KR100355349B1 - Manufacturing method of reaction-bonded silicon carbide - Google Patents

Manufacturing method of reaction-bonded silicon carbide Download PDF

Info

Publication number
KR100355349B1
KR100355349B1 KR1020000006457A KR20000006457A KR100355349B1 KR 100355349 B1 KR100355349 B1 KR 100355349B1 KR 1020000006457 A KR1020000006457 A KR 1020000006457A KR 20000006457 A KR20000006457 A KR 20000006457A KR 100355349 B1 KR100355349 B1 KR 100355349B1
Authority
KR
South Korea
Prior art keywords
silicon carbide
mixture
molded body
layer
thermosetting resin
Prior art date
Application number
KR1020000006457A
Other languages
Korean (ko)
Other versions
KR20010081256A (en
Inventor
송휴섭
이해원
전형우
이종호
하조웅
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020000006457A priority Critical patent/KR100355349B1/en
Publication of KR20010081256A publication Critical patent/KR20010081256A/en
Application granted granted Critical
Publication of KR100355349B1 publication Critical patent/KR100355349B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/20Producing shaped prefabricated articles from the material by centrifugal or rotational casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/10Accelerators; Activators
    • C04B2103/14Hardening accelerators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Abstract

본 발명은 반응결합 탄화규소의 제조방법에 관한 것으로, 탄화규소분말, 열경화성 수지 및 열가소성 수지를 포함하는 제1혼합물을 원심성형기 내에서 가열반응 원심성형에 의하여 실시간으로 경화시켜 첫 번째 층을 형성시키고, 규소분말, 열경화성 수지 및 열가소성 수지를 포함하는 제2혼합물을 원심성형기 내에서 가열반응 원심성형에 의하여 실시간으로 경화시켜 두 번째 층을 형성시켜 상기 첫 번째 층과 두 번째 층의 이중 구조로된 성형체를 제조하고, 상기 성형체의 열가소성 수지를 제거하고, 상기 성형체의 열경화성 수지를 열분해시켜 성형체를 탄화시키고, 상기 탄화된 성형체를 고온으로 가열하는 것으로 이루어지는 반응결합 탄화규소 제조방법을 제공한다. 본 발명에 의하면 반응결합 탄화규소 제품을 제조할 경우 대형 튜브의 성형을 위한 정수압 성형장치나 전처리를 위한 고온 진공로, 그리고 용융규소 침윤을 위한 고온 진공 용해로가 필요없으며, 용융 규소에 의해 로(furnace) 치구가 손상될 염려가 없으므로 유지비가 적게 들어 경제적으로 높은 밀도의 반응결합 탄화규소 제품을 대형으로 제조하는 것이 가능하다.The present invention relates to a method for producing reaction-bonded silicon carbide, wherein the first mixture comprising silicon carbide powder, thermosetting resin and thermoplastic resin is cured in real time by heat reaction centrifugal molding in a centrifugal molding machine to form a first layer. , The second mixture comprising silicon powder, thermosetting resin and thermoplastic resin is cured in real time by heat reaction centrifugal molding in a centrifugal molding machine to form a second layer to form a double structure of the first layer and the second layer It provides a method for producing a reaction-bonded silicon carbide comprising the step of removing the thermoplastic resin of the molded body, thermally decomposing the thermosetting resin of the molded body to carbonize the molded body, and heating the carbonized molded body to a high temperature. According to the present invention, when manufacturing a reaction-bonded silicon carbide product, there is no need for a hydrostatic forming apparatus for forming a large tube, a high temperature vacuum furnace for pretreatment, and a high temperature vacuum melting furnace for molten silicon infiltration, and a furnace made of molten silicon. Since there is no risk of damage to the jig, it is possible to manufacture large-scale, economically dense reaction-bonded silicon carbide products with low maintenance costs.

Description

반응결합 탄화규소의 제조방법{MANUFACTURING METHOD OF REACTION-BONDED SILICON CARBIDE}MANUFACTURING METHOD OF REACTION-BONDED SILICON CARBIDE}

본 발명은 반응결합 탄화규소의 제조방법에 관한 것이다.The present invention relates to a method for producing reaction-bonded silicon carbide.

반응결합 탄화규소는 탄화규소와 탄소로 구성된 성형체에 용융 규소를 침투시켜 용융 규소와 탄소의 반응으로 형성되는 새로운 탄화규소가 처음 성형체를 구성하고 있던 탄화규소 입자를 결합시키고 그 사이의 공극을 규소가 채우고 있는 소재이다. 반응결합 탄화규소는 내마모성, 내침식성, 내열성이 우수하고 열전도도가 높기 때문에 방열관으로 많이 사용되고 있다. 그 제조방법은 탄화규소와 탄소로 이루어진 원료 분말을 유기 결합제와 함께 혼합하여 정수압 성형과 같은 성형방법을 사용하여 튜브 형상의 성형체를 제조하고, 이를 탈지하고 소결 전처리한 다음 용융 규소에 함침시키는 방법이 일반적인 공정이다.Reaction-bonded silicon carbide penetrates molten silicon into a molded body composed of silicon carbide and carbon, and new silicon carbide formed by the reaction of molten silicon and carbon bonds the silicon carbide particles that originally constituted the molded body, and the pores therebetween. It is filling material. Reaction-bonded silicon carbide is widely used as a heat dissipation tube because of its excellent wear resistance, erosion resistance, heat resistance and high thermal conductivity. The manufacturing method is a method of mixing a raw material powder consisting of silicon carbide and carbon with an organic binder to prepare a tubular shaped body by using a molding method such as hydrostatic molding, degreasing it, pre-sintering and then impregnating in molten silicon. It is a general process.

상기 소결 전처리 공정은 1800 ~ 2000℃의 높은 온도에서 이루어지며, 전처리한 preform을 용융 규소에 장입하기 위해서는 규소 융용로로 대형 도가니와 진공분위기를 갖춘 대형 진공로가 필수적이다. 따라서, 대형 튜브와 같이 크기가 큰 부품을 제조하기 위해서는 정수압 성형장치, 고온 전처리로와 고온 진공로 등의 고가 장비가 필요하므로 초기 투자비가 막대하다. 또한 고온에서 사용하고 침식성이 큰 용융 금속을 다루기 때문에 부품이나 용융로의 수명이 단축되어 고가 부품의 소모량이 커서 유지비가 생산단가의 큰 비중을 차지한다.The sintering pretreatment process is carried out at a high temperature of 1800 ~ 2000 ℃, in order to charge the preform pre-treated in the molten silicon, a large vacuum furnace having a large crucible and a vacuum atmosphere as a silicon melting furnace is essential. Therefore, in order to manufacture a large part, such as a large tube, expensive investment equipment such as a hydrostatic pressure forming apparatus, a high temperature pretreatment furnace, and a high temperature vacuum furnace is required, and the initial investment cost is enormous. In addition, since it is used at high temperatures and handles eroded molten metal, the life of parts and smelters is shortened, and the consumption cost of expensive parts is large, and maintenance costs occupy a large proportion of production cost.

막대한 투자비와 생산단가를 줄이기 위하여 Inex사의 탄화규소 튜브의 경우는성형체에 용융규소를 침투시키는 방법(Taghi Daroudi et al, 'Low-Cost Melt-Formed Siliconized Silicon Carbide Radiant Tube Materials', J. Am. Ceram. Soc., 76(1), 173-179, 1993)을 사용하고 있지만, 반응결합 탄화규소에 잔류하는 규소량이 매우 높아 고온 강도를 비롯한 내열특성을 저하시키는 원인으로 작용하고 있다.Inex Silicon Carbide Tube is a method of injecting molten silicon into a molded body to reduce enormous investment costs and production costs (Taghi Daroudi et al, 'Low-Cost Melt-Formed Siliconized Silicon Carbide Radiant Tube Materials', J. Am. Ceram Soc., 76 (1), 173-179, 1993), but the amount of silicon remaining in the reaction-bonded silicon carbide is very high, which acts as a cause of lowering the heat resistance including high temperature strength.

본 발명의 목적은 규소 용융로가 불필요하고, 대형 부품 성형이 용이하며, 한 단계의(one-step) 열처리에 의하여 경제적으로 반응결합 탄화규소 제품을 제조하는데 있다.An object of the present invention is to produce a reaction-bonded silicon carbide product economically by eliminating the need for a silicon smelter, easy to form large parts, and one-step heat treatment.

도 1은 본 발명의 일실시예로서 탄화규소와 규소의 이중층 성형체를 보여주는 정단면도이다.1 is a front sectional view showing a double-layer molded body of silicon carbide and silicon as an embodiment of the present invention.

도 2는 도 1의 이중층 성형체의 사시도이다.FIG. 2 is a perspective view of the double layer molded product of FIG. 1. FIG.

*** 도면의 주요부분에 대한 부호의 설명 ****** Explanation of symbols for main parts of drawing ***

10:탄화규소층 20:규소층10: silicon carbide layer 20: silicon layer

본 발명은 탄화규소분말, 열경화성 수지 및 열가소성 수지를 포함하는 제1혼합물을 원심성형기 내에서 가열반응 원심성형에 의하여 실시간으로 경화시켜 첫 번째 층을 형성시키고, 규소분말, 열경화성 수지 및 열가소성 수지를 포함하는 제2혼합물을 원심성형기 내에서 가열반응 원심성형에 의하여 실시간으로 경화시켜 두 번째 층을 형성시켜 상기 첫 번째 층과 두 번째 층의 이중 구조로된 성형체를 제조하고, 상기 성형체의 열가소성 수지를 제거하고, 상기 성형체의 열경화성 수지를 열분해시켜 성형체를 탄화시키고, 상기 탄화된 성형체를 고온으로 가열하는 것으로 이루어지는 반응결합 탄화규소 제조방법을 제공한다.The present invention is to cure the first mixture comprising silicon carbide powder, thermosetting resin and thermoplastic resin in real time by heat reaction centrifugal molding in a centrifugal molding machine to form the first layer, and includes silicon powder, thermosetting resin and thermoplastic resin The second mixture was cured in real time by heat reaction centrifugal molding in a centrifugal molding machine to form a second layer to prepare a molded body having a double structure of the first layer and the second layer, and remove the thermoplastic resin of the molded body. In addition, there is provided a reaction-bonded silicon carbide production method comprising thermally decomposing the thermosetting resin of the molded body to carbonize the molded body, and heating the carbonized molded body to a high temperature.

본 발명의 가장 큰 특징은 탄화규소 성형체와 규소 공급원을 일체형으로 성형하는데 있다. 즉, 열경화 수지 전구체와 탄화규소 원료분말을 혼합하여 첫 번째 층을 성형하고, 그 위에 탄화규소에 침투되는 규소분말 및 열경화성 수지 혼합물을 성형하여 이중층 성형체를 제조한다. 상기 이중층 성형체는 원심성형기를 사용하여 튜브 형태로 만들 수 있다. 튜브 형태의 성형체가 두꺼운 경우에는원심성형기의 몰드를 가열함으로써 열경화성 수지가 경화되어 성형체의 형상을 유지할 수 있다.The biggest feature of the present invention is to integrally form the silicon carbide molded body and the silicon source. That is, a first layer is formed by mixing a thermosetting resin precursor and a silicon carbide raw material powder, and a silicon powder and a thermosetting resin mixture penetrated into silicon carbide are formed thereon to prepare a double layer molded body. The bilayer molded body can be made into a tube form using a centrifugal molding machine. When the tube-shaped molded body is thick, the thermosetting resin is cured by heating the mold of the centrifugal molding machine to maintain the shape of the molded body.

경화된 이중층 성형체는 진공이나 불활성 기체 분위기에서 열분해하여 열경화 수지를 탄화시킨다. 탄화과정을 거친 성형체는 탄화규소/탄소층과 규소/탄소층의 두 층으로 구성된다. 탄화처리한 성형체를 진공 또는 불활성 분위기에서 규소의 용융온도 이상으로 가열하여 용융된 규소가 성형체 내부의 모세관을 따라 탄화규소/탄소층으로 침투하게 되면 규소와 탄소가 반응하여 탄화규소를 형성하게 된다. 원료분말로 첨가된 탄화규소와 새로이 형성된 탄화규소 사이에 형성되는 공간은 용융 규소가 채워지고, 냉각된 후에는 탄화규소/규소 복합재료, 즉 반응결합 탄화규소가 된다.The cured double layered molded product is thermally decomposed in a vacuum or inert gas atmosphere to carbonize the thermosetting resin. The carbonized molded body consists of two layers: silicon carbide / carbon layer and silicon / carbon layer. When the carbonized molded body is heated above the melting temperature of silicon in a vacuum or inert atmosphere, and the molten silicon penetrates into the silicon carbide / carbon layer along the capillary inside the molded body, silicon and carbon react to form silicon carbide. The space formed between the silicon carbide added as the raw material powder and the newly formed silicon carbide is filled with molten silicon and, after cooling, becomes a silicon carbide / silicon composite material, that is, reaction-bonded silicon carbide.

본 발명에 의한 반응결합 탄화규소의 제조방법을 보다 구체적으로 설명하면 다음과 같다.Referring to the method of manufacturing the reaction-bonded silicon carbide according to the present invention in more detail.

먼저, 탄화규소 분말과 수지 조성물을 균일하게 혼합한다. 이 때 적정한 크기의 탄화규소 원료 분말을 적정한 분율로 평량하여 수지 조성물과 저온에서 혼합한다. 탄화규소 분말의 입경은 사용 온도나 최종 용도에 따라 달라질 수 있지만, 일반적으로 평균입경이 3㎛ 이상이면 충분하며, 내열성을 요구하는 제품에서는 3 ~ 500㎛ 범위가 바람직하다. 본 발명에서는 탄화규소의 평균입경이 3 ~ 2000㎛의 범위에 있다. 또한 혼합물에 대한 탄화규소 분말의 무게비는 60 ~ 90% 범위가 적당하다.First, the silicon carbide powder and the resin composition are uniformly mixed. At this time, the silicon carbide raw material powder of appropriate size is basis weight in an appropriate fraction and mixed with the resin composition at low temperature. The particle size of the silicon carbide powder may vary depending on the use temperature or the end use, but in general, an average particle diameter of 3 μm or more is sufficient, and in a product requiring heat resistance, a range of 3 to 500 μm is preferable. In the present invention, the average particle diameter of silicon carbide is in the range of 3 to 2000 µm. In addition, the weight ratio of silicon carbide powder to the mixture is suitably in the range of 60 to 90%.

수지 조성물은 열경화성 수지와 열가소성 수지 용액에 필요에 따라 표면활성제, 경화제를 첨가한다. 열경화성 수지는 성형체의 강도를 결정하고 반응결합에 사용되는 탄소의 원료를 제공하며, 열가소성 수지는 열경화성 수지의 열분해 온도보다 낮은 온도에서 모세관을 통해 표면으로 이동하여 증발하여 후속 열분해 과정에서 발생하는 기체의 방출 통로를 확보해 주는 역할을 한다. 열경화성 수지와 열가소성 수지의 분율에 따라 열분해 과정에 도달하였을 때의 기공구조가 달라질 수 있기 때문에 열경화성 수지 또는 열가소성 수지는 전체 수지량의 40% 이상 70%를 넘지 않는 것이 바람직하다. 열경화성 수지와 열가소성 수지의 무게비는 70:30 ~ 40:60의 범위가 적절하다. 열경화성 수지의 분율이 70% 보다 많을 경우 급격히 경화가 진행되어 경화속도를 제어하기 어렵고, 열가소성 수지의 분율이 60% 이상이면 경화속도가 너무 느려지게 된다. 경화제는 경화속도를 결정하기 때문에 몰드의 열전달이나 경화온도에 따라 적절하게 조절한다.A resin composition adds surfactant and a hardening | curing agent to a thermosetting resin and a thermoplastic resin solution as needed. The thermosetting resin determines the strength of the shaped body and provides the raw material of carbon used for the reaction bonding, and the thermoplastic resin moves to the surface through the capillary and evaporates at a temperature lower than the pyrolysis temperature of the thermosetting resin, resulting in the It serves to secure the discharge passage. Since the pore structure at the time of reaching the pyrolysis process may vary according to the fraction of the thermosetting resin and the thermoplastic resin, the thermosetting resin or the thermoplastic resin is preferably not more than 40% and not more than 70% of the total resin amount. The weight ratio of the thermosetting resin and the thermoplastic resin is suitably in the range of 70:30 to 40:60. When the fraction of the thermosetting resin is more than 70%, the curing proceeds rapidly and it is difficult to control the curing rate, and when the fraction of the thermoplastic resin is 60% or more, the curing rate becomes too slow. Since the curing agent determines the curing rate, it is appropriately adjusted according to the heat transfer or curing temperature of the mold.

열경화성 수지의 중합반응을 방지하기 위하여 상기 탄화규소 분말과 수지 조성물의 혼합은 5℃ 이하의 저온을 유지하면서 수행하는 것이 바람직하고, 필요에 따라 진공하에서 혼합물의 기포를 제거한다.In order to prevent the polymerization reaction of the thermosetting resin, the mixing of the silicon carbide powder and the resin composition is preferably performed while maintaining a low temperature of 5 ° C. or lower, and if necessary, removes bubbles from the mixture under vacuum.

그 다음 단계로 상기 혼합물을 몰드에 넣고 가열하면서 원심성형한다. 혼합물을 금속 몰드에 적정량 채우고 원심성형을 행하면 몰드 벽면으로 혼합물이 이동하게 되며, 원심성형중에 몰드 외벽을 가열함으로써 열경화성 수지의 경화를 유도할 수 있다. 튜브의 두께에 따라 다르지만, 가열 원심성형은 1 ~ 5 시간에 걸쳐 행하는 것이 바람직하다.The mixture is then placed in a mold and centrifuged while heating. When the mixture is filled with the metal mold in an appropriate amount and centrifuged, the mixture moves to the mold wall surface, and curing of the thermosetting resin can be induced by heating the outer wall of the mold during centrifugal molding. Although it depends on the thickness of a tube, it is preferable to perform heat centrifugal molding over 1 to 5 hours.

원심성형이 완료된 후, 성형체의 두께에 따라 경화를 위한 추가적인 열처리가필요할 수도 있다. 이 경우엔 상기 몰드 외벽을 지속적으로 가열하여 성형체를 완전히 경화시킨다.After the centrifugal molding is completed, additional heat treatment for curing may be necessary depending on the thickness of the molded body. In this case, the mold outer wall is continuously heated to completely cure the molded body.

탄화규소 분말 및 수지 조성물의 혼합물과 동일하게 규소 분말 및 수지 조성물을 균일하게 혼합한다. 규소 분말의 평균입경은 1 ~ 2000㎛, 혼합물에 대한 무게비는 60 ~ 90%의 범위가 적당하다. 혼합된 규소 분말 및 수지 조성물을 탄화규소가 포함된 상기 성형체가 있는 몰드에 채운 후, 동일한 방법으로 가열 원심성형을 행한다. 이 경우에도 성형체의 두께에 따라 경화를 위한 추가적인 열처리를 수행할 수 있다.The silicon powder and the resin composition are uniformly mixed in the same manner as the mixture of the silicon carbide powder and the resin composition. The average particle diameter of the silicon powder is 1 ~ 2000㎛, the weight ratio of the mixture is suitable in the range of 60 ~ 90%. After the mixed silicon powder and the resin composition are filled into the mold having the above-mentioned molded body containing silicon carbide, heat centrifugal molding is performed in the same manner. In this case, additional heat treatment for curing may be performed according to the thickness of the molded body.

이상의 과정을 통하여 탄화규소가 포함된 성형체 위에 규소가 포함된 성형체가 이중으로 형성된 이중층 성형체가 얻어진다. 도 1 및 도 2에 이중층 성형체의 일예를 도시하였다.Through the above process, a double-layered molded article in which a molded article containing silicon is formed on the molded article containing silicon carbide in duplicate is obtained. 1 and 2 illustrate an example of a double layer molded article.

최종 성형체를 제조한 후에는 천천히 가열하여 열가소성 수지를 제거한다. 성형체에서 열가소성 수지가 제거되면 열가소성 수지가 채우고 있던 공간이 비워지므로 성형체 전체에 걸쳐 연결된 3차원적 기공 구조가 얻어진다.After the final molded product is produced, the heating is performed slowly to remove the thermoplastic resin. When the thermoplastic resin is removed from the molded body, the space filled by the thermoplastic resin is emptied, thereby obtaining a three-dimensional pore structure connected throughout the molded body.

그 다음으로는, 진공 또는 불활성 분위기에서 고온으로 성형체를 가열하여 열경화성 수지를 열분해시켜 성형체를 탄화시킨다. 이때 400℃ 이상에서 탄소가 형성되고, 그 이상의 온도로 가열하면 탄소의 소결이 일어나면서 성형체의 강도가 점진적으로 증가한다. 탄화과정을 거친 성형체는 탄화규소/탄소층과 규소/탄소층의 두 층으로 구성된다.Next, the molded body is heated to a high temperature in a vacuum or inert atmosphere to pyrolyze the thermosetting resin to carbonize the molded body. At this time, carbon is formed at 400 ° C. or higher, and when heated to a temperature higher than that, sintering of carbon occurs and the strength of the molded article gradually increases. The carbonized molded body consists of two layers: silicon carbide / carbon layer and silicon / carbon layer.

열가소성 수지와 열경화성 수지가 제거된 후에는 성형체를 규소의 용융온도인1400℃ 이상으로 가열한다. 이 과정에서 규소/탄소층의 규소가 탄화규소/탄소층으로 모세관 흐름에 의하여 이동하고 탄소와 반응하여 탄화규소를 형성하며 그외의 공간은 용융규소로 채워진다. 가열조건으로는 진공 또는 환원 분위기에서 5 ~ 180분 동안, 1400 ~ 1650℃의 온도 범위가 적당하다.After the thermoplastic resin and the thermosetting resin are removed, the molded body is heated to 1400 ° C. or more, which is a melting temperature of silicon. In this process, the silicon in the silicon / carbon layer moves to the silicon carbide / carbon layer by capillary flow, reacts with carbon to form silicon carbide, and the other space is filled with molten silicon. As heating conditions, the temperature range of 1400-1650 degreeC for 5 to 180 minutes in a vacuum or reducing atmosphere is suitable.

이 모든 과정이 완료되면 이중층 성형체에 거푸집과 같은 다공성 탄화 규소층이 남게되는데, 이것을 샌드 블라스트나 랩핑에 의하여 제거하면 최종 형태로 치밀한 반응결합 탄화규소 제품을 얻을 수 있다.After all of this process is completed, a porous silicon carbide layer, such as formwork, is left in the double-layered molding, which can be removed by sandblasting or lapping to obtain a dense reactive bonded silicon carbide product in its final form.

이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명은 이들 실시예에 의해 그 범위가 제한되지 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited in scope by these examples.

반응결합 탄화규소를 튜브 형태로 제조하였다. 본 실시예에서 사용한 탄화규소 분말의 입경은 5 ~ 210㎛ 였으며, 단일 크기의 분말을 사용하거나 여러 크기의 분말을 혼합하여 사용하였다. 규소 분말의 평균입경은 1, 5, 70, 2000㎛ 였으며, 탄화규소와 마찬가지로 단일 크기의 분말을 사용하거나 여러 크기의 분말을 혼합하여 사용하였다. 열경화성 수지는 퍼푸릴알콜(furfuryl alcohol), 퍼푸릴알콜수지(furfuryl alcohol resin)을 사용하였으며, 두 성분의 무게비는 50:50으로 하였다. 열가소성 수지로는 글리콜을 사용하였다. 경화제로 자일렌술폰산(xylene sulfonic aicd), p-톨루엔술폰산(p-toluene sulfonic acid)을 사용하였으며, 액상수지의 분산제, 즉 표면활성제로는 트리톤(Triton) X-100(Union Carbide사, 미국), 부탄올을 사용하였다. 표 1 내지 3에 탄화규소, 규소 및 열경화성수지와 열가소성수지의 조성을 나타내었다.Reaction-bonded silicon carbide was prepared in the form of a tube. The particle size of the silicon carbide powder used in this example was 5 ~ 210㎛, a single size of the powder was used or a mixture of powders of different sizes. The average particle diameter of the silicon powder was 1, 5, 70, 2000㎛, and like silicon carbide, a single size of the powder was used or a mixture of powders of different sizes. The thermosetting resin was used furfuryl alcohol (furfuryl alcohol), furfuryl alcohol resin (furfuryl alcohol resin), the weight ratio of the two components was 50:50. Glycol was used as the thermoplastic resin. Xylene sulfonic acid and p-toluene sulfonic acid were used as a curing agent, and Triton X-100 (Union Carbide, USA) was used as a dispersant for liquid resins, that is, a surface active agent. , Butanol was used. Tables 1 to 3 show the compositions of silicon carbide, silicon, thermosetting resin and thermoplastic resin.

탄화규소 분말의 조성(중량%)Composition (wt%) of silicon carbide powder 탄화규소조성Silicon Carbide Composition 분말 평균입경(㎛)Powder Average Particle Size (㎛) 210210 150150 100100 6565 4545 3535 2525 1616 1010 55 1One 1010 5050 3030 1010 22 2525 5050 2525 33 8080 2020 44 37.637.6 62.462.4 55 15.615.6 10.410.4 8.38.3 7.37.3 7.37.3 7.37.3 6.36.3 37.537.5 66 100100 77

규소분말의 조성표 (중량%)Composition table of silicon powder (wt%) 규소조성Silicon composition 분말 평균입경(㎛)Powder Average Particle Size (㎛) 20002000 7070 55 1One 1One 81.2581.25 18.7518.75 22 7272 2828 33 6161 2525 1414 44 100100

수지의 조성Composition of resin 조성Furtherance 각 성분의 중량%Weight percent of each component 열가소성수지Thermoplastic 열경화성수지Thermosetting resin 표면활성제Surfactant 경화제Hardener 열가소성/열경화성수지비율Thermoplastic / Thermosetting Resin Ratio X-100X-100 부탄올Butanol 1One 50.650.6 32.832.8 10.110.1 6.56.5 60.7/39.360.7 / 39.3 22 37.937.9 45.445.4 7.67.6 9.19.1 45.7/54.345.7 / 54.3 33 33.733.7 33.733.7 9.69.6 14.514.5 8.58.5 50/5050/50 44 25.925.9 44.444.4 7.47.4 11.111.1 11.111.1 36.8/63.236.8 / 63.2 55 21.921.9 61.461.4 4.44.4 12.312.3 26.3/73.726.3 / 73.7

실시예 1Example 1

150㎛ 탄화규소 분말 80.6 wt%, 열경화성 수지로 퍼푸릴알콜 5.7 wt%, 퍼푸릴알콜수지 5.7 wt%, 열가소성 수지로 디에틸렌글리콜 4.9 wt%, 경화제 2.3 wt% 및Triton X-100 1.0 wt%를 균일하게 혼합하였다. 이러한 혼합물을 30 ~ 60분 간 진공중에 두어 혼합물 내의 기포를 제거하였다. 그 다음, 혼합물을 원형 금속몰드에 넣고 회전수 100 ~ 500 범위에서 10 ~ 60분 간 원심성형하여 형체를 갖도록 한 후, 상기 몰드 외벽을 가열하여 열경화성 수지를 경화시켰다. 규소와 수지혼합물을 위와 동일한 방법으로 혼합하여 몰드에 채운 후, 성형 및 경화가 완료된 상기 탄화규소 위에 이중으로 성형하였다. 규소와 수지 혼합물의 조성은 2000㎛의 규소 51.1 wt%, 70㎛의 규소 11.7 wt%, 퍼푸릴알콜 8.3 wt%, 퍼푸릴알콜수지 8.3 wt%, 에틸렌글리콜 9.6 wt%, 부탄올 4.1 wt%, X-100 2.8 wt%, 경화제 4.1 wt% 이었다. 성형과 경화가 완료된 이중성형체를 150℃ 이상의 온도로 가열하여 열가소성 수지를 제거하였고, 400℃ 이상의 온도에서 열경화성 수지를 열분해함으로써 탄화시켰다. 탄화가 완료된 이중성형체를 진공 또는 환원 분위기하에서, 1400 ~ 1650℃ 온도로 5 ~ 180분동안 열처리하여 반응결합 탄화규소 튜브를 제조하였다.150 µm silicon carbide powder, 80.6 wt% of thermosetting resin, 5.7 wt% of perfuryl alcohol, 5.7 wt% of perfuryl alcohol resin, 4.9 wt% of diethylene glycol, 2.3 wt% of curing agent, and 1.0 wt% of Triton X-100. Mix uniformly. This mixture was placed in vacuo for 30-60 minutes to remove bubbles in the mixture. Thereafter, the mixture was placed in a circular metal mold and centrifuged at a rotational speed of 100 to 500 for 10 to 60 minutes to have a mold, and then the outer wall of the mold was heated to cure the thermosetting resin. The silicon and resin mixture was mixed in the same manner as above to fill the mold, and then double-molded on the silicon carbide where molding and curing were completed. The composition of the silicon and resin mixture was 51.1 wt% of silicon of 2000 μm, 11.7 wt% of silicon of 70 μm, 8.3 wt% of perfuryl alcohol, 8.3 wt% of perfuryl alcohol resin, 9.6 wt% of ethylene glycol, 4.1 wt% of butanol, X -100 2.8 wt%, and a curing agent 4.1 wt%. After molding and curing, the double molded body was heated to a temperature of 150 ° C. or higher to remove the thermoplastic resin, and carbonized by thermal decomposition of the thermosetting resin at a temperature of 400 ° C. or higher. The double-molded carbonized product was heat-treated in a vacuum or reducing atmosphere at a temperature of 1400 to 1650 ° C. for 5 to 180 minutes to prepare a reaction bonded silicon carbide tube.

실시예 2Example 2

150㎛ 탄화규소 분말 15.5 wt%, 35㎛ 탄화규소 분말 46.7 wt%, 5㎛ 탄화규소 분말 15.5 wt%, 퍼푸릴알콜 5.1 wt%, 퍼푸릴알콜수지 5.1 wt%, 디에틸렌글리콜 8.4 wt%, X-100 1.7 wt% 및 경화제 2.0 wt%를 균일하게 혼합하였다. 또한, 70㎛ 규소 42.3 wt%, 5㎛ 규소 16.7 wt%, 1㎛ 규소 9.9 wt%, fufuryl alcohol 8.3 wt%, fufurtyl alcohol resin 8.3 wt%, 에틸렌글리콜 9.3 wt%, X-100 1.9 wt% 및 경화제 3.3 wt%를 균일하게 혼합하였다. 상기 탄화규소와 수지 혼합물 및 규소와 수지 혼합물로 실시예 1에서와 동일한 방법에 의해 반응결합 탄화규소 튜브를 제조하였다.150 μm silicon carbide powder 15.5 wt%, 35 μm silicon carbide powder 46.7 wt%, 5 μm silicon carbide powder 15.5 wt%, perfuryl alcohol 5.1 wt%, perfuryl alcohol resin 5.1 wt%, diethylene glycol 8.4 wt%, X 1.7 wt% of -100 and 2.0 wt% of curing agent were mixed uniformly. Also, 42.3 wt% of 70 μm silicon, 16.7 wt% of 5 μm silicon, 9.9 wt% of 1 μm silicon, 8.3 wt% of fufuryl alcohol resin, 8.3 wt% of fufurtyl alcohol resin, 9.3 wt% of ethylene glycol, 1.9 wt% of X-100 and a curing agent. 3.3 wt% were mixed uniformly. Reaction-bonded silicon carbide tubes were prepared in the same manner as in Example 1 using the silicon carbide and resin mixtures and the silicon and resin mixtures.

본 발명에 의하면 반응결합 탄화규소 제품을 제조할 경우 대형 튜브의 성형을 위한 정수압 성형장치나 전처리를 위한 고온 진공로, 그리고 용융규소 침윤을 위한 고온 진공 용해로가 필요없으며, 용융 규소에 의해 로(furnace) 치구가 손상될 염려가 없으므로 유지비가 적게 들어 경제적으로 높은 밀도의 반응결합 탄화규소 제품을 대형으로 제조하는 것이 가능하다.According to the present invention, when manufacturing a reaction-bonded silicon carbide product, there is no need for a hydrostatic forming apparatus for forming a large tube, a high temperature vacuum furnace for pretreatment, and a high temperature vacuum melting furnace for molten silicon infiltration, and a furnace made of molten silicon. Since there is no risk of damage to the jig, it is possible to manufacture large-scale, economically dense reaction-bonded silicon carbide products with low maintenance costs.

Claims (16)

평균입경이 3 ~ 2000㎛ 인 탄화규소 분말 60 ~ 90중량%, 열경화성 수지 및 열가소성 수지를 포함하는 제1혼합물을 몰드에 채우고 몰드 외벽을 가열하면서 원심성형에 의하여 실시간으로 경화시켜 첫 번째 층을 형성시키고,Filling the mold with a first mixture comprising 60 to 90 wt% of silicon carbide powder having a mean particle size of 3 to 2000 μm, a thermosetting resin and a thermoplastic resin, and curing the mold in real time by centrifugal molding while heating the outer wall of the mold to form a first layer. Let's 평균입경이 1 ~ 2000㎛ 인 규소 분말 60 ~ 90중량%, 열경화성 수지 및 열가소성 수지를 포함하는 제2혼합물을 상기 몰드에 채우고 몰드 외벽을 가열하면서 원심성형에 의하여 실시간으로 경화시켜 두 번째 층을 형성시켜 상기 첫 번째 층과 두 번째 층의 이중 구조로된 성형체를 제조하고,A second mixture containing 60 to 90 wt% of silicon powder having a mean particle size of 1 to 2000 μm, a thermosetting resin and a thermoplastic resin is filled into the mold and cured in real time by centrifugal molding while heating the outer wall of the mold to form a second layer. To form a molded body having a double structure of the first layer and the second layer, 상기 성형체를 150℃ 이상으로 가열하여 열가소성 수지를 제거하고,The molded body is heated to 150 ° C. or higher to remove the thermoplastic resin, 상기 성형체를 진공 또는 불활성 분위기에서 400℃ 이상의 온도로 가열하여 열경화성 수지를 열분해시켜 성형체를 탄화시키고,The molded body is heated to a temperature of 400 ° C. or higher in a vacuum or inert atmosphere to pyrolyze the thermosetting resin to carbonize the molded body, 상기 탄화된 성형체를 진공 또는 환원성 분위기에서 5 ~ 180분 동안, 1400 ~ 1650℃의 범위에서 가열하는 것으로 이루어지며,It consists of heating the carbonized molded body in a vacuum or reducing atmosphere for 5 to 180 minutes in the range of 1400 ~ 1650 ℃, 상기 열경화성 수지는 퍼푸릴알콜(fufuryl alcohol) 및 퍼푸릴알콜수지(fufuryl alcohol resin)이며, 상기 열가소성 수지는 글리콜이고, 열경화성 수지의 분율은 40 ~ 70% 범위인 것을 특징으로 하는The thermosetting resin is fufuryl alcohol and fufuryl alcohol resin, the thermoplastic resin is glycol, the fraction of the thermosetting resin is characterized in that 40 to 70% range 반응결합 탄화규소 제조방법.Reaction-bonded silicon carbide production method. 삭제delete 삭제delete 삭제delete 삭제delete 제1항에 있어서, 상기 제1혼합물 및 제2혼합물에 경화제를 추가로 혼합하는 반응결합 탄화규소 제조방법.The method of claim 1, further comprising mixing a curing agent with the first mixture and the second mixture. 제6항에 있어서, 상기 경화제는 자일렌술폰산(xylene sulfonic aicd), p-톨루엔술폰산(p-toluene sulfonic acid)를 사용하는 반응결합 탄화규소 제조방법.The method of claim 6, wherein the curing agent comprises xylene sulfonic acid, p-toluene sulfonic acid. 제1항에 있어서, 상기 제1혼합물 및 제2혼합물에 표면 활성제를 추가로 혼합하는 반응결합 탄화규소 제조방법.The method of claim 1, further comprising adding a surface active agent to the first mixture and the second mixture. 제8항에 있어서, 상기 표면활성제는 트리톤(Triton) X-100 또는 부탄올을 사용하는 반응결합 탄화규소 제조방법.The method of claim 8, wherein the surfactant is Triton X-100 or butanol. 삭제delete 제1항에 있어서, 상기 제1혼합물 및 제2혼합물에서 열경화성 수지와 열가소성 수지의 무게비는 70:30 ~ 40:60의 범위인 반응결합 탄화규소 제조방법.The method of claim 1, wherein the weight ratio of the thermosetting resin and the thermoplastic resin in the first mixture and the second mixture is in the range of 70:30 to 40:60. 제1항에 있어서, 상기 제1혼합물 및 제2혼합물은 각각의 구성 요소들을 5℃ 이하의 저온을 유지하면서 혼합된 것을 특징으로 하는 반응결합 탄화규소 제조방법.The method of claim 1, wherein the first mixture and the second mixture are mixed with each component while maintaining a low temperature of 5 ° C. or less. 제1항에 있어서, 상기 가열반응 원심성형은 1 ~ 5 시간동안 수행하는 반응결합 탄화규소 제조방법.The method of claim 1, wherein the heating reaction centrifugal molding is performed for 1 to 5 hours. 제1항에 있어서, 상기 첫 번째 층을 형성시킨 후 또는 두 번째 층을 형성시킨 후, 몰드 외벽을 가열하는 단계를 추가적으로 포함하는 반응결합 탄화규소 제조방법.The method of claim 1, further comprising heating a mold outer wall after forming the first layer or after forming the second layer. 삭제delete 삭제delete
KR1020000006457A 2000-02-11 2000-02-11 Manufacturing method of reaction-bonded silicon carbide KR100355349B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000006457A KR100355349B1 (en) 2000-02-11 2000-02-11 Manufacturing method of reaction-bonded silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000006457A KR100355349B1 (en) 2000-02-11 2000-02-11 Manufacturing method of reaction-bonded silicon carbide

