JP2001048693A - Glassy carbon crucible having inner face being polygonal form - Google Patents

Glassy carbon crucible having inner face being polygonal form

Info

Publication number
JP2001048693A
JP2001048693A JP11223810A JP22381099A JP2001048693A JP 2001048693 A JP2001048693 A JP 2001048693A JP 11223810 A JP11223810 A JP 11223810A JP 22381099 A JP22381099 A JP 22381099A JP 2001048693 A JP2001048693 A JP 2001048693A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
resin
inner face
glassy carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11223810A
Other languages
Japanese (ja)
Inventor
Yasuo Hyakki
康夫 百鬼
Takayuki Suzuki
孝幸 鈴木
Ryuichi Ouchi
龍一 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Showa Denko Materials Co Ltd
Original Assignee
NGK Insulators Ltd
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Hitachi Chemical Co Ltd filed Critical NGK Insulators Ltd
Priority to JP11223810A priority Critical patent/JP2001048693A/en
Publication of JP2001048693A publication Critical patent/JP2001048693A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the loss in a single crystal raw material and to improve workability and yield at the time of cutting work by using a crucible made of glassy carbon and having the inner face being a polygonal form. SOLUTION: As the glassy carbon, hard and amorphous carbon, which exhibits a black glassy appearance and shows bright shell-shaped fracture, is used. The glassy carbon is generally obtained by carbonizing a cured material of a thermosetting resin. As the thermosetting resin, a phenol resin, an epoxy resin, an unsaturated polyester resin, or the like, is cited. The form of the inner face of a crucible is one of the polygonal forms. Though a triangle form, a square form, a pentagonal form, a hexagonal form, or the like,, is cited, a form close to the objective single crystal is preferably adopted. The preferable length of one side of the inner face of a part forming a cave is 1 to 300 mm from the viewpoint of processability, or the like. The preferable crucible has the inner face having the arithmetic mean roughness (Ra), based on the JIS B0601, of not more than 5 μm, which surface roughness is measured at least at four positions. Thereby, a good single crystal can be grown.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内面角形ガラス状
炭素製るつぼに関する。特に、単結晶育成用として好適
な内面角形ガラス状炭素製るつぼに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crucible made of glass with a square internal glass surface. In particular, the present invention relates to a crucible made of an internal square glassy carbon suitable for growing a single crystal.

【0002】[0002]

【従来の技術】ガラス状炭素とは、一般に熱硬化性樹脂
を炭化焼成して得られる炭素材料で、ガラス状の非常に
均質、緻密な構造を有する。この材料は、一般の炭素材
料の特徴である導電性、化学的安定性、耐熱性、高純度
等の性質に加え、構成粒子の脱落がない、不浸透性とい
う優れた特長を有する。このため、ガラス状炭素は高温
での融液の容器など、特に、単結晶育成用のるつぼに好
適であるものと考えられる。
2. Description of the Related Art Glassy carbon is a carbon material generally obtained by carbonizing and curing a thermosetting resin, and has a very homogeneous and dense glassy structure. This material has excellent characteristics such as conductivity, chemical stability, heat resistance, high purity, and the like, which are the characteristics of general carbon materials, as well as impermeability, in which constituent particles do not fall off. For this reason, glassy carbon is considered to be suitable for a container for a melt at a high temperature, especially for a crucible for growing a single crystal.

【0003】単結晶育成用に使用される容器としては、
ボート状又はるつぼ状の容器があり、このうちるつぼ状
の容器が一般に使用されている。るつぼは一般に円筒形
状のものを使用しているため、育成された単結晶の形状
は円柱状となる。ところが、単結晶の製品形状は角形状
(直方体)であることが多い。必要とする単結晶の形状
が角形状の場合、単結晶を円柱状から角形状に切り出す
(切断する)必要がある。そのため、切断しろが大き
く、無駄になる部分が多くなる。
[0003] Containers used for growing single crystals include:
There are boat-shaped or crucible-shaped containers, of which the crucible-shaped containers are generally used. Since the crucible generally has a cylindrical shape, the grown single crystal has a columnar shape. However, the product shape of the single crystal is often a square shape (a rectangular parallelepiped). When the required single crystal has a square shape, it is necessary to cut (cut) the single crystal from a cylindrical shape into a square shape. Therefore, the cutting margin is large, and the wasteful portion increases.

【0004】また、単結晶の切断は、円柱状の単結晶が
るつぼに入っている状態又はるつぼから取り外した状態
で行われる。るつぼに入っている状態で切断する場合、
単結晶がるつぼと固着しているときはよいが、固着して
いない場合又は固着が外れた場合は、るつぼの中で単結
晶が回転して、良好な切断ができなくなる。最悪の場
合、単結晶が割れてしまうことがある。一方、るつぼか
ら取り外した状態で切断する場合も、円柱状の単結晶を
固定することは難しく外れ易い。固定が外れた場合、単
結晶が割れてしまうことがある。
[0004] The cutting of a single crystal is performed in a state where a columnar single crystal is in a crucible or in a state where the single crystal is removed from the crucible. When cutting in a crucible,
It is good when the single crystal is fixed to the crucible, but when the single crystal is not fixed or detached, the single crystal rotates in the crucible and good cutting cannot be performed. In the worst case, the single crystal may be broken. On the other hand, also in the case of cutting in a state where it is detached from the crucible, it is difficult to fix the columnar single crystal, and it is easy to come off. When the fixing is released, the single crystal may be broken.

【0005】従来公知の方法で円筒形状のガラス状炭素
製るつぼを製作する場合、(1)熱硬化性樹脂硬化物を
るつぼ形状に機械加工し、これを炭化焼成する方法、
(2)熱硬化性樹脂硬化物を炭化焼成して得られたガラ
ス状炭素を素材として、ダイヤモンド工具等を用いて機
械加工を施し、るつぼ形状とする方法、(3)原料の熱
硬化性樹脂を成形型に流し込んでるつぼ形状に成形した
ものを硬化し、これを炭化焼成する方法、(4)熱圧成
形、射出成形等の方法により、熱硬化性樹脂をるつぼ形
状に成形し、これを炭化焼成する方法等が考えられる。
しかしながら、これらの方法で円筒形状のるつぼを製作
する場合、小口径、長尺形状への対応は困難であった。
When a cylindrical glassy carbon crucible is manufactured by a conventionally known method, (1) a method in which a thermosetting resin cured product is machined into a crucible shape and carbonized and fired;
(2) A method in which glass-like carbon obtained by carbonizing and firing a cured thermosetting resin is used as a material and machined using a diamond tool or the like to form a crucible, (3) Thermosetting resin as a raw material Is molded into a crucible shape by pouring into a molding die, and then cured and carbonized. (4) A thermosetting resin is formed into a crucible shape by a method such as hot press molding or injection molding. A method of carbonizing and firing may be considered.
However, when a cylindrical crucible is manufactured by these methods, it is difficult to cope with a small-diameter and long-sized crucible.

【0006】[0006]

【発明が解決しようとする課題】請求項1、2及び3記
載の発明は、単結晶原料の無駄を低減し、切断加工時の
作業性及び歩留りを向上させ、かつ良好な単結晶を育成
することが可能な内面角形ガラス状炭素製るつぼを提供
するものである。
According to the first, second and third aspects of the present invention, waste of single crystal raw material is reduced, workability and yield during cutting are improved, and a good single crystal is grown. It is an object to provide a glass crucible made of rectangular glass having an inner surface capable of being used.

【0007】[0007]

【課題を解決するための手段】本発明は、内面を角形形
状としてなる内面角形ガラス状炭素製るつぼに関する。
また、本発明は、少なくとも結晶育成部の内面が、角形
形状である前記の内面角形ガラス状炭素製るつぼに関す
る。さらに、本発明は、内面一辺の寸法が、1〜300
mmである前記の内面角形ガラス状炭素製るつぼに関す
る。
SUMMARY OF THE INVENTION The present invention relates to a crucible made of glass-like carbon having an inner surface having a rectangular inner surface.
In addition, the present invention relates to the above-mentioned crucible made of rectangular glass-like carbon having an inner surface having at least an inner surface of a crystal growing portion having a square shape. Further, according to the present invention, the size of one side of the inner surface is 1 to 300.
mm.

【0008】[0008]

【発明の実施の形態】本発明でいうガラス状炭素とは、
一般に公知のもので、外観が黒色ガラス状で、破面も光
沢のある貝殻状を示す硬質で非晶質の炭素である。ガラ
ス状炭素は、一般に、熱硬化性樹脂硬化物を炭化焼成し
て得られる。用いられる熱硬化性樹脂としては特に制限
はないが、フェノール樹脂、エポキシ樹脂、不飽和ポリ
エステル樹脂、フラン樹脂、メラミン樹脂、アルキッド
樹脂、キシレン樹脂等を挙げることができる。またこれ
らの樹脂の混合物を使用してもよく、必要に応じ前記樹
脂の硬化触媒が使用される。
BEST MODE FOR CARRYING OUT THE INVENTION The glassy carbon referred to in the present invention is
It is a generally known, hard, amorphous carbon that has a black glass appearance and a brilliant shell-like appearance. Vitreous carbon is generally obtained by carbonizing and firing a cured thermosetting resin. The thermosetting resin used is not particularly limited, and examples thereof include a phenol resin, an epoxy resin, an unsaturated polyester resin, a furan resin, a melamine resin, an alkyd resin, and a xylene resin. Further, a mixture of these resins may be used, and a curing catalyst for the resin is used as needed.

【0009】本発明の内面角形ガラス状炭素製るつぼを
製造する方法については特に制限はないが、このような
るつぼを得るには、中心部(内面)に角形形状の空洞
部、所謂角穴を形成する必要があり、この角穴を機械加
工により形成する場合、製作途中の熱硬化性樹脂硬化物
の段階で角穴の加工を行う。棒状の熱硬化性樹脂硬化物
にマシニングなどを用いて角穴を加工してもよいが、形
状が細く長い場合は、工具も長いものが必要になり、ま
た加工も難しくなる。そこで、先ず、硬化した熱硬化性
樹脂硬化物の平板に、最終的なるつぼ形状を2分割した
形状で角穴の加工を行い、次いでこれらを接着して一体
化する方法が、容易に加工できるので好ましい。以下
に、内面角形ガラス状炭素製るつぼを製造する方法につ
いて詳しく説明する。
There is no particular limitation on the method for producing the inner-surface rectangular glassy carbon crucible of the present invention, but in order to obtain such a crucible, a square-shaped hollow portion, a so-called square hole, is formed at the center (inner surface). When the square hole is formed by machining, the square hole is processed at the stage of the thermosetting resin cured product in the course of manufacturing. Although a square hole may be machined by using machining or the like on a rod-like cured thermosetting resin, if the shape is thin and long, a long tool is required and machining becomes difficult. Therefore, first, a flat plate of a cured thermosetting resin is processed into a square hole in a shape obtained by dividing the final crucible shape into two, and then these are adhered and integrated to easily integrate. It is preferred. Hereinafter, a method for producing the crucible made of the glass prismatic carbon having an inner surface square will be described in detail.

【0010】前記の熱硬化性樹脂硬化物の原料となる熱
硬化性樹脂は粉体状、液体状のいずれの熱硬化性樹脂を
使用してもよく特に制限はない。また、接着に使用され
る熱硬化性樹脂は、取扱い易さの点から液体状又はペー
スト状の熱硬化性樹脂を使用することが好ましい。粉末
状の熱硬化性樹脂を使用する場合は、有機溶媒で溶解す
るなどの手法で粉体状又はペースト状にしてから使用す
る。さらには、分割加工を行う熱硬化性樹脂と接着に使
用される熱硬化性樹脂は同一種類のものを使用すること
が、焼成時の収縮率の違いによる割れ、剥がれ防止等の
点から好ましい。これらの観点から好ましい熱硬化性樹
脂としては、フラン樹脂、レゾール型フェノール樹脂又
はこれらの混合樹脂が挙げられる。
The thermosetting resin used as a raw material of the cured thermosetting resin may be any of powdery and liquid thermosetting resins, and is not particularly limited. As the thermosetting resin used for bonding, it is preferable to use a liquid or paste thermosetting resin from the viewpoint of easy handling. When a powdery thermosetting resin is used, it is used after being made into a powdery or paste form by a method such as dissolution in an organic solvent. Further, it is preferable to use the same type of thermosetting resin to be used for bonding and the same type of thermosetting resin to be used for bonding, from the viewpoint of preventing cracking and peeling due to a difference in shrinkage during firing. From these viewpoints, preferred examples of the thermosetting resin include a furan resin, a resol-type phenol resin, and a mixed resin thereof.

【0011】前記の熱硬化性樹脂は、目的とする内面角
形ガラス状炭素製るつぼを得るために、各種の成形方法
で成形することができる。るつぼの形状としては、内面
が角形の形状をしていれば、外面(外周)の形状につい
ては特に制限はない。本発明において、角形とは三角形
状、四角形状、五角形状等、多角形状のものが挙げられ
るが、単結晶切断の際の加工しろをできるだけ少なく
し、単結晶原料の無駄を少なくする観点から、所要の単
結晶に近い形状にすることが好ましい。また、角穴の加
工性の点で四角形状から六角形状であることが好まし
い。なお角穴の角部は角でもよいが、割れ防止、欠け防
止、加工性等の観点から、0.2mm以上のR(アール)
を設けることが好ましい。
The above-mentioned thermosetting resin can be molded by various molding methods in order to obtain a desired crucible made of glass-like carbon having a rectangular inner surface. As for the shape of the crucible, the shape of the outer surface (outer periphery) is not particularly limited as long as the inner surface has a square shape. In the present invention, the square is triangular, quadrangular, pentagonal, and the like, but polygonal ones are mentioned. It is preferable to make the shape close to the required single crystal. Further, from the viewpoint of workability of the square hole, the shape is preferably from a square shape to a hexagonal shape. The corner of the square hole may be a corner, but from the viewpoint of crack prevention, chipping prevention, workability, etc., R (R) of 0.2 mm or more.
Is preferably provided.

