JP2001151574A - Method of producing glassy carbon pipe and glassy carbon pipe produced by the method - Google Patents

Method of producing glassy carbon pipe and glassy carbon pipe produced by the method

Info

Publication number
JP2001151574A
JP2001151574A JP33597699A JP33597699A JP2001151574A JP 2001151574 A JP2001151574 A JP 2001151574A JP 33597699 A JP33597699 A JP 33597699A JP 33597699 A JP33597699 A JP 33597699A JP 2001151574 A JP2001151574 A JP 2001151574A
Authority
JP
Japan
Prior art keywords
pipe
glassy carbon
resin
shape
carbon pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33597699A
Other languages
Japanese (ja)
Inventor
Yasuo Hyakki
康夫 百鬼
Takayuki Suzuki
孝幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP33597699A priority Critical patent/JP2001151574A/en
Publication of JP2001151574A publication Critical patent/JP2001151574A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Air Transport Of Granular Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a glassy carbon pipe, which is suitable for obtaining a pipe having a small diameter and a long size or a pipe being linear, branched or bent in the whole form with a good precision, and to provide the glassy carbon pipe suitable for obtaining a pipe having a small diameter and a long size or a pipe being linear, branched or bent in the whole form with a good precision. SOLUTION: The method of producing the glassy carbon pipe is comprised of producing thermosetting resin cured materials, each having a form obtained by dividing a pipe, then bonding these materials to integrate and firing the jointed material to carbonize. The glassy carbon pipe obtained by this method is also provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気体、液体等を移
送するための配管として用いられるガラス状炭素製パイ
プの製造法及び該製造法で得られたガラス状炭素製パイ
プに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a glassy carbon pipe used as a pipe for transferring gas, liquid, and the like, and a glassy carbon pipe obtained by the method.

【0002】[0002]

【従来の技術】通常、配管に使用されるパイプには、ス
テンレス、銅等の金属系、塩化ビニル樹脂、ポリエチレ
ン樹脂、フッ素系樹脂等の樹脂系の材料が一般的に使用
されている。しかし、金属系の材料は耐熱性は比較的高
いが、耐薬品性が悪いため、移送物質に侵され金属成分
が溶け出すという金属汚染の問題がある。また樹脂系の
材料は耐薬品性には優れるが耐熱性が悪い。例えばよく
使用されるフッ素系樹脂の耐熱性はせいぜい150〜2
50℃程度である。耐熱性及び耐薬品性に優れる材料の
一つとしてガラス状炭素がある。
2. Description of the Related Art Generally, for pipes used for piping, metal-based materials such as stainless steel and copper, and resin-based materials such as vinyl chloride resin, polyethylene resin, and fluorine-based resin are generally used. However, a metal-based material has relatively high heat resistance, but has poor chemical resistance, and thus has a problem of metal contamination, in which a metal component is eluted by being eroded by a transfer substance. In addition, resin-based materials have excellent chemical resistance but poor heat resistance. For example, the heat resistance of a commonly used fluororesin is at most 150-2.
It is about 50 ° C. One of the materials having excellent heat resistance and chemical resistance is glassy carbon.

【0003】ガラス状炭素とは熱硬化性樹脂を炭化焼成
して得られる炭素材料で、ガラス状の非常に均質、緻密
な構造を有する。この材料は、耐熱性及び耐薬品性の他
に一般の炭素材料の特徴である導電性、化学的安定性、
高純度等の優れた性質、さらに構成粒子の脱落がない、
不浸透性という優れた特長を有する。このため、ガラス
状炭素は反応性の高い気体や液体を使用する場合、高温
環境で使用する場合などでの配管用パイプに好適である
と考えられる。
[0003] Glassy carbon is a carbon material obtained by carbonizing and sintering a thermosetting resin, and has a very homogeneous and dense glassy structure. This material has heat resistance and chemical resistance as well as conductivity, chemical stability, which are characteristics of general carbon materials,
Excellent properties such as high purity, no falling off of constituent particles,
It has an excellent feature of impermeability. For this reason, it is considered that glassy carbon is suitable for a pipe for piping when a highly reactive gas or liquid is used, or when used in a high temperature environment.

【0004】そこで、化学的安定性、耐薬品性、耐熱
性、高純度等の特長のあるガラス状炭素を用いてパイプ
を製作する場合、従来の公知の方法では、(1)熱硬化
性樹脂硬化物をパイプ形状に機械加工し、これを炭化焼
成する方法、(2)熱硬化性樹脂硬化物を炭化焼成して
得られたがラス状炭素を素材として、ダイヤモンド工具
などを用いて機械加工を施し、パイプ形状とする方法、
(3)原料の熱硬化性樹脂を成形型に流し込んでパイプ
形状に成形したものを硬化し、これを炭化焼成する方
法、(4)熱圧成形、射出成形等の方法により、熱硬化
性樹脂をパイプ形状に成形し、これを炭化焼成する方法
等が考えられる。しかしながら、これらの方法でガラス
状炭素のパイプを製作する場合、小口径、長尺形状への
対応は困難であり、また、分岐又は曲折しているパイプ
などの製作も困難であった。
Therefore, when a pipe is manufactured by using glassy carbon having characteristics such as chemical stability, chemical resistance, heat resistance, and high purity, a conventional known method requires (1) thermosetting resin. A method in which a cured product is machined into a pipe shape and carbonized and calcined. (2) A thermosetting resin cured product is carbonized and calcined. The lath-like carbon is used as a material and machined using a diamond tool or the like. To give a pipe shape,
(3) A method of pouring a thermosetting resin as a raw material into a mold, forming a pipe-shaped product, curing the material, and carbonizing and firing the same. (4) Thermosetting resin, injection molding, etc. Is formed into a pipe shape, and carbonized and baked. However, when a glassy carbon pipe is manufactured by these methods, it is difficult to cope with a small diameter or long shape, and it is also difficult to manufacture a branched or bent pipe.

