的低温液烃作为高压吸收塔的吸收剂,改善了吸收塔的分离效率和操作稳定性;流程采用高效的多股板翅式换热器,优化了换热网络,提高冷热利用率,减少冷热损失,降低了凝液回收装置系统能耗。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1是本发明的工艺流程图;
图2是现有典型双塔丙烷回收工艺流程图;
图3是本发明的实施方案工艺流程图;
图1中主要设备代号:V11-低温分离器;K11-透平膨胀机组;T11-高压吸收塔;K12-脱乙烷塔回流罐气相压缩机;E11-冷箱;V12-脱乙烷塔回流罐;P11-脱乙烷塔回流泵;T12-脱乙烷塔;E12-脱乙烷塔重沸器;K13-外输气压缩机;A11、A12-空冷器。
图2中主要设备代号:E21-冷箱Ⅰ;V21-低温分离器;T21-吸收塔;E22-冷箱Ⅱ;T22-脱乙烷塔;E23-脱乙烷塔重沸器;K21-透平膨胀机组;P21-吸收塔塔底液烃增压泵;K22-外输气压缩机;A21、A22-空冷器。
图3中主要设备代号:V31-原料气分离器;T31-分子筛脱水装置;V32-低温分离器;T32-高压吸收塔;K31-透平膨胀机组;E31-冷箱;V33、V34-分别为脱乙烷塔及脱丁烷塔回流罐;P31、P32-分别为脱乙烷塔及脱丁烷塔回流泵;T33-脱乙烷塔;E33、E34-分别为脱乙烷塔及脱丁烷塔的重沸器;K32-脱乙烷塔回流罐气相压缩机;K33-外输气压缩机;E32-脱丁烷塔进料换热器;T34-脱丁烷塔;A31、A32、A33、A34-空冷器。
具体实施方式
下面结合本发明实施例中的附图3,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其它不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
原料气气质组成及工况条件
原料气处理规模:300×104m3/d
原料气压力:9.0MPa.g
进站温度:40℃
干气外输压力:≥6.0MPa.g
原料气组成见表1。
表1 原料气组成
组分 N2 CO2 C1 C2 C3 iC4 nC4 iC5
mol% 2.8411 0.1043 86.3032 7.5790 1.7118 0.3146 0.3811 0.1743
组分 nC5 C6 C7 C8 C9 C10 C11 C12 +
mol% 0.1500 0.1405 0.1660 0.0826 0.0296 0.0133 0.0049 0.0038
如图3所示,本发明公开了一种高压天然气凝液回收方法,进凝液回收装置的原料气(9.0MPa.g、40℃)经原料气分离器V31、分子筛脱水装置T31后进入冷箱E31降温后再进入低温分离器V32,低温分离器气相(8.7MPa.g、-29.5℃)经膨胀机组K31的膨胀端降压降温,从膨胀机组膨胀端出来的气液混合物(3.4MPa.g、-71℃)进入高压吸收塔T32底部;脱乙烷塔T33分馏出来的气相(2.7MPa.g、-32℃)经冷箱E31换热降温进入脱乙烷塔回流罐V33,其回流罐分离出来的液相(2.66MPa.g、-64℃)经脱乙烷塔回流泵P31升压后的低温液烃(3.5MPa.g、-63.5℃)分成两路,一路液烃作为低温吸收剂进入吸收塔T32的顶部,其流量占回流罐V33总液相流量的50%,另一路液烃经调压进入脱乙烷塔T33顶部作为脱乙烷塔T33的回流,其回流罐V33气相(2.66MPa.g、-64℃)经冷箱E31换热升温至22.5℃后进入回流罐气相压缩机K32(轴功率为136kW)增压至3.3MPa.g后与换热后的高压吸收塔顶部气相混合;高压吸收塔T32塔底的低温凝液(3.4MPa.g、-72.4℃)经调压进入冷箱E31换热升温至-24.5℃后进入脱乙烷塔T33的中上部;低温分离器V32的液相(8.7MPa.g、-29.5℃)经调压进入冷箱E31换热升温(2.83MPa.g、18.4℃)后,进入脱乙烷塔的中部;高压吸收塔T32塔顶出来的气相(2.7MPa.g、-32℃)进入冷箱E31换热升温至37℃后与增压后的脱乙烷塔回流罐气相混合,其混合气(3.3MPa.g、38℃)再依次进入膨胀机组K31的增压端增压(4.1MPa.g、61℃)、经空冷器A31冷却和外输气压缩机K33(轴功率为1850kW)增压至6.1MPa.g后,再经空冷器A2冷却后进入外输天然气管线外输,其外输气的流量为290.1×104m3/d;脱乙烷塔T33底部分馏出来的液烃(压力2.72MPa.g、温度105℃)为含丙烷及丙烷以上重组分的凝液(其乙烷的摩尔含量为2%),其凝液的产量为9656kg/h。
脱乙烷塔底部出来的凝液经调压、脱丁烷塔进料换热器E32后,其凝液(1.5MPa.g、98℃)进入脱丁烷塔T34,其塔顶分馏气相(1.5MPa.g、65℃)经脱丁烷塔塔顶空冷器A33冷却至50℃进入脱丁烷塔回流罐V34,其回流罐的液相经脱丁烷塔回流泵P32增压后分为两股液烃,一股液烃作为回流进入脱丁烷塔,其回流比为1,另一股液烃作为液化石油气产品进入液化石油气储罐,其液化石油气的产量为6070kg/h;从脱丁烷塔T34底部出来的高温稳定轻烃(1.53MPa.g、186℃)经脱丁烷塔进料换热器E32降温、稳定轻烃空冷器A34降温、调压至0.3MPa.g后进入稳定轻烃储罐后外输,其稳定轻烃的产量为3586kg/h。其凝液回收装置的丙烷回收率为98.5%。
本实方案与现有双塔流程相比,本发明提出高压天然气的凝液回收工艺,节省外输气压缩机功率463kW,降低重沸器热负荷939kW,其凝液回收装置节能显著。