【0012】熱硬化性樹脂の成形方法については特に制
限はないが、例えば、(1)注型により棒状に成形す
る、(2)注型により平板状に成形する、(3)遠心成
形法により一旦円筒状に成形し、これを縦方向に1箇所
切断し、それを展開して平板状にする等の方法が挙げら
れる。特に、本発明においては、内面を角形に形成する
ための加工性の点から前記(2)及び(3)のように平
板状にすることが好ましい。なお、ガラス状炭素は、炭
化焼成時に大きく収縮するため、この収縮率を見込んだ
大きさで成形体を製作することが好ましい。
The method for molding the thermosetting resin is not particularly limited. For example, (1) molding into a rod by casting, (2) molding into a flat plate by casting, and (3) centrifugal molding. For example, there is a method in which the material is once formed into a cylindrical shape, cut at one place in the vertical direction, and then unfolded into a flat plate shape. In particular, in the present invention, it is preferable that the inner surface is formed in a flat plate shape as described in (2) and (3) from the viewpoint of workability for forming a square shape. In addition, since glassy carbon greatly shrinks during carbonization and firing, it is preferable to manufacture a molded body with a size that allows for this shrinkage.

【0013】前記の方法で所要の形状に成形した後、5
0〜150℃で熱処理を行い、熱硬化性樹脂の硬化を十
分に進める。なお、ゴム状態の熱硬化性樹脂成形物の段
階で、樹脂に含まれる揮発分を抜け易くするために、予
備穴をあけたり、予備溝を形成するなどの粗加工を行
い、肉厚を薄くすることが好ましい。50〜150℃の
熱処理を終えた段階で、NCマシニングなどを用いて、
焼成での収縮率を考慮した寸法で機械加工を行い、るつ
ぼ形状又はるつぼを分割した形状の熱硬化性樹脂硬化物
を得る。この際、るつぼの開口部側に単結晶原料を入れ
るための原料溜め部を設けてもよい。
After molding into a required shape by the above method, 5
Heat treatment is performed at 0 to 150 ° C. to sufficiently advance the curing of the thermosetting resin. In addition, at the stage of the thermosetting resin molded product in the rubber state, in order to easily remove volatile components contained in the resin, rough processing such as making a preliminary hole or forming a preliminary groove is performed, and the thickness is reduced. Is preferred. At the stage where the heat treatment at 50 to 150 ° C. has been completed, using NC machining or the like,
Machine processing is performed with dimensions in consideration of the shrinkage ratio during firing to obtain a thermosetting resin cured product having a crucible shape or a divided crucible shape. At this time, a raw material reservoir for storing a single crystal raw material may be provided on the opening side of the crucible.

【0014】なお、分割しないるつぼの加工において、
空洞となる部分(角穴の部分)の寸法が小さく、かつ空
洞となる部分の深さが深い場合は、空洞となる部分の先
端まで工具(刃物)を入れることが困難となり、入った
場合でも工具(刃物)の径が細くしかも長くなるため、
工具(刃物)ぶれて振動し、健全な加工を行うことがで
きなくなる。単結晶育成用のるつぼの場合は、るつぼ内
面の面粗さが荒くなると、面の荒れた部分から結晶が成
長し、良好な単結晶ができなくなる。従って、このよう
な場合は、るつぼを分割した形状で加工することが好ま
しい。
In the processing of a crucible that is not divided,
If the size of the hollow part (square hole) is small and the depth of the hollow part is deep, it is difficult to insert a tool (knife) to the tip of the hollow part. Because the diameter of the tool (knife) is thin and long,
The tool (blade) shakes and vibrates, and it becomes impossible to perform sound machining. In the case of a crucible for growing a single crystal, if the inner surface of the crucible has a rough surface, the crystal grows from the roughened portion and a good single crystal cannot be obtained. Therefore, in such a case, it is preferable to process the crucible in a divided shape.

【0015】本発明では、熱硬化性樹脂硬化物をるつぼ
を分割した形状にしたものを予め作製し、次いで液体状
又はペースト状の熱硬化性樹脂を用いて接着することが
好ましい。接着後は接着部の樹脂の硬化を行うため、再
度50〜150℃の熱処理を行うことが好ましい。接着
部の熱処理後さらに最高温度150〜300℃で熱処理
を行い、全体の硬化を進めることが好ましい。ここで、
熱硬化性樹脂の硬化が不十分であると、焼成の際、組織
に欠陥が生じ、著しい場合には発泡、割れが発生し健全
なガラス状炭素を得ることができなくなる。
In the present invention, it is preferable to prepare a thermosetting resin cured product in which a crucible is divided in advance, and then bond it using a liquid or paste thermosetting resin. After the bonding, heat treatment at 50 to 150 ° C. is preferably performed again to cure the resin in the bonded portion. After the heat treatment of the bonded portion, it is preferable to further perform a heat treatment at a maximum temperature of 150 to 300 ° C. to promote the entire curing. here,
Insufficient curing of the thermosetting resin causes defects in the structure during firing, and if it is severe, foaming and cracking occur, making it impossible to obtain sound glassy carbon.

【0016】前述したるつぼの分割方法は特に制限され
るものではないが、るつぼの長さ方向で2〜5分割にす
るもの又は図1に示すようにるつぼの長さ方向に平行な
方向で2分割にするもの、即ちるつぼを縦割りに2分割
するものが加工の容易さ、接着の簡便さ等の点から好ま
しい。なおるつぼの長さ方向に対して、平行及び垂直な
方向の両方で分割を行ってもよい。
The method of dividing the crucible is not particularly limited, but may be divided into two to five in the longitudinal direction of the crucible or two in the direction parallel to the longitudinal direction of the crucible as shown in FIG. It is preferable to divide the crucible into two parts, that is, to divide the crucible vertically, from the viewpoint of easiness of processing and simplicity of bonding. The division may be performed in both directions parallel and perpendicular to the length direction of the crucible.

【0017】接着部の構造は特に制限されるものではな
く、例えば、平面同士を単純に突き合わせる構造、図2
に示すように嵌合部3を形成し、嵌合部3同士をはめ合
わせるというはめ合わせ構造、図3の(a)及び(b)
に示すように螺合部4を形成し、これを相対する部材に
ねじ込むというねじ込み構造等が挙げられる。なお本発
明においては、接着面積が多くとれ、接着強度及び接着
時の位置ずれ防止の点から、はめ合わせ構造とすること
が好ましい。
The structure of the bonding portion is not particularly limited. For example, a structure in which planes are simply joined to each other, FIG.
As shown in FIGS. 3A and 3B, a fitting structure in which the fitting portions 3 are formed and the fitting portions 3 are fitted to each other is shown in FIGS.
As shown in (1), a screwing structure in which the screwing portion 4 is formed and screwed into an opposing member is exemplified. Note that, in the present invention, it is preferable to adopt a fitting structure from the viewpoint of securing a large bonding area, preventing bonding strength and preventing displacement during bonding.

