JP2001041769A - Magnetic potentiometer - Google Patents

Magnetic potentiometer

Info

Publication number
JP2001041769A
JP2001041769A JP11216454A JP21645499A JP2001041769A JP 2001041769 A JP2001041769 A JP 2001041769A JP 11216454 A JP11216454 A JP 11216454A JP 21645499 A JP21645499 A JP 21645499A JP 2001041769 A JP2001041769 A JP 2001041769A
Authority
JP
Japan
Prior art keywords
magnetic
linear
substrate
potentiometer
magnetic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11216454A
Other languages
Japanese (ja)
Inventor
Yoshihiro Tsuboi
義博 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11216454A priority Critical patent/JP2001041769A/en
Publication of JP2001041769A publication Critical patent/JP2001041769A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a highly precise magnetic potentiometer capable of using an easy magnetic detecting element without requiring multipolar magnetization and providing an output signal conformed to rotating angle quantity or linear moving quantity as linear analog signal and digital signal at a low cost. SOLUTION: In a permanent magnet having a plurality of linear magnetic sections 2a provided at equal intervals on a substrate 3a together with a magnetic member 1a, the magnetic member 1a and the linear magnetic sections 2a being single-pole magnetized in the direction opposite to a magnetic detecting element, the opposed area to the magnetic detecting element of the magnetic member 1a is regularly changed along the relatively moving direction. The output voltage of the magnetic detecting element is obtained as an analog signal linearly changed to rotating angle or moving distance in the element opposed to the magnetic member 1a and as a digital signal in the element opposed to the linear magnetic sections 2a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、計測器、電気機
器、電気機械等などの回転角度量や直線移動量を検出す
る磁気式ポテンショメータ、特にリニアなアナログ信号
とデジタル信号とを同時に出力する磁気式ポテンショメ
ータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic potentiometer for detecting the amount of rotation or linear movement of a measuring instrument, an electric device, an electric machine, or the like, and more particularly to a magnetic potentiometer for simultaneously outputting a linear analog signal and a digital signal. It relates to a potentiometer.

【0002】[0002]

【従来の技術】一般的に用いられている接触型のポテン
ショメータは、エポキシ樹脂などの絶縁性基板上にカー
ボン系抵抗ペーストを印刷し、焼成固化させた抵抗体基
板と、該基板に接して相対運動をする接触端子とで構成
されている。この接触型ポテンショメータの場合、カー
ボン抵抗体と接触端子との間に適当な潤滑剤を供給して
接触抵抗を低下させ、接触端子によるカーボン抵抗体表
面のダメージの低減を図っている。
2. Description of the Related Art A contact-type potentiometer generally used is a method in which a carbon-based resistive paste is printed on an insulating substrate such as an epoxy resin and then fired and solidified. And a moving contact terminal. In the case of this contact potentiometer, an appropriate lubricant is supplied between the carbon resistor and the contact terminal to reduce the contact resistance, thereby reducing the damage of the carbon resistor surface by the contact terminal.

【0003】一方、磁気信号を利用した非接触型のポテ
ンショメータとしては、磁気検出素子に対向させて多極
着磁させた永久磁石を相対的に移動可能に配置したポテ
ンショメータがある。この磁気式ポテンショメータで
は、多極着磁した永久磁石の回転や直線移動によって磁
気抵抗素子に加わる磁束が変化し、この磁束の変化によ
り正弦波形の出力が得られるようになっている。しか
し、多極着磁するためには、移動する磁性部材と同期さ
せてコイルの電流を交番させ、多数のN極とS極を交互
に着磁する必要があり、極めて面倒で非効率的であっ
た。
On the other hand, as a non-contact type potentiometer utilizing a magnetic signal, there is a potentiometer in which a multi-polarized permanent magnet is disposed so as to be relatively movable, facing a magnetic detecting element. In this magnetic potentiometer, the magnetic flux applied to the magnetoresistive element changes due to the rotation or linear movement of the multipolar magnetized permanent magnet, and a sine waveform output is obtained by the change in the magnetic flux. However, in order to perform multi-pole magnetization, it is necessary to alternate the current of the coil in synchronization with the moving magnetic member and alternately magnetize a large number of N poles and S poles, which is extremely troublesome and inefficient. there were.

【0004】このような磁気式ポテンショメータの代表
例として、例えば電気音響(株)から市販されているポ
テンショメータLP−18Sがある。このLP−18S
は、非磁性シャフトの先端に多極着磁された永久磁石を
備え、この永久磁石に対向して磁気抵抗素子が2個所定
の角度で設置されている。また、磁気抵抗素子の背面に
は対向ヨークが設けられ、この対向ヨークと前記永久磁
石によって平衡磁場が作られるようになっている。しか
し、多極着磁が必要であるうえ、高インピーダンスを確
保するために、磁気抵抗素子の形状は全体がドーナツ状
で且つ内周側と外周側に多数の切込みを設けた複雑な形
状となっており、その加工や取り付けが極め複雑であっ
た。
As a typical example of such a magnetic potentiometer, there is a potentiometer LP-18S commercially available from, for example, Electroacoustics. This LP-18S
Has a multi-pole magnetized permanent magnet at the tip of a non-magnetic shaft, and two magneto-resistive elements are installed at a predetermined angle facing the permanent magnet. An opposing yoke is provided on the back surface of the magnetoresistive element, and a balanced magnetic field is generated by the opposing yoke and the permanent magnet. However, in addition to the need for multipolar magnetization, the shape of the magnetoresistive element has a donut shape and a complex shape with a large number of cuts on the inner and outer sides to ensure high impedance. The processing and installation were extremely complicated.