【0005】[0005]

【発明が解決しようとする課題】請求項1記載の発明
は、小口径、長尺形状のパイプの他、全体の形状が直線
状、分岐又は曲折しているパイプを精度よく得るのに好
適なガラス状炭素製パイプの製造法を提供するものであ
る。請求項2及び3記載の発明は、小口径、長尺形状の
パイプの他、全体の形状が分岐又は曲折しているパイプ
を精度よく得るのに好適なガラス状炭素製パイプを提供
するものである。
SUMMARY OF THE INVENTION The invention according to claim 1 is suitable for accurately obtaining not only small-diameter, long-length pipes, but also pipes whose entire shape is straight, branched or bent. A method for producing a glassy carbon pipe is provided. The invention according to claims 2 and 3 provides a glassy carbon pipe suitable for accurately obtaining a pipe whose entire shape is branched or bent, in addition to a pipe having a small diameter and a long shape. is there.

【0006】[0006]

【課題を解決するための手段】本発明は、パイプを分割
した形状の熱硬化性樹脂硬化物を作製し、次いでこれら
を接着して一体化した後、炭化焼成することを特徴とす
るガラス状炭素製パイプの製造法に関する。また、本発
明は、前記の製造法で得られたガラス状炭素製パイプに
関する。さらに、本発明は、パイプ全体の形状が、直線
状、分岐又は曲折形状である前記のガラス状炭素製パイ
プに関する。
According to the present invention, there is provided a vitreous glass characterized in that a cured product of a thermosetting resin having a shape obtained by dividing a pipe is produced, and then bonded and integrated, followed by carbonization and firing. The present invention relates to a method for manufacturing a carbon pipe. Further, the present invention relates to a glassy carbon pipe obtained by the above-mentioned production method. Furthermore, the present invention relates to the above-mentioned glassy carbon pipe, wherein the whole pipe has a straight, branched or bent shape.

【0007】[0007]

【発明の実施の形態】本発明で言うガラス状炭素とは、
一般に公知のもので、その外観は黒色ガラス状で、破面
が光沢のある貝殻状を示す硬質で非晶質の炭素である。
ガラス状炭素は、一般に、熱硬化性樹脂硬化物を炭化焼
成して得られる。用いられる熱硬化性樹脂としては特に
制限はないが、フェノール樹脂、エポキシ樹脂、不飽和
ポリエステル樹脂、フラン樹脂、メラミン樹脂、アルキ
ッド樹脂、キシレン樹脂等を挙げることができる。また
これらの樹脂の混合物を使用してもよく、必要に応じ前
記樹脂の硬化触媒が使用される。
BEST MODE FOR CARRYING OUT THE INVENTION The vitreous carbon referred to in the present invention is:
It is generally known, and is a hard amorphous carbon having a black glass appearance and a brilliant shell-like fracture surface.
Vitreous carbon is generally obtained by carbonizing and firing a cured thermosetting resin. The thermosetting resin used is not particularly limited, and examples thereof include a phenol resin, an epoxy resin, an unsaturated polyester resin, a furan resin, a melamine resin, an alkyd resin, and a xylene resin. Further, a mixture of these resins may be used, and a curing catalyst for the resin is used as needed.

【0008】本発明のガラス状炭素製パイプは、先ず、
パイプを分割した形状の熱硬化性樹脂硬化物を作製し、
次いでこれらを接着、硬化して一体化した後、炭化焼成
することにより得られる。パイプを分割した形状にする
ための方法については特に制限はないが、パイプとする
ためには中心部(内面)に空洞部、所謂流路となる溝を
形成する必要があり、この溝を機械加工により形成する
場合、熱硬化性樹脂硬化物の平板に、最終的なパイプ形
状を分割した形状で溝の加工を行い、次いでこれらを接
着、硬化して一体化する方法が、加工が容易にできるの
で好ましい。以下に、ガラス状炭素製パイプを製造する
方法について詳しく説明する。
[0008] The glassy carbon pipe of the present invention comprises:
Create a thermosetting resin cured product in the shape of a divided pipe,
Next, these are adhered, cured, integrated, and then carbonized and fired. There is no particular limitation on the method of forming the pipe into a divided shape, but in order to form a pipe, it is necessary to form a hollow portion, a so-called channel, in the center (inner surface). In the case of forming by processing, a method of forming grooves in a shape obtained by dividing the final pipe shape on a flat plate of a cured thermosetting resin, and then bonding and curing them to integrate them is easy to process. It is preferable because it is possible. Hereinafter, a method for producing a glassy carbon pipe will be described in detail.