【0018】上記の方法により接着し、硬化して一体化
したるつぼ形状の熱硬化性樹脂硬化物を不活性雰囲気中
(通常、ヘリウム、アルゴン等の不活性ガスや窒素、水
素、ハロゲンガス等の非酸化性ガスの少なくとも一種の
気体からなる酸素を含まない雰囲気、減圧又は真空下、
黒鉛粉、炭素粉等に埋没させて大気を遮断した雰囲気な
ど)において通常約900℃以上の温度、好ましくは1
000℃以上の温度で炭化焼成する。その後、好ましく
は1300℃〜3000℃で高温熱処理を行い内面角形
ガラス状炭素製るつぼを得ることができる。
The cured thermosetting resin in the form of a crucible adhered, cured and integrated by the above method is placed in an inert atmosphere (usually, an inert gas such as helium, argon or the like, nitrogen, hydrogen, halogen gas or the like). An oxygen-free atmosphere composed of at least one non-oxidizing gas, under reduced pressure or vacuum,
Temperature of about 900 ° C. or more, preferably 1 ° C. in an atmosphere in which the atmosphere is blocked by being buried in graphite powder, carbon powder, or the like.
Carbonization and firing at a temperature of 000 ° C or higher. Thereafter, a high-temperature heat treatment is preferably performed at 1300 ° C. to 3000 ° C. to obtain a crucible made of square glass vitreous carbon on the inner surface.

【0019】炭化焼成時及び高温熱処理時において、得
られるるつぼの変形を防止するために、変形防止用の治
具を使用することが好ましい。治具の材質はそれぞれの
処理温度で変形、変質しなければ特に制限はないが、加
工性、熱膨張係数、不純物汚染防止等の点から黒鉛材、
望ましくは不純物が100ppm以下の黒鉛材を使用する
ことが好ましい。
It is preferable to use a jig for preventing deformation in order to prevent the resulting crucible from being deformed during carbonization firing and high-temperature heat treatment. The material of the jig is not particularly limited as long as it is not deformed or deteriorated at each processing temperature.However, in view of workability, coefficient of thermal expansion, prevention of impurity contamination, etc.
Desirably, a graphite material containing 100 ppm or less of impurities is used.

【0020】また、本発明になる内面角形ガラス状炭素
製るつぼは、少なくとも4箇所以上で測定したJIS
B 0601に規定される算術平均粗さ(Ra)が5μ
m以下の内面を有することが好ましく、3μm以下であ
ることがより好ましく、1μm以下であることがさらに
好ましい。5μmより粗くなると、面のあれた部分から
結晶が成長し、良好な単結晶が出来なくなる傾向があ
る。
In addition, the crucible made of an inner rectangular glassy carbon according to the present invention has a JIS measured at least at four or more locations.
The arithmetic average roughness (Ra) specified in B0601 is 5 μm.
m, preferably 3 μm or less, more preferably 1 μm or less. If it is coarser than 5 μm, the crystal grows from a portion having a rough surface, and there is a tendency that a good single crystal cannot be obtained.

【0021】前記算術平均粗さ(Ra)の定義は、JI
S B 0601に規定されている方法で求められ、ま
た算術平均粗さ(Ra)の範囲に対応するカットオフ値
及び評価長さの標準値については、JIS B 060
1の表1に示されるように、算術平均粗さ(Ra)が2
μmを超える場合は、カットオフ値2.5mm、評価長さ
12.5mmの標準値を用い、また算術平均粗さ(Ra)
が2μm以下の場合は、カットオフ値0.8mm、評価長
さ4mmの標準値を用いて測定される。
The definition of the arithmetic average roughness (Ra) is defined by JI
The cut-off value and the standard value of the evaluation length obtained by the method defined in SB0601 and corresponding to the range of the arithmetic average roughness (Ra) are described in JIS B060.
As shown in Table 1 of FIG. 1, the arithmetic average roughness (Ra) was 2
In the case of exceeding μm, a standard value of a cutoff value of 2.5 mm and an evaluation length of 12.5 mm is used, and an arithmetic average roughness (Ra)
Is 2 μm or less, it is measured using a standard value having a cutoff value of 0.8 mm and an evaluation length of 4 mm.

【0022】面粗さの測定方向は、一般にるつぼの長さ
方向で測定することが好ましい。但し、るつぼ内面の加
工方法、加工方向により面粗さに方向性がある場合は、
その方向に直交する方向で測定することが好ましい。な
お、少なくとも4箇所以上の測定点は、全面の状態を代
表できるように測定部位を決定することが好ましい。特
に、深穴を有するるつぼは穴の深さ方向に等間隔にとっ
た複数箇所を選択し、測定することが好ましい。
It is generally preferable to measure the surface roughness in the length direction of the crucible. However, if there is directionality in the surface roughness depending on the processing method and processing direction of the crucible inner surface,
It is preferable to measure in a direction orthogonal to that direction. In addition, it is preferable to determine the measurement site so that at least four or more measurement points can represent the state of the entire surface. In particular, it is preferable to select and measure a plurality of crucibles having deep holes at equal intervals in the depth direction of the holes.

【0023】本発明になる内面角形ガラス状炭素製るつ
ぼの大きさ、即ち全長、肉厚及び空洞となる部分の内面
の寸法、所謂角穴の内面の寸法等については特に制限は
ないが、例えば、全長は、熱処理時の変形防止などの点
から、1000mm以下が好ましく、800mm以下がより
好ましく、100〜500mmの範囲がさらに好ましい。
また、肉厚は、樹脂の硬化、加工性等の点から、0.2
〜10mmの範囲が好ましく、0.5〜7mmの範囲がより
好ましく、1〜4mmの範囲がさらに好ましい。さらに、
空洞となる部分の内面一辺の寸法、所謂角穴の内面一辺
の寸法は、加工性などの点から、1〜300mmの範囲が
好ましく、2〜200mmの範囲がより好ましく、3〜1
00の範囲がさらに好ましい。
There are no particular restrictions on the size of the inner-surface rectangular glassy carbon crucible according to the present invention, that is, the overall length, wall thickness, dimensions of the inner surface of the hollow portion, and so-called square hole inner surfaces. The total length is preferably 1000 mm or less, more preferably 800 mm or less, and even more preferably 100 to 500 mm, from the viewpoint of preventing deformation during heat treatment.
In addition, the thickness is set at 0.2 from the viewpoint of curing of resin, workability, and the like.
The range is preferably from 10 to 10 mm, more preferably from 0.5 to 7 mm, even more preferably from 1 to 4 mm. further,
The dimension of one side of the inner surface of the portion to be a cavity, that is, the size of one side of the inner surface of a so-called square hole, is preferably in the range of 1 to 300 mm, more preferably in the range of 2 to 200 mm, and more preferably in the range of 3 to 1
A range of 00 is more preferred.

【0024】[0024]

【実施例】以下、本発明を実施例により詳細に説明す
る。 実施例1 フラン樹脂初期縮合物(日立化成工業(株)製、商品名V
F−302)100重量部に、パラトルエンスルホン酸
30重量部及びエチレングリコール70重量部からなる
硬化剤を1.0重量部添加し、十分混合した後、該混合
物を真空脱気し、遠心成形機で40℃の温度でゴム状態
の円筒状の成形体を成形した。この円筒状の成形体を縦
方向に1箇所切断し、それを展開して長さが400mm、
幅が160mm及び厚さが8mmの平板状の成形体を得た。
この成形体が、ゴム状態のうちに幅40mmに4分割し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. Example 1 Furan resin precondensate (trade name V, manufactured by Hitachi Chemical Co., Ltd.)
F-302) 1.0 part by weight of a curing agent consisting of 30 parts by weight of paratoluenesulfonic acid and 70 parts by weight of ethylene glycol was added to 100 parts by weight, and after sufficiently mixing, the mixture was degassed under vacuum and centrifuged. A cylindrical molded body in a rubber state was molded at a temperature of 40 ° C. with a machine. This cylindrical molded body is cut at one place in the vertical direction, and it is developed to have a length of 400 mm.
A flat molded body having a width of 160 mm and a thickness of 8 mm was obtained.
This molded body was divided into four parts each having a width of 40 mm in the rubber state.

【0025】この後、これらを40℃で5日間、60℃
で10日間及び100℃で5日間熱処理して平板状の樹
脂硬化物を得た。次いで、それぞれの平板状の樹脂硬化
物を、焼成及び高温処理での収縮率を見込んだ所要の寸
法にNCマシニングを用いて加工し、図1及び図2に示
すようにるつぼを縦割り(長さ方向)に2分割した形状
の樹脂硬化物1を得た。
Thereafter, they are kept at 40 ° C. for 5 days at 60 ° C.
For 10 days and at 100 ° C. for 5 days to obtain a flat resin cured product. Next, each of the plate-shaped resin cured products is processed by NC machining to a required size in consideration of the shrinkage rate in firing and high-temperature treatment, and the crucible is vertically divided as shown in FIGS. (Resin direction) was obtained.

【0026】次に、前記の樹脂硬化物を2本使用し、こ
れを図2に示するつぼ形状になるように向き合わせて、
フラン樹脂初期縮合物(日立化成工業(株)製、商品名V
F−302)100重量部に、パラトルエンスルホン酸
30重量部及びエチレングリコール70重量部からなる
硬化剤を1.0重量部添加し、十分混合したものを接着
剤として使用し接着を行った。なお、接着部は図2に示
すように嵌合部3同士をはめ合わせた、はめ合わせ構造
とし、また角穴2の角部は完成時にR0.2mmになるよ
うに加工した。接着後、接着部の樹脂の硬化を行うため
に、40℃で2日間、60℃で3日間及び100℃で1
日熱処理を行った。さらに150℃で2日間熱処理し
て、内外面がそれぞれ四角形状の樹脂硬化物を得た。
Next, two of the above resin cured products are used, and they are opposed to each other so as to form a pot as shown in FIG.
Furan resin initial condensate (trade name V, manufactured by Hitachi Chemical Co., Ltd.)
F-302) A curing agent consisting of 30 parts by weight of paratoluenesulfonic acid and 70 parts by weight of ethylene glycol was added to 100 parts by weight, and a well-mixed mixture was used as an adhesive for bonding. As shown in FIG. 2, the bonding portion was a fitting structure in which the fitting portions 3 were fitted together, and the corner of the square hole 2 was processed to have a radius of 0.2 mm when completed. After the bonding, in order to cure the resin at the bonding portion, two days at 40 ° C., three days at 60 ° C., and one day at 100 ° C.
Daily heat treatment was performed. Further, heat treatment was performed at 150 ° C. for 2 days to obtain a cured resin having a square inner and outer surfaces.

【0027】前記で得た内外面が四角形状の樹脂硬化物
に黒鉛材で製作した変形防止の治具を設置して電気炉に
入れ、窒素気流中で1000℃まで2℃/時間の昇温速
度で昇温し、1000℃の温度で2時間保持して炭化焼
成した。この後、高純度に処理した変形防止の治具を使
用して不活性雰囲気中で2000℃まで10℃/時間の
昇温速度で昇温し、2000℃の温度で3時間保持して
高温処理を行い、外面一辺の寸法が10mm、内面一辺の
寸法が4mm、全長が250mm及び角穴の深さが247mm
の内外面が四角形状のガラス状炭素製るつぼを得た。
A jig made of graphite material for preventing deformation is installed on the resin cured product having a square inner and outer surface obtained above, placed in an electric furnace, and heated to 1000 ° C. in a nitrogen stream at a rate of 2 ° C./hour. The temperature was raised at a rate, and the temperature was kept at 1000 ° C. for 2 hours to perform carbonization and firing. Thereafter, the temperature is raised to 2000 ° C. at a rate of 10 ° C./hour in an inert atmosphere using a high-purity deformation-preventing jig, and maintained at a temperature of 2000 ° C. for 3 hours. The outer side dimension is 10mm, the inner side dimension is 4mm, the total length is 250mm and the square hole depth is 247mm
A glass-like carbon crucible having a square inner and outer surfaces was obtained.

【0028】同様の方法で合計4本の内外面が四角形状
のガラス状炭素製るつぼを製作した。得られたガラス状
炭素製るつぼの健全性を確認するために、4本全てのる
つぼにアセトンを注いで漏れを確認したところ、接着部
などからの液漏れは認められず接着部は完全に一体化し
ていることが確認された。またその中の1本のるつぼを
長さ方向に切断して内面の面状態を確認したところ、面
荒れなどは認められず均一な面であった。さらに内面の
面粗さを(株)東京精密製の表面粗さ形状測定機、商品名
サーフコム500Bを用いて長さ方向でほぼ等間隔に4
箇所測定したところ、いずれも算術平均粗さ(Ra)は
0.38μm以下であった。なおこのときのカットオフ
値は0.8mm及び評価長さは4mmとした。
In the same manner, a total of four glass-like carbon crucibles each having a square inner and outer surface were manufactured. To check the soundness of the obtained glassy carbon crucible, acetone was poured into all four crucibles and leakage was confirmed. No liquid leakage was observed from the bonded parts and the bonded parts were completely integrated. Has been confirmed. In addition, one of the crucibles was cut in the length direction and the surface condition of the inner surface was confirmed. As a result, no roughening was observed and the surface was uniform. Further, the inner surface roughness was measured at substantially equal intervals in the length direction using a surface roughness shape measuring device manufactured by Tokyo Seimitsu Co., Ltd., trade name Surfcom 500B.
As a result of the measurement at each location, the arithmetic average roughness (Ra) was 0.38 μm or less in each case. In this case, the cutoff value was 0.8 mm and the evaluation length was 4 mm.

【0029】残り3本のるつぼを使用して単結晶の育成
を行った。次いで、育成した単結晶をるつぼごと接着用
のワックスで固定し、ダイヤモンドカッターを使用し
て、3.5×3.5mm角で長さが10mmの直方体の単結
晶の切り出しを行ったところ、全て良好な単結晶であっ
た。また切り出した単結晶の重量は、育成した単結晶の
重量の77%であった。
A single crystal was grown using the remaining three crucibles. Next, the grown single crystal was fixed together with the crucible with wax for bonding, and a 3.5 × 3.5 mm square and 10 mm long rectangular solid single crystal was cut out using a diamond cutter. It was a good single crystal. The weight of the cut single crystal was 77% of the weight of the grown single crystal.

【0030】実施例2 レゾール型フェノール樹脂(日立化成工業(株)製、商品
名VP−13N)を真空脱気し、トレーに注型して、長
さが250mm、幅が120mm及び厚さが6mmの平板状の
成形体を得た。さらに、この成形体を、幅30mmに4分
割した。
Example 2 A resol type phenolic resin (trade name: VP-13N, manufactured by Hitachi Chemical Co., Ltd.) was degassed in a vacuum and poured into a tray. A 6 mm flat molded product was obtained. Further, this molded body was divided into four parts having a width of 30 mm.

【0031】この後、この平板状の成形体を黒鉛製の板
に挟んで、40℃で6日間、70℃で5日間及び100
℃で4日間熱処理して硬化を進めて平板状の樹脂硬化物
を得た。次いで、それぞれの平板状の樹脂硬化物を、焼
成及び高温処理での収縮率を見込んだ所要の寸法にNC
マシニングを用いて加工し、図1に示すようにるつぼを
縦割り(長さ方向)に2分割した形状の樹脂硬化物1を
得た。
Thereafter, the flat molded product was sandwiched between graphite plates, and was placed at 40 ° C. for 6 days, at 70 ° C. for 5 days, and at 100 ° C.
Heat treatment was performed at 4 ° C. for 4 days to proceed the curing to obtain a plate-shaped cured resin. Next, each of the plate-shaped resin cured products is set to a required size in consideration of the shrinkage rate in firing and high-temperature treatment.
As shown in FIG. 1, the resin cured product 1 was processed by machining, and the crucible was vertically divided (lengthwise) into two parts.

【0032】次に、前記の樹脂硬化物を2本使用し、こ
れをるつぼ形状になるように向き合わせて、上記のレゾ
ール型フェノール樹脂を接着剤として使用し接着を行っ
た。なお、接着部は、図2に示すように嵌合部3同士を
はめ合わせた、はめ合わせ構造とし、また角穴2の角部
は完成時にR0.2mmになるように加工した。接着後、
接着部の樹脂の硬化を行うために黒鉛製治具に挟んで、
40℃で2日間、60℃で3日間及び100℃で1日熱
処理を行った。さらに150℃で2日間熱処理して内外
面がそれぞれ四角形状の樹脂硬化物を得た。
Next, two resin cured products were used, faced each other in a crucible shape, and bonded using the resole type phenol resin as an adhesive. The bonding portion had a fitting structure in which the fitting portions 3 were fitted together as shown in FIG. 2, and the corner of the square hole 2 was processed to have a radius of 0.2 mm when completed. After bonding,
In order to cure the resin of the bonding part, sandwich it between graphite jigs,
Heat treatment was performed at 40 ° C. for 2 days, at 60 ° C. for 3 days, and at 100 ° C. for 1 day. Further, heat treatment was performed at 150 ° C. for 2 days to obtain a cured resin having a square inner and outer surfaces.

【0033】前記で得た内外面が四角形状の樹脂硬化物
に黒鉛材で製作した変形防止の治具を設置して、実施例
1と同様の条件で、炭化焼成及び高温処理を行って、外
面一辺の寸法が7mm、内面一辺の寸法が3mm、全長が1
50mm及び角穴の深さが148mmの内外面が四角形状の
ガラス状炭素製るつぼを合計4本得た。得られたガラス
状炭素製るつぼの健全性を確認するために、4本全ての
るつぼにアセトンを注いで漏れを確認したところ、接着
部等からの液漏れは認められず接着部は完全に一体化し
ていることが確認された。
A jig for preventing deformation made of a graphite material was installed on the resin cured product having a square inner and outer surface obtained above, and carbonization firing and high temperature treatment were performed under the same conditions as in Example 1. The dimension of one side of the outer surface is 7mm, the dimension of one side of the inner surface is 3mm, and the total length is 1.
A total of four glass-like carbon crucibles having a square shape with a 50 mm and a square hole with a depth of 148 mm were obtained. To check the soundness of the obtained glassy carbon crucible, acetone was poured into all four crucibles and leakage was confirmed. No liquid leakage was observed from the bonded parts and the bonded parts were completely integrated. Has been confirmed.

【0034】また、その中の1本のるつぼを長さ方向に
切断して内面の面状態を確認したところ、面あれなどは
認められず均一な面であった。さらに内面の面粗さを実
施例1で用いた測定機で長さ方向でほぼ等間隔に4箇所
測定したところ、いずれも算術平均粗さ(Ra)は0.
40μm以下であった。なおこのときのカットオフ値は
0.8mm及び評価長さは4mmとした。
When one of the crucibles was cut in the longitudinal direction and the surface condition of the inner surface was confirmed, no roughening was observed and the surface was uniform. Furthermore, the surface roughness of the inner surface was measured at substantially equal intervals at four points in the length direction using the measuring device used in Example 1, and the arithmetic average roughness (Ra) was 0.1 in each case.
It was 40 μm or less. In this case, the cutoff value was 0.8 mm and the evaluation length was 4 mm.

【0035】残り3本のるつぼを使用して単結晶の育成
を行った。次いで、育成した単結晶をるつぼごと接着用
のワックスで固定し、ダイヤモンドカッターを使用し
て、2.5×2.5mm角で長さが8mmの直方体の単結晶
の切り出しを行ったところ、全て良好な単結晶であっ
た。また切り出した単結晶の重量は、育成した単結晶の
重量の70%であった。
A single crystal was grown using the remaining three crucibles. Next, the grown single crystal was fixed together with the crucible with wax for bonding, and a rectangular single crystal of 2.5 × 2.5 mm square and 8 mm in length was cut out using a diamond cutter. It was a good single crystal. The weight of the cut single crystal was 70% of the weight of the grown single crystal.

【0036】比較例1 実施例1と同様のフラン樹脂初期縮合物及び硬化剤を実
施例1と同量配合し、十分混合した後、該混合物を真空
脱気し、パイプ状の型に注型して40℃で硬化させ、直
径が15mm及び長さが150mmの成形体を得た。次に前
記の成形体を40℃で5日間、60℃で10日間及び1
00℃で5日間熱処理して棒状の樹脂硬化物を得た。次
いで、棒状の樹脂硬化物を焼成及び高温処理での収縮率
を見込んだ所要の寸法に、旋盤を用いて加工を行った。
さらに150℃で2日間熱処理して、円筒形状の樹脂硬
化物を得た。同様の方法で合計4本の円筒形状の樹脂硬
化物を得た。
COMPARATIVE EXAMPLE 1 The same furan resin precondensate and curing agent as in Example 1 were blended in the same amounts as in Example 1, mixed well, and the mixture was vacuum degassed and cast into a pipe-shaped mold. And cured at 40 ° C. to obtain a molded body having a diameter of 15 mm and a length of 150 mm. Next, the above-mentioned molded body was heated at 40 ° C. for 5 days, at 60 ° C. for 10 days, and
Heat treatment was performed at 00 ° C. for 5 days to obtain a cured resin material in the form of a rod. Next, the bar-shaped resin cured product was processed using a lathe to a required dimension in consideration of the shrinkage rate in firing and high-temperature treatment.
Further, heat treatment was performed at 150 ° C. for 2 days to obtain a cured resin having a cylindrical shape. In the same manner, a total of four cured resin products having a cylindrical shape were obtained.

【0037】前記で得られた円筒形状の樹脂硬化物を実
施例1と同様の条件で、炭化焼成及び高温処理を行っ
て、外径が10mm、内径が5.3mm、全長が102mm及
び穴の深さが100mmの円筒形状のガラス状炭素製るつ
ぼを合計4本得た。るつぼの健全性を確認するために、
4本全てのるつぼについてアセトンを注いで漏れを確認
したところ、液漏れは認められなかった。
Under the same conditions as in Example 1, the obtained cylindrical resin cured product was subjected to carbonization and high-temperature treatment to obtain an outer diameter of 10 mm, an inner diameter of 5.3 mm, a total length of 102 mm, and A total of four cylindrical glassy carbon crucibles having a depth of 100 mm were obtained. To check the soundness of the crucible,
When acetone was poured into all four crucibles and leakage was confirmed, no liquid leakage was observed.

【0038】また、その中の1本のるつぼを長さ方向に
切断して内面の面粗さを実施例1で用いた測定機で長さ
方向でほぼ等間隔に4箇所測定したところ、開口部より
順に算術平均粗さ(Ra)は、0.38μm、0.45
μm、0.93μm及び1.98μmであった。なおこ
のときのカットオフ値は0.8mm及び評価長さは4mmと
した。
One of the crucibles was cut in the length direction, and the surface roughness of the inner surface was measured at substantially equal intervals in the length direction by the measuring machine used in Example 1. The arithmetic average roughness (Ra) was 0.38 μm, 0.45
μm, 0.93 μm and 1.98 μm. In this case, the cutoff value was 0.8 mm and the evaluation length was 4 mm.

【0039】残り3本のるつぼを使用して単結晶の育成
を行った。次いで、育成した単結晶をるつぼごと接着用
のワックスで固定し、ダイヤモンドカッターを使用し
て、3.5×3.5mm角で長さが10mmの直方体の単結
晶の切り出しを行ったところ、1本のるつぼについては
結晶がるつぼ内で回転してしまい、結晶が割れてしまっ
た。残りの2本のるつぼでは、良好な単結晶が得られた
が、2本共切り出した単結晶の重量は、育成した単結晶
の重量の56%であった。
A single crystal was grown using the remaining three crucibles. Next, the grown single crystal was fixed together with the crucible with wax for bonding, and a 3.5 × 3.5 mm square, 10 mm long rectangular single crystal was cut out using a diamond cutter. As for the crucible of the book, the crystal rotated in the crucible, and the crystal was broken. In the remaining two crucibles, a good single crystal was obtained, but the weight of the single crystal cut out of both was 56% of the weight of the grown single crystal.

【0040】比較例2 実施例2と同様のレゾール型フェノール樹脂を真空脱気
し、トレーに注型して、長さが250mm、幅が50mm及
び厚さが11mmの平板状の成形体を得た。この平板状の
成形体を黒鉛製の板に挟んだ後、40℃で6日間、70
℃で5日間及び100℃で4日間熱処理して硬化を進め
て平板状の樹脂硬化物を得た。この平板状の樹脂硬化物
を機械加工により幅12.5mmに4分割し、さらに焼成
及び高温処理での収縮率を見込んだ所要の寸法に、旋盤
を用いて円筒形状に加工を行った。次いで、150℃で
2日間熱処理して、円筒形状の樹脂硬化物を得た。同様
の方法で合計4本の円筒形状の樹脂硬化物を製作した。
Comparative Example 2 The same resol-type phenol resin as in Example 2 was degassed in vacuum and cast on a tray to obtain a flat molded body having a length of 250 mm, a width of 50 mm and a thickness of 11 mm. Was. After sandwiching the plate-shaped molded product between graphite plates, the molded product was heated at 40 ° C. for 6 days for 70 days.
Heat treatment was performed at 5 ° C. for 5 days and at 100 ° C. for 4 days to proceed with curing to obtain a plate-shaped cured resin. This flat resin cured product was divided into 4 parts by machine processing into a width of 12.5 mm, and further processed into a cylindrical shape by using a lathe to a required size in consideration of the shrinkage rate in firing and high-temperature treatment. Next, heat treatment was performed at 150 ° C. for 2 days to obtain a cured resin having a cylindrical shape. In the same manner, a total of four cylindrical resin cured products were produced.

【0041】前記で得られた円筒形状の樹脂硬化物を実
施例1と同様の条件で、炭化焼成及び高温処理を行っ
て、外径が7mm、内径が4mm、全長が150mm及び穴の
深さが148.5mmの円筒形状のガラス状炭素製るつぼ
を合計4本得た。るつぼの健全性を確認するために、4
本全てのるつぼについてアセトンを注いで漏れを確認し
たところ、液漏れは認められなかった。
Under the same conditions as in Example 1, the cylindrical resin cured product obtained above was subjected to carbonization firing and high-temperature treatment to obtain an outer diameter of 7 mm, an inner diameter of 4 mm, a total length of 150 mm, and a hole depth of Of the glass-like carbon crucible having a total of 148.5 mm. To confirm the crucible's soundness,
When acetone was poured into all the crucibles to check for leakage, no liquid leakage was observed.

【0042】また、4本のるつぼのうち2本を使用して
単結晶の育成を行った。次いで、育成した単結晶をるつ
ぼごと接着用のワックスで固定し、ダイヤモンドカッタ
ーを使用して単結晶の切り出しを行ったところ、切り出
した結晶は多結晶で、単結晶化していなかった。そこで
残りの2本のるつぼを長さ方向に切断(縦割り)したと
ころ、るつぼの先端から3分の1の箇所に、旋盤加工時
の振動によるものと思われる目視ではっきりと判別でき
るほどの面荒れ(凹凸)があった。
A single crystal was grown using two of the four crucibles. Next, the single crystal thus grown was fixed together with the crucible with wax for bonding, and a single crystal was cut out using a diamond cutter. As a result, the cut out crystal was polycrystalline and was not single-crystallized. Then, when the remaining two crucibles were cut (vertically divided) in the length direction, the one-third point from the tip of the crucible could be clearly identified by visual inspection, which is thought to be due to vibration during lathe processing. There was surface roughness (unevenness).

【0043】[0043]

【発明の効果】請求項1、2及び3における内面角形ガ
ラス状炭素製るつぼは、単結晶原料の無駄を低減し、切
断加工時の作業性及び歩留りを向上させ、かつ良好な単
結晶を育成することが可能であり、工業的に好適な内面
角形ガラス状炭素製るつぼである。
According to the first, second and third aspects of the present invention, the crucible made of glass having an inner surface rectangular shape reduces waste of single crystal raw material, improves workability and yield during cutting, and grows a good single crystal. This is a crucible made of glass-like carbon having an inner surface square shape, which is industrially suitable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に用いられる内面角形ガラス状
炭素製るつぼを縦に2分割した形状の樹脂硬化物であ
る。
FIG. 1 shows a resin cured product in which a crucible made of an internal square glassy carbon used in an embodiment of the present invention is vertically divided into two parts.

【図2】分割した形状の熱硬化性樹脂硬化物の接着部を
はめ合わせ構造とした平面図である。
FIG. 2 is a plan view showing a structure in which an adhesive portion of a thermosetting resin cured product having a divided shape is fitted.

【図3】(a)は分割した形状の熱硬化性樹脂硬化物の
接着部をねじ込み構造とした平面図及び(b)はその部
分側面図である。
FIG. 3A is a plan view in which an adhesive portion of a thermosetting resin cured product having a divided shape is screwed, and FIG. 3B is a partial side view thereof.

【符号の説明】[Explanation of symbols]

1 樹脂硬化物 2 角穴 3 嵌合部 4 螺合部 DESCRIPTION OF SYMBOLS 1 Resin hardened material 2 Square hole 3 Fitting part 4 Screw part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 孝幸 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎事業所内 (72)発明者 大内 龍一 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 Fターム(参考) 4G032 AA07 BA00 GA12 4G077 AA02 BA04 CF00 EG02 NC03 PD02  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Takayuki Suzuki, Inventor 3-3-1 Ayukawacho, Hitachi City, Ibaraki Prefecture Inside the Hitachi Chemical Co., Ltd. Yamazaki Office (72) Inventor Ryuichi Ouchi Sudacho, Mizuho-ku, Nagoya-shi, Aichi Prefecture No.2 56 Nihon Insulators Co., Ltd. F-term (reference) 4G032 AA07 BA00 GA12 4G077 AA02 BA04 CF00 EG02 NC03 PD02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内面を角形形状としてなる内面角形ガラ
ス状炭素製るつぼ。
1. A crucible made of glass-like carbon having an inner surface having a square inner surface.
【請求項2】 少なくとも結晶育成部の内面が、角形形
状である請求項1記載の内面角形ガラス状炭素製るつ
ぼ。
2. The crucible according to claim 1, wherein at least the inner surface of the crystal growing portion has a rectangular shape.
【請求項3】 内面一辺の寸法が、1〜300mmである
請求項1又は2記載の内面角形ガラス状炭素製るつぼ。
3. The crucible according to claim 1, wherein one side of the inner surface has a dimension of 1 to 300 mm.
JP11223810A 1999-08-06 1999-08-06 Glassy carbon crucible having inner face being polygonal form Pending JP2001048693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11223810A JP2001048693A (en) 1999-08-06 1999-08-06 Glassy carbon crucible having inner face being polygonal form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11223810A JP2001048693A (en) 1999-08-06 1999-08-06 Glassy carbon crucible having inner face being polygonal form

Publications (1)

Publication Number Publication Date
JP2001048693A true JP2001048693A (en) 2001-02-20

Family

ID=16804087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11223810A Pending JP2001048693A (en) 1999-08-06 1999-08-06 Glassy carbon crucible having inner face being polygonal form

Country Status (1)

Country Link
JP (1) JP2001048693A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313772A (en) * 2005-05-06 2006-11-16 Kyocera Corp Mold
JP2007126335A (en) * 2005-11-04 2007-05-24 Toyota Motor Corp Manufacturing facility for manufacturing silicon carbide single crystal by means of solution method
WO2013094318A1 (en) * 2011-12-22 2013-06-27 ジャパンスーパークォーツ株式会社 Method for evaluating silica glass crucible, method for producing silicon single crystals
JP2013133228A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for determining three-dimensional distribution of surface roughness in silica glass crucible and method for producing silicon single crystal
JP2013133227A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for determining three-dimensional distribution of raman spectrum in silica glass crucible and method for producing silicon single crystal
JP2013133229A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for producing silicon single crystal
JP2013133230A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for producing silicon single crystal
JP2013133226A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for measuring three-dimensional shape of silica glass crucible and method for producing silicon single crystal
JP2015131765A (en) * 2015-04-24 2015-07-23 株式会社Sumco Method of manufacturing silicon single crystal
JP2016155754A (en) * 2016-04-19 2016-09-01 株式会社Sumco Method of manufacturing silicon single crystal
USD771167S1 (en) 2013-08-21 2016-11-08 A.L.M.T. Corp. Crucible
JPWO2015064505A1 (en) * 2013-10-30 2017-03-09 株式会社アライドマテリアル crucible

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313772A (en) * 2005-05-06 2006-11-16 Kyocera Corp Mold
JP2007126335A (en) * 2005-11-04 2007-05-24 Toyota Motor Corp Manufacturing facility for manufacturing silicon carbide single crystal by means of solution method
TWI480505B (en) * 2011-12-22 2015-04-11 Japan Super Quartz Corp Evaluation method of silica glass crucible and manufacture method of silicon single crystal
US9809902B2 (en) 2011-12-22 2017-11-07 Sumco Corporation Method for evaluating silica glass crucible, method for producing silicon single crystals
JP2013133227A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for determining three-dimensional distribution of raman spectrum in silica glass crucible and method for producing silicon single crystal
JP2013133229A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for producing silicon single crystal
JP2013133230A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for producing silicon single crystal
JP2013133226A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for measuring three-dimensional shape of silica glass crucible and method for producing silicon single crystal
WO2013094318A1 (en) * 2011-12-22 2013-06-27 ジャパンスーパークォーツ株式会社 Method for evaluating silica glass crucible, method for producing silicon single crystals
JP2013133228A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for determining three-dimensional distribution of surface roughness in silica glass crucible and method for producing silicon single crystal
USD872872S1 (en) 2013-08-21 2020-01-14 A.L.M.T. Corp. Crucible
USD839444S1 (en) 2013-08-21 2019-01-29 A.L.M.T. Corp. Crucible
USD771167S1 (en) 2013-08-21 2016-11-08 A.L.M.T. Corp. Crucible
JPWO2015064505A1 (en) * 2013-10-30 2017-03-09 株式会社アライドマテリアル crucible
JP2015131765A (en) * 2015-04-24 2015-07-23 株式会社Sumco Method of manufacturing silicon single crystal
JP2016155754A (en) * 2016-04-19 2016-09-01 株式会社Sumco Method of manufacturing silicon single crystal

Similar Documents

Publication Publication Date Title
JP2001048693A (en) Glassy carbon crucible having inner face being polygonal form
EP0209320A1 (en) Fiber-reinforced ceramics
CN1103381A (en) Alumina composition, alumina molded article, alumina ceramics, and process for producing ceramics
US4828593A (en) Process for the production of glass
US20150132540A1 (en) Handle Substrates of Composite Substrates for Semiconductors
CN1512923A (en) Method of forming investment casting shells
KR100907316B1 (en) Method for manufacturing silicon carbide sintered compact jig and silicon carbide sintered compact jig manufactured by the method
JP2007118354A (en) Jig for supporting ingot
JP6174823B1 (en) Method for manufacturing carbon fiber reinforced silicon carbide molded body, method for manufacturing rotor shaft, and silicon impregnation device
KR100190980B1 (en) Sintered body for board manufacture, board, and manufacture thereof
CN107053486B (en) Composite ceramics turning blank and preparation method thereof
JP2000290071A (en) Production of crucible made of glassy carbon and crucible made of glassy carbon obtained by same
CA2110171C (en) Composition for high pressure casting slip, high pressure casting slip and method for preparing the composition and slip
US5209613A (en) Diamond tool and method of producing the same
KR101412519B1 (en) Method for manufacturing boron nitride sintered body by adding sintering agent
CN209754119U (en) Combined machining tool
JP2001151574A (en) Method of producing glassy carbon pipe and glassy carbon pipe produced by the method
KR19990067149A (en) Glass Carbon and Manufacturing Method
JP4471043B2 (en) Wafer support and manufacturing method thereof
JP3890915B2 (en) Free-cutting ceramics and manufacturing method thereof
JP4693932B1 (en) Cylindrical silicon crystal manufacturing method and cylindrical silicon crystal manufactured by the manufacturing method
US20020163109A1 (en) Conformal firing of ceramic radomes
WO2021132003A1 (en) Mixture member comprising sic and si, and method for manufacturing same
JP2003071555A (en) MANUFACTURING METHOD FOR Si-SiC COMPOSITE MATERIAL
JP2000007312A (en) Production of glassy carbon molded product having deep hole