Claims (8)

1.一种高压天然气凝液回收方法,其特征在于:脱水后的原料气经冷箱E11降温后进入低温分离器V11,低温分离器V11分离出来的气相经膨胀机组K11的膨胀端降压降温后,其气液混合物进入高压吸收塔T11底部;脱乙烷塔T12塔顶馏出物气相经冷箱E11换热降温进入脱乙烷塔回流罐V12,其回流罐分离的液相经脱乙烷塔回流泵P11升压后的低温液烃分成两路:一路液烃作为低温吸收剂进入高压吸收塔T11的顶部,另一路液烃经调压进入脱乙烷塔T12顶部作为脱乙烷塔的回流。其回流罐V12的气相经冷箱E11换热升温后进入回流罐气相压缩机K12增压后与换热后的高压吸收塔T11顶部出来的气相混合;高压吸收塔T11的塔底低温凝液经调压进入冷箱E11换热升温后,进入脱乙烷塔T12的中上部;低温分离器V11分离出来的液相经调压进入冷箱E11换热升温后,进入脱乙烷塔T12的中部;高压吸收塔T11塔顶出来的气相进入冷箱E11换热升温后与增压后的脱乙烷塔回流罐气相混合,再依次进入膨胀机组K11的增压端、空冷器A11和外输气压缩机K13、空冷器A12后外输。
2.根据权利要求1所述的高压天然气凝液回收方法,其特征在于:所述回流罐分离的液相经脱乙烷塔回流泵P11升压后的低温液烃分成两路,一路液烃作为吸收塔的吸收剂进入高压吸收塔T11的顶部,其流量占回流罐V12总液相流量的40-60%。
3.根据权利要求1所述的高压天然气凝液回收方法,其特征在于:所述高压吸收塔T11的压力比脱乙烷塔的压力高0.5MPa~1.5MPa,吸收塔T11与脱乙烷塔T12的压力可独立设置。
4.根据权利要求3所述的高压天然气凝液回收方法,其特征在于:高压吸收塔T11的压力与原料气的压力、气质和丙烷回收率有关,当原料气气质较贫时,高压吸收塔T11的压力设置范围为3.8-4.5MPa,吸收塔T11与脱乙烷塔T12的操作压力通过工艺流程模拟决定。
5.根据权利要求1所述的高压天然气凝液回收方法,其特征在于:所述回流罐气相压缩机K12轴功率较小,其轴功率为外输气压缩机K13轴功率的5%-10%,用于将经冷箱E11换热后的脱乙烷塔回流罐气相增压与高压吸收塔塔顶出来的气体经冷箱E11换热后混合。
6.根据权利要求1所述的高压天然气凝液回收方法,其特征在于:所述冷箱E11采用多股板翅式换热器,用于将三股热流与三股冷流集成于冷箱中。
7.根据权利要求6所述的高压天然气凝液回收方法,其特征在于:所述三股热流分别为原料气、脱乙烷塔塔顶气相、脱乙烷塔回流罐气相。
8.根据权利要求6所述的高压天然气凝液回收方法,其特征在于:所述三股冷流分别为低温分离器液相、高压吸收塔顶气相及塔底液烃。
CN201510260853.3A 2015-05-20 2015-05-20 高压天然气的凝液回收方法 Active CN104807288B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510260853.3A CN104807288B (zh) 2015-05-20 2015-05-20 高压天然气的凝液回收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510260853.3A CN104807288B (zh) 2015-05-20 2015-05-20 高压天然气的凝液回收方法