【0005】更に、磁気検出素子として簡単なホール素
子を用いる場合、安定した正弦波形を得るために、ホー
ル素子を永久磁石とヨークで挟むように配置した上で、
ヨークの形状を工夫したり、特公昭60−41476号
公報及び特公昭60−41477号公報に記載されるよ
うに永久磁石をホール素子に対して傾斜させて配置する
ことが提案されている。しかしながら、ヨークの形状を
複雑にしたり、永久磁石とホール素子とを相対的に傾斜
させるためには、複雑な部品加工が必要となるうえ、そ
の取り付けにも高い精度が要求される。
Further, when a simple Hall element is used as the magnetic detecting element, the Hall element is arranged so as to be sandwiched between the permanent magnet and the yoke in order to obtain a stable sine waveform.
It has been proposed to devise the shape of the yoke, or to arrange the permanent magnet at an angle to the Hall element as described in JP-B-60-41476 and JP-B-60-41477. However, in order to complicate the shape of the yoke or to relatively incline the permanent magnet and the Hall element, complicated component processing is required, and high precision is required for the attachment.

【0006】[0006]

【発明が解決しようとする課題】上記したように、接触
式ポテンショメータでは、接触端子が抵抗体基板に接触
しているため、その間に潤滑剤などを供給したとして
も、接触端子によるカーボン抵抗体表面のダメージは免
れない。このため、抵抗体表面のダメージが電気ノイズ
を生じる原因となるうえ、接触式ポテンショメータは寿
命が短いという欠点があった。
As described above, in the contact type potentiometer, since the contact terminals are in contact with the resistor substrate, even if a lubricant or the like is supplied during the contact terminals, the surface of the carbon resistor by the contact terminals is reduced. Is inevitable. For this reason, the surface of the resistor causes electric noise, and the contact potentiometer has a short life.

【0007】一方、非接触による磁気式ポテンショメー
タの場合、面倒で非効率な多極着磁が必要であるうえ、
高インピーダンスで安定した出力を得るためには、上記
したように特殊な形状の磁気検出素子を用いたり、ヨー
クの形状や配置に特別な工夫を加える必要があった。し
かし、これらの部品の加工精度や貼付精度が出力信号の
精度を大きく左右するので、これらの精度を確保するた
めに部品加工や組立工程が複雑になり、面倒な多極着磁
の工程と共にコストアップを招く大きな原因となってい
た。
On the other hand, in the case of a non-contact magnetic potentiometer, troublesome and inefficient multipolar magnetization is required, and
In order to obtain a stable output with high impedance, it was necessary to use a magnetic detecting element having a special shape as described above, or to add special measures to the shape and arrangement of the yoke. However, since the processing accuracy and attachment accuracy of these components greatly affect the accuracy of the output signal, the component processing and assembly processes are complicated to ensure these accuracy, and the complicated multi-pole magnetization process and cost It was a major cause of up.

【0008】尚、磁気式ポテンショメータの出力信号と
して、回転角度量や直線移動量に対応してリニアなアナ
ログ信号と共にデジタル信号が得られれば、より正確な
位置の検出が可能になるが、このような磁気式ポテンシ
ョメータは殆ど知られておらず、接触式ポテンショメー
タで一部実現されているに過ぎない。その場合も、いず
れか片方の信号のみを得たうえで、これをA/D変換又
はD/A変換することでアナログ信号とデジタル信号の
両立を図っているに過ぎない。しかも、これらの変換に
は専用の回路が必要であるため、機器の大型化とコスト
の上昇が避けられないという欠点があった。
If a digital signal can be obtained together with a linear analog signal corresponding to the rotation angle and the linear movement as the output signal of the magnetic potentiometer, the position can be detected more accurately. Very few magnetic potentiometers are known and are only partially implemented with contact potentiometers. In such a case as well, only one of the signals is obtained, and this signal is subjected to A / D conversion or D / A conversion to achieve both analog and digital signals. In addition, since these conversions require a dedicated circuit, there is a disadvantage that the size of the device and the increase in cost cannot be avoided.

【0009】本発明は、このような従来の事情に鑑み、
面倒で非効率な多極着磁を行う必要がなく、一方向への
一回の着磁処理でよく、しかも通常の簡単な磁気検出素
子を用いることができうえ、回転角度量や直線移動量に
対応する出力信号が同時にリニアなアナログ信号とデジ
タル信号の両方で得られる高精度な磁気式ポテンショメ
ータを安価に提供することを目的とする。
The present invention has been made in view of such conventional circumstances,
There is no need to perform complicated and inefficient multi-polar magnetization, and only one magnetization process in one direction is required, and a normal simple magnetic detection element can be used. It is an object of the present invention to provide a high-precision magnetic potentiometer in which an output signal corresponding to a linear analog signal and a digital signal can be obtained simultaneously at a low cost.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する磁気式ポテンショメータは、磁気
検出素子と、該磁気検出素子に対向して相対的に移動す
る基板と、該基板に設けられた磁性部材とを備える磁気
式ポテンショメータにおいて、前記基板に前記磁性部材
と共に複数の線形磁区が等間隔で設けられ、該磁性部材
及び線形磁区が前記磁気検出素子との対向方向に単極着
磁された永久磁石であって、該磁性部材の磁気検出素子
との対向面積が相対的移動方向に沿い規則的に変化して
いることを特徴とする。
In order to achieve the above object, a magnetic potentiometer provided by the present invention comprises: a magnetic detecting element; a substrate which moves relatively to the magnetic detecting element; In the magnetic potentiometer provided with a magnetic member, a plurality of linear magnetic domains are provided on the substrate at equal intervals together with the magnetic member, and the magnetic member and the linear magnetic domain are unipolarly mounted in a direction facing the magnetic detecting element. The magnetized permanent magnet is characterized in that the area of the magnetic member facing the magnetic sensing element changes regularly along the direction of relative movement.

【0011】上記本発明の磁気式ポテンショメータは、
被検出体が回転運動を行う場合には、基板と磁気検出素
子とが相対的に回転移動するロータリーポテンショメー
タとし、また被検出体が直線運動を行う場合には、基板
と磁気検出素子とが相対的に直線移動するリニアポテン
ショメータとして構成することができる。
The magnetic potentiometer of the present invention is
When the object to be detected performs a rotary motion, the substrate and the magnetic detection element are rotated relative to each other. When the object to be detected performs a linear motion, the substrate and the magnetic detection element are moved relative to each other. It can be configured as a linear potentiometer that moves linearly.

【0012】[0012]

【発明の実施の形態】本発明の磁気式ポテンショメータ
は、磁気検出素子からの出力信号としてリニアなアナロ
グ信号を発生させる磁性部材と、デジタル信号を発生さ
せるパルス発生手段としての複数の線形磁区とを備えて
いる。しかも、これらの磁性部材と線形磁区は同時に一
度の着磁処理で磁気検出素子との対向方向に単極着磁す
れば良く、例えば磁気検出素子と対向する基板表面側が
N極及びその反対側(基板裏面側)がS極となるように
配向させて着磁することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A magnetic potentiometer according to the present invention comprises a magnetic member for generating a linear analog signal as an output signal from a magnetic detecting element, and a plurality of linear magnetic domains as pulse generating means for generating a digital signal. Have. Moreover, the magnetic member and the linear magnetic domain may be simultaneously subjected to single-pole magnetization in a single magnetizing process in a direction facing the magnetic detection element. For example, the substrate surface side facing the magnetic detection element has the N pole and the opposite side ( It can be magnetized by orienting so that the back side of the substrate is the S pole.

【0013】本発明における磁性部材の形状は一定では
なく、磁気検出素子との対向面積が相対的移動方向に沿
い規則的に変化している。磁気検出素子との対向面積が
規則的に変化する磁性部材の形状としては、相対的に移
動する磁気検出素子の軌跡に沿って、その軌跡の中心か
ら磁性部材の両端までの距離が直線的に増加又は減少す
るように形成することが好ましい。また、複数の線形磁
区は、全て矩形などの一定の形状であればよく、磁性部
材と平行に磁気検出素子の軌跡に沿って等間隔に配置す
る。
In the present invention, the shape of the magnetic member is not constant, and the area facing the magnetic sensing element changes regularly along the direction of relative movement. The shape of the magnetic member whose area opposed to the magnetic detection element changes regularly is such that the distance from the center of the trajectory to both ends of the magnetic member is linear along the trajectory of the relatively moving magnetic detection element. It is preferable to form so as to increase or decrease. In addition, the plurality of linear magnetic domains may have a constant shape such as a rectangular shape, and are arranged at regular intervals along the trajectory of the magnetic detection element in parallel with the magnetic member.

【0014】その結果、本発明の磁気式ポテンショメー
タでは、基板の回転又は直線的な移動に伴って、磁気検
出素子と対向する磁性部材の対向面積が変わるので、磁
気検出素子で検出される磁束密度も連続的に変化する。
この磁束密度の変化がリニアになるように磁性部材の磁
気検出素子との対向面積を規則的に変化させることによ
って、回転角度量や直線移動量に対応する出力信号とし
てリニアなデジタル信号を安定して得ることができる。
また同時に、基板の回転又は直線移動に伴って、線形磁
区の有無により磁束密度が変わるので、この変化を線形
磁区に対向する別の磁気検出素子で検出し、正弦波形の
デジタル信号を出力信号として同時に得ることができ
る。
As a result, in the magnetic potentiometer of the present invention, the facing area of the magnetic member facing the magnetic detecting element changes with the rotation or linear movement of the substrate, so that the magnetic flux density detected by the magnetic detecting element is changed. Also changes continuously.
By regularly changing the area of the magnetic member facing the magnetic sensing element so that this change in magnetic flux density becomes linear, a linear digital signal can be stabilized as an output signal corresponding to the rotation angle and linear movement. Can be obtained.
At the same time, with the rotation or linear movement of the substrate, the magnetic flux density changes depending on the presence or absence of the linear magnetic domain.This change is detected by another magnetic detecting element facing the linear magnetic domain, and a digital signal having a sine waveform is used as an output signal. Can be obtained at the same time.

【0015】具体的な磁性部材の形状として、ロータリ
ーポテンショメータの場合には、例えば図1に示すよう
に、円板状の基板3a上に磁気検出素子の相対的移動の
軌跡4aに相当する円周(1点鎖線で表示)に沿って、
その円周上から両端までの距離hが等しく且つ直線的に
変化している形状(以下、略螺旋状という)の磁性部材
1aを形成する。また、パルス発生手段としての複数の
線形磁区2aは、略螺旋状の磁性部材1aの外周側又は
内周側に、同心円上に等間隔に配置する。かかる略螺旋
状の磁性部材1aと複数の線形磁区2aを設けた基板3
aを、図2に示すように、その軸中心に固定したシャフ
ト5で回転可能に支持し、磁性部材1aに対向する磁気
検出素子6及び複数の線形磁区2aに対向する磁気検出
素子7を基板3aに対して所定間隔で設置することによ
り、ロータリーポテンショメータを構成することができ
る。
As a specific shape of the magnetic member, in the case of a rotary potentiometer, for example, as shown in FIG. 1, a circumference corresponding to a locus 4a of relative movement of a magnetic detection element is formed on a disk-shaped substrate 3a. (Indicated by the dashed line)
A magnetic member 1a having a shape in which the distance h from the circumference to both ends is equal and changes linearly (hereinafter referred to as a substantially spiral shape) is formed. The plurality of linear magnetic domains 2a as the pulse generating means are arranged at equal intervals on a concentric circle on the outer peripheral side or inner peripheral side of the substantially spiral magnetic member 1a. Substrate 3 provided with such a substantially spiral magnetic member 1a and a plurality of linear magnetic domains 2a
2 is rotatably supported by a shaft 5 fixed to the center of its axis as shown in FIG. 2, and a magnetic detecting element 6 facing the magnetic member 1a and a magnetic detecting element 7 facing the plurality of linear magnetic domains 2a are mounted on a substrate. The rotary potentiometer can be configured by installing the rotary potentiometer at a predetermined interval with respect to 3a.

【0016】また、リニアポテンショメータの場合に
は、例えば図3に示すように、細長い板状の基板3b上
に磁気検出素子の相対的移動の軌跡4bに相当する直線
(1点鎖線で表示)に沿って、その直線上から両端まで
の距離hが等しく且つ直線的に変化している形状(以
下、二等辺三角形状という)の磁性部材1bを設ける。
複数の線形磁区2bは、磁性部材1bの片側に磁気検出
素子の相対的移動の軌跡4bと平行に等間隔で配置す
る。この二等辺三角形状の磁性部材1bと複数の線形磁
区2bを設けた基板3bを長手方向に沿って直線的に移
動可能に支持し、磁性部材1bに対向する磁気検出素子
及び複数の線形磁区2bに対向する磁気検出素子を基板
3bに対して所定間隔で設置することにより、リニアポ
テンショメータが構成される。
In the case of a linear potentiometer, for example, as shown in FIG. 3, a straight line (indicated by a one-dot chain line) corresponding to a locus 4b of relative movement of a magnetic detecting element is formed on an elongated plate-like substrate 3b. A magnetic member 1b having a shape (hereinafter, referred to as an isosceles triangle) in which the distance h from the straight line to both ends thereof is equal and linearly changes is provided.
The plurality of linear magnetic domains 2b are arranged at equal intervals on one side of the magnetic member 1b in parallel with the trajectory 4b of the relative movement of the magnetic detection element. The substrate 3b provided with the isosceles triangular magnetic member 1b and the plurality of linear magnetic domains 2b is supported so as to be linearly movable along the longitudinal direction, and the magnetic sensing element and the plurality of linear magnetic domains 2b facing the magnetic member 1b are supported. The linear potentiometer is formed by disposing the magnetic detecting element facing the substrate at a predetermined interval with respect to the substrate 3b.

【0017】磁気検出素子としては、公知のホール素子
や磁気抵抗素子等が利用できる。しかも、磁性部材は単
極着磁で且つその形状を上記のごとく例えば略螺旋状又
は二等辺三角形状に形成してあり、磁性部材の移動に伴
って磁気検出素子が検知する磁束密度の変化もリニアに
なるので、複雑な形状の磁気検出素子を用いる必要がな
く、通常の市販されているInSb系やGaAs系など
の安価なホール素子を用いて正確な検出が可能である。
また、複数の線形磁区も単極着磁されたものであるか
ら、同様に安価なホース素子の使用が可能である。
As the magnetic detecting element, a known Hall element, a magnetoresistive element, or the like can be used. Moreover, the magnetic member is unipolar magnetized and has a shape as described above, for example, in a substantially spiral shape or an isosceles triangular shape, and a change in magnetic flux density detected by the magnetic detection element with the movement of the magnetic member also occurs. Since it is linear, there is no need to use a magnetic detection element having a complicated shape, and accurate detection can be performed using a commercially available inexpensive Hall element such as an InSb type or a GaAs type.
Further, since the plurality of linear magnetic domains are also unipolarly magnetized, similarly inexpensive hose elements can be used.

【0018】基板上に設ける磁性部材及び線形磁区は、
単極着磁でよいため、基板に所定の形状の永久磁石を埋
め込むことでも形成できるが、ペースト状の磁石組成物
を用いて所定形状に形成したボンド磁石が好ましい。例
えば、予め基板に形成した所定形状の凹部に磁石組成物
を充填するか、又は基板に磁石組成物を所定のパターン
で印刷した後、加熱固化させる。このように基板上に形
成された所定形状の磁性部材は、その後磁気検出素子と
の対向方向にのみ単極着磁する、例えば磁気検出素子に
対向する基板表面側がN極で且つその反対側がS極とな
るように着磁するだけでよい。
The magnetic member and the linear magnetic domain provided on the substrate are:
Since monopolar magnetization may be used, it can be formed by embedding a permanent magnet of a predetermined shape in the substrate, but a bonded magnet formed into a predetermined shape using a paste-like magnet composition is preferable. For example, the magnet composition is filled in a predetermined shape of the concave portion formed in the substrate in advance, or the magnet composition is printed on the substrate in a predetermined pattern, and then heated and solidified. The magnetic member of a predetermined shape formed on the substrate in this manner is then monopolar magnetized only in the direction facing the magnetic sensing element. For example, the surface of the substrate facing the magnetic sensing element is an N pole and the opposite side is S pole. It only needs to be magnetized to be a pole.

【0019】尚、ボンド磁石は磁性粉をバインダー樹脂
で結合したものであり、磁性粉としてはSmCo系、N
dFeB系、SmFeN系、フェライト系などの通常の
磁性粉を1種又は2種以上組み合わせて用いることがで
きる。特に、SmCo系、NdFeB系、SmFeN系
等の希土類元素を含有するボンド磁石を用いることによ
って、一層精度の良いポテンショメータを提供すること
ができる。また、基板としては、従来と同様に、非磁性
体のみならず、強磁性体以外の常磁性体などを用いるこ
ともできる。
The bond magnet is obtained by binding magnetic powder with a binder resin.
Ordinary magnetic powders such as dFeB, SmFeN, and ferrite can be used alone or in combination of two or more. In particular, by using a bond magnet containing a rare earth element such as an SmCo-based, NdFeB-based, or SmFeN-based, a more accurate potentiometer can be provided. Further, as the substrate, not only a non-magnetic material but also a paramagnetic material other than a ferromagnetic material can be used as in the related art.

【0020】[0020]

【実施例】実施例1 バインダー樹脂である分子量100万のポリイソブチレ
ン(20℃の貯蔵弾性率G'値:3×10dyne/
cm)100重量部に、SmCo系磁性粉800重
量部、及びトルエン1000重量部を加え、ホモミキサ
ーを用いて均一に撹拌混合した。得られたペースト状の
磁石組成物を、図1に示すように、シャフト5に固定さ
れた外径40mm×内径20mm×厚み1mmのエポキ
シ系樹脂からなる円板状の基板3a上に、磁性部材1a
として略螺旋状に印刷塗布すると共に、その外周側に線
形磁区2aとして同心円状に48個の小さな矩形に印刷
塗布した後、120℃で3時間の乾燥硬化処理を行っ
た。
【Example】Example 1  Polyisobutylene having a molecular weight of 1,000,000 as a binder resin
(Storage modulus G 'value at 20 ° C .: 3 × 106dyne /
cm2) 100 parts by weight of SmCo5800 magnetic powder
And 1000 parts by weight of toluene.
The mixture was uniformly stirred and mixed using a mixer. The resulting paste-like
The magnet composition was fixed to the shaft 5 as shown in FIG.
Epoxy with outer diameter 40mm x inner diameter 20mm x thickness 1mm
A magnetic member 1a is placed on a disc-shaped substrate 3a made of
Printed and applied in a substantially spiral shape, and a line
Printed 48 small rectangles concentrically as shaped magnetic domains 2a
After applying, dry and cure at 120 ° C for 3 hours
Was.

【0021】次に、この略螺旋状の磁性部材1aと複数
の線形磁区2aをパルス着磁機を用いてアキシャル方向
に同時に単極着磁し、1回の着磁操作で基板表面側がN
極及びその裏面側がS極に着磁した略螺旋状の磁性部材
1a及び複数の線形磁区2aを有する円板状の基板2a
を製造した。尚、略螺旋状の磁性部材1aは、磁気検出
素子の相対的移動の軌跡3aに相当する円周上にあり、
その円周上から両端までの距離hが直線的に変化してい
て、その幅2hは一端で最大1mmであり、その一端か
ら他端(幅2hがゼロの点)までの円周に沿った長さが
50mmである。また、各線形磁矩形2aは、縦横約
0.5mmの矩形である。
Next, the substantially spiral magnetic member 1a and the plurality of linear magnetic domains 2a are unipolarly magnetized simultaneously in the axial direction by using a pulse magnetizer, and the surface of the substrate becomes N by one magnetizing operation.
A disk-shaped substrate 2a having a substantially spiral magnetic member 1a and a plurality of linear magnetic domains 2a whose poles and the back side are magnetized to S poles
Was manufactured. Note that the substantially spiral magnetic member 1a is on the circumference corresponding to the locus 3a of the relative movement of the magnetic detection element,
The distance h from the top of the circumference to both ends changes linearly, and the width 2h is 1 mm at the maximum at one end, and extends along the circumference from one end to the other end (point where the width 2h is zero). The length is 50 mm. Each linear magnetic rectangle 2a is a rectangle of about 0.5 mm in length and width.