【0009】前記の熱硬化性樹脂硬化物の原料となる熱
硬化性樹脂は粉体状、液体状のいずれの熱硬化性樹脂を
使用してもよく特に制限はない。また、接着に使用され
る熱硬化性樹脂は、取扱い易さの点から液体状又はペー
スト状の熱硬化性樹脂を使用することが好ましい。粉体
状の熱硬化性樹脂を使用する場合は、有機溶媒で溶解す
るなどの手法で液体状又はペースト状にしてから使用す
る。さらには、分割加工を行う熱硬化性樹脂と接着に使
用される熱硬化性樹脂は同一種類のものを使用すること
が、焼成時の収縮率の違いによる割れ、剥がれ防止等の
点から好ましい。これらの観点から好ましい熱硬化性樹
脂としては、フラン樹脂、レゾール型フェノール樹脂又
はこれらの混合樹脂が挙げられる。
The thermosetting resin used as a raw material of the cured thermosetting resin may be a powdery or liquid thermosetting resin, and is not particularly limited. As the thermosetting resin used for bonding, it is preferable to use a liquid or paste thermosetting resin from the viewpoint of easy handling. When a powdery thermosetting resin is used, it is used after being made into a liquid or paste form by a method such as dissolution in an organic solvent. Furthermore, it is preferable to use the same type of thermosetting resin to be used for bonding and the same type of thermosetting resin to be used for bonding, from the viewpoint of preventing cracking and peeling due to a difference in shrinkage during firing. From these viewpoints, preferred examples of the thermosetting resin include a furan resin, a resol-type phenol resin, and a mixed resin thereof.

【0010】前記の熱硬化性樹脂は、目的とするガラス
状炭素製パイプを得るために、各種の成形方法で成形す
ることができる。パイプの外面(外周)及び内面の溝の
形状については特に制限はなく、円形状、略円形状、角
形状(三角形状、四角形状、五角形状等の多角形状)等
が挙げられるが、加工性、取扱い易さ等の点で四角形
状、円形状であることが好ましい。なお、溝の角度は角
(エッジ)でもよいが、割れ防止、欠け防止、加工性等
の観点から0.2mm以上のR(アール)を設けることが
好ましい。
The above-mentioned thermosetting resin can be molded by various molding methods in order to obtain a desired glassy carbon pipe. The shape of the groove on the outer surface (outer periphery) and the inner surface of the pipe is not particularly limited, and examples thereof include a circular shape, a substantially circular shape, and a square shape (a polygonal shape such as a triangular shape, a square shape, and a pentagonal shape). The shape is preferably a square or a circle in terms of ease of handling. Although the angle of the groove may be a corner (edge), it is preferable to provide R (R) of 0.2 mm or more from the viewpoints of crack prevention, chipping prevention, workability and the like.

【0011】熱硬化性樹脂の成形方法については特に制
限はないが、例えば、(1)注型により平板状に成形す
る、(2)遠心成形法により一旦筒状に成形し、これを
縦方向に1箇所切断し、それを展開して平板状にする、
(3)予め所望のパイプに近い形状に成形する等の方法
が挙げられる。なお、ガラス状炭素は、炭化焼成時に大
きく収縮するため、この収縮率を見込んだ大きさで成形
体を製作することが好ましい。
The method for molding the thermosetting resin is not particularly limited. For example, (1) molding into a flat plate by casting; To one place, and unfold it into a flat plate,
(3) A method of forming the pipe into a shape close to a desired pipe in advance is exemplified. In addition, since glassy carbon greatly shrinks during carbonization and firing, it is preferable to manufacture a molded body with a size that allows for this shrinkage.

【0012】前記の方法で平板状に成形した後、50〜
150℃で熱処理を行い、熱硬化性樹脂の硬化を十分に
進める。なお、ゴム状態の熱硬化性樹脂成形物の段階で
樹脂に含まれる揮発分を抜け易くするために、予備溝な
どの粗加工を行い、肉厚を薄くすることが好ましい。5
0〜150℃の熱処理を終えた段階で、NCマシニング
などを用いて、焼成での収縮率を考慮した寸法で機械加
工を行い、パイプを分割した形状の熱硬化性樹脂硬化物
を得る。
After being formed into a flat plate by the above method, 50 to 50
Heat treatment is performed at 150 ° C. to sufficiently cure the thermosetting resin. In order to easily remove volatile components contained in the resin at the stage of the thermosetting resin molded product in the rubber state, it is preferable to perform rough processing such as a preliminary groove to reduce the thickness. 5
At the stage where the heat treatment at 0 to 150 ° C. has been completed, machining is performed using NC machining or the like in a size in consideration of the shrinkage ratio during firing to obtain a thermosetting resin cured product having a divided pipe shape.

【0013】本発明では、熱硬化性樹脂硬化物をパイプ
を分割した形状にしたものを予め作製し、次いで液体状
又はペースト状の熱硬化性樹脂を用いて接着することが
好ましい。接着後は接着部の樹脂の硬化を行うため、再
度50〜150℃の熱処理を行うことが好ましい。接着
部の熱処理後さらに最高温度150〜300℃で熱処理
を行い、全体の硬化を進めることが好ましい。ここで、
熱硬化性樹脂の硬化が不十分であると、焼成の際、組織
に欠陥が生じ、著しい場合には発泡、割れが発生し健全
なガラス状炭素を得ることができなくなる。
In the present invention, it is preferable that a cured product of a thermosetting resin is formed in a shape obtained by dividing a pipe in advance, and then bonded using a liquid or paste-like thermosetting resin. After the bonding, heat treatment at 50 to 150 ° C. is preferably performed again to cure the resin in the bonded portion. After the heat treatment of the bonded portion, it is preferable to further perform a heat treatment at a maximum temperature of 150 to 300 ° C. to promote the entire curing. here,
Insufficient curing of the thermosetting resin causes defects in the structure during firing, and if it is severe, foaming and cracking occur, making it impossible to obtain sound glassy carbon.