Publications (2)

Publication Number Publication Date
CN104807288A true CN104807288A (zh) 2015-07-29
CN104807288B CN104807288B (zh) 2017-03-15

Family

ID=53692337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510260853.3A Active CN104807288B (zh) 2015-05-20 2015-05-20 高压天然气的凝液回收方法

Country Status (1)

Country Link
CN (1) CN104807288B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2609172C1 (ru) * 2015-10-21 2017-01-30 Андрей Владиславович Курочкин Способ подготовки углеводородного газа
CN107163975A (zh) * 2017-05-27 2017-09-15 中国石油集团工程设计有限责任公司 一种轻烃深度回收的装置及方法
CN108759305A (zh) * 2018-06-11 2018-11-06 西南石油大学 一种多回流的天然气乙烷回收方法
CN111164187A (zh) * 2017-08-08 2020-05-15 沙特阿拉伯石油公司 利用基于有机物的综合压缩机-喷射器-膨胀器三循环系统的天然气凝液分馏装置废热到电力和冷却能力的同时转化
CN111630333A (zh) * 2017-12-15 2020-09-04 沙特阿拉伯石油公司 用于天然气凝液回收的过程集成
CN113899161A (zh) * 2021-10-12 2022-01-07 中石化中原石油工程设计有限公司 一种从天然气中提取乙烷的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3609009B2 (ja) * 1997-01-14 2005-01-12 エア・ウォーター株式会社 空気分離装置
JP2010210104A (ja) * 2009-03-06 2010-09-24 Taiyo Nippon Sanso Corp アルゴン製造方法およびその装置
CN102288007A (zh) * 2011-07-20 2011-12-21 西安长庆科技工程有限责任公司 一种混合轻烃做冷剂的天然气凝液回收装置及方法
CN202254633U (zh) * 2011-07-20 2012-05-30 西安长庆科技工程有限责任公司 一种混合轻烃做冷剂的天然气凝液回收装置
CN202869139U (zh) * 2012-09-24 2013-04-10 森松(江苏)海油工程装备有限公司 一种小型天然气凝液回收装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3609009B2 (ja) * 1997-01-14 2005-01-12 エア・ウォーター株式会社 空気分離装置
JP2010210104A (ja) * 2009-03-06 2010-09-24 Taiyo Nippon Sanso Corp アルゴン製造方法およびその装置
CN102288007A (zh) * 2011-07-20 2011-12-21 西安长庆科技工程有限责任公司 一种混合轻烃做冷剂的天然气凝液回收装置及方法
CN202254633U (zh) * 2011-07-20 2012-05-30 西安长庆科技工程有限责任公司 一种混合轻烃做冷剂的天然气凝液回收装置
CN202869139U (zh) * 2012-09-24 2013-04-10 森松(江苏)海油工程装备有限公司 一种小型天然气凝液回收装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2609172C1 (ru) * 2015-10-21 2017-01-30 Андрей Владиславович Курочкин Способ подготовки углеводородного газа
CN107163975A (zh) * 2017-05-27 2017-09-15 中国石油集团工程设计有限责任公司 一种轻烃深度回收的装置及方法
CN107163975B (zh) * 2017-05-27 2019-02-19 中国石油工程建设有限公司 一种轻烃深度回收的装置及方法
CN111164187A (zh) * 2017-08-08 2020-05-15 沙特阿拉伯石油公司 利用基于有机物的综合压缩机-喷射器-膨胀器三循环系统的天然气凝液分馏装置废热到电力和冷却能力的同时转化
US11231226B2 (en) 2017-12-15 2022-01-25 Saudi Arabian Oil Company Process integration for natural gas liquid recovery
US11268755B2 (en) 2017-12-15 2022-03-08 Saudi Arabian Oil Company Process integration for natural gas liquid recovery
CN111656114A (zh) * 2017-12-15 2020-09-11 沙特阿拉伯石油公司 用于天然气凝液回收的过程集成
CN111656117A (zh) * 2017-12-15 2020-09-11 沙特阿拉伯石油公司 用于天然气凝液回收的过程集成
US11644235B2 (en) 2017-12-15 2023-05-09 Saudi Arabian Oil Company Process integration for natural gas liquid recovery
US11226154B2 (en) 2017-12-15 2022-01-18 Saudi Arabian Oil Company Process integration for natural gas liquid recovery
US11428464B2 (en) 2017-12-15 2022-08-30 Saudi Arabian Oil Company Process integration for natural gas liquid recovery
US11231227B2 (en) 2017-12-15 2022-01-25 Saudi Arabian Oil Company Process integration for natural gas liquid recovery
US11248840B2 (en) 2017-12-15 2022-02-15 Saudi Arabian Oil Company Process integration for natural gas liquid recovery
US11248839B2 (en) 2017-12-15 2022-02-15 Saudi Arabian Oil Company Process integration for natural gas liquid recovery
CN111630333A (zh) * 2017-12-15 2020-09-04 沙特阿拉伯石油公司 用于天然气凝液回收的过程集成
US11320196B2 (en) 2017-12-15 2022-05-03 Saudi Arabian Oil Company Process integration for natural gas liquid recovery
CN111630333B (zh) * 2017-12-15 2022-05-31 沙特阿拉伯石油公司 用于天然气凝液回收的过程集成
CN111656117B (zh) * 2017-12-15 2022-06-07 沙特阿拉伯石油公司 用于天然气凝液回收的过程集成
CN108759305A (zh) * 2018-06-11 2018-11-06 西南石油大学 一种多回流的天然气乙烷回收方法
CN113899161A (zh) * 2021-10-12 2022-01-07 中石化中原石油工程设计有限公司 一种从天然气中提取乙烷的方法

Also Published As

Publication number Publication date
CN104807288B (zh) 2017-03-15

Similar Documents

Publication Publication Date Title
CN104807288A (zh) 高压天然气的凝液回收方法
CN105037069B (zh) 一种高压天然气的乙烷回收方法
JP3993102B2 (ja) 液化ガスを冷却する方法及び装置
CN100392052C (zh) 一种用于燃气调峰和轻烃回收的天然气液化方法
CN102538398B (zh) 一种含氮氧煤矿瓦斯提纯分离液化工艺及提纯分离液化系统
CN103215093B (zh) 小型撬装式氮膨胀天然气液化系统及其方法
CN100547326C (zh) 精制天然气、富c3+烃馏分及富乙烷流束的生产方法和设备
CN103363778B (zh) 小型撬装式单阶混合制冷剂天然气液化系统及其方法
CN204141934U (zh) 一种从井场天然气回收混烃的系统
CN102351625B (zh) 油田伴生气乙烷回收系统
CN102408910A (zh) 复合冷剂制冷二次脱烃轻烃回收方法及装置
CN108759305A (zh) 一种多回流的天然气乙烷回收方法
CN204981793U (zh) 一种lng冷能应用于油田伴生气的处理装置
CN101899342B (zh) 一种煤矿区煤层气生产液化天然气的工艺
de Melo et al. Supersonic separator for cleaner offshore processing of supercritical fluid with ultra-high carbon dioxide content: Economic and environmental evaluation
CN100347272C (zh) 一种具有调峰功能的液化天然气的轻烃分离方法
CN103868324B (zh) 小型撬装式混合制冷剂天然气液化和ngl回收一体系统
CN214735563U (zh) 一种油田伴生气生产轻烃和lng的系统
CN104140349A (zh) 一种新型液化天然气的轻烃分离系统及方法
CN106595223B (zh) 一种回收天然气中碳三以上重烃的系统和方法
CN109320393B (zh) 一种油田伴生气乙烷回收方法
CN202246578U (zh) 复合冷剂制冷二次脱烃轻烃回收装置
CN212870441U (zh) 一种具有压缩增强精馏的富气乙烷回收装置
CN112980490B (zh) 一种干气低压膨胀油田伴生气轻烃回收系统及使用方法
CN104132504A (zh) 一种从井场天然气回收混烃的系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant