JP2001052744A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JP2001052744A
JP2001052744A JP11229711A JP22971199A JP2001052744A JP 2001052744 A JP2001052744 A JP 2001052744A JP 11229711 A JP11229711 A JP 11229711A JP 22971199 A JP22971199 A JP 22971199A JP 2001052744 A JP2001052744 A JP 2001052744A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
battery
aqueous electrolyte
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11229711A
Other languages
Japanese (ja)
Other versions
JP3831550B2 (en
Inventor
Taeko Ota
妙子 太田
Ryuji Oshita
竜司 大下
Shin Fujitani
伸 藤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP22971199A priority Critical patent/JP3831550B2/en
Publication of JP2001052744A publication Critical patent/JP2001052744A/en
Application granted granted Critical
Publication of JP3831550B2 publication Critical patent/JP3831550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery excellent in preservation characteristics, by keeping the electrolyte so as not to be decomposed by a positive electrode active material or a negative electrode active material even if it is preserved in a charged state. SOLUTION: This nonaqueous electrolyte battery 10 is equipped with a carbon material as a component material for a positive electrode collector, and a nonaqueous electrolyte containing at least one kind of electrolyte salt selected from lithium perfluoroalkyl sulfonic acid imide expressed by LiN (CmF2m+1SO2) (CnF2n+1SO2) [where (m) and (n) are independently integers from 1 through 4] or lithium perfluoroalkyl sulfonic acid methide expressed by LiC (CpF2p+1SO2) (CqF2q+1SO2) (CrF2f+1SO2) [where (p), (q) and (r) are independently integers from 1 through 4].

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオンの挿
入・脱離が可能な正極と、リチウムイオンの挿入・脱離
が可能な負極と、非水電解質とを備えた非水電解質電池
に係り、特に、正極集電体とリチウム塩を溶解した非水
電解質の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery comprising a positive electrode capable of inserting and removing lithium ions, a negative electrode capable of inserting and removing lithium ions, and a non-aqueous electrolyte. In particular, it relates to improvement of a non-aqueous electrolyte in which a positive electrode current collector and a lithium salt are dissolved.

【0002】[0002]

【従来の技術】近年、小型軽量でかつ高容量で充放電可
能な電池としてリチウム二次電池が実用化されるように
なり、小型ビデオカメラ、携帯電話、ノートパソコン等
の携帯用電子・通信機器等に用いられるようになった。
この種のリチウム二次電池は、負極活物質としてリチウ
ムイオンを吸蔵・脱離し得るカーボン系材料あるいはリ
チウム金属もしくはリチウム合金を用い、正極活物質と
して、LiCoO2,LiNiO2,LiMn24,Li
FeO2等のリチウム含有遷移金属酸化物を用い、有機
溶媒に溶質としてリチウム塩を溶解した非水電解質を用
いて構成される電池である。
2. Description of the Related Art In recent years, lithium secondary batteries have come into practical use as small, lightweight, high-capacity, chargeable / dischargeable batteries, and portable electronic and communication equipment such as small video cameras, mobile phones, and notebook computers. And so on.
This type of lithium secondary battery uses a carbon-based material or lithium metal or lithium alloy capable of inserting and extracting lithium ions as a negative electrode active material, and uses LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , and Li as positive electrode active materials.
The battery comprises a lithium-containing transition metal oxide such as FeO 2 and a nonaqueous electrolyte in which a lithium salt is dissolved as a solute in an organic solvent.

【0003】このようなリチウム二次電池に用いられる
非水電解質の溶媒として、エチレンカーボネート(E
C)、プロピレンカーボネート(PC)、ビニレンカー
ボネート(VC)、ブチレンカーボネート(BC)、ジ
エチルカーボネート(DEC)、ジメチルカーボネート
(DMC)、メチルエチルカーボネート(MEC)、
1,2−ジエトキシエタン(DEE)、1,2−ジメト
キシエタン(DME)、エトキシメトキシエタン(EM
E)等の単体、あるいは二成分以上の混合溶媒が使用さ
れている。また、この溶媒に溶解される溶質としては、
LiPF6、LiBF4、LiCF3SO3、LiAs
6、LiN(CF3SO22、LiC(CF3
23、LiCF3(CF23SO3等が使用されてい
る。
As a solvent for a non-aqueous electrolyte used in such a lithium secondary battery, ethylene carbonate (E
C), propylene carbonate (PC), vinylene carbonate (VC), butylene carbonate (BC), diethyl carbonate (DEC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC),
1,2-diethoxyethane (DEE), 1,2-dimethoxyethane (DME), ethoxymethoxyethane (EM
A single solvent such as E) or a mixed solvent of two or more components is used. Also, as a solute dissolved in this solvent,
LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAs
F 6 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 S
O 2 ) 3 , LiCF 3 (CF 2 ) 3 SO 3 and the like are used.

【0004】[0004]

【発明が解決しようとする課題】この種のリチウム二次
電池にあっては、正極集電体としてアルミニウムを使用
するのが一般的である。ところで、リチウム二次電池の
正極集電体にアルミニウムを用いると、充放電サイクル
が進行するに伴ってアルミニウムが腐食されて、充放電
サイクル特性が著しく低下して電池寿命が短いという問
題が生じた。そこで、特開平10−125352号公報
において、炭素材料あるいは炭素材料を被覆した樹脂フ
ィルムまたは金属箔を正極集電体に用いるとともに、ペ
ルフルオロアルキルスルホン酸リチウムまたはペルフル
オロアルキルスルホニルアミドリチウムを非水電解液の
溶質として用いたリチウム二次電池が提案されるように
なった。これにより、正極集電体の腐食が防止されて、
サイクル特性が改善されるようになった。
In such a lithium secondary battery, aluminum is generally used as a positive electrode current collector. By the way, when aluminum is used for the positive electrode current collector of the lithium secondary battery, the aluminum is corroded as the charge / discharge cycle progresses, and the charge / discharge cycle characteristics are remarkably deteriorated, resulting in a problem that the battery life is short. . In JP-A-10-125352, a carbon material or a resin film or a metal foil coated with a carbon material is used for a positive electrode current collector, and lithium perfluoroalkylsulfonate or lithium perfluoroalkylsulfonylamide is used as a nonaqueous electrolyte. Lithium secondary batteries used as solutes have been proposed. This prevents corrosion of the positive electrode current collector,
The cycle characteristics have been improved.

【0005】しかしながら、特開平10−125352
号公報において提案されたリチウム二次電池であって
も、正極集電体となる炭素材料あるいは炭素材料を被覆
した樹脂フィルムまたは金属箔が、ペルフルオロアルキ
ルスルホン酸リチウムまたはペルフルオロアルキルスル
ホニルアミドリチウムを溶質とする非水電解液に直接接
触しているため、正極の電位が高電位となる充電時にお
いて非水電解液の溶媒の分解が起こり、溶媒が劣化して
充電保存特性が著しく低下するという問題が生じた。そ
こで、本発明は上記課題を解消するためになされたもの
であって、充電状態で保存しても非水電解質が分解され
ないようにして、充電保存特性に優れた非水電解質電池
を提供することにある。
However, Japanese Patent Application Laid-Open No. H10-125352 discloses
Even in the lithium secondary battery proposed in the publication, a carbon material or a resin film or a metal foil coated with the carbon material serving as a positive electrode current collector is formed by using lithium perfluoroalkyl sulfonate or lithium perfluoroalkyl sulfonylamide as a solute. Since the non-aqueous electrolyte is in direct contact with the non-aqueous electrolyte, the solvent of the non-aqueous electrolyte decomposes during charging when the potential of the positive electrode becomes high. occured. Therefore, the present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a nonaqueous electrolyte battery having excellent charge storage characteristics by preventing the nonaqueous electrolyte from being decomposed even when stored in a charged state. It is in.

【0006】[0006]

【課題を解決するための手段およびその作用・効果】上
記課題を解決するために、本発明の非水電解質電池にお
いては、正極集電体の構成材としてカーボン材料を備え
るとともに、LiN(Cm2m+1SO2)(C n2n+1
2)(ただし、mおよびnは各々独立した1〜4の整
数)で表されるリチウムペルフルオロアルキルスルホン
酸イミドあるいはLiC(Cp2p+1SO2)(Cq
2q+1SO2)(Cr2r+1SO2)(ただし、p、qおよ
びrは各々独立した1〜4の整数)で表されるリチウム
ペルフルオロアルキルスルホン酸メチドから選択される
少なくとも1種の電解質塩を含有した非水電解質を備え
るようにしている。
[Means for solving the problems and their functions and effects]
In order to solve the above problems, the non-aqueous electrolyte battery of the present invention
In addition, a carbon material is provided as a constituent material of the positive electrode current collector.
And LiN (CmF2m + 1SOTwo) (C nF2n + 1S
OTwo(Where m and n are each independently 1 to 4 integers)
Lithium perfluoroalkyl sulfone represented by
Acid imide or LiC (CpF2p + 1SOTwo) (CqF
2q + 1SOTwo) (CrF2r + 1SOTwo) (However, p, q and
And r are each independently an integer of 1-4)
Selected from perfluoroalkylsulfonic acid methides
A non-aqueous electrolyte containing at least one electrolyte salt
I am trying to.

【0007】このようなリチウムペルフルオロアルキル
スルホン酸イミドあるいはリチウムペルフルオロアルキ
ルスルホン酸メチドから選択される少なくとも1種の電
解質塩を備え、かつ正極集電体の構成材としてカーボン
材料を備えると、カーボン材料からなる正極集電体の表
面に被膜(保護膜)が形成されるため、この保護膜によ
り非水電解質が直接、正極集電体と接触することが防止
できるようになる。この結果、このような非水電解質電
池を充電状態で保存しても非水電解質が分解されるのが
防止でき、充電保存性特性が向上する。
When at least one kind of electrolyte salt selected from lithium perfluoroalkylsulfonic acid imide or lithium perfluoroalkylsulfonic acid methide is provided and a carbon material is provided as a constituent material of the positive electrode current collector, Since a film (protective film) is formed on the surface of the positive electrode current collector, the non-aqueous electrolyte can be prevented from directly contacting the positive electrode current collector by the protective film. As a result, even if such a non-aqueous electrolyte battery is stored in a charged state, the non-aqueous electrolyte can be prevented from being decomposed, and the charge storage property is improved.

【0008】これは、リチウムペルフルオロアルキルス
ルホン酸イミドあるいはリチウムペルフルオロアルキル
スルホン酸メチドのイオン解離に起因する安定な陰イオ
ンが正極集電体の炭素と結合することにより、正極集電
体の表面に良質な被膜(この被膜が保護膜となる)が形
成される。この被膜は、高温下において、安定に存在し
て、正極集電体と非水電解質の溶媒分子との接触を遮断
して非水電解質の劣化(分解)が防止されるためであ
る。
[0008] This is because a stable anion resulting from ionic dissociation of lithium perfluoroalkylsulfonimide or lithium perfluoroalkylsulfonate is bonded to carbon of the positive electrode current collector, so that the surface of the positive electrode current collector has good quality. (A film serving as a protective film) is formed. This is because the coating is stably present at a high temperature and blocks the contact between the positive electrode current collector and the solvent molecules of the non-aqueous electrolyte to prevent deterioration (decomposition) of the non-aqueous electrolyte.

【0009】そして、(002)面の面間隔(d002
が3.35Å以上で3.37Å以下であり、c軸方向の
結晶子の大きさ(Lc)が250Å以上であるカーボン
材料を正極集電体の構成材として用いると、正極集電体
の表面により緻密で薄い皮膜が生成されるようになるた
め、さらに非水電解質の劣化(分解)が防止されるよう
になる。
Then, the spacing (d 002 ) of the (002) plane
When a carbon material whose crystallite size in the c-axis direction (Lc) is 250 ° or more is used as a constituent material of the positive electrode current collector, the surface of the positive electrode current collector As a result, a dense and thin film is generated, so that deterioration (decomposition) of the nonaqueous electrolyte is further prevented.

【0010】なお、本発明は、正極活物質、負極活物
質、非水電解質の溶媒、セパレータの種類などについて
は制限することなく使用することができる。例えば、正
極活物質としては、組成式がLiaMOb(MはCo,N
i,Mn,Feなどから選択される1種の金属元素で、
0≦a≦2で1≦b≦5)で表される金属MとLiとの
複合酸化物を用いることができる。具体的には、改質M
nO2,LiNiO2,LiCoO2,LiMn24,L
iMn1.5Ni0.54などが好ましい。
The present invention can be used without any limitation on the positive electrode active material, the negative electrode active material, the solvent of the non-aqueous electrolyte, the type of separator, and the like. For example, as the positive electrode active material, the composition formula is Li a MO b (M is Co, N
one kind of metal element selected from i, Mn, Fe, etc.
A composite oxide of metal M and Li represented by 0 ≦ a ≦ 2 and 1 ≦ b ≦ 5) can be used. Specifically, modified M
nO 2 , LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , L
iMn 1.5 Ni 0.5 O 4 is preferred.

【0011】これらのうち、組成式がLiMn2-XNiX
4(0<X≦0.6)で表される複合酸化物を正極活
物質として用いると、充電保存時の正極電位が高くなる
ため、より緻密で良質な被膜が正極集電体の表面に形成
され、充電保存特性が顕著に向上するようになる。ここ
で、この複合酸化物中のNiの組成を0.6以下に限定
する理由は、Niの酸化物相の構造変化によりサイクル
寿命特性の向上効果の低下を抑制するためである。
Of these, the composition formula is LiMn 2-X Ni X
When a composite oxide represented by O 4 (0 <X ≦ 0.6) is used as the positive electrode active material, the positive electrode potential during charge storage increases, and a denser and higher quality coating is formed on the surface of the positive electrode current collector. And the charge storage characteristics are remarkably improved. Here, the reason why the composition of Ni in the composite oxide is limited to 0.6 or less is to suppress a decrease in the effect of improving the cycle life characteristics due to a structural change of the oxide phase of Ni.

【0012】また、負極活物質としては、Liを電気化
学的に吸蔵・放出できる黒鉛(天然黒鉛、人造黒鉛)、
コークス、有機物焼成体などの炭素材料、Li−Al合
金、Li−Mg合金、Li−In合金、Li−Al−M
n合金およびリチウム金属が好ましい。
As the negative electrode active material, graphite (natural graphite, artificial graphite) which can occlude and release Li electrochemically,
Carbon materials such as coke and fired organic material, Li-Al alloy, Li-Mg alloy, Li-In alloy, Li-Al-M
N-alloys and lithium metals are preferred.

【0013】非水電解質の溶媒としては、エチレンカー
ボネート(EC)、プロピレンカーボネート(PC)、
ブチレンカーボネート(BC)などの環状カーボネート
と、ジメチルカーボネート(DMC)、メチルエチルカ
ーボネート(MEC)、ジエチルカーボネート(DE
C)などの鎖状カーボネートとの混合溶媒が好ましい。
また、上記環状カーボネートと、1,2−ジメトキシエ
タン(DME)、1,2−ジエトキシエタン(DE
E)、エトキシメトキシエタン(EME)などのエーテ
ル系溶媒との混合溶媒も好ましい。
As the solvent of the non-aqueous electrolyte, ethylene carbonate (EC), propylene carbonate (PC),
Cyclic carbonates such as butylene carbonate (BC), dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), diethyl carbonate (DE
A mixed solvent with a chain carbonate such as C) is preferred.
Further, the cyclic carbonate, 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DE
A mixed solvent with an ether solvent such as E) and ethoxymethoxyethane (EME) is also preferable.

【0014】さらに、非水電解質としては、ポリエチレ
ンオキシド、ポリアクリロニトリルなどのポリマーに非
水電解液を含浸したゲル状ポリマー電解質を用いてもよ
い。なお、本発明に用いる非水電解質は、イオン導電性
を発現させる溶質としてのLi化合物(LiN(Cm
2m+1SO2)(Cn2n+1SO2)(ただし、mおよびn
は各々独立した1〜4の整数)で表されるリチウムペル
フルオロアルキルスルホン酸イミドあるいはLiC(C
p2p+1SO2)(Cq2q+1SO2)(Cr2r+ 1SO2
(ただし、p、qおよびrは各々独立した1〜4の整
数)で表されるリチウムペルフルオロアルキルスルホン
酸メチド)と、これを溶解保持する溶媒が電池の充電時
や放電時あるいは保存時の電圧で分解しない限り制約な
く用いることができる。
Further, as the non-aqueous electrolyte, a gel polymer electrolyte obtained by impregnating a polymer such as polyethylene oxide or polyacrylonitrile with a non-aqueous electrolyte may be used. The non-aqueous electrolyte used in the present invention is a Li compound (LiN (C m F
2m + 1 SO 2 ) (C n F 2n + 1 SO 2 ) (where m and n
Are each independently an integer from 1 to 4) represented by lithium perfluoroalkylsulfonic acid imide or LiC (C
p F 2p + 1 SO 2) (C q F 2q + 1 SO 2) (C r F 2r + 1 SO 2)
(Where p, q and r are each independently an integer of 1 to 4), and a solvent for dissolving and maintaining the same is a voltage at the time of charging, discharging, or storing the battery. Can be used without restriction as long as it is not decomposed.

【0015】[0015]

【発明の実施の形態】以下に、本発明の非水電解質電池
の実施の形態を説明する。 1.正極集電体の作製 芳香族ポリイミドフィルム(出発原料)をアルゴン雰囲
気中で2500℃の温度で10時間加熱する熱処理を行
い、正極集電体としてのカーボンシートを作製した。得
られたカーボンシートを分析したところ、(002)面
の面間隔(d00 2)は3.358Åであり、c軸方向の
結晶子の大きさ(Lc)は600Åであった。なお、出
発原料としては芳香族ポリイミドフィルム以外に、芳香
族ポリアミド、ポリフェニレンオキサジアゾール、ポリ
ベンゾチアゾール等の高分子フィルムを用いてもよい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the nonaqueous electrolyte battery according to the present invention will be described below. 1. Preparation of positive electrode current collector Heat treatment was performed by heating the aromatic polyimide film (starting material) at a temperature of 2500 ° C. for 10 hours in an argon atmosphere to prepare a carbon sheet as a positive electrode current collector. When the obtained carbon sheet was analyzed, the (002) plane spacing (d 00 2 ) was 3.358 °, and the crystallite size (Lc) in the c-axis direction was 600 °. As a starting material, a polymer film such as aromatic polyamide, polyphenylene oxadiazole, or polybenzothiazole may be used in addition to the aromatic polyimide film.

【0016】2.正極の作製 正極活物質としてのリチウム含有コバルト酸化物(Li
CoO2)粉末90重量部と、人造黒鉛、アセチレンブ
ラック、グラファイト等の炭素系導電剤5重量部と、ポ
リフッ化ビニリデン(PVdF)5重量部とを混合し、
これらとN−メチル−2−ピロリドン(NMP)溶液と
を混合してスラリーを調製した。このスラリーをドクタ
ーブレード等を用いて、上述のようにして作製したカー
ボンシート(正極集電体)の両面に均一に塗布して、活
物質層を塗布した正極板を形成した。この後、150℃
の温度で2時間真空乾燥して、スラリー作製に必要であ
った有機溶剤を除去した後、ロールプレス機により圧延
して、正極板11(図1参照)を作製した。なお、正極
活物質として、LiCoO2に代えて、改質MnO2、L
iNiO2、LiCoO2、LiMn24、LiMn1.5
Ni0.54などの複合酸化物を用いてもよい。
2. Preparation of positive electrode Lithium-containing cobalt oxide (Li
90 parts by weight of CoO 2 ) powder, 5 parts by weight of a carbon-based conductive agent such as artificial graphite, acetylene black, and graphite, and 5 parts by weight of polyvinylidene fluoride (PVdF)
These were mixed with an N-methyl-2-pyrrolidone (NMP) solution to prepare a slurry. This slurry was uniformly applied to both surfaces of the carbon sheet (positive electrode current collector) prepared as described above using a doctor blade or the like to form a positive electrode plate coated with an active material layer. After this, 150 ° C
After drying under vacuum for 2 hours to remove the organic solvent necessary for preparing the slurry, the roll was rolled by a roll press to prepare a positive electrode plate 11 (see FIG. 1). As the positive electrode active material, modified MnO 2 , L instead of LiCoO 2
iNiO 2 , LiCoO 2 , LiMn 2 O 4 , LiMn 1.5
A composite oxide such as Ni 0.5 O 4 may be used.

【0017】3.負極の作製 負極活物質としての天然黒鉛(d=3.35Å)粉末が
95重量部で、ポリフッ化ビニリデン(PVdF)が5
重量部となるように混合し、これらとN−メチル−2−
ピロリドン(NMP)溶液とを混合してスラリーを調製
した。このスラリーを厚さが20μmの銅製の負極集電
体の両面に均一に塗布して、活物質層を塗布した負極板
を形成した。この後、150℃の温度で乾燥して炭素材
料からなる負極12(図1参照)を作製した。なお、炭
素材料としては、天然黒鉛に代えて、人造黒鉛、コーク
ス、有機物焼成体などを用いてもよい。
3. Preparation of negative electrode 95 parts by weight of natural graphite (d = 3.35 °) powder as a negative electrode active material and 5 parts of polyvinylidene fluoride (PVdF)
Parts by weight, and N-methyl-2-
A slurry was prepared by mixing with a pyrrolidone (NMP) solution. This slurry was uniformly applied to both surfaces of a copper negative electrode current collector having a thickness of 20 μm to form a negative electrode plate coated with an active material layer. Thereafter, drying was performed at a temperature of 150 ° C. to produce a negative electrode 12 made of a carbon material (see FIG. 1). Note that, as the carbon material, artificial graphite, coke, a fired organic material, or the like may be used instead of natural graphite.

【0018】4.電解質(電解液)の調製 (1)実施例1 まず、エチレンカーボネート(EC:以下、単にECと
いう)とジエチルカーボネート(DEC:以下、単にD
ECという)とを体積比で50:50となるように混合
した混合溶媒に、リチウムペルフルオロアルキルスルホ
ン酸イミドとしてLiN(CF3SO22を1.0モル
/リットル溶解して電解液(電解質)を調製した。この
電解液に添加剤としてイソキサゾールを電解液に対して
5重量%だけ添加し、混合して実施例1の電解液aを調
製した。なお、溶質として用いられたリチウムペルフル
オロアルキルスルホン酸イミドであるLiN(CF3
22は、LiN(Cm2m+1SO2)(Cn2n+1
2)と表された場合のm=1,n=1に相当する。こ
れを、以下では(m,n)=(1,1)と表す。
4. Preparation of Electrolyte (Electrolyte) (1) Example 1 First, ethylene carbonate (EC: hereinafter simply referred to as EC) and diethyl carbonate (DEC: hereinafter simply D)
EC) is dissolved in a mixed solvent in a volume ratio of 50:50 by mixing 1.0 mol / L of LiN (CF 3 SO 2 ) 2 as lithium perfluoroalkylsulfonimide to form an electrolytic solution (electrolyte). ) Was prepared. To this electrolyte solution, isoxazole was added as an additive in an amount of 5% by weight based on the electrolyte solution, and mixed to prepare an electrolyte solution a of Example 1. Note that LiN (CF 3 S), which is a lithium perfluoroalkyl sulfonimide used as a solute, was used.
O 2 ) 2 is LiN (C m F 2m + 1 SO 2 ) (C n F 2n + 1 S
O 2 ) corresponds to m = 1 and n = 1. This is represented as (m, n) = (1, 1) below.

【0019】(2)実施例2 ECとDECとを体積比で50:50となるように混合
した混合溶媒に、リチウムペルフルオロアルキルスルホ
ン酸イミドとしてLiN(C25SO22を1.0モル
/リットル溶解して電解液を調製した。この電解液に添
加剤としてイソキサゾールを電解液に対して5重量%だ
け添加し、混合して実施例2の電解液bを調製した。な
お、溶質として用いられたリチウムペルフルオロアルキ
ルスルホン酸イミドであるLiN(C25SO22は、
LiN(Cm2m+1SO2)(Cn2n+1SO2)と表され
た場合の(m,n)=(2,2)に相当する。
(2) Example 2 LiN (C 2 F 5 SO 2 ) 2 as lithium perfluoroalkylsulfonimide was added to a mixed solvent in which EC and DEC were mixed at a volume ratio of 50:50. 0 mol / liter was dissolved to prepare an electrolytic solution. To this electrolyte solution, isoxazole was added as an additive in an amount of 5% by weight based on the electrolyte solution and mixed to prepare an electrolyte solution b of Example 2. LiN (C 2 F 5 SO 2 ) 2 , which is a lithium perfluoroalkyl sulfonimide used as a solute,
LiN (C m F 2m + 1 SO 2) (C n F 2n + 1 SO 2) and represented when the (m, n) corresponding to = (2,2).