【0022】図2に示すように、上記磁性部材1aと対
向する磁気検出素子6として縦横約1mm角のホール素
子(旭化成電子製HW−108E)、及び複数の線形磁
区2bに対向する磁気検出素子7として上記と同じホー
ル素子を、それぞれ基板2aとの間隔が0.1mmにな
るように配置し、磁気式ロータリーポテンショメータを
作製した。
As shown in FIG. 2, as the magnetic detecting element 6 facing the magnetic member 1a, a Hall element (HW-108E manufactured by Asahi Kasei Electronics) having a length and width of about 1 mm and a magnetic detecting element facing a plurality of linear magnetic domains 2b. 7, the same Hall elements as described above were arranged so that the distance from each of the substrates 2a was 0.1 mm, thereby producing a magnetic rotary potentiometer.

【0023】得られた磁気式ロータリーポテンショメー
タにおいて、ホール素子からなる磁気検出素子6及び7
を定格電圧にて駆動し、シャフト5を回転させたとこ
ろ、略螺旋状の磁性部材1aに対向する磁気検出素子6
の出力信号は、図4に示すように、その回転角度に応じ
て出力電圧がリニアに変化することが確認された。ま
た、複数の線形磁区2bに対向する磁気検出素子7の出
力電圧は、図5に示すように正弦波形に変化し、これを
コンパレータ回路に入力することでデジタル信号が得ら
れた。
In the obtained magnetic rotary potentiometer, the magnetic detecting elements 6 and 7 each composed of a Hall element are used.
Is driven at the rated voltage and the shaft 5 is rotated. As a result, the magnetic sensing element 6 facing the substantially spiral magnetic member 1a
As shown in FIG. 4, it was confirmed that the output voltage linearly changes according to the rotation angle of the output signal. Further, the output voltage of the magnetic detection element 7 facing the plurality of linear magnetic domains 2b changed to a sine waveform as shown in FIG. 5, and a digital signal was obtained by inputting this to a comparator circuit.

【0024】実施例2 NdFeB系磁性粉を用いた以外は上記実施例1と同様
にして、磁性粉とバインダー樹脂のポリイソブチレンと
溶媒のトルエンとからなる磁石組成物を作製した。この
磁石組成物を、図3に示すように、幅5mm×長さ30
mm×厚み1mmのエポキシ系樹脂からなる板状の基板
2b上に、磁性部材2bとして二等辺三角形状に印刷塗
布すると共に、その片側に線形磁区2bとして磁気検出
素子の相対的移動の軌跡4bに平行に1.4mm間隔で
22個の小さな矩形に印刷塗布した後、120℃で3時
間の乾燥硬化処理を行った。
[0024]Example 2  Same as Example 1 except that NdFeB-based magnetic powder was used
With magnetic powder and binder resin polyisobutylene
A magnet composition comprising toluene as a solvent was prepared. this
As shown in FIG. 3, the magnet composition was 5 mm wide × 30 mm long.
mm x 1 mm thick plate made of epoxy resin
2b is printed as a magnetic member 2b in the form of an isosceles triangle.
And a magnetic detection as a linear magnetic domain 2b on one side
At 1.4 mm intervals parallel to the trajectory 4b of the relative movement of the element
After printing and applying to 22 small rectangles, 3 o'clock at 120 ° C
Dry hardening treatment was performed.

【0025】次に、この二等辺三角形状の磁性部材1b
と複数の線形磁区2bをパルス着磁機を用いてアキシャ
ル方向に単極着磁し、1回の着磁操作で基板表面側がN
極及び裏面側がS極に着磁した二等辺三角形状の磁性部
材1b及び複数の線形磁区2bを有する板状の基板3b
を得た。尚、得られた二等辺三角形状の磁性部材1b
は、磁気検出素子の相対的移動の軌跡4bに相当する直
線上にあり、その直線上から両端までの距離hが直線的
に変化していて、その幅2hは一端での最大1mmであ
り、その一端から他端(幅2hがゼロの点)までの直線
に沿った長さが30mmである。また、各線形磁矩形2
bは、縦横約0.5mmの矩形である。
Next, the isosceles triangular magnetic member 1b
And a plurality of linear magnetic domains 2b are unipolarly magnetized in an axial direction using a pulse magnetizer, and the substrate surface side is N-polarized by one magnetization operation.
A plate-like substrate 3b having an isosceles triangular magnetic member 1b and a plurality of linear magnetic domains 2b whose poles and the back side are magnetized to S poles
I got The obtained isosceles triangular magnetic member 1b
Is on a straight line corresponding to the trajectory 4b of the relative movement of the magnetic sensing element, the distance h from the straight line to both ends is linearly changed, and the width 2h is 1 mm at a maximum at one end, The length along a straight line from one end to the other end (the point where the width 2h is zero) is 30 mm. In addition, each linear magnetic rectangle 2
b is a rectangle about 0.5 mm in length and width.