Publications (2)

Publication Number Publication Date
KR20010081256A KR20010081256A (en) 2001-08-29
KR100355349B1 true KR100355349B1 (en) 2002-10-11

Family

ID=19645649

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000006457A KR100355349B1 (en) 2000-02-11 2000-02-11 Manufacturing method of reaction-bonded silicon carbide

Country Status (1)

Country Link
KR (1) KR100355349B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100471652B1 (en) * 2002-04-30 2005-03-08 한국과학기술연구원 Method of manufacturing reaction-bonded silicon carbide

Also Published As

Publication number Publication date
KR20010081256A (en) 2001-08-29

Similar Documents

Publication Publication Date Title
RU2728429C1 (en) Method of making articles from composite c/c-sic material and products based thereon
CN106187195B (en) The method that silicon carbide ceramics are prepared using selective laser sintering technique
CN110372390B (en) Preparation method of continuous fiber reinforced SiC part based on additive manufacturing and product
US4242106A (en) Composite of polycrystalline diamond and/or cubic boron nitride body/silicon carbide substrate
CN110330351B (en) Preparation method and product of SiC fiber reinforced SiC ceramic-based part
CN109320246A (en) A kind of high-temperature oxidation resistant graphite ceramic composite material and preparation method
EP0012966B1 (en) Integral composite of polycristalline diamond and/or cubic boron nitride body phase and substrate phase and process for making it
CN110216930B (en) High-strength ceramizable resin composite material and preparation method thereof
CN110171976A (en) The preparation method and product of SiC base ceramic part based on increasing material manufacturing
CN102924106A (en) Method for preparing carbon-silicon carbon composite material and product thereof
CN105541364B (en) A kind of method of step densification production carbon pottery automobile brake disc
CN109095930A (en) A kind of boron nitride foam material and preparation method thereof
CN110002890A (en) A kind of Cf/ HfC-SiC ultra-temperature ceramic-based composite material and preparation method thereof
CN112077318A (en) Metal-silicon carbide porous composite material and preparation method thereof
JP2000185977A (en) Method for varying dielectric characteristic of ceramic- based matrix composite material
CN110216926B (en) Ceramizable silicon-based resin composite material and preparation method thereof
KR100307509B1 (en) Ceramic-Containing Carbon / Carbon Composites and Manufacturing Method Thereof
KR100355349B1 (en) Manufacturing method of reaction-bonded silicon carbide
CN113185312A (en) Porous SiC ceramic with high porosity, high strength and low thermal conductivity and preparation method thereof
CN114908322B (en) Ablation-resistant three-dimensional inlaid ceramic coating and preparation method thereof
CN107619282B (en) Preparation method of high-toughness titanium silicon carbide-silicon carbide complex phase ceramic special-shaped part
KR101956683B1 (en) Manufacturing method of fiber reinforced ceramic matrix composites containing metal carbide filler
JP4527299B2 (en) Method for producing high-strength SiC fiber / SiC composite material
KR100355350B1 (en) Manufacturing method of near-net-shaped reaction-bonded silicon carbide
KR101545813B1 (en) Manufacturing method of SiC Tube and Crucible using Si impregnation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120921

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20130923

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140923

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150923

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20161013

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170922

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180927

Year of fee payment: 17