【0014】前述したパイプの分割方法は特に制限され
るものではないが、パイプの長さ方向で2〜5分割にす
るもの又は図1、図2及び図3に示すようにパイプの長
さ方向に平行な方向で2分割にするもの、即ちパイプを
縦割りに2分割するものが加工の容易さ、接着の簡便さ
等の点から好ましい。なおパイプの長さ方向に対して、
平行及び垂直な方向の両方で分割を行ってもよい。
The method of dividing the pipe is not particularly limited, but may be divided into two to five in the longitudinal direction of the pipe, or as shown in FIGS. 1, 2 and 3, in the longitudinal direction of the pipe. It is preferable to divide the pipe into two parts in a direction parallel to the direction, that is, to divide the pipe into two parts vertically, from the viewpoint of easiness of processing, simplicity of bonding and the like. In addition, with respect to the length direction of the pipe,
The division may be performed in both the parallel and vertical directions.

【0015】接着部の構造は特に制限されるものではな
く、例えば、平面同士を単純に突き合わせる構造、図2
に示すように嵌合部3を形成し、嵌合部3同士をはめ合
わせるというはめ合わせ構造等が挙げられるが、本発明
においては、接着面積が多くとれ、接着強度及び接着時
の位置ずれ防止の点から、はめ合わせ構造とすることが
好ましい。
The structure of the bonding portion is not particularly limited. For example, a structure in which planes are simply joined to each other, FIG.
As shown in (1), there is a fitting structure in which the fitting portions 3 are formed and the fitting portions 3 are fitted to each other. However, in the present invention, a large bonding area can be obtained, the bonding strength and the displacement prevention at the time of bonding can be achieved. In view of the above, it is preferable to adopt a fitting structure.

【0016】上記の方法により接着し、硬化して一体化
したパイプ形状の熱硬化性樹脂硬化物を不活性雰囲気中
(通常、ヘリウム、アルゴン等の不活性ガスや窒素、水
素、ハロゲンガス等の非酸化性ガスの少なくとも一種の
気体からなる酸素を含まない雰囲気、減圧又は真空下、
黒鉛粉、炭素粉等に埋没させて大気を遮断した雰囲気な
ど)において通常約900℃以上の温度、好ましくは1
000℃以上の温度で炭化焼成する。その後、好ましく
は1300℃〜3000℃で高温熱処理を行いガラス状
炭素製パイプを得ることができる。
The pipe-shaped thermosetting resin which is bonded, cured and integrated by the above-mentioned method is placed in an inert atmosphere (usually, an inert gas such as helium, argon or the like, nitrogen, hydrogen, halogen gas or the like). An oxygen-free atmosphere composed of at least one non-oxidizing gas, under reduced pressure or vacuum,
Temperature of about 900 ° C. or more, preferably 1 ° C. in an atmosphere in which the atmosphere is blocked by being buried in graphite powder, carbon powder, or the like.
Carbonization and firing at a temperature of 000 ° C or higher. Thereafter, high-temperature heat treatment is preferably performed at 1300 ° C. to 3000 ° C. to obtain a glassy carbon pipe.

【0017】炭化焼成時及び高温熱処理時において、得
られるパイプの変形を防止するために、変形防止用の治
具を使用することが好ましい。治具の材質はそれぞれの
処理温度で変形、変質しなければ特に制限はないが、加
工性、熱膨張係数、金属不純物汚染防止等の点から黒鉛
材、望ましくは灰分量が20ppm以下の黒鉛材を使用す
ることが好ましい。
It is preferable to use a jig for preventing deformation during carbonization firing and high-temperature heat treatment in order to prevent deformation of the obtained pipe. The jig material is not particularly limited as long as it is not deformed or deteriorated at each processing temperature, but graphite material, preferably graphite material having an ash content of 20 ppm or less is preferable in terms of workability, thermal expansion coefficient, prevention of metal impurity contamination, and the like. It is preferred to use

【0018】本発明になるガラス状炭素製パイプの全体
形状は、直線状又は途中から分岐又は曲折した形状でも
よく特に制限はない。前記の曲折とは、直角に折れ曲が
った状態及び蛇行して折れ曲がった状態の両方を意味す
るものである。
The overall shape of the glassy carbon pipe according to the present invention may be a straight shape or a shape branched or bent from the middle, and is not particularly limited. The term "bend" means both a state of being bent at a right angle and a state of being bent in a meandering manner.

【0019】また、本発明になるガラス状炭素製パイプ
の大きさ、即ち全長、肉厚及び空洞となる溝の部分の寸
法、所謂内面の寸法等については特に制限はないが、例
えば、全長は、熱処理時の変形防止などの点から、10
00mm以下が好ましく、800mm以下がより好ましく、
100〜500mmの範囲がさらに好ましい。肉厚は、樹
脂の硬化、加工性等の点から、0.5〜10mmの範囲が
好ましく、0.8〜7mmの範囲がより好ましく、1〜4
mmの範囲がさらに好ましい。空洞となる溝の部分の内面
一辺の寸法又は直径は、加工性などの点から、1〜30
mmの範囲が好ましく、2〜20mmの範囲がより好まし
く、3〜10の範囲がさらに好ましい。
The size of the glassy carbon pipe according to the present invention, that is, the total length, the wall thickness, the size of the groove which becomes a cavity, the size of the so-called inner surface, and the like are not particularly limited. From the viewpoint of preventing deformation during heat treatment, etc.
00 mm or less is preferable, and 800 mm or less is more preferable,
The range of 100 to 500 mm is more preferable. The thickness is preferably in the range of 0.5 to 10 mm, more preferably in the range of 0.8 to 7 mm, from the viewpoint of curing of the resin, workability, and the like.
The range of mm is more preferred. The dimension or diameter of one side of the inner surface of the groove portion to be a cavity is 1 to 30 from the viewpoint of workability and the like.
The range of mm is preferable, the range of 2 to 20 mm is more preferable, and the range of 3 to 10 is further preferable.