【0026】この磁性部材1bに対向する磁気検出素子
として縦横約1mm角のホール素子(旭化成電子製HW
−108E)、及び複数の線形磁区2bに対向する磁気
検出素子として上記と同じホール素子を、それぞれ基板
2aとの間隔が0.1mmになるように配置して、磁気
式リニアポテンショメータを作製した。
As a magnetic detecting element facing the magnetic member 1b, a Hall element (HW manufactured by Asahi Kasei Electronics)
-108E) and the same Hall element as the magnetic detection element facing the plurality of linear magnetic domains 2b were arranged so that the distance from the substrate 2a was 0.1 mm, respectively, to produce a magnetic linear potentiometer.

【0027】得られた磁気式リニアポテンショメータに
おいて、各ホール素子を定格電圧にて駆動し、基板2b
を直線方向に移動させたところ、二等辺三角形状の磁性
部材2bに対向する磁気検出素子の出力信号は、図4に
示すように、その回転角度に応じて出力電圧がリニアに
変化することが確認された。また、複数の線形磁区2b
に対向する磁気検出素子の出力電圧は、図5に示すよう
に正弦波形に変化し、これをコンパレータ回路に入力す
ることでデジタル信号が得られた。
In the obtained magnetic linear potentiometer, each Hall element is driven at a rated voltage to
Is moved in the linear direction, the output signal of the magnetic detection element facing the isosceles triangular magnetic member 2b may have an output voltage that varies linearly according to the rotation angle as shown in FIG. confirmed. In addition, a plurality of linear magnetic domains 2b
As shown in FIG. 5, the output voltage of the magnetic detection element opposed to the above changed into a sinusoidal waveform, and a digital signal was obtained by inputting this to a comparator circuit.

【0028】[0028]

【発明の効果】本発明によれば、面倒で非効率な多極着
磁を行う必要がなく、一回の着磁処理で一方向への単極
着磁を行えば良く、しかも磁気検出素子として簡単なホ
ール素子を用いることができるうえ、回転角度量や直線
移動量に対応する出力信号がリニアなアナログ信号とデ
ジタル信号の両方で同時に得られる、高精度な磁気式ポ
テンショメータを安価に提供することができる。
According to the present invention, it is not necessary to perform troublesome and inefficient multipolar magnetization, and it is sufficient to perform unipolar magnetization in one direction by one magnetization process, and furthermore, the magnetic detecting element is used. A high-precision magnetic potentiometer that can use a simple Hall element as well as obtain a high-precision magnetic potentiometer at the same time that an output signal corresponding to a rotation angle amount and a linear movement amount can be obtained simultaneously as both a linear analog signal and a digital signal. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の略螺旋形の磁性部材と複数の線形磁区
を設けた基板を示す概略の平面図である。
FIG. 1 is a schematic plan view showing a substrate having a substantially spiral magnetic member and a plurality of linear magnetic domains according to the present invention.

【図2】図1の基板を用いた本発明のロータリーポテン
ショメータの要部を示す概略の側面図である。
FIG. 2 is a schematic side view showing a main part of a rotary potentiometer of the present invention using the substrate of FIG.

【図3】本発明の二等辺三角形状の磁性部材と複数の線
形磁矩形を設けた基板を示す概略の平面図である。
FIG. 3 is a schematic plan view showing a substrate provided with an isosceles triangular magnetic member and a plurality of linear magnetic rectangles of the present invention.

【図4】本発明のポテンショメータにおける回転角度又
は移動距離と磁性部材に対応する出力電圧との関係を示
すグラフである。
FIG. 4 is a graph showing a relationship between a rotation angle or a moving distance and an output voltage corresponding to a magnetic member in the potentiometer of the present invention.

【図5】本発明のポテンショメータにおける回転角度又
は移動距離と複数の線形磁区に対応する出力電圧との関
係を示すグラフである。
FIG. 5 is a graph showing a relationship between a rotation angle or a moving distance and output voltages corresponding to a plurality of linear magnetic domains in the potentiometer of the present invention.

【符号の説明】[Explanation of symbols]

1a、1b 磁性部材 2a、2b 線形磁区 3a、3b 基板 4a、4b 磁気検出素子の相対的移動の軌跡 5 シャフト 6、7 磁気検出素子 1a, 1b Magnetic member 2a, 2b Linear magnetic domain 3a, 3b Substrate 4a, 4b Locus of relative movement of magnetic detecting element 5 Shaft 6, 7 Magnetic detecting element

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 磁気検出素子と、該磁気検出素子に対向
して相対的に移動する基板と、該基板に設けられた磁性
部材とを備える磁気式ポテンショメータにおいて、前記
基板に前記磁性部材と共に複数の線形磁区が等間隔で設
けられ、該磁性部材及び線形磁区が前記磁気検出素子と
の対向方向に単極着磁された永久磁石であって、該磁性
部材の磁気検出素子との対向面積が相対的移動方向に沿
い規則的に変化していることを特徴とする磁気式ポテン
ショメータ。
1. A magnetic potentiometer comprising a magnetic detection element, a substrate relatively moving to face the magnetic detection element, and a magnetic member provided on the substrate, wherein a plurality of magnetic potentiometers are provided on the substrate together with the magnetic member. Linear magnetic domains are provided at equal intervals, and the magnetic member and the linear magnetic domain are permanent magnets that are unipolarly magnetized in a direction facing the magnetic detection element, and the area of the magnetic member facing the magnetic detection element is A magnetic potentiometer characterized by changing regularly along the direction of relative movement.
【請求項2】 前記磁気検出素子がホール素子であるこ
とを特徴とする、請求項1に記載の磁気式ポテンショメ
ータ。
2. The magnetic potentiometer according to claim 1, wherein said magnetic detecting element is a Hall element.
【請求項3】 前記磁性部材及び線形磁区が希土類元素
を含有するボンド磁石であることを特徴とする、請求項
1又は2に記載の磁気式ポテンショメータ。
3. The magnetic potentiometer according to claim 1, wherein the magnetic member and the linear magnetic domain are bonded magnets containing a rare earth element.
【請求項4】 前記基板と磁気検出素子とが相対的に回
転移動するロータリーポテンショメータであることを特
徴とする、請求項1〜3のいずれかに記載の磁気式ポテ
ンショメータ。
4. The magnetic potentiometer according to claim 1, wherein said substrate and said magnetic detecting element are rotary potentiometers which relatively rotate and move.
【請求項5】 前記基板と磁気検出素子とが相対的に直
線移動するリニアポテンショメータであることを特徴と
する、請求項1〜3のいずれかに記載の磁気式ポテンシ
ョメータ。
5. The magnetic potentiometer according to claim 1, wherein the substrate and the magnetic detection element are linear potentiometers that relatively linearly move.
JP11216454A 1999-07-30 1999-07-30 Magnetic potentiometer Pending JP2001041769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11216454A JP2001041769A (en) 1999-07-30 1999-07-30 Magnetic potentiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11216454A JP2001041769A (en) 1999-07-30 1999-07-30 Magnetic potentiometer

Publications (1)

Publication Number Publication Date
JP2001041769A true JP2001041769A (en) 2001-02-16

Family

ID=16688769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11216454A Pending JP2001041769A (en) 1999-07-30 1999-07-30 Magnetic potentiometer

Country Status (1)

Country Link
JP (1) JP2001041769A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161365A (en) * 2016-03-09 2017-09-14 Tdk株式会社 Magnet and displacement detector
JP2020052975A (en) * 2018-09-28 2020-04-02 光吉 俊二 Arithmetic processing system and auxiliary device
CN114864265A (en) * 2022-05-16 2022-08-05 山东光明园迪儿童家具科技有限公司 Preparation method of magnetic field of table electromagnetic angle display

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017161365A (en) * 2016-03-09 2017-09-14 Tdk株式会社 Magnet and displacement detector
JP2020052975A (en) * 2018-09-28 2020-04-02 光吉 俊二 Arithmetic processing system and auxiliary device
JP7087252B2 (en) 2018-09-28 2022-06-21 俊二 光吉 Arithmetic processing system and auxiliary equipment
CN114864265A (en) * 2022-05-16 2022-08-05 山东光明园迪儿童家具科技有限公司 Preparation method of magnetic field of table electromagnetic angle display

Similar Documents

Publication Publication Date Title
JPS60261350A (en) Angular position detector of rotary electronic machine rotorby electronic switching
JPH01297507A (en) Device for magnetically detecting position and speed
JPH0495817A (en) Revolution detection apparatus
US20220011140A1 (en) Encoder system for a drive
JP2000035343A (en) Encoder provided with gigantic magnetic resistance effect element
US20020167310A1 (en) Angle transmitter
JP2001041769A (en) Magnetic potentiometer
Luo et al. Multi-pole magnetization of high resolution magnetic encoder
JP2001041768A (en) Magnetic potentiometer
JPH0778528B2 (en) Magnetic sensor
JPH05126513A (en) Angle detector
JP4465513B2 (en) Position detection device
JP5615892B2 (en) Magnetization method and apparatus
JPH063158A (en) Detector
JP2003194901A (en) Magnetic field sensor
JPH01301113A (en) Signal processing circuit for magneto-resistance element
JP4196797B2 (en) Magnetic encoder substrate and manufacturing method thereof
JP2002340615A (en) Magnetic scale material for encoder
JPH0750665Y2 (en) Magnetic encoder
JP2004297917A (en) Permanent magnet superior in multi-pole magnetization
Campbell Magnetic rotary position encoders with magneto-resistive sensors
JP2002089551A (en) Rolling bearing with encoder
JPS61243320A (en) Magnetic encoder
JPS6197516A (en) Magnetic drum for encoder
JPH01223309A (en) Magnetic encoder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040907