【0020】(3)実施例3 ECとDECとを体積比で50:50となるように混合
した混合溶媒に、リチウムペルフルオロアルキルスルホ
ン酸イミドとしてLiN(CF3SO2)(C49
2)を1.0モル/リットル溶解して電解液を調製し
た。この電解液に添加剤としてイソキサゾールを電解液
に対して5重量%だけ添加し、混合して実施例3の電解
液cを調製した。なお、溶質として用いられたリチウム
ペルフルオロアルキルスルホン酸イミドであるLiN
(CF3SO2)(C49SO2)は、LiN(Cm2m+1
SO2)(Cn2n+1SO2)と表された場合の(m,
n)=(1,4)に相当する。
(3) Example 3 LiN (CF 3 SO 2 ) (C 4 F 9 S) as a lithium perfluoroalkyl sulfonimide was mixed in a mixed solvent of EC and DEC in a volume ratio of 50:50.
O 2 ) was dissolved at 1.0 mol / liter to prepare an electrolyte solution. To this electrolyte solution, isoxazole was added as an additive in an amount of 5% by weight based on the electrolyte solution, and mixed to prepare an electrolyte solution c of Example 3. In addition, LiN which is lithium perfluoroalkylsulfonic acid imide used as a solute was used.
(CF 3 SO 2 ) (C 4 F 9 SO 2 ) is LiN (C m F 2m + 1)
SO 2 ) (C n F 2n + 1 SO 2 ) when (m,
n) = (1, 4).

【0021】(4)実施例4 ECとDECとを体積比で50:50となるように混合
した混合溶媒に、リチウムペルフルオロアルキルスルホ
ン酸メチドとしてLiC(CF3SO23を1.0モル
/リットル溶解して電解液を調製した。この電解液に添
加剤としてイソキサゾールを電解液に対して5重量%だ
け添加し、混合して実施例4の電解液dを調製した。な
お、溶質として用いられたリチウムペルフルオロアルキ
ルスルホン酸メチドであるLiC(CF3SO23は、
LiC(Cp2p+1SO2)(Cq 2q+1SO2)(Cr
2r+1SO2)と表わした場合のp=1,q=1,r=
1、即ち、(p,q,r)=(1,1,1)に相当す
る。
(4) Example 4 EC and DEC are mixed at a volume ratio of 50:50.
Lithium perfluoroalkyl sulfo
LiC (CFThreeSOTwo)Three1.0 mol
/ Liter dissolved to prepare an electrolytic solution. Add this electrolyte
Isoxazole as additive is 5% by weight of the electrolyte
Then, the mixture was added and mixed to prepare an electrolyte solution d of Example 4. What
The lithium perfluoroalkyl used as the solute
Lisulfonate methide LiC (CFThreeSOTwo)ThreeIs
LiC (CpF2p + 1SOTwo) (CqF 2q + 1SOTwo) (CrF
2r + 1SOTwo), P = 1, q = 1, r =
1, ie, (p, q, r) = (1, 1, 1)
You.

【0022】(9)比較例1 ECとDECとを体積比で50:50となるように混合
した混合溶媒に、ペルフルオロアルキルスルホン酸リチ
ウム(LiCF3SO3)を1.0モル/リットル溶解し
て電解液を調製した。この電解液に添加剤としてイソキ
サゾールを電解液に対して5重量%だけ添加し、混合し
て比較例1の電解液xを調製した。
(9) Comparative Example 1 In a mixed solvent in which EC and DEC were mixed at a volume ratio of 50:50, 1.0 mol / liter of lithium perfluoroalkylsulfonate (LiCF 3 SO 3 ) was dissolved. To prepare an electrolytic solution. To this electrolyte solution, isoxazole was added as an additive in an amount of 5% by weight based on the electrolyte solution, and mixed to prepare an electrolyte solution x of Comparative Example 1.

【0023】(10)比較例2 ECとDECとを体積比で50:50となるように混合
した混合溶媒に、ペルフルオロアルキルスルホニルアミ
ドリチウム(LiNHCF3SO2)を1.0モル/リッ
トル溶解して電解液を調製した。この電解液に添加剤と
してイソキサゾールを電解液に対して5重量%だけ添加
し、混合して比較例2の電解液yを調製した。
(10) Comparative Example 2 Lithium perfluoroalkylsulfonylamide (LiNHCF 3 SO 2 ) (1.0 mol / l) was dissolved in a mixed solvent of EC and DEC mixed at a volume ratio of 50:50. To prepare an electrolytic solution. Isoxazole as an additive was added to this electrolyte at a ratio of 5% by weight based on the electrolyte, and mixed to prepare an electrolyte y of Comparative Example 2.

【0024】 なお、上述した各実施例および比較例においては、EC
とDECとを体積比で50:50となるように混合した
混合溶媒を用いる例について説明したが、電解質の溶媒
としては、ECおよびDEC以外にも、プロピレンカー
ボネート(PC)、ブチレンカーボネート(BC)など
の環状カーボネートと、ジメチルカーボネート(DM
C)、メチルエチルカーボネート(MEC)などの鎖状
カーボネートとの混合溶媒、上記環状カーボネートと、
1,2−ジメトキシエタン(DME)、1,2−ジエト
キシエタン(DEE)、エトキシメトキシエタン(EM
E)などのエーテル系溶媒との混合溶媒を選択して用い
ても良い。
In each of the above Examples and Comparative Examples, EC
And DEC are described as using a mixed solvent in which the volume ratio is 50:50. In addition to EC and DEC, propylene carbonate (PC) and butylene carbonate (BC) are used as the electrolyte solvent. And dimethyl carbonate (DM
C), a mixed solvent with a chain carbonate such as methyl ethyl carbonate (MEC), and the above cyclic carbonate;
1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EM
A mixed solvent with an ether solvent such as E) may be selected and used.

【0025】5.リチウム二次電池の作製 ついで、リチウム二次電池の作製例を図1に基づいて説
明する。上述のようにして作製した正極板11および負
極板12をこれらの間にポリプロピレン製微多孔膜から
なるセパレータ13を介在させて重ね合わせた後、渦巻
状に巻回して渦巻状電極体を作製した。ついで、円筒状
の外装缶14を用意し、この外装缶14内に渦巻状電極
体を挿入した後、負極板12から延出する負極用リード
12aを外装缶14の底部に溶接するとともに、正極板
11から延出する正極用リード11aを封口体の蓋体1
6の底部に溶接した。
[5] Production of Lithium Secondary Battery Next, an example of producing a lithium secondary battery will be described with reference to FIG. The positive electrode plate 11 and the negative electrode plate 12 produced as described above were overlapped with a separator 13 made of a microporous polypropylene film interposed therebetween, and then spirally wound to produce a spiral electrode body. . Next, a cylindrical outer can 14 is prepared, a spiral electrode body is inserted into the outer can 14, and a negative electrode lead 12 a extending from the negative electrode plate 12 is welded to the bottom of the outer can 14. The positive electrode lead 11a extending from the plate 11 is connected to the lid 1 of the sealing body.
6 was welded to the bottom.

【0026】ついで、上述のようにして調製した実施例
1〜4の電解液a〜dおよび比較例1〜2の電解液x,
yを外装缶14内に注入した後、蓋体16の周縁部に配
置された絶縁パッキング19を外装缶14の上部に設け
た凹部14a上に配置し、外装缶14の上部に設けられ
た開口部14bを内方にかしめることにより液密に封口
して、公称容量が600mAhのAAサイズのA〜Dお
よびX〜Yのリチウム二次電池10を作製した。なお、
封口体は蓋体16と正極キャップ15とから構成され、
正極キャップ15の下面には正極キャップ15から下方
に突出する突起部18が形成されており、蓋体16の上
面には蓋体16に設けられたガス排気口(図示せず)を
封止し、電池内圧が上昇することにより上方に膨出する
弁体17が設けられている。また、正極キャップ15の
側壁には図示しないガス抜口が設けられている。
Then, the electrolytes a to d of Examples 1 to 4 and the electrolytes x and x of Comparative Examples 1 and 2 prepared as described above were prepared.
After injecting the y into the outer can 14, the insulating packing 19 arranged on the periphery of the lid 16 is arranged on the concave portion 14a provided on the upper part of the outer can 14, and the opening provided on the upper part of the outer can 14 is formed. The portion 14b was liquid-tightly sealed by caulking inward to produce lithium secondary batteries 10 of AA size and A to D and XY of a nominal capacity of 600 mAh. In addition,
The sealing body is composed of a lid 16 and a positive electrode cap 15,
A projection 18 projecting downward from the positive electrode cap 15 is formed on the lower surface of the positive electrode cap 15, and a gas exhaust port (not shown) provided in the lid 16 is sealed on the upper surface of the lid 16. A valve element 17 is provided which swells upward due to an increase in battery internal pressure. A gas vent (not shown) is provided on the side wall of the positive electrode cap 15.

【0027】これにより、電池内圧が所定の圧力より上
昇すると、弁体17が上方に膨出して突起部18の先端
に突き刺さることにより、弁体17は破損して、図示し
ないガス排気口より電池内で発生した過剰のガスがガス
抜口を通って電池外に排出されるようになり、電池10
が破裂することが防止できるようになる。なお、電池A
は実施例1の電解液aを注入したものであり、電池Bは
実施例2の電解液bを注入したものであり、電池Cは実
施例3の電解液cを注入したものであり、電池Dは実施
例4の電解液dを注入したものである。また、電池Xは
比較例1の電解液xを注入したものであり、電池Yは比
較例2の電解液yを注入したものである。
As a result, when the internal pressure of the battery rises above a predetermined pressure, the valve body 17 bulges upward and pierces the tip of the projection 18, so that the valve body 17 is damaged, and the battery is discharged from a gas exhaust port (not shown). Excess gas generated in the battery is discharged to the outside of the battery through the gas vent, and the battery 10
Can be prevented from exploding. Note that battery A
Is a battery in which the electrolyte a of Example 1 is injected, a battery B is a battery in which the electrolyte b of Example 2 is injected, and a battery C is a battery in which the electrolyte c of Example 3 is injected. D is obtained by injecting the electrolytic solution d of Example 4. The battery X was injected with the electrolyte x of Comparative Example 1, and the battery Y was injected with the electrolyte y of Comparative Example 2.

【0028】6.充放電サイクル試験 上述のように作製した各電池A〜DおよびX,Yを室温
(25℃)にて、200mAの充電々流で4.2Vにな
るまで定電流充電した後、200mAの放電々流で2.
75Vになるまで定電流放電して、初期放電容量を求め
た。ついで、これらの各電池A〜DおよびX,Yを20
0mAの充電々流で4.2Vになるまで定電流充電した
後、60℃の温度で20日間保存した後、200mAの
放電々流で2.75Vになるまで定電流放電して、高温
保存後の放電容量を求めた。ついで、初期放電容量に対
する高温保存後の放電容量の割合を容量残存率して算出
すると下記の表1に示すような結果となった。
6. Charge / discharge cycle test Each of the batteries A to D and X, Y produced as described above was charged at a constant current of 4.2 mA at room temperature (25 ° C.) with a charge current of 200 mA until the voltage reached 4.2 V, and then discharged at 200 mA. In the flow 2.
Constant current discharge was performed until the voltage reached 75 V, and the initial discharge capacity was determined. Next, these batteries A to D and X, Y were
After charging at a constant current of 4.2 V with a charged current of 0 mA until storage at 60 ° C. for 20 days, discharging at a constant current of 2.75 V with a discharged current of 200 mA until the voltage reaches 2.75 V, and after high-temperature storage Was obtained. Next, when the ratio of the discharge capacity after high-temperature storage to the initial discharge capacity was calculated as the remaining capacity ratio, the results shown in Table 1 below were obtained.

【0029】[0029]

【表1】 [Table 1]

【0030】上記表1より明らかなように、ペルフルオ
ロアルキルスルホン酸リチウム(LiCF3SO3)を電
解質塩とした比較例1の電池Xおよびペルフルオロアル
キルスルホニルアミドリチウム(LiNHCF3SO2
を電解質塩とした比較例2の電池Yの容量残存率は5
0.3%および49.6%と低いのに対し、リチウムペ
ルフルオロアルキルスルホン酸イミドあるいはリチウム
ペルフルオロアルキルスルホン酸メチドを電解質塩とし
た実施例1〜4の電池A〜Dの容量残存率は72.5%
〜76.7%と高くなっており、充電保存特性が優れて
いることが分かる。
As is clear from Table 1, the battery X of Comparative Example 1 in which lithium perfluoroalkylsulfonate (LiCF 3 SO 3 ) was used as the electrolyte salt, and lithium perfluoroalkylsulfonylamide (LiNHCF 3 SO 2 )
The remaining capacity of the battery Y of Comparative Example 2 in which
The remaining capacity of the batteries A to D of Examples 1 to 4 using lithium perfluoroalkylsulfonic acid imide or lithium perfluoroalkylsulfonic acid methide as the electrolyte salt was 72. 5%
7676.7%, which indicates that the charge storage characteristics are excellent.

【0031】これは、リチウムペルフルオロアルキルス
ルホン酸イミドあるいはリチウムペルフルオロアルキル
スルホン酸メチドが非水電解質に含まれることで、安定
な陰イオンに起因する良質な被膜がカーボンシート(正
極集電体)の表面に形成され、この被膜がカーボンシー
ト(正極集電体)と溶媒分子の接触を遮断して充電保存
時の非水電解質の劣化が防止されたためと考えられる。
This is because the non-aqueous electrolyte contains lithium perfluoroalkylsulfonimide or lithium perfluoroalkylsulfonate methide, so that a good quality film due to stable anions can be formed on the surface of the carbon sheet (cathode current collector). It is presumed that this coating prevented contact between the carbon sheet (cathode current collector) and the solvent molecules to prevent deterioration of the non-aqueous electrolyte during charge storage.

【0032】7.カーボンシートの物性値の検討 ついで、カーボンシートの物性値による充電保存特性の
影響について検討した。 (1)実施例5 芳香族ポリイミドフィルムをアルゴン雰囲気中で180
0℃の温度で10時間加熱する熱処理を行い、正極集電
体としてのカーボンシートを作製した。得られたカーボ
ンシートを分析したところ、(002)面の面間隔(d
002)は3.420Åであり、c軸方向の結晶子の大き
さ(Lc)は65Åであった。この正極集電体を用いて
上述と同様にして正極板11を作製し、上述と同様にし
て作製した負極板12を用いて渦巻状電極体を作製し、
実施例1の電解液aを用いて実施例5のリチウム二次電
池10を作製した。このリチウム二次電池10を電池E
とした。
7. Examination of the physical property value of the carbon sheet Next, the effect of the charge storage characteristic on the physical property value of the carbon sheet was examined. (1) Example 5 An aromatic polyimide film was coated with 180 in an argon atmosphere.
Heat treatment was performed at a temperature of 0 ° C. for 10 hours to produce a carbon sheet as a positive electrode current collector. When the obtained carbon sheet was analyzed, the spacing (d) of the (002) plane was determined.
002 ) was 3.420 °, and the crystallite size (Lc) in the c-axis direction was 65 °. Using this positive electrode current collector, a positive electrode plate 11 was produced in the same manner as described above, and a spiral electrode body was produced using the negative electrode plate 12 produced in the same manner as above,
The lithium secondary battery 10 of Example 5 was manufactured using the electrolyte solution a of Example 1. This lithium secondary battery 10 is
And

【0033】(2)実施例6 芳香族ポリイミドフィルムをアルゴン雰囲気中で200
0℃の温度で10時間加熱する熱処理を行い、正極集電
体としてのカーボンシートを作製した。得られたカーボ
ンシートを分析したところ、(002)面の面間隔(d
002)は3.370Åであり、c軸方向の結晶子の大き
さ(Lc)は250Åであった。この正極集電体を用い
て上述と同様にして正極板11を作製し、上述と同様に
して作製した負極板12を用いて渦巻状電極体を作製
し、実施例1の電解液aを用いて実施例6のリチウム二
次電池10を作製した。このリチウム二次電池10を電
池Fとした。
(2) Example 6 An aromatic polyimide film was prepared for 200 hours in an argon atmosphere.
Heat treatment was performed at a temperature of 0 ° C. for 10 hours to produce a carbon sheet as a positive electrode current collector. When the obtained carbon sheet was analyzed, the spacing (d) of the (002) plane was determined.
002 ) was 3.370 °, and the crystallite size (Lc) in the c-axis direction was 250 °. Using this positive electrode current collector, a positive electrode plate 11 was produced in the same manner as described above, and a spiral electrode body was produced using the negative electrode plate 12 produced in the same manner as described above, and the electrolyte solution a of Example 1 was used. Thus, a lithium secondary battery 10 of Example 6 was produced. This lithium secondary battery 10 was designated as Battery F.

【0034】(3)実施例7 芳香族ポリイミドフィルムをアルゴン雰囲気中で230
0℃の温度で10時間加熱する熱処理を行い、正極集電
体としてのカーボンシートを作製した。得られたカーボ
ンシートを分析したところ、(002)面の面間隔(d
002)は3.365Åであり、c軸方向の結晶子の大き
さ(Lc)は480Åであった。この正極集電体を用い
て上述と同様にして正極板11を作製し、上述と同様に
して作製した負極板12を用いて渦巻状電極体を作製
し、実施例1の電解液aを用いて実施例7のリチウム二
次電池10を作製した。このリチウム二次電池10を電
池Gとした。
(3) Example 7 An aromatic polyimide film was placed in an argon atmosphere at 230
Heat treatment was performed at a temperature of 0 ° C. for 10 hours to produce a carbon sheet as a positive electrode current collector. When the obtained carbon sheet was analyzed, the spacing (d) of the (002) plane was determined.
002 ) was 3.365 ° and the crystallite size (Lc) in the c-axis direction was 480 °. Using this positive electrode current collector, a positive electrode plate 11 was produced in the same manner as described above, and a spiral electrode body was produced using the negative electrode plate 12 produced in the same manner as described above, and the electrolyte solution a of Example 1 was used. Thus, a lithium secondary battery 10 of Example 7 was produced. This lithium secondary battery 10 was referred to as battery G.

【0035】(4)実施例8 芳香族ポリイミドフィルムをアルゴン雰囲気中で280
0℃の温度で10時間加熱する熱処理を行い、正極集電
体としてのカーボンシートを作製した。得られたカーボ
ンシートを分析したところ、(002)面の面間隔(d
002)は3.354Åであり、c軸方向の結晶子の大き
さ(Lc)は850Åであった。この正極集電体を用い
て上述と同様にして正極板11を作製し、上述と同様に
して作製した負極板12を用いて渦巻状電極体を作製
し、実施例1の電解液aを用いて実施例8のリチウム二
次電池10を作製した。このリチウム二次電池10を電
池Hとした。
(4) Example 8 An aromatic polyimide film was coated with 280 in an argon atmosphere.
Heat treatment was performed at a temperature of 0 ° C. for 10 hours to produce a carbon sheet as a positive electrode current collector. When the obtained carbon sheet was analyzed, the spacing (d) of the (002) plane was determined.
002 ) was 3.354 ° and the crystallite size (Lc) in the c-axis direction was 850 °. Using this positive electrode current collector, a positive electrode plate 11 was produced in the same manner as described above, and a spiral electrode body was produced using the negative electrode plate 12 produced in the same manner as described above, and the electrolyte solution a of Example 1 was used. Thus, a lithium secondary battery 10 of Example 8 was produced. This lithium secondary battery 10 was designated as Battery H.

【0036】(5)実施例9 芳香族ポリイミドフィルムをアルゴン雰囲気中で300
0℃の温度で10時間加熱する熱処理を行い、正極集電
体としてのカーボンシートを作製した。得られたカーボ
ンシートを分析したところ、(002)面の面間隔(d
002)は3.354Åであり、c軸方向の結晶子の大き
さ(Lc)は1200Åであった。この正極集電体を用
いて上述と同様にして正極板11を作製し、上述と同様
にして作製した負極板12を用いて渦巻状電極体を作製
し、実施例1の電解液aを用いて実施例9のリチウム二
次電池10を作製した。このリチウム二次電池10を電
池Iとした。
(5) Example 9 An aromatic polyimide film was prepared in an argon atmosphere at 300
Heat treatment was performed at a temperature of 0 ° C. for 10 hours to produce a carbon sheet as a positive electrode current collector. When the obtained carbon sheet was analyzed, the spacing (d) of the (002) plane was determined.
002 ) was 3.354 ° and the crystallite size (Lc) in the c-axis direction was 1200 °. Using this positive electrode current collector, a positive electrode plate 11 was produced in the same manner as described above, and a spiral electrode body was produced using the negative electrode plate 12 produced in the same manner as described above, and the electrolyte solution a of Example 1 was used. Thus, a lithium secondary battery 10 of Example 9 was produced. This lithium secondary battery 10 was referred to as Battery I.

【0037】ついで、上述のように作製した各電池E〜
Iを室温(25℃)にて、200mAの充電々流で4.
2Vになるまで定電流充電した後、200mAの放電々
流で2.75Vになるまで定電流放電して、初期放電容
量を求めた。ついで、これらの各電池E〜Iを200m
Aの充電々流で4.2Vになるまで定電流充電した後、
60℃の温度で20日間保存した後、200mAの放電
々流で2.75Vになるまで定電流放電して、高温保存
後の放電容量を求めた。ついで、初期放電容量に対する
高温保存後の放電容量の割合を容量残存率して算出する
と下記の表2に示すような結果となった。なお、表2に
は実施例1の電池Aの結果も示している。
Next, each of the batteries E to E produced as described above was used.
3. I was charged at room temperature (25 ° C.) with a charge current of 200 mA.
After constant-current charging until the voltage reached 2 V, constant-current discharging was performed at a discharge current of 200 mA until the voltage reached 2.75 V, and the initial discharge capacity was determined. Next, each of these batteries E to I was 200 m
After charging at a constant current until the voltage of A reaches 4.2 V,
After being stored at a temperature of 60 ° C. for 20 days, the battery was discharged at a constant current of 200 mA at a discharge current of 2.75 V until the discharge capacity after storage at a high temperature was determined. Next, when the ratio of the discharge capacity after high-temperature storage to the initial discharge capacity was calculated as the remaining capacity ratio, the results shown in Table 2 below were obtained. Table 2 also shows the results of the battery A of Example 1.

【0038】[0038]

【表2】 [Table 2]

【0039】上記表2より明らかなように、(002)
面の面間隔(d002)が3.37Åより大きく、かつc
軸方向の結晶子の大きさ(Lc)が250Å未満の実施
例5の電池Eの容量残存率は58.4%と低い値を示し
た。これに対して、(002)面の面間隔(d002)が
3.35Å以上で3.37Å以下で、かつc軸方向の結
晶子の大きさ(Lc)が250Å以上の実施例1および
実施例6〜9の電池AおよびF〜Iの容量残存率は7
1.3%〜81.0%と大きく、充電保存特性が優れて
いることが分かる。
As is clear from Table 2, (002)
The plane spacing (d 002 ) of the planes is greater than 3.37 ° and c
The remaining capacity of the battery E of Example 5 in which the crystallite size (Lc) in the axial direction was less than 250 ° showed a low value of 58.4%. On the other hand, in Examples 1 and 2, the spacing (d 002 ) of the (002) plane was 3.35 ° or more and 3.37 ° or less, and the crystallite size (Lc) in the c-axis direction was 250 ° or more. The remaining capacity of the batteries A and FI of Examples 6 to 9 was 7
It is 1.3% to 81.0%, which indicates that the battery has excellent charge storage characteristics.

【0040】これは、(002)面の面間隔(d002
が3.35Å以上で3.37Å以下で、かつc軸方向の
結晶子の大きさ(Lc)が250Å以上であるカーボン
シートは、その表面にリチウムペルフルオロアルキルス
ルホン酸イミドあるいはリチウムペルフルオロアルキル
スルホン酸メチドによる安定な陰イオンに起因する皮膜
形成時に、より緻密で薄い皮膜が形成されたためと考え
られる。このことから、(002)面の面間隔
(d002)が3.35Å以上で3.37Å以下で、かつ
c軸方向の結晶子の大きさ(Lc)が250Å以上であ
るカーボンシートを用いることが好ましということがで
きる。
This is the distance (d 002 ) between the (002) planes.
The carbon sheet whose is not less than 3.35 ° and not more than 3.37 ° and the crystallite size (Lc) in the c-axis direction is not less than 250 ° has lithium perfluoroalkylsulfonic acid imide or lithium perfluoroalkylsulfonic acid methide on its surface. It is considered that a denser and thinner film was formed at the time of film formation caused by stable anions due to the above. From this, it is necessary to use a carbon sheet in which the (002) plane spacing (d 002 ) is 3.35 ° or more and 3.37 ° or less and the crystallite size (Lc) in the c-axis direction is 250 ° or more. Can be preferred.

【0041】8.正極活物質材料の検討 ついで、正極活物質材料による充電保存特性の影響につ
いて検討した。 (1)実施例10 LiOHとMnO2とNi(OH)2とを、各元素のモル
比がLi:Mn:Ni=1:1.5:0.5となるよう
に乳鉢にて混合した後、酸素雰囲気中で750℃の温度
で20時間の加熱処理を行った。ついで、これを粉砕し
てLiMn1.5Ni0.54で表される複合酸化物を得
た。この複合酸化物を正極活物質材料として用い、実施
例1のカーボンシート(正極集電体)を用いて、上述と
同様にして正極板11を作製し、上述と同様にして作製
した負極板12を用いて渦巻状電極体を作製し、実施例
1の電解液aを用いて実施例10のリチウム二次電池1
0を作製した。このリチウム二次電池10を電池Jとし
た。
8. Investigation of positive electrode active material Next, the effect of the positive electrode active material on the charge storage characteristics was examined. (1) Example 10 After mixing LiOH, MnO 2 and Ni (OH) 2 in a mortar such that the molar ratio of each element is Li: Mn: Ni = 1: 1.5: 0.5. A heat treatment was performed at a temperature of 750 ° C. for 20 hours in an oxygen atmosphere. Next, this was pulverized to obtain a composite oxide represented by LiMn 1.5 Ni 0.5 O 4 . Using this composite oxide as a positive electrode active material, a positive electrode plate 11 was produced in the same manner as described above using the carbon sheet (positive electrode current collector) of Example 1, and a negative electrode plate 12 produced in the same manner as described above The spirally wound electrode body is manufactured by using the lithium secondary battery 1 of Example 10 using the electrolyte solution a of Example 1.
0 was produced. This lithium secondary battery 10 was designated as Battery J.

【0042】ついで、上述のように作製した電池Jを室
温(25℃)にて、200mAの充電々流で4.2Vに
なるまで定電流充電した後、200mAの放電々流で
2.75Vになるまで定電流放電して、初期放電容量を
求めた。ついで、この電池Jを200mAの充電々流で
4.2Vになるまで定電流充電した後、60℃の温度で
20日間保存した後、200mAの放電々流で2.75
Vになるまで定電流放電して、高温保存後の放電容量を
求めた。ついで、初期放電容量に対する高温保存後の放
電容量の割合を容量残存率して算出すると下記の表3に
示すような結果となった。なお、表3には実施例1の電
池Aの結果も示している。
Next, the battery J prepared as described above was charged at room temperature (25 ° C.) with a constant current of 200 mA until the voltage reached 4.2 V, and then charged at 2.75 V with a discharge current of 200 mA. The discharge was carried out at a constant current until the discharge capacity reached, and the initial discharge capacity was determined. Subsequently, the battery J was charged at a constant current of 200 mA at a charge current of 4.2 V until it reached 4.2 V, stored at a temperature of 60 ° C. for 20 days, and then charged at a current of 200 mA with a discharge current of 2.75.
The battery was discharged at a constant current until the voltage reached V, and the discharge capacity after high temperature storage was determined. Next, when the ratio of the discharge capacity after high-temperature storage to the initial discharge capacity was calculated as the remaining capacity ratio, the results shown in Table 3 below were obtained. Table 3 also shows the results of the battery A of Example 1.

【0043】[0043]

【表3】 [Table 3]

【0044】上記表3より明らかなように、正極活物質
としてLiMn1.5Ni0.54(0<X≦0.6)を用
いた電池Jの容量残存率は、正極活物質としてLiCo
2を用いた電池Aの容量残存率よりも向上し、優れた
充電保存特性を示していることが分かる。これは、組成
式がLiMn2-XNiX4で表される複合酸化物を正極
活物質として用いると、充電保存時の正極電位が高くな
り、より緻密で、良質な被膜がカーボンシート(正極集
電体)の表面に形成され、充電保存特性向上効果が顕著
に得られたためである。ここで、この複合酸化物中のN
iの組成Xを0.6以下に規定するのは、Niの酸化物
相の構造変化によりサイクル寿命特性向上効果が低下す
るのを抑制するためである。
As is clear from Table 3, the capacity remaining ratio of the battery J using LiMn 1.5 Ni 0.5 O 4 (0 <X ≦ 0.6) as the positive electrode active material was LiCo as the positive electrode active material.
It can be understood that the capacity remaining ratio of the battery A using O 2 is improved and the battery A has excellent charge storage characteristics. This is because when a composite oxide represented by a composition formula of LiMn 2-X Ni X O 4 is used as a positive electrode active material, the positive electrode potential during charge storage increases, and a denser and higher quality coating is formed on a carbon sheet ( This is because it was formed on the surface of the positive electrode current collector, and the effect of improving the charge storage characteristics was remarkably obtained. Here, N in the composite oxide
The reason why the composition X of i is defined to be 0.6 or less is to suppress a decrease in the cycle life characteristic improving effect due to a structural change of the Ni oxide phase.

【0045】以上に詳述したように、本発明において
は、特定の電解質塩(LiN(Cm2 m+1SO2)(Cn
2n+1SO2)(ただし、mおよびnは各々独立した1
〜4の整数)で表されるリチウムペルフルオロアルキル
スルホン酸イミドあるいはLiC(Cp2p+1SO2
(Cq2q+1SO2)(Cr2r+1SO2)(ただし、p、
qおよびrは各々独立した1〜4の整数))を用いると
ともに、特定の正極集電体((002)面の面間隔(d
002)が3.35Å以上で3.37Å以下であり、c軸
方向の結晶子の大きさ(Lc)が250Å以上のカーボ
ン)を用いることにより、非水電解質の溶媒の分解に起
因して生じる非水電解質の劣化が抑制され、充電保存特
性の優れた非水電解質電池が得られるようになる。
As described in detail above, in the present invention, the specific electrolyte salt (LiN (C m F 2 m + 1 SO 2 ) (C n
F 2n + 1 SO 2 ) (where m and n are each independent 1)
To 4 lithium perfluoroalkylsulfonic acid imide or LiC represented by an integer) (C p F 2p + 1 SO 2)
(C q F 2q + 1 SO 2) (C r F 2r + 1 SO 2) ( however, p,
q and r each represent an independent integer of 1 to 4)) and a specific positive electrode current collector (surface spacing (d
002 ) is 3.35 ° or more and 3.37 ° or less and carbon having a crystallite size (Lc) of 250 ° or more in the c-axis direction is used, which results from the decomposition of the solvent of the non-aqueous electrolyte. Deterioration of the non-aqueous electrolyte is suppressed, and a non-aqueous electrolyte battery having excellent charge storage characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態のリチウム二次電池の断
面を示す図である。
FIG. 1 is a diagram showing a cross section of a lithium secondary battery according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…リチウム二次電池、11…正極、12…負極、1
3…セパレータ、14…外装缶、15…正極キャップ、
16…蓋体、17弁体、18…突起部、19…絶縁パッ
キング
10: lithium secondary battery, 11: positive electrode, 12: negative electrode, 1
3 ... separator, 14 ... outer can, 15 ... positive electrode cap,
16 ... lid, 17 valve, 18 ... projection, 19 ... insulating packing