【0020】[0020]

【実施例】以下、本発明を実施例により詳細に説明す
る。 実施例1 フラン樹脂初期縮合物(日立化成工業(株)製、商品名V
F−302)100重量部に、パラトルエンスルホン酸
30重量部及びエチレングリコール70重量部からなる
硬化剤を1.0重量部添加し、十分混合した後、該混合
物を真空脱気し、遠心成形機で40℃の温度でゴム状態
の円筒状の成形体を成形した。この円筒状の成形体を縦
方向に1箇所切断し、それを展開して長さが400mm、
幅が160mm及び厚さが8mmの平板状の成形体を得た。
この成形体が、ゴム状態のうちに幅40mmに4分割し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. Example 1 Furan resin precondensate (trade name V, manufactured by Hitachi Chemical Co., Ltd.)
F-302) 1.0 part by weight of a curing agent consisting of 30 parts by weight of paratoluenesulfonic acid and 70 parts by weight of ethylene glycol was added to 100 parts by weight, and after sufficiently mixing, the mixture was degassed under vacuum and centrifuged. A cylindrical molded body in a rubber state was molded at a temperature of 40 ° C. with a machine. This cylindrical molded body is cut at one place in the vertical direction, and it is developed to have a length of 400 mm.
A flat molded body having a width of 160 mm and a thickness of 8 mm was obtained.
This molded body was divided into four parts each having a width of 40 mm in the rubber state.

【0021】この後、これらを40℃で5日間、60℃
で10日間及び100℃で5日間熱処理して平板状の樹
脂硬化物を得た。次いで、それぞれの平板状の樹脂硬化
物を、焼成及び高温処理での収縮率を見込んだ所要の寸
法にNCマシニングを用いて加工し、図1及び図2に示
すようにパイプを縦割り(長さ方向)に2分割した形状
の樹脂硬化物1を得た。
Thereafter, they are kept at 40 ° C. for 5 days at 60 ° C.
For 10 days and at 100 ° C. for 5 days to obtain a flat resin cured product. Next, each flat resin cured product is processed by NC machining to a required size in consideration of the shrinkage rate in firing and high-temperature treatment, and the pipe is vertically divided as shown in FIG. 1 and FIG. (Resin direction) was obtained.

【0022】次に、前記の樹脂硬化物を2つ使用し、こ
れを図2に示すパイプ形状になるように向き合わせて、
フラン樹脂初期縮合物(日立化成工業(株)製、商品名V
F−302)100重量部に、パラトルエンスルホン酸
30重量部及びエチレングリコール70重量部からなる
硬化剤を1.0重量部添加し、十分混合したものを接着
剤として使用し接着を行った。なお、接着部は図2に示
すように嵌合部3同士をはめ合わせた、はめ合わせ構造
とし、また溝2の角部は完成時にR0.2mmになるよう
に加工した。接着後、接着部の樹脂の硬化を行うため
に、40℃で2日間、60℃で3日間及び100℃で1
日熱処理を行った。さらに150℃で2日間熱処理し
て、内外面がそれぞれ四角形状の樹脂硬化物を得た。
Next, two of the above resin cured products are used, and they are opposed to each other in a pipe shape shown in FIG.
Furan resin initial condensate (trade name V, manufactured by Hitachi Chemical Co., Ltd.)
F-302) To 100 parts by weight, 1.0 part by weight of a curing agent consisting of 30 parts by weight of paratoluenesulfonic acid and 70 parts by weight of ethylene glycol was added, and a well-mixed mixture was used as an adhesive to bond. As shown in FIG. 2, the bonding portion was a fitting structure in which the fitting portions 3 were fitted together, and the corners of the groove 2 were processed to have a radius of 0.2 mm when completed. After the bonding, in order to cure the resin at the bonding portion, two days at 40 ° C., three days at 60 ° C., and one day at 100 ° C.
Daily heat treatment was performed. Further, heat treatment was performed at 150 ° C. for 2 days to obtain a cured resin having a square inner and outer surfaces.

【0023】前記で得た内外面が四角形状の樹脂硬化物
に黒鉛材で製作した変形防止の治具を設置して電気炉に
入れ、窒素気流中で1000℃まで2℃/時間の昇温速
度で昇温し、1000℃の温度で2時間保持して炭化焼
成した。この後、灰分量が20ppm以下の高純度に処理
した黒鉛製の変形防止の治具を使用して不活性雰囲気中
で2000℃まで10℃/時間の昇温速度で昇温し、2
000℃の温度で3時間保持して高温処理を行い、外面
一辺の寸法が10mm、内面一辺の寸法が4mm、及び全長
が250mmの内外面が四角形状のガラス状炭素製パイプ
を得た。
A jig made of graphite material for preventing deformation is installed on the resin cured product having a square inner and outer surface obtained above, placed in an electric furnace, and heated to 1000 ° C. in a nitrogen stream at a rate of 2 ° C./hour. The temperature was raised at a rate, and the temperature was kept at 1000 ° C. for 2 hours to perform carbonization and firing. Thereafter, the temperature was raised to 2000 ° C. at a rate of 10 ° C./hour in an inert atmosphere using a graphite deformation preventing jig having an ash content of 20 ppm or less.
A high-temperature treatment was carried out by holding at a temperature of 000 ° C. for 3 hours to obtain a glass-like carbon pipe having a square shape on the inner and outer surfaces with a dimension of one side of the outer surface of 10 mm, a size of one side of the inner surface of 4 mm, and a total length of 250 mm.

【0024】同様の方法で合計4本の内外面が四角形状
のガラス状炭素製パイプを製作した。パイプの健全性を
確認するために、4本全てのパイプの片側を塞ぎ、アセ
トンを注いで漏れを確認したところ、接着部などからの
液漏れは認められなかった。またヘリウムガスを使用し
て0.2MPa(2kgf/cm2)の圧力で耐圧試験を行った
が、漏れは認められなかった。さらにその中の1本を切
断して接着部を確認したところ、接着部は完全に一体化
していることが確認された。
In the same manner, a total of four glass-like carbon pipes having a square inner and outer surface were manufactured. In order to check the soundness of the pipes, one side of all four pipes was plugged, and acetone was poured to check for leaks. No liquid leak was found from the adhesive portion or the like. A pressure resistance test was performed at a pressure of 0.2 MPa (2 kgf / cm 2 ) using helium gas, and no leakage was observed. Further, when one of them was cut to check the bonded portion, it was confirmed that the bonded portion was completely integrated.

【0025】実施例2 実施例1で得た樹脂混合物を真空脱気し、トレーに注型
して、長さが350mm、幅が350mm及び厚さが6mmの
平板状の成形体を得た。この後、この平板状の成形体を
黒鉛製の板に挟んで、40℃で6日間、70℃で5日間
及び100℃で4日間熱処理して硬化を進めて平板状の
樹脂硬化物を得た。次いで、焼成及び高温処理での収縮
率を見込んだ所要の寸法にNCマシニングを用いて加工
し、途中で分岐した十字型形状のパイプを縦割りに2分
割にした形状の樹脂硬化物を得た。
Example 2 The resin mixture obtained in Example 1 was degassed under vacuum and cast on a tray to obtain a flat molded body having a length of 350 mm, a width of 350 mm and a thickness of 6 mm. Thereafter, the plate-shaped molded body is sandwiched between graphite plates, and heat-treated at 40 ° C. for 6 days, 70 ° C. for 5 days, and 100 ° C. for 4 days, and curing proceeds to obtain a plate-shaped resin cured product. Was. Next, processing was performed using NC machining to a required size in consideration of the shrinkage rate in firing and high-temperature treatment, and a resin cured product in which a cross-shaped pipe branched in the middle was vertically divided into two parts was obtained. .

【0026】次に、前記の樹脂硬化物を2つ使用し、こ
れをパイプ形状になるように向き合わせて、実施例1で
得た接着剤を使用し接着を行った。なお、接着部は、実
施例1と同様に嵌合部同士をはめ合わせた、はめ合わせ
構造とし、また溝の角部は完成時にR0.3mmになるよ
うに加工した。接着後、接着部の樹脂の硬化を行うため
に黒鉛製治具に挟んで、40℃で2日間、60℃で3日
間及び100℃で1日熱処理を行った。さらに150℃
で2日間熱処理して内外面がそれぞれ四角形状で、全体
が途中で分岐した十字型形状の樹脂硬化物を得た。
Next, two of the above-mentioned cured resin materials were used, and they were opposed to each other so as to form a pipe, and were bonded using the adhesive obtained in Example 1. The bonding portion was a fitting structure in which the fitting portions were fitted together in the same manner as in Example 1, and the corners of the groove were processed to have a radius of 0.3 mm when completed. After the bonding, in order to harden the resin at the bonded portion, a heat treatment was performed at 40 ° C. for 2 days, at 60 ° C. for 3 days, and at 100 ° C. for 1 day, sandwiched between graphite jigs. 150 ° C
And a heat treatment was performed for 2 days to obtain a cross-shaped resin cured product in which the inner and outer surfaces were each square and the whole branched in the middle.

【0027】前記で得た内外面が四角形状で、全体が途
中で分岐した十字型形状の樹脂硬化物に十字型に溝を切
った黒鉛製の変形防止の治具を設置して電気炉に入れ、
実施例1と同様の工程を経て、外面一辺の寸法が8mm、
内面一辺の寸法が4mm及び十字形の中心から分岐した各
パイプの先端までが120mmの全体形状が十字型形状の
ガラス状炭素製パイプを製作した。
The inner and outer surfaces obtained above are square, and a cross-shaped groove-shaped graphite-made deformation-preventing jig is installed on the cross-shaped resin cured product which is branched in the middle, and the electric furnace is installed in the electric furnace. Get in,
Through the same steps as in Example 1, the dimension of one side of the outer surface is 8 mm,
A glass-like carbon pipe having an overall shape of a cruciform shape with an inner side dimension of 4 mm and a tip of each pipe branched from the center of the cruciform shape of 120 mm was manufactured.

【0028】次いで、パイプの健全性を確認するため
に、パイプの開口部の3箇所を塞ぎ、アセトンを注いで
漏れを確認したところ、接着部等からの液漏れは認めら
れなかった。さらに実施例1と同様の方法で耐圧試験を
行ったが、漏れは認められなかった。
Next, in order to confirm the soundness of the pipe, three places at the opening of the pipe were closed, and acetone was poured to check for leakage. No liquid leakage from the adhesive portion or the like was observed. Further, a pressure resistance test was performed in the same manner as in Example 1, but no leakage was observed.

【0029】実施例3 レゾール型フェノール樹脂(日立化成工業(株)製、商品
名VP−13N)を真空脱気し、トレーに注型して、長
さが200mm、幅が200mm及び厚さが6mmの平板状の
成形体を得た。この後、この平板状の成形体を黒鉛製の
板に挟んで、40℃で5日間、70℃で4日間及び10
0℃で3日間熱処理して硬化を進めて平板状の樹脂硬化
物を得た。次いで、焼成及び高温処理での収縮率を見込
んだ所要の寸法にNCマシニングを用いて加工し、途中
で曲折したL字型形状のパイプを縦割りに2分割にした
形状の樹脂硬化物を得た。
Example 3 A resole type phenolic resin (trade name: VP-13N, manufactured by Hitachi Chemical Co., Ltd.) was degassed under vacuum, cast into a tray, and had a length of 200 mm, a width of 200 mm and a thickness of 200 mm. A 6 mm flat molded product was obtained. Thereafter, the flat molded body was sandwiched between graphite plates, and was placed at 40 ° C. for 5 days, at 70 ° C. for 4 days, and at 10 ° C.
Heat treatment was carried out at 0 ° C. for 3 days to proceed with curing to obtain a flat resin cured product. Next, processing is performed using NC machining to a required size in consideration of the shrinkage rate in firing and high-temperature treatment, and a cured resin product is obtained in which an L-shaped pipe bent in the middle is vertically divided into two parts. Was.

【0030】次に、前記の樹脂硬化物を2本使用し、こ
れをパイプ形状になるように向き合わせて、上記のレゾ
ール型フェノール樹脂を接着剤として使用し接着を行っ
た。なお、接着部は、実施例1と同様に嵌合部同士をは
め合わせた、はめ合わせ構造とし、また溝の角部は完成
時にR0.3mmになるように加工した。接着後、接着部
の樹脂の硬化を行うために黒鉛製治具に挟んで、40℃
で2日間、60℃で3日間及び100℃で1日熱処理を
行った。さらに150℃で2日間熱処理して内外面がそ
れぞれ四角形状で、全体がL字型形状の樹脂硬化物を得
た。
Next, two of the above resin cured products were used, faced in a pipe shape, and bonded using the above-mentioned resole type phenol resin as an adhesive. The bonding portion was a fitting structure in which the fitting portions were fitted together in the same manner as in Example 1, and the corners of the groove were processed to have a radius of 0.3 mm when completed. After bonding, sandwiched between graphite jigs to cure the resin at the bonded part,
At 60 ° C. for 3 days and at 100 ° C. for 1 day. Further, a heat treatment was performed at 150 ° C. for 2 days to obtain a resin cured product in which the inner and outer surfaces were each square and the whole was L-shaped.

【0031】前記で得た内外面が四角形状で、全体がL
字型形状の樹脂硬化物にL字型に溝を切った黒鉛材製の
変形防止の治具を設置して電気炉に入れ、実施例1と同
様の工程を経て、外面一辺の寸法が8mm、内面一辺の寸
法が4mm及び90度に曲折した部分から各パイプの先端
までが120mmの全体形状がL字型形状のガラス状炭素
製パイプを製作した。
The inner and outer surfaces obtained above are square and the whole is L
An L-shaped grooved graphite-made jig for preventing deformation is installed in the resin-cured resin-shaped product, placed in an electric furnace, and subjected to the same process as in Example 1 so that the dimension of one side of the outer surface is 8 mm. An L-shaped glassy carbon pipe having an L-shaped overall shape was manufactured, in which the length from one side of the inner surface was 4 mm and bent from 90 degrees to the tip of each pipe was 120 mm.

【0032】次いで、パイプの健全性を確認するため
に、パイプの開口部の片側を塞ぎ、アセトンを注いで漏
れを確認したところ、接着部等からの液漏れは認められ
なかった。さらに実施例1と同様の方法で耐圧試験を行
ったが、漏れは認められなかった。
Next, in order to confirm the soundness of the pipe, one side of the opening of the pipe was closed, and acetone was poured to check the leakage. No leakage of liquid from the adhesive portion or the like was observed. Further, a pressure resistance test was performed in the same manner as in Example 1, but no leakage was observed.

【0033】比較例1 実施例1で得た樹脂混合物を真空脱気し、トレーに注型
して、長さが350mm、幅が350mm及び厚さが11mm
の成形体を得た。この成形体を黒鉛製の板に挟んだ後、
40℃で6日間、70℃で5日間、100℃で4日間熱
処理して硬化を進めて板状の樹脂硬化物を得た。この樹
脂硬化物を機械加工により円柱状に加工し、さらに旋盤
を用いて径の中心に丸穴を加工しようとしたが、穴の径
が小さくしかも穴が深いため、細く長い工具が振動して
しまい加工が不可能となり製作を中断した。
COMPARATIVE EXAMPLE 1 The resin mixture obtained in Example 1 was evacuated under vacuum, cast into a tray, and was 350 mm long, 350 mm wide and 11 mm thick.
Was obtained. After sandwiching this compact between graphite plates,
Heat treatment was performed at 40 ° C. for 6 days, at 70 ° C. for 5 days, and at 100 ° C. for 4 days to proceed with curing to obtain a plate-shaped cured resin. This resin cured product was machined into a cylindrical shape, and a lathe was used to machine a round hole at the center of the diameter. However, the hole diameter was small and the hole was deep, so a thin and long tool vibrated. It was impossible to process it and production was suspended.

【0034】[0034]

【発明の効果】請求項1における方法により得られるガ
ラス状炭素製パイプは、小口径、長尺形状のパイプの
他、全体の形状が、直線状、分岐又は曲折しているガラ
ス状炭素製パイプを簡易に精度よく得るのに好適であ
る。請求項2及び3におけるガラス状炭素製パイプは、
小口径、長尺形状のパイプの他、全体の形状を、直線
状、分岐又は曲折形状が可能で工業的に極めて好適であ
る。
The pipe made of glassy carbon obtained by the method of claim 1 is a pipe made of glassy carbon whose entire shape is straight, branched or bent in addition to a small-diameter and long pipe. Is easily and accurately obtained. The pipe made of glassy carbon according to claims 2 and 3,
In addition to small diameter and long pipes, the whole shape can be straight, branched or bent, and is industrially extremely suitable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に用いられるガラス状炭素製
パイプの縦に2分割した形状の樹脂硬化物である。
FIG. 1 is a longitudinally divided resin cured product of a glassy carbon pipe used in one embodiment of the present invention.

【図2】分割した形状の熱硬化性樹脂硬化物の接着部を
はめ合わせ構造とした平面図である。
FIG. 2 is a plan view showing a structure in which an adhesive portion of a thermosetting resin cured product having a divided shape is fitted.

【図3】本発明の他の一実施例に用いられるガラス状炭
素製パイプを縦に2分割した形状の樹脂硬化物である。
FIG. 3 shows a resin cured product obtained by vertically dividing a glassy carbon pipe used in another embodiment of the present invention into two parts.

【符号の説明】[Explanation of symbols]

1 樹脂硬化物 2 溝 3 嵌合部 DESCRIPTION OF SYMBOLS 1 Resin hardened material 2 Groove 3 Fitting part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 パイプを分割した形状の熱硬化性樹脂硬
化物を作製し、次いでこれらを接着して一体化した後、
炭化焼成することを特徴とするガラス状炭素製パイプの
製造法。
1. A thermosetting resin cured product having a shape obtained by dividing a pipe is produced, and then these are adhered and integrated.
A method for producing a glassy carbon pipe, which comprises carbonizing and firing.
【請求項2】 請求項1記載の製造法で得られたガラス
状炭素製パイプ。
2. A glassy carbon pipe obtained by the method according to claim 1.
【請求項3】 パイプ全体の形状が、直線状、分岐又は
曲折した形状である請求項2記載のガラス状炭素製パイ
プ。
3. The glassy carbon pipe according to claim 2, wherein the entire shape of the pipe is a straight, branched or bent shape.
JP33597699A 1999-11-26 1999-11-26 Method of producing glassy carbon pipe and glassy carbon pipe produced by the method Pending JP2001151574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33597699A JP2001151574A (en) 1999-11-26 1999-11-26 Method of producing glassy carbon pipe and glassy carbon pipe produced by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33597699A JP2001151574A (en) 1999-11-26 1999-11-26 Method of producing glassy carbon pipe and glassy carbon pipe produced by the method

Publications (1)

Publication Number Publication Date
JP2001151574A true JP2001151574A (en) 2001-06-05

Family

ID=18294420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33597699A Pending JP2001151574A (en) 1999-11-26 1999-11-26 Method of producing glassy carbon pipe and glassy carbon pipe produced by the method

Country Status (1)

Country Link
JP (1) JP2001151574A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311863B2 (en) 2003-05-28 2007-12-25 Kobe Steel, Ltd. Method for producing glass-like carbon pipe, and glass-like carbon pipe produced by such method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311863B2 (en) 2003-05-28 2007-12-25 Kobe Steel, Ltd. Method for producing glass-like carbon pipe, and glass-like carbon pipe produced by such method

Similar Documents

Publication Publication Date Title
US10696600B2 (en) Method for producing a ceramic component composed of a plurality of joined preforms and component obtained by the method
US20050230859A1 (en) Glass-like carbon deformed molded article, process for producing the same, and joint structure for jointing a connecting member to a glass-like carbon hollow molded article
JPS63257218A (en) Component of diffusion furnace
US4579703A (en) Method of manufacturing articles of ceramic material
EP0357491B1 (en) Method for the preparation of an integrally conjoined sintered body of silicon carbide
WO2003076363A1 (en) Method for manufacturing silicon carbide sintered compact jig and silicon carbide sintered compact jig manufactured by the method
EP0361238B1 (en) Method of joining porous silicon carbide bodies
JP2001048693A (en) Glassy carbon crucible having inner face being polygonal form
EP1691398B1 (en) Ceramic heater unit
JP2001151574A (en) Method of producing glassy carbon pipe and glassy carbon pipe produced by the method
KR100600919B1 (en) Method for producing glass-like carbon pipe, and glass-like carbon pipe produced by such method
JP2007161544A (en) Method for manufacturing glassy carbon
US20060240287A1 (en) Dummy wafer and method for manufacturing thereof
JP7216611B2 (en) Manufacturing method of SiC sintered member
KR102045138B1 (en) Glassycarbon roll-type mold manufacturing method for micro and nano pattern formation and Glassycarbon roll-type mold manufactured by the method
JP4471043B2 (en) Wafer support and manufacturing method thereof
JP2000007312A (en) Production of glassy carbon molded product having deep hole
JP3001450B2 (en) Manufacturing method of ceramic sintered body
JP2000290071A (en) Production of crucible made of glassy carbon and crucible made of glassy carbon obtained by same
JPS58126401A (en) Manufacturing method for ceramic turbine rotor
KR100355349B1 (en) Manufacturing method of reaction-bonded silicon carbide
JP2006045011A (en) Glassy carbon-made component, and its production method
JP2000154063A (en) Production of silicon carbide sintered body
JP2000313666A (en) Glass-form carbon cylinder, its production, chamber inner wall-protective material and plasma generator using the inner wall-protective material
JPH03149107A (en) Diamond embedding tool and manufacture thereof