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 4G048 AA04 AC06 AD06 AE05 5H003 AA03 BB05 BB12 BD00 BD03 5H014 AA04 EE07 EE10 HH01 5H017 AA03 AS02 EE06 HH01 5H029 AJ04 AJ07 AK03 AL06 AL07 AL12 AM01 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ07 EJ04 HJ02 HJ13  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Shin Fujitani 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in SANYO Electric Co., Ltd. 4G048 AA04 AC06 AD06 AE05 5H003 AA03 BB05 BB12 BD00 BD03 5H014 AA04 EE07 EE10 HH01 5H017 AA03 AS02 EE06 HH01 5H029 AJ04 AJ07 AK03 AL06 AL07 AL12 AM01 AM02 AM03 AM04 AM05 AM07 BJ02 BJ14 DJ07 EJ04 HJ02 HJ13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体にリチウムイオンの挿入・脱
離が可能な正極活物質が塗着された正極と、リチウムイ
オンの挿入・脱離が可能な負極とを備えた非水電解質電
池であって、 前記正極集電体の構成材としてのカーボン材料と、 LiN(Cm2m+1SO2)(Cn2n+1SO2)(ただ
し、mおよびnは各々独立した1〜4の整数)で表され
るリチウムペルフルオロアルキルスルホン酸イミドある
いはLiC(Cp2p+1SO2)(Cq2q+1SO2)(C
r2r+1SO2)(ただし、p、qおよびrは各々独立し
た1〜4の整数)で表されるリチウムペルフルオロアル
キルスルホン酸メチドから選択される少なくとも1種の
電解質塩を含有した非水電解質とを備えたことを特徴と
する非水電解質電池。
1. A non-aqueous electrolyte battery comprising: a positive electrode having a positive electrode current collector coated with a positive electrode active material capable of inserting and removing lithium ions; and a negative electrode capable of inserting and removing lithium ions. And a carbon material as a constituent material of the positive electrode current collector, and LiN (C m F 2m + 1 SO 2 ) (C n F 2n + 1 SO 2 ) (where m and n are each 1 to 4 lithium perfluoroalkylsulfonic acid imide or LiC represented by an integer) (C p F 2p + 1 SO 2) (C q F 2q + 1 SO 2) (C
r F 2r + 1 SO 2 ) (where p, q and r are each independently an integer of 1 to 4), containing at least one electrolyte salt selected from lithium perfluoroalkylsulfonic acid methide. A non-aqueous electrolyte battery comprising a water electrolyte.
【請求項2】 前記カーボン材料は、(002)面の面
間隔(d002)が3.35Å以上で3.37Å以下であ
り、c軸方向の結晶子の大きさ(Lc)が250Å以上
であることを特徴とする請求項1に記載の非水電解質電
池。
2. The carbon material has a (002) plane spacing (d 002 ) of not less than 3.35 ° and not more than 3.37 °, and a crystallite size (Lc) in the c-axis direction of not less than 250 °. The non-aqueous electrolyte battery according to claim 1, wherein:
【請求項3】 前記正極活物質は組成式がLiaMO
b(但し、MはCo,Ni,Mn,Feから選択された
少なくとも1種の金属元素であり、0≦a≦2;1≦b
≦5)で表されるリチウム含有金属酸化物であることを
特徴とする請求項1または請求項2に記載の非水電解質
電池。
3. The positive electrode active material has a composition formula of Li a MO
b (where M is at least one metal element selected from Co, Ni, Mn, Fe, 0 ≦ a ≦ 2; 1 ≦ b
The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte battery is a lithium-containing metal oxide represented by ≦ 5).
【請求項4】 前記正極活物質は組成式がLiMn2-X
NiX4(但し、0<X≦0.6)で表されるリチウム
含有複合金属酸化物であることを特徴とする請求項1か
ら請求項3のいずれかに記載の非水電解質電池。
4. The positive electrode active material has a composition formula of LiMn 2-X
Ni X O 4 (where, 0 <X ≦ 0.6) a non-aqueous electrolyte battery according to any one of claims 1 to claim 3, characterized in that a lithium-containing composite metal oxide represented by.
JP22971199A 1999-08-16 1999-08-16 Non-aqueous electrolyte battery Expired - Fee Related JP3831550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22971199A JP3831550B2 (en) 1999-08-16 1999-08-16 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22971199A JP3831550B2 (en) 1999-08-16 1999-08-16 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2001052744A true JP2001052744A (en) 2001-02-23
JP3831550B2 JP3831550B2 (en) 2006-10-11

Family

ID=16896512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22971199A Expired - Fee Related JP3831550B2 (en) 1999-08-16 1999-08-16 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP3831550B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256966A (en) * 2000-03-13 2001-09-21 Hitachi Maxell Ltd Nonaqueous secondary battery and method for charging the battery
WO2002007248A1 (en) * 2000-07-17 2002-01-24 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
WO2002031905A2 (en) * 2000-10-06 2002-04-18 E.I. Du Pont De Nemours And Company High performance lithium or lithium ion cell
US6699623B1 (en) 2000-04-26 2004-03-02 E. I. Du Pont De Nemours And Company High performance lithium or lithium ion cell
JP2007207650A (en) * 2006-02-03 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, and its manufacturing method
JP2010034087A (en) * 2009-11-16 2010-02-12 Sony Corp Lithium-ion secondary battery
US8221915B2 (en) 2010-11-12 2012-07-17 Leyden Energy, Inc. High performance lithium or lithium ion cell
US9350017B2 (en) 2010-11-12 2016-05-24 A123 Systems Llc High performance lithium or lithium ion cell
US9455472B2 (en) 2011-06-07 2016-09-27 3M Innovative Properties Company Lithium-ion electrochemical cells including fluorocarbon electrolyte additives
JP2017208339A (en) * 2016-05-17 2017-11-24 財團法人工業技術研究院Industrial Technology Research Institute Metal ion battery
CN113540471A (en) * 2021-07-13 2021-10-22 四川大学 Three-dimensional porous current collector material and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458467A (en) * 1990-06-25 1992-02-25 Sanyo Electric Co Ltd Nonaqueous battery
JPH05290887A (en) * 1992-04-09 1993-11-05 Sanyo Electric Co Ltd Lithium secondary battery
JPH08335465A (en) * 1995-04-01 1996-12-17 Sony Corp Nonaqueous electrolytic battery
JP2584123B2 (en) * 1990-10-02 1997-02-19 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JPH10125352A (en) * 1996-10-15 1998-05-15 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH10247519A (en) * 1997-03-03 1998-09-14 Sanyo Electric Co Ltd Lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458467A (en) * 1990-06-25 1992-02-25 Sanyo Electric Co Ltd Nonaqueous battery
JP2584123B2 (en) * 1990-10-02 1997-02-19 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JPH05290887A (en) * 1992-04-09 1993-11-05 Sanyo Electric Co Ltd Lithium secondary battery
JPH08335465A (en) * 1995-04-01 1996-12-17 Sony Corp Nonaqueous electrolytic battery
JPH10125352A (en) * 1996-10-15 1998-05-15 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH10247519A (en) * 1997-03-03 1998-09-14 Sanyo Electric Co Ltd Lithium secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256966A (en) * 2000-03-13 2001-09-21 Hitachi Maxell Ltd Nonaqueous secondary battery and method for charging the battery
US6699623B1 (en) 2000-04-26 2004-03-02 E. I. Du Pont De Nemours And Company High performance lithium or lithium ion cell
WO2002007248A1 (en) * 2000-07-17 2002-01-24 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
US6864016B2 (en) 2000-07-17 2005-03-08 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
WO2002031905A2 (en) * 2000-10-06 2002-04-18 E.I. Du Pont De Nemours And Company High performance lithium or lithium ion cell
WO2002031905A3 (en) * 2000-10-06 2002-10-03 Du Pont High performance lithium or lithium ion cell
JP2009043737A (en) * 2000-10-06 2009-02-26 E I Du Pont De Nemours & Co High-performance lithium, or lithium ion cell
JP2007207650A (en) * 2006-02-03 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, and its manufacturing method
JP2010034087A (en) * 2009-11-16 2010-02-12 Sony Corp Lithium-ion secondary battery
US8221915B2 (en) 2010-11-12 2012-07-17 Leyden Energy, Inc. High performance lithium or lithium ion cell
US9263731B2 (en) 2010-11-12 2016-02-16 A123 Systems Llc High performance lithium or lithium ion cell
US9350017B2 (en) 2010-11-12 2016-05-24 A123 Systems Llc High performance lithium or lithium ion cell
US9455472B2 (en) 2011-06-07 2016-09-27 3M Innovative Properties Company Lithium-ion electrochemical cells including fluorocarbon electrolyte additives
JP2017208339A (en) * 2016-05-17 2017-11-24 財團法人工業技術研究院Industrial Technology Research Institute Metal ion battery
US10665905B2 (en) 2016-05-17 2020-05-26 Industrial Technology Research Institute Metal-ion battery
CN113540471A (en) * 2021-07-13 2021-10-22 四川大学 Three-dimensional porous current collector material and preparation method and application thereof

Also Published As

Publication number Publication date
JP3831550B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP4042034B2 (en) Non-aqueous electrolyte battery
JP4878683B2 (en) Lithium secondary battery
JP2004165151A (en) Nonaqueous electrolyte secondary battery and electrolyte used therein
JP5357517B2 (en) Lithium ion secondary battery
JP2002198092A (en) Phosphate additive for non-aqueous electrolyte cell capable of recharging
JPH09147913A (en) Nonaqueous electrolyte battery
JP4020571B2 (en) Lithium secondary battery
JPH08306367A (en) Nonaqueous polymer battery
JP4949017B2 (en) Lithium ion battery with improved high-temperature storage characteristics
JP3831550B2 (en) Non-aqueous electrolyte battery
JP3349399B2 (en) Lithium secondary battery
JP2001126765A (en) Nonaqueous electrolyte secondary battery
JP4082853B2 (en) Lithium secondary battery
JP2004259485A (en) Nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP4176435B2 (en) Non-aqueous electrolyte battery
JP4306891B2 (en) Non-aqueous electrolyte battery
JP4878690B2 (en) Lithium secondary battery
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP3525921B2 (en) Cathode active material for non-aqueous secondary batteries
JP3895903B2 (en) Nonaqueous electrolyte secondary battery
JP3448494B2 (en) Non-aqueous electrolyte secondary battery
JPH1140195A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees