JP5615892B2 - Magnetization method and apparatus - Google Patents

Magnetization method and apparatus Download PDF

Info

Publication number
JP5615892B2
JP5615892B2 JP2012274445A JP2012274445A JP5615892B2 JP 5615892 B2 JP5615892 B2 JP 5615892B2 JP 2012274445 A JP2012274445 A JP 2012274445A JP 2012274445 A JP2012274445 A JP 2012274445A JP 5615892 B2 JP5615892 B2 JP 5615892B2
Authority
JP
Japan
Prior art keywords
magnetized
magnetization
end side
magnetizing
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012274445A
Other languages
Japanese (ja)
Other versions
JP2014120600A (en
Inventor
信一 ▲高▼橋
信一 ▲高▼橋
Original Assignee
磁化発電ラボ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 磁化発電ラボ株式会社 filed Critical 磁化発電ラボ株式会社
Priority to JP2012274445A priority Critical patent/JP5615892B2/en
Publication of JP2014120600A publication Critical patent/JP2014120600A/en
Application granted granted Critical
Publication of JP5615892B2 publication Critical patent/JP5615892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

本発明は、被着磁体を所定着磁方向に極性が交互に変化するように多極着磁する着磁方法及び当該着磁方法に用いる着磁装置に関する。 The present invention relates to a magnetized device Ru employed magnetizing method and the deposition magnetizing method polarity to be magnetized body in a predetermined direction of magnetization is multi-pole magnetized so as to change alternately.

多くの自動車の車輪用軸受(ハブベアリング)にはABS(アンチロック・ブレーキ・システム:(横滑り防止装置))とESC(エレクトロニック・スタビリティ・コントロール(車両姿勢安定装置))の制御に必要な車輪回転センサが装着されている。車輪回転センサは、磁石のN極、S極の極性変化を検出する磁気センサと、円周方向にN極とS極が交互に同一間隔で着磁されたリング状の磁石である磁気エンコーダとを有して構成されている。車輪の回転に伴って磁気エンコーダの極性が交互に変化する状況を磁気センサが検出し、車輪回転信号として捉え、ABSやESCなどの車両制御に用いられる。この多極着磁された永久磁石からなる磁気エンコーダを製造するための着磁装置が開発されている。   Many automobile wheel bearings (hub bearings) require the wheels required to control ABS (anti-lock braking system: (skid prevention device)) and ESC (electronic stability control (vehicle attitude stabilization device)). A rotation sensor is attached. The wheel rotation sensor includes a magnetic sensor that detects a change in polarity of the N and S poles of the magnet, and a magnetic encoder that is a ring-shaped magnet in which the N and S poles are alternately magnetized at equal intervals in the circumferential direction. It is comprised. The magnetic sensor detects the situation where the polarity of the magnetic encoder changes alternately with the rotation of the wheel, and it is regarded as a wheel rotation signal and used for vehicle control such as ABS and ESC. Magnetizers have been developed for producing magnetic encoders composed of multipole magnetized permanent magnets.

本発明者は、高精度な着磁ピッチを確保しつつ、大きな磁力による着磁を可能とする着磁装置として、特許文献1に開示される着磁装置を開発した。   The present inventor has developed a magnetizing device disclosed in Patent Document 1 as a magnetizing device capable of magnetizing with a large magnetic force while ensuring a highly accurate magnetizing pitch.

特許第4846863号Patent No. 4846863

近年、ハイブリッド自動車や電気自動車のように、モータを動力源とする自動車が普及しつつあり、モータの回転を制御する装置として、絶対角度を検出するアブソリュート角度検出器が用いられる。高振動、高ダスト環境下の車載用アブソリュート角度検出器として、光学式の検出器は使用できず、いわゆる電磁誘導式のレゾルバが採用されているが、レゾルバは、電磁誘導式であるがために、出力を得るためにコイルに交流電流を流す必要があり、消費電力が大きく、回路も複雑で、さらに、製品コストも高い。   In recent years, automobiles using a motor as a power source, such as hybrid cars and electric cars, are becoming widespread, and an absolute angle detector that detects an absolute angle is used as a device for controlling the rotation of the motor. An optical detector cannot be used as an on-vehicle absolute angle detector under high vibration and high dust environment. So-called electromagnetic induction type resolver is used, but the resolver is electromagnetic induction type. In order to obtain an output, it is necessary to pass an alternating current through the coil, power consumption is large, the circuit is complicated, and the product cost is high.

また、多極着磁された永久磁石を用いたアブソリュート角度検出器は、永久磁石の磁気出力を例えばホール素子のような磁気センサにより検出する磁気エンコーダであり、消費電力が小さく、コストも低いが、車載モータの回転検出用としては、検出精度が低く、実用化されていない。   An absolute angle detector using a multi-pole magnetized permanent magnet is a magnetic encoder that detects the magnetic output of the permanent magnet with a magnetic sensor such as a Hall element, and has low power consumption and low cost. For detecting the rotation of a vehicle-mounted motor, the detection accuracy is low and it has not been put into practical use.

本発明者は、特許文献1の着磁装置による着磁方式を利用して、車載モータ用のアブソリュート角度検出器に用いることができる永久磁石式磁気エンコーダの開発を進めた。   The present inventor has developed a permanent magnet type magnetic encoder that can be used in an absolute angle detector for a vehicle-mounted motor, using the magnetizing method by the magnetizing device of Patent Document 1.

本発明の目的は、高精度にアブソリュート角度を検出することができる磁気エンコーダを製造するための着磁方法及び着磁装置を提供することにある。 An object of the present invention is to provide a magnetizing Ho及 beauty magnetizing apparatus for manufacturing a magnetic encoder capable of detecting an absolute angle with high accuracy.

上記目的を達成するための本発明の着磁方法は、円筒状の被着磁体の周面に対向する位置に着磁ヘッドを配置し、前記被着磁体の周面を極数M(Mは2以上の自然数)で多極着磁する着磁方法において、着磁ヘッドに交番電流を供給しながら、被着磁体の回転軸に沿って、着磁ヘッド又は被着磁体を相対的に移動させ、且つ、被着磁体の回転軸を中心に、被着磁体又は前記着磁ヘッドを相対的にP(Pは2以上の自然数)回転させて、合計P×M回の着磁動作を行い、P×M回の着磁動作のうちのN(Nは1以上の自然数)回目の着磁動作により着磁された周面領域の周方向に隣接した周面領域にN+1回目の着磁動作を行い、P×M回の着磁動作のうちのN(Nは1以上の自然数)回目の着磁動作により着磁された周面領域の回転軸高さ方向の半分を超える部分に重なるように、N+M回目の着磁動作を行い、N回目の着磁位置に対して、N+M回目の着磁位置が回転軸方向高さ1mm変位あたり中心角12〜20度分ずれるように、N+M回目の着磁動作を行うことを特徴とする。 In order to achieve the above object, the magnetizing method of the present invention includes a magnetizing head disposed at a position facing the circumferential surface of a cylindrical magnetized body, and the circumferential surface of the magnetized body has a pole number M (M is In a magnetization method in which multipolar magnetization is performed with a natural number of 2 or more, the magnetizing head or the magnetized body is relatively moved along the rotation axis of the magnetized body while supplying an alternating current to the magnetized head. In addition, the magnetized body or the magnetized head is relatively rotated P (P is a natural number of 2 or more) around the rotation axis of the magnetized body, and a total of P × M times of magnetizing operations are performed. The N + 1th magnetization operation is performed on the circumferential surface area adjacent to the circumferential direction of the circumferential surface region magnetized by the N (N is a natural number of 1 or more) magnetization operation among the P × M magnetization operations. performed, N (N is a natural number of 1 or more) towards the rotation axis the height of the magnetized peripheral surface area by th wearing磁動operation of the P × M times the wearing磁動work The N + M-th magnetization operation is performed so as to overlap with a portion exceeding half of the center, and the N + M-th magnetization position is 12 to 20 degrees center angle per 1 mm displacement in the rotational axis direction with respect to the N-th magnetization position. The N + M-th magnetization operation is performed so as to be shifted.

本発明の着磁装置は、円筒形の被着磁体の周面を周方向に極性が交互に変化するよう多極着磁する着磁装置において、被着磁体の周面に対向して接触又は近接し、且つ周面に沿った円弧面を形成する先端部を有するコアを有し、円弧面に当該円弧面の一端側から他端側に延びる導電線を位置決めして配置する位置決め手段が設けられ、円弧面の一端側から他端側への方向が周方向に垂直となるように配置される着磁ヘッドと、着磁ヘッドの円弧面が被着磁体の周方向に相対的に回転又は移動し、且つ被着磁体の回転軸方向に沿って移動するように、被着磁体又は着磁ヘッドを回転又は移動させる駆動部と、駆動部により被着磁体又は着磁ヘッドを回転又は移動させながら、導電線に交番電流を供給する電源とを備え、前記被着磁体の周面を極数M(Mは2以上の自然数)で多極着磁する際に、前記着磁ヘッドに交番電流を供給しながら、前記駆動部は、前記被着磁体の回転軸に沿って、前記着磁ヘッド又は前記被着磁体を相対的に移動させ、且つ、前記被着磁体の回転軸を中心に、前記被着磁体又は前記着磁ヘッドを相対的にP回(Pは2以上の自然数)以上回転させて、少なくともP×M回の着磁動作を行い、P×M回の着磁動作のうちのN(Nは1以上の自然数)回目の着磁動作により着磁された周面領域の周方向に隣接した周面領域にN+1回目の着磁動作を行い、P×M回の着磁動作のうちのN(Nは1以上の自然数)回目の着磁動作により着磁された周面領域の回転軸高さ方向の半分を超える部分に重なるように、N+M回目の着磁動作を行い、N回目の着磁位置に対して、N+M回目の着磁位置が回転軸方向高さ1mm変位あたり中心角12〜20度分ずれるように、N+M回目の着磁動作を行うことを特徴とする。 The magnetizing device of the present invention is a magnetizing device that multipolarizes the circumferential surface of a cylindrical magnetized body so that the polarity alternately changes in the circumferential direction. A positioning means is provided that has a core having a tip portion that forms an arc surface that is close to and along the circumferential surface, and that positions and arranges conductive wires that extend from one end side to the other end side of the arc surface on the arc surface. And a magnetizing head disposed so that a direction from one end side to the other end side of the arc surface is perpendicular to the circumferential direction, and the arc surface of the magnetizing head is relatively rotated or rotated in the circumferential direction of the magnetized body. A drive unit that rotates or moves the magnetized body or magnetized head so that the magnetized body or magnetized head moves along the rotation axis direction of the magnetized body, and the magnetized body or magnetized head is rotated or moved by the drive unit. while, a power supply for supplying an alternating current to the conductive wire, electrode peripheral surface of the object to be magnetized body When multipolar magnetization is performed at M (M is a natural number of 2 or more), the drive unit supplies the alternating current to the magnetized head, and the drive unit moves along the rotation axis of the magnetized body. Alternatively, the magnetized body is relatively moved, and the magnetized body or the magnetized head is relatively rotated P times (P is a natural number of 2 or more) about the rotation axis of the magnetized body. Thus, at least P × M magnetization operations are performed, and the circumference of the peripheral surface region magnetized by the N (N is a natural number of 1 or more) magnetization operations among the P × M magnetization operations is performed. The peripheral surface region magnetized by N (N is a natural number of 1 or more) of the P × M magnetization operations, and the N + 1th magnetization operation is performed on the peripheral surface region adjacent to the direction. The N + M-th magnetization operation is performed so as to overlap with a portion exceeding half of the rotational axis height direction of the N-th magnetization position. N + M-th magnetized position is to be shifted center angle 12 to 20 degrees per rotation axis direction height of 1mm displacement, and performs N + M th wearing磁動operation.

本発明によれば、アブソリュート角度を高精度に検出可能な永久磁石式磁気エンコーダに利用可能な被着磁体(永久磁石)を製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the to-be-adhered magnetic body (permanent magnet) which can be utilized for the permanent magnet type magnetic encoder which can detect an absolute angle with high precision can be manufactured.

本発明の実施の形態における着磁方法を行うための着磁装置の概略構成例を示す図である。It is a figure which shows the example of schematic structure of the magnetizing apparatus for performing the magnetizing method in embodiment of this invention. 本実施の形態における着磁ヘッドのコアの構成例を示す図である。It is a figure which shows the structural example of the core of the magnetization head in this Embodiment. 導電線がコアに配置された着磁ヘッドの構成例を示す図である。It is a figure which shows the structural example of the magnetizing head by which the conductive wire is arrange | positioned at the core. 導電線3の配置パターンを示す図である。It is a figure which shows the arrangement pattern of the conductive wire. 着磁ヘッド16と被着磁体1との配置を示す図である。It is a figure which shows arrangement | positioning with the magnetization head 16 and the to-be-magnetized body 1. FIG. 中心角のズレ分(スキュー角度)φを示す。The center angle deviation (skew angle) φ is shown. 本実施の形態における着磁動作を説明する図である。It is a figure explaining the magnetizing operation | movement in this Embodiment. 回転軸に対して傾斜した磁極領域が形成された被着磁体1を示す図である。It is a figure which shows the to-be-adhered magnetic body 1 in which the magnetic pole area | region inclined with respect to the rotating shaft was formed. 本実施の形態における別の着磁動作を説明する図である。It is a figure explaining another magnetizing operation | movement in this Embodiment.

以下、図面を参照して本発明の実施の形態について説明する。しかしながら、かかる実施の形態例が、本発明の技術的範囲を限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, such an embodiment does not limit the technical scope of the present invention.

図1は、本発明の実施の形態における着磁方法を実施するための着磁装置の概略構成例を示す図である。本実施の形態例では、円筒形の被着磁体の周面をその円周方向に極性が交互に変化するように着磁する着磁装置を例示する。本実施の形態における着磁装置は、着磁対象となる円筒形の被着磁体1を回転可能に保持する回転保持部10と、回転保持部に回転駆動させるモータ12と、モータ12の回転角度に対応するパルス信号を出力するエンコーダ14と、被着磁体1を磁化する着磁ヘッド16と、着磁ヘッド16を垂直方向に駆動する垂直駆動部17と、電源装置18と、制御手段20とを有する。   FIG. 1 is a diagram illustrating a schematic configuration example of a magnetizing apparatus for performing a magnetizing method according to an embodiment of the present invention. The present embodiment exemplifies a magnetizing apparatus that magnetizes the peripheral surface of a cylindrical magnetized body so that the polarity changes alternately in the circumferential direction. A magnetizing apparatus according to the present embodiment includes a rotation holding unit 10 that rotatably holds a cylindrical magnetized body 1 to be magnetized, a motor 12 that is driven to rotate by the rotation holding unit, and a rotation angle of the motor 12. An encoder 14 that outputs a pulse signal corresponding to the above, a magnetizing head 16 that magnetizes the magnetized body 1, a vertical drive unit 17 that drives the magnetizing head 16 in the vertical direction, a power supply device 18, and a control means 20. Have

被着磁体1は、着磁によって磁気エンコーダなどの多極磁化体となる部材であり、円筒形の磁性体である。被着磁体1は、例えば、大きな磁束密度が得られる希土類焼結磁石が好ましいが、もちろんフェライトボンド磁石など他の磁石も適用可能である。   The magnetized body 1 is a member that becomes a multipolar magnet such as a magnetic encoder by magnetization, and is a cylindrical magnetic body. As the adherend 1, for example, a rare earth sintered magnet capable of obtaining a large magnetic flux density is preferable, but other magnets such as a ferrite bonded magnet can also be applied.

回転保持部10は、被着磁体1と同心の主軸であり、被着磁体1は回転保持部10に回転可能に固定される。本実施の形態例では、着磁ヘッド16を固定し、被着磁体1を着磁ヘッド16に対して回転させる構成であるが、固定された被着磁体1に対して着磁ヘッド16を回転させる構成も原理的には可能である。   The rotation holding unit 10 is a main shaft that is concentric with the adherend 1, and the adherend 1 is rotatably fixed to the rotation holder 10. In this embodiment, the magnetizing head 16 is fixed and the magnetized body 1 is rotated with respect to the magnetized head 16. However, the magnetizing head 16 is rotated with respect to the fixed magnetized body 1. In principle, the configuration to be made is also possible.

モータ12は、回転精度に優れた例えばブラシレスモータが用いられ、回転保持部10を回転駆動させる。エンコーダ14は、モータ12の回転角度に対応するパルス信号を出力し、その分解能は高いほどピッチ誤差を小さくすることができ、例えば、1回転当たり1万パルス以上のパルス信号を出力するものが好ましい。   As the motor 12, for example, a brushless motor excellent in rotation accuracy is used, and the rotation holding unit 10 is driven to rotate. The encoder 14 outputs a pulse signal corresponding to the rotation angle of the motor 12, and the higher the resolution, the smaller the pitch error. For example, the encoder 14 preferably outputs a pulse signal of 10,000 pulses or more per rotation. .

垂直駆動部17は、着磁ヘッド16を保持し、着磁ヘッド16を所定の制御された速度で垂直方向に上下動させる。着磁ヘッド16を垂直移動させながら、被着磁体1を回転させて着磁を行うことで、着磁ヘッド16は、被着磁体1の周面を螺旋状に着磁していく。   The vertical drive unit 17 holds the magnetizing head 16 and moves the magnetizing head 16 up and down in the vertical direction at a predetermined controlled speed. By magnetizing the magnetized body 1 by rotating the magnetized body 1 while moving the magnetized head 16 vertically, the magnetized head 16 magnetizes the peripheral surface of the magnetized body 1 in a spiral shape.

着磁ヘッド16は、後に詳述するように、円筒形の被着磁体1の着磁面である周面に対向して接触又は近接する先端面を有し、先端面は、被着磁体1の周面に沿って円弧状に形成され、円弧状の先端面状には、所定パターンの導電線が配置される。所定パターンで延びて配置される。   As will be described in detail later, the magnetizing head 16 has a tip surface that is in contact with or close to the peripheral surface, which is the magnetized surface of the cylindrical magnetized body 1, and the tip surface is the magnetized body 1. Are formed in an arc shape along the peripheral surface, and a predetermined pattern of conductive lines is arranged on the arcuate tip surface shape. It is arranged extending in a predetermined pattern.

電源装置18は、着磁ヘッド16の上記先端面に収容される電線に着磁電流を与える装置であり、例えばサイリスタなどのスイッチング素子を用いたインバータ回路である。スイッチング素子のON/OFF周期を制御することで、任意の周波数の交番電流を得ることができる。   The power supply device 18 is a device that applies a magnetizing current to the electric wire accommodated in the tip surface of the magnetizing head 16, and is an inverter circuit using a switching element such as a thyristor, for example. By controlling the ON / OFF cycle of the switching element, an alternating current having an arbitrary frequency can be obtained.

制御手段20は、電源装置18を制御する制御回路21とその上位の全体制御装置22とを有する。制御回路21は、電源装置18の交番電流の周期を制御する回路であり、全体制御装置22は、エンコーダ14からのパルス信号を取得し、モータ12及び制御回路21を制御し、また、垂直駆動部17の移動速度を制御する。全体制御装置22は、例えばパーソナルコンピュータであり、所定の制御プログラムをCPUが実行することで各種制御が実行される。   The control means 20 includes a control circuit 21 that controls the power supply device 18 and an overall control device 22 that is a higher level thereof. The control circuit 21 is a circuit that controls the cycle of the alternating current of the power supply device 18, and the overall control device 22 acquires the pulse signal from the encoder 14, controls the motor 12 and the control circuit 21, and is driven vertically. The moving speed of the unit 17 is controlled. The overall control device 22 is, for example, a personal computer, and various controls are executed by the CPU executing a predetermined control program.

次に、着磁ヘッド16の構成を図面を参照しながら詳述する。   Next, the configuration of the magnetizing head 16 will be described in detail with reference to the drawings.

図2及び図3は、本実施の形態における着磁ヘッド16の構成例を示す図である。着磁ヘッド16は、例えばコバルト合金(例えばパーメンジュール)などの強磁性体で形成される角柱形状のコア2と、当該コア2の被着磁体1と対向する面(先端面)に配置される導電線3とを備えて構成される。導電線3は例えば銅線である。   2 and 3 are diagrams showing a configuration example of the magnetizing head 16 in the present embodiment. The magnetizing head 16 is disposed on a prismatic core 2 formed of a ferromagnetic material such as a cobalt alloy (for example, permendur) and a surface (tip surface) of the core 2 facing the magnetized body 1. And a conductive wire 3. The conductive wire 3 is, for example, a copper wire.

図2(a)、(b)、(c)はそれぞれコア2の底面図、正面図、側面図である。コア2の底面はコア2の被着磁体1に対向する先端面である。また、図3は、コア2の先端面に導電線3が配置された状態を示し、図3(b)は導電線3が配置されたコア2の先端面を示し、図3(a)は、図3(b)に示すコア2の先端面の中心線V−V線の断面図である。   2A, 2B, and 2C are a bottom view, a front view, and a side view of the core 2, respectively. The bottom surface of the core 2 is a front end surface of the core 2 that faces the magnetized body 1. 3 shows a state in which the conductive wire 3 is arranged on the tip surface of the core 2, FIG. 3 (b) shows a tip surface of the core 2 in which the conductive wire 3 is arranged, and FIG. FIG. 5 is a cross-sectional view taken along the center line VV of the distal end surface of the core 2 shown in FIG.

着磁ヘッド16は、例えばコバルト合金などの強磁性体で形成されるコア2と、当該コア2の被着磁体1と対向する面(先端面)に所定パターンで配置される導電線3とを備えて構成される。   The magnetizing head 16 includes, for example, a core 2 formed of a ferromagnetic material such as a cobalt alloy, and conductive wires 3 arranged in a predetermined pattern on a surface (tip surface) of the core 2 facing the magnetized body 1. It is prepared for.

コア2の先端部分は、根元部分と比べて幅狭に形成され、その先端面は、被着磁体1の周面に沿って円弧を形成する細長状の円弧面2aとなっており、6極着磁用の構成例として、中心角は一例として約120度である。磁気エンコーダによりアブソリュート角度を高精度に検出するには、磁気エンコーダの出力波形が歪みのないsin波形となる必要があるが、コア2の先端面を周面に沿った円弧形状とすることで、周方向の所定長さ範囲に対して、周面との間隔を等距離に保ち、一定強度で一定範囲を磁化することができ、歪みのない波形出力に寄与する。   The distal end portion of the core 2 is formed narrower than the root portion, and the distal end surface is an elongated arc surface 2a that forms an arc along the peripheral surface of the adherend 1 and has six poles. As an example of the configuration for magnetization, the central angle is about 120 degrees as an example. In order to detect the absolute angle with high accuracy by the magnetic encoder, the output waveform of the magnetic encoder needs to be a sin waveform without distortion, but by making the tip surface of the core 2 an arc shape along the peripheral surface, With respect to a predetermined length range in the circumferential direction, the distance to the peripheral surface can be kept at an equal distance, and the constant range can be magnetized with a constant strength, contributing to a waveform output without distortion.

円弧面2a上には、導電線3が配置される配置領域を形成するための位置決め手段としての凸部2b、2cが形成される。凸部2b、2cは、円弧面2aの中央部分で間隔をあけて、周方向に直列に配置され、円弧面2aの一端側から他端側に延びて導電線3を収容する3つの導電線配置領域A、B、Cを形成する。3つの配置領域A、B、Cは、円弧面2aが被着磁体1に対向して配置された場合に、被着磁体1の周方向に所定間隔で並列に配置され、且つ円弧面2aの一端側から他端側へ被着磁体1の回転軸に沿って形成される。   On the circular arc surface 2a, convex portions 2b and 2c are formed as positioning means for forming an arrangement region in which the conductive wire 3 is arranged. The convex portions 2b and 2c are arranged in series in the circumferential direction with a gap in the center portion of the arc surface 2a, and extend from one end side to the other end side of the arc surface 2a to accommodate the conductive wire 3 Arrangement regions A, B, and C are formed. The three arrangement regions A, B, and C are arranged in parallel at a predetermined interval in the circumferential direction of the adherend 1 when the arcuate face 2a is placed opposite the adherend 1 and the arcuate face 2a It is formed from one end side to the other end side along the rotation axis of the adherend 1.

円弧面2aの中央部分で対向する凸部2b、2cの端面に挟まれた領域に溝状の第2の配置領域Bが形成され、第2の配置領域Bの両側に、凸部2b、2cの端面と、円弧面2aの湾曲している端部とにより形成される溝状の第1の配置領域A、第3の配置領域Cが形成される。第1、第2及び第3の配置領域A、B及びCは、周面と垂直の方向に延び、図2(a)、(b)では、下から第2の配置領域B、第1の配置領域A、第3の配置領域Cの順に周方向に並列に配置される。   A groove-shaped second arrangement region B is formed in a region sandwiched between the end surfaces of the convex portions 2b and 2c facing each other at the central portion of the arcuate surface 2a, and the convex portions 2b and 2c are formed on both sides of the second arrangement region B. A groove-shaped first arrangement area A and third arrangement area C formed by the end face of the arc and the curved end of the arcuate surface 2a are formed. The first, second, and third arrangement regions A, B, and C extend in a direction perpendicular to the peripheral surface, and in FIGS. 2A and 2B, the second arrangement region B, the first The arrangement area A and the third arrangement area C are arranged in parallel in the circumferential direction.

コア2の根元部分には、図示されない着磁ヘッド保持装置に着磁ヘッド16を固定するためのネジ穴などが設けられ、コア2は、ねじにより着磁ヘッド保持装置に取り付けられる。着磁ヘッド保持装置は、着磁ヘッド16をX、Y、Z軸の3軸方向に位置決めするための既知のXYZステージである。   The root portion of the core 2 is provided with a screw hole or the like for fixing the magnetizing head 16 to a magnetizing head holding device (not shown), and the core 2 is attached to the magnetizing head holding device with a screw. The magnetized head holding device is a known XYZ stage for positioning the magnetized head 16 in the three-axis directions of the X, Y, and Z axes.

図4は、導電線3の配置パターンを示す図である。電源装置18から延びる導電線3は、コア2の短手長さ方向、すなわち、周方向に垂直となる方向における一端側において、中央の配置領域である第2の配置領域Bの延長線上から凸部2bの一端側の側面に沿うように折り曲げられて、第1の配置領域Aに配置されて円弧面2aの一端側から他端側に延び、第1の配置領域の他端側で凸部2bの他端側の側面に沿うように折り曲げられて、第2の配置領域Bに配置されて、第2の配置領域B内を他端側から一端側に延び、さらに、第2の配置領域Bの一端側で凸部2cの一端側の側面に沿うように折り曲げられて、第3の配置領域Cに配置されて円弧面の一端側から他端側に延び、第3の配置領域Cの他端側で、中央の第2の配置領域Bの延長線上に延びるように折り曲げられる。より具体的には、導電線3は、一端側における第1の配置領域Aの延長線上から折り曲げられて、順に、凸部2bの一端側の側面、第2の配置領域B、凸部2bの他端側の側面、第1の配置領域A、凸部2cの一端側の側面、第3の配置領域C、凸部2cの他端側の側面に沿って配置され、他端側の第1の配置領域Aの延長線上に延びる。この配置パターンにおいて、導電線3は、第1の配置領域Aでは、他端側から一端側に延び、第2の配置領域B及び第3の配置領域C、一端側から他端側に延び、第2の配置領域B及び第3の配置領域Cにおける導電線3に流れる電流の向きは、第1の配置領域Aにおける導電線3の電流の向きと反対となる。このように、凸部2bと凸部2cを取り囲むように導電線3が配置されるので、凸部2bと凸部2cに対向する隣接する周面領域は、1回の着磁動作において、それぞれ単位着磁領域として極性が異なって同時に磁化され、凸部を取り囲む導電線3の発生する四方からの磁界により強力に磁化される。磁気エンコーダの出力波形として見た場合、波形の歪みにつながる単位着磁領域の中心領域の磁束密度の落ち込みがなくなり、磁気エンコーダにおける歪みのないsin波形出力が得られる。   FIG. 4 is a diagram showing an arrangement pattern of the conductive lines 3. The conductive wire 3 extending from the power supply device 18 is projected from the extension line of the second arrangement region B which is the central arrangement region on one end side in the short length direction of the core 2, that is, the direction perpendicular to the circumferential direction. 2b is bent along the side surface on one end side, is arranged in the first arrangement region A and extends from one end side to the other end side of the arcuate surface 2a, and the convex portion 2b on the other end side of the first arrangement region. The second arrangement region B is bent along the side surface on the other end side, is arranged in the second arrangement region B, extends from the other end side to the one end side in the second arrangement region B, and is further arranged in the second arrangement region B. Is bent along the side surface on one end side of the convex portion 2c, is disposed in the third arrangement region C, extends from one end side to the other end side of the arcuate surface, and the other of the third arrangement region C. On the end side, it is bent so as to extend on an extension line of the second second arrangement region B. More specifically, the conductive wire 3 is bent from the extension line of the first arrangement region A on one end side, and in order, the side surface on one end side of the convex portion 2b, the second arrangement region B, and the convex portion 2b. It is arranged along the side surface on the other end side, the first arrangement region A, the side surface on one end side of the convex portion 2c, the third arrangement region C, the side surface on the other end side of the convex portion 2c, and the first on the other end side. It extends on the extended line of the arrangement area A. In this arrangement pattern, the conductive line 3 extends from the other end side to one end side in the first arrangement area A, the second arrangement area B and the third arrangement area C, extends from one end side to the other end side, The direction of the current flowing through the conductive line 3 in the second arrangement region B and the third arrangement region C is opposite to the direction of the current in the conductive line 3 in the first arrangement region A. As described above, since the conductive wire 3 is disposed so as to surround the convex portion 2b and the convex portion 2c, the adjacent peripheral surface regions facing the convex portion 2b and the convex portion 2c are respectively subjected to one magnetization operation. The unit magnetized regions are magnetized simultaneously with different polarities, and are strongly magnetized by the magnetic fields from the four directions generated by the conductive wires 3 surrounding the convex portion. When viewed as an output waveform of the magnetic encoder, a drop in the magnetic flux density in the central region of the unit magnetization region that leads to waveform distortion is eliminated, and a sin waveform output without distortion in the magnetic encoder is obtained.

コア2には、上述の配置パターンにより他端側に延びた導電線3を一端側に戻すための貫通孔2dが形成されている。貫通孔2dは、第1の配置領域Aに沿って、第1の配置領域Aの真下の位置に設けられる。図4で示した配置パターンによって円弧面2aの第3の配置領域Cの他端側から出た導電線3は、図3(a)に示すように、折り曲げられて、円弧面2aの他端側から一端側に貫通孔2d内を延び、円弧面2aの一端側から電源装置18に戻る。このとき、円弧面2a上の第1の配置領域Aを延びる導電線部分と、貫通孔2d内を延びる導電線部分を流れる電流の向きは同じである。従って、貫通孔2dを流れる電流によって発生する磁界も被着磁体1の着磁に寄与することから、貫通孔2dは、できるだけ円弧面2aに近い位置に形成され、好ましくは、第1の溝部の真下に隣接して設けられ、第1の配置領域Aの底部が貫通孔2dに連通していてもよい。もちろん、第1の溝部の底部が貫通孔2dに連通せずに、可能な限り第1の配置領域Aに近い真下位置に貫通孔2dが形成されてもよい。   The core 2 is formed with a through hole 2d for returning the conductive wire 3 extending to the other end side to the one end side according to the arrangement pattern described above. The through hole 2d is provided along the first arrangement area A at a position directly below the first arrangement area A. The conductive wire 3 coming out from the other end side of the third arrangement region C of the arc surface 2a according to the arrangement pattern shown in FIG. 4 is bent as shown in FIG. 3A, and the other end of the arc surface 2a is bent. The inside of the through hole 2d extends from the side to the one end side, and returns to the power supply device 18 from one end side of the arcuate surface 2a. At this time, the direction of the current flowing through the conductive line portion extending through the first arrangement region A on the circular arc surface 2a and the conductive line portion extending through the through hole 2d is the same. Accordingly, since the magnetic field generated by the current flowing through the through hole 2d also contributes to the magnetization of the magnetized body 1, the through hole 2d is formed as close to the arc surface 2a as possible, and preferably the first groove portion. It may be provided immediately below and the bottom of the first arrangement region A may communicate with the through hole 2d. Of course, the through hole 2d may be formed at a position directly below the first arrangement region A as much as possible without the bottom of the first groove portion communicating with the through hole 2d.

コア2の凸部2b、2c、貫通孔2d及びネジ穴などは機械加工により形成される。また、円弧面2a上に配置される導電線3を固定するために、コア2の円弧面2aの一端側と他端側より外側に出た導電線3を、例えばエポキシ樹脂などでコア2の側面に対して固定してもよい。   The convex portions 2b and 2c, the through hole 2d, the screw hole, and the like of the core 2 are formed by machining. Further, in order to fix the conductive wire 3 arranged on the circular arc surface 2a, the conductive wire 3 protruding outward from one end side and the other end side of the circular arc surface 2a of the core 2 is made of, for example, an epoxy resin or the like. You may fix with respect to a side surface.

次に、着磁方法について説明する。   Next, the magnetization method will be described.

着磁ヘッド16は、円弧面2aとの摩擦による円弧面2aの摩耗を避けるために、その先端面2aが被着磁体1にわずかに離間して対向するように位置決めされる。   The magnetizing head 16 is positioned so that the front end surface 2a faces the magnetized body 1 at a slight distance in order to avoid wear of the arc surface 2a due to friction with the arc surface 2a.

そして、全体制御装置22は、エンコーダ14からのパルス信号を取得し、パルス信号周期に同期して、被着磁体1が1回転中に、着磁する極数に対応する周波数の交番電流を発生するように、制御回路21に制御信号を送出し、制御回路21は、その制御信号に応じて電源装置18のスイッチング回路(インバータ回路)のスイッチ制御を行う。例えば、磁極が回転方向に垂直になるように(磁極を傾斜させずに)6極着磁する場合、1極あたりの回転角度は60度であり、全体制御装置22は、被着磁体1の周面が60度回転する時間に相当するパルス信号数をカウントし、当該パルス信号数をカウントする毎に、電流方向を反転させるように、制御回路21に制御信号を送出する。   Then, the overall control device 22 acquires the pulse signal from the encoder 14 and generates an alternating current having a frequency corresponding to the number of poles to be magnetized during one rotation of the magnetized body 1 in synchronization with the pulse signal cycle. As described above, a control signal is sent to the control circuit 21, and the control circuit 21 performs switch control of the switching circuit (inverter circuit) of the power supply device 18 in accordance with the control signal. For example, when 6 poles are magnetized so that the magnetic poles are perpendicular to the rotation direction (without tilting the magnetic poles), the rotation angle per pole is 60 degrees, and the overall control device 22 The number of pulse signals corresponding to the time for which the peripheral surface rotates 60 degrees is counted, and each time the number of pulse signals is counted, a control signal is sent to the control circuit 21 so as to reverse the current direction.

電源装置18から供給される交番電流は、着磁ヘッド16の導電線3を流れ、被着磁体1に極めて近い位置の円弧面2a上に配置された導電線3に流れる電流により発生する磁界により、被着磁体1は着磁される。   The alternating current supplied from the power supply device 18 flows through the conductive wire 3 of the magnetizing head 16 and is generated by a magnetic field generated by the current flowing through the conductive wire 3 disposed on the arc surface 2a located very close to the magnetized body 1. The magnetized body 1 is magnetized.

図5は、着磁ヘッド16と被着磁体1との配置を示す図である。6極着磁の例において、被着磁体1を60度ずつ回転させるタイミングで、交番電流を導電線3に流すことで、図5(a)、(b)、(c)に示すように、順次着磁が行われていく。   FIG. 5 is a diagram showing the arrangement of the magnetizing head 16 and the magnetized body 1. In the example of 6-pole magnetization, by passing an alternating current through the conductive wire 3 at the timing of rotating the magnetized body 1 by 60 degrees, as shown in FIGS. 5 (a), (b), and (c), Magnetization is performed sequentially.

本実施の形態における着磁方法では、着磁対象の被着磁体1を回転保持部10で保持し、モータ12を駆動させて、回転保持部10に固定された被着磁体1を回転させるとともに、着磁ヘッド16を所定速度で垂直駆動させ、被着磁体1の周面を螺旋状に着磁していき、周面上に回転軸に対して傾斜した磁極を形成する。   In the magnetization method in the present embodiment, the magnetized body 1 to be magnetized is held by the rotation holding unit 10 and the motor 12 is driven to rotate the magnetized body 1 fixed to the rotation holding unit 10. The magnetizing head 16 is vertically driven at a predetermined speed to magnetize the circumferential surface of the magnetized body 1 in a spiral shape, and a magnetic pole inclined with respect to the rotation axis is formed on the circumferential surface.

具体的には、被着磁体の周面を極数M(Mは2以上の自然数であって、例えば2、4、6、8及び10である)で多極着磁する場合に、着磁ヘッド16は垂直方向(下から上、又は上から下)に移動しながら、複数周回P(Pは2以上の自然数)以上回転させて、少なくともP×M回の着磁動作を行い、各周回毎に着磁位置を所定の中心角分ずらしていくことで、被着磁体1の回転軸に対して傾斜した磁極を形成する。着磁動作の回数は、必ずしもP×M回(即ちMの倍数回)に限らず、周回の途中で着磁動作が終了する場合、例えばP×M+1のような回数であってもよく、「少なくともP×M回」は、周回の途中で着磁動作が終了する場合の着磁回数を含む。   Specifically, when the peripheral surface of the magnetized body is multipolarized with the number of poles M (M is a natural number of 2 or more, for example, 2, 4, 6, 8, and 10), the magnetization is performed. While the head 16 moves in the vertical direction (from bottom to top or from top to bottom), the head 16 rotates at least P times (P is a natural number of 2 or more) and performs at least P × M times of magnetizing operation. By shifting the magnetization position by a predetermined central angle every time, a magnetic pole inclined with respect to the rotation axis of the magnetized body 1 is formed. The number of times of the magnetizing operation is not necessarily limited to P × M times (that is, a multiple of M). For example, when the magnetizing operation is completed in the course of the circulation, the number of times may be P × M + 1. “At least P × M times” includes the number of times of magnetization when the magnetization operation is completed in the middle of the circulation.

さらに、本実施の形態における着磁動作では、P×M回の着磁動作のうちのN(Nは1以上の自然数)回目の着磁動作により着磁された周面領域の回転軸高さ方向の半分を超える部分に重なるように、N+M回目の着磁動作を行い、そして、N回目の着磁位置に対して、N+M回目の着磁位置が回転軸方向高さ1mm変位あたり中心角12〜20度分ずれるように、N+M回目の着磁動作を行う。図6に中心角のズレ分(スキュー角度)φを示す。着磁ヘッド16の回転軸方向の変位(図の表裏方向)1mmあたり、着磁位置がスキュー角度φ分ずらされ、回転軸に対して傾斜した着磁が行われる。   Further, in the magnetization operation in the present embodiment, the height of the rotation axis of the peripheral surface region magnetized by the N (N is a natural number of 1 or more) magnetization operation among the P × M magnetization operations. The N + M-th magnetization operation is performed so as to overlap with a portion exceeding half of the direction, and the N + M-th magnetization position is a central angle 12 per 1 mm displacement in the rotational axis direction height with respect to the N-th magnetization position. The N + M-th magnetization operation is performed so as to be shifted by ˜20 degrees. FIG. 6 shows the deviation (skew angle) φ of the center angle. The magnetizing position is shifted by a skew angle φ per 1 mm of displacement in the rotation axis direction of the magnetizing head 16 (front and back direction in the figure), and magnetization tilted with respect to the rotation axis is performed.

図7は、本実施の形態における着磁動作を説明する図である。図7では、平面展開された被着磁体1の周面上に形成される磁極領域(N極領域、S極領域)を示し、一例として、4極着磁において、N+M回目の着磁よる単位着磁領域が、N回目の単位着磁領域の回転軸高さ方向の2/3部分に重なり(重なり合い率66.7%)、さらに、N回目の着磁位置に対して、N+M回目の着磁位置が回転軸方向高さ1mm変位あたり中心角15度分ずれる例を示す。1回の着磁動作で形成される各単位着磁領域の高さhを1mmとすると、重なり合い率66.7%であることから、磁極ヘッド16は3周で1mm変位するので、1周毎にずれる中心角は5度(15/3)である。従って、1周を(360+5)度とし、回転角(360+5)/4度の間隔で極性を変化させる。   FIG. 7 is a diagram for explaining the magnetizing operation in the present embodiment. FIG. 7 shows magnetic pole regions (N-pole region and S-pole region) formed on the circumferential surface of the magnetized body 1 developed in a plane. As an example, in quadrupole magnetization, a unit by N + M-th magnetization is shown. The magnetization region overlaps the 2/3 portion of the N-th unit magnetization region in the height direction of the rotation axis (overlap ratio 66.7%), and further, the N + M-th magnetization with respect to the N-th magnetization position. An example in which the magnetic position is deviated by a central angle of 15 degrees per 1 mm displacement in the rotational axis direction height is shown. If the height h of each unit magnetized region formed by one magnetizing operation is 1 mm, the overlap ratio is 66.7%. Therefore, the magnetic pole head 16 is displaced by 1 mm in three rounds. The center angle shifted is 5 degrees (15/3). Accordingly, one round is set to (360 + 5) degrees, and the polarity is changed at intervals of the rotation angle (360 + 5) / 4 degrees.

着磁ヘッド16における導電線3の配置パターンにより、一回の着磁動作で隣接するN極領域とS極領域の両方を形成することができるが、図7では、一方の領域に着目して、その着磁過程について説明する。   Depending on the arrangement pattern of the conductive wires 3 in the magnetizing head 16, it is possible to form both the N-pole region and the S-pole region adjacent to each other by one magnetizing operation. In FIG. The magnetization process will be described.

まず、1回目の着磁において、周面の所定領域(例えば、最下部)に、N極領域が形成される。電流方向が切り替わる2回目の着磁において、1回目のN極領域に隣接して、S極領域が形成される。このS極領域は、1回目の着磁によるN極領域よりも回転軸高さ方向にずれて形成される。1回の着磁における回転軸高さ方向の変位量は、(1周の変位量0.33mm/4)ある。同様に、3回目の着磁において、2回目のS極領域に隣接して、N極領域が形成される。このN極領域は、2回目の着磁によるN極領域よりも回転軸高さ方向にずれて形成される。同様に、4回目の着磁において、3回目のN極領域に隣接して、S極領域が形成される。このS極領域は、3回目の着磁によるS極領域よりも回転軸高さ方向にずれて形成される。   First, in the first magnetization, an N-pole region is formed in a predetermined region (for example, the lowermost portion) on the peripheral surface. In the second magnetization in which the current direction is switched, an S pole region is formed adjacent to the first N pole region. This S pole region is formed with a shift in the height direction of the rotation axis from the N pole region by the first magnetization. The displacement amount in the height direction of the rotation axis in one magnetization is (displacement amount of one rotation 0.33 mm / 4). Similarly, in the third magnetization, an N-pole region is formed adjacent to the second S-pole region. This N-pole region is formed with a shift in the height direction of the rotation axis from the N-pole region formed by the second magnetization. Similarly, in the fourth magnetization, an S pole region is formed adjacent to the third N pole region. This S pole region is formed with a shift in the height direction of the rotation axis from the S pole region by the third magnetization.

次の5回目からの着磁は、2周目の着磁動作である。5回目の着磁によるN極領域は、1回目のN極領域の回転軸高さ方向の2/3部分に重なり、且つ1回目のN極領域に対して回転角5度ずれて形成される。6〜8回目の着磁による着磁領域も、1周目の2〜4回目の着磁領域に対して、回転軸高さ方向の2/3部分に重なり、且つ2〜4回目の着磁領域に対してそれぞれ回転角5度ずれて形成される。   The next 5th magnetization is the 2nd round magnetization operation. The N-pole region formed by the fifth magnetization is formed so as to overlap the 2/3 portion of the first N-pole region in the height direction of the rotation axis and is shifted by 5 degrees with respect to the first N-pole region. . The magnetization region by the sixth to eighth magnetizations overlaps the 2/3 portion in the height direction of the rotation axis with respect to the second to fourth magnetization regions in the first round, and the second to fourth magnetizations. Each region is formed with a rotation angle shifted by 5 degrees.

9〜12回目の着磁は3周目の着磁動作であり、それぞれ2周目の着磁による着磁領域の回転軸高さ方向の2/3部分に重なり、且つ2週目の5〜8回目の着磁領域に対してそれぞれ回転角5度ずれて形成される。   The 9th to 12th magnetizations are magnetization operations on the 3rd round, and overlap each 2/3 portion in the direction of the rotation axis height of the magnetization area by the magnetization on the 2nd round. They are formed with a rotation angle shifted by 5 degrees with respect to the eighth magnetized region.

さらに、13回目からは着磁は4周目の着磁動作である。4周目の着磁領域は、1周目の着磁に対して1mm変位した位置となり、1周目の着磁領域に対して中心角15度ずれて形成される。   Furthermore, from the 13th time, the magnetization is the magnetization operation of the fourth round. The fourth-round magnetized region is located at a position displaced by 1 mm with respect to the first-round magnetized region and is formed with a center angle shifted by 15 degrees with respect to the first-round magnetized region.

このように、単位着磁領域を重ね合わせ、且つ中心角をずらしながら上記の着磁動作を周面全域にわたって行うことで、被着磁体1の周面には、回転軸に対して傾斜した磁極領域が形成される。図8に、被着磁体1の周面に形成された磁極領域(図8(a))及びその平面展開図(図8(b))を示す。   In this way, by performing the above magnetization operation over the entire circumferential surface while overlapping the unit magnetization regions and shifting the center angle, the magnetic poles inclined with respect to the rotation axis are formed on the circumferential surface of the magnetized body 1. A region is formed. FIG. 8 shows a magnetic pole region (FIG. 8A) formed on the peripheral surface of the adherend 1 and a plan development view thereof (FIG. 8B).

図9は、本実施の形態における別の着磁動作を説明する図である。図9に示す着磁動作を図7の着磁動作と比較すると、図7の着磁動作における被着磁体1と着磁ヘッド16との回転軸方向のリニアな相対的移動は連続的に行われるの対して、図9に示す着磁動作における両者の相対的移動は1周毎に間欠的に行われる。着磁動作が一周行われる毎に被着磁体1と着磁ヘッド16とを回転軸方向に相対移動させる。従って、同一周回における単位着磁領域の回転軸方向高さは同一である。図9の着磁動作においても、図8に示すような回転軸に対して傾斜した磁極領域を形成することができる。   FIG. 9 is a diagram for explaining another magnetization operation in the present embodiment. When the magnetization operation shown in FIG. 9 is compared with the magnetization operation shown in FIG. 7, the linear relative movement of the magnetized body 1 and the magnetization head 16 in the rotation axis direction in the magnetization operation shown in FIG. On the other hand, the relative movement of both in the magnetization operation shown in FIG. 9 is intermittently performed every round. Each time the magnetizing operation is performed once, the magnetized body 1 and the magnetizing head 16 are relatively moved in the rotation axis direction. Therefore, the height in the rotation axis direction of the unit magnetized region in the same turn is the same. Also in the magnetization operation of FIG. 9, a magnetic pole region inclined with respect to the rotation axis as shown in FIG. 8 can be formed.

磁気エンコーダによりアブソリュート角度を高精度に検出するには、磁気エンコーダの出力波形が歪みのないsin波形となる必要がある。   In order to detect the absolute angle with high accuracy by the magnetic encoder, the output waveform of the magnetic encoder needs to be a sin waveform without distortion.

本発明において、発明者は、着磁ヘッドに交番電流を供給しながら、被着磁体の回転軸に沿って、着磁ヘッド又は被着磁体を相対的に移動させ、且つ、被着磁体の回転軸を中心に、被着磁体又は着磁ヘッドを相対的にP回(Pは2以上の自然数)以上回転させて、少なくともP×M回の着磁動作を行う着磁動作において、P×M回の着磁動作のうちのN(Nは1以上の自然数)回目の着磁動作により着磁された周面領域の回転軸高さ方向の半分を超える部分に重なるように、N+M回目の着磁動作を行い、さらに、N回目の着磁位置に対して、N+M回目の着磁位置が回転軸方向高さ1mm変位あたり中心角12〜20度分ずれるように、N+M回目の着磁動作を行うことで、アブソリュート角度を高精度に検出可能なレベルである磁気エンコーダの出力波形の歪み率(理想的なsin波形に対する歪み率)を2%以内、且つ単ピッチ精度2%以内に抑えることを実現した。波形歪み率2%以内且つ単ピッチ精度2%以内の条件は、既存の実用化されているレゾルバによるアブソリュート角度の検出精度に相当するように設定された条件である。   In the present invention, the inventor relatively moves the magnetized head or the magnetized body along the rotation axis of the magnetized body while supplying an alternating current to the magnetized head, and rotates the magnetized body. In a magnetizing operation in which at least P × M times of magnetizing operation is performed by rotating the magnetized body or the magnetizing head relative to the axis about P times (P is a natural number of 2 or more) or more, P × M N + M-th magnetization so as to overlap with a portion of the peripheral surface region that is magnetized by N-th (N is a natural number of 1 or more) of the first-time magnetization operations, and more than half of the rotational axis height direction. In addition, the N + M-th magnetization operation is performed so that the N + M-th magnetization position is shifted from the N-th magnetization position by a central angle of 12 to 20 degrees per 1 mm displacement in the rotational axis direction with respect to the N-th magnetization position. By doing so, it is possible to detect the absolute angle with high accuracy. It is possible to suppress the distortion rate of the output waveform of the encoder (distortion rate with respect to the ideal sine waveform) to within 2% and within a single pitch accuracy of 2%. The condition that the waveform distortion rate is within 2% and the single pitch accuracy is within 2% is a condition set so as to correspond to the detection accuracy of the absolute angle by an existing practically used resolver.

以下の表1は、6極着磁において、回転軸方向高さ1mm変位あたりの中心角のズレ分(図6のスキュー角度φ)20度で着磁された被着磁体の重なり合い率に対応する磁気特性を示す。   Table 1 below corresponds to the overlap ratio of the magnetized bodies magnetized with a deviation of the central angle (skew angle φ in FIG. 6) of 20 degrees per displacement of 1 mm in height in the rotation axis direction in 6-pole magnetization. Showing magnetic properties.

Figure 0005615892
Figure 0005615892

上述の着磁方法により着磁された被着磁体(永久磁石)からの磁気出力をホール素子により検出した。重なり合い率は、上述のように、回転軸高さ方向における各着磁領域の重なり度合いである。単ピッチ精度は、各磁極のピッチの誤差比率である。測定ギャップは、被着磁体とその磁気出力を検出するホール素子との距離である。測定ギャップが小さいほど、より大きな検出出力(平均磁束密度)を得ることができる。   The magnetic output from the magnetized body (permanent magnet) magnetized by the above-described magnetization method was detected by a Hall element. As described above, the overlap rate is the degree of overlap of each magnetized region in the height direction of the rotation axis. Single pitch accuracy is the error ratio of the pitch of each magnetic pole. The measurement gap is the distance between the adherend and the Hall element that detects the magnetic output. As the measurement gap is smaller, a larger detection output (average magnetic flux density) can be obtained.

表1によれば、重なり合い率が0〜50%以下の範囲においては、いずれの測定ギャップにおいても、波形歪み率及び単ピッチ精度ともに2%を超える。一方、50%を超える55%の重なり合い率では、測定ギャップ1.5mm〜2.25mmの範囲内において、波形歪み率及び単ピッチ精度ともに2%以内となり、また、平均磁束密度も10mTを超える十分大きな値が測定された。また、重なり合い率66.7%においても、測定ギャップ1mm〜2mmの範囲内において、波形歪み率及び単ピッチ精度ともに2%以内となり、また、平均磁束密度も10mTを超える十分大きな値が測定された。また、測定ギャップ2.25mmにおいても、単ピッチ精度は2.30%とわずかに2%を超えるものの、波形歪み率は、0.59%と極めて良好な測定結果が得られた。   According to Table 1, when the overlap rate is in the range of 0 to 50% or less, both the waveform distortion rate and the single pitch accuracy exceed 2% in any measurement gap. On the other hand, at an overlap rate of 55% exceeding 50%, the waveform distortion rate and single pitch accuracy are both within 2% within the measurement gap of 1.5 mm to 2.25 mm, and the average magnetic flux density is sufficient to exceed 10 mT. Large values were measured. Further, even when the overlap rate was 66.7%, both the waveform distortion rate and the single pitch accuracy were within 2% within the measurement gap range of 1 mm to 2 mm, and the average magnetic flux density was sufficiently large to exceed 10 mT. . Even at a measurement gap of 2.25 mm, the single pitch accuracy was 2.30%, slightly exceeding 2%, but the waveform distortion rate was 0.59%, which was a very good measurement result.

表1の結果から、重なり合い率を大きくするほど、波形歪み率及び単ピッチ精度を小さくなる傾向が明らかであり、スキュー角20度において、重なり合い率を50%超とすることで、磁気エンコーダの特性として波形歪み率2%以内且つ単ピッチ精度2%以内の条件を満たす被着磁体を得られた。   From the results in Table 1, it is clear that the waveform distortion rate and the single pitch accuracy tend to decrease as the overlap rate increases. By setting the overlap rate to more than 50% at a skew angle of 20 degrees, the characteristics of the magnetic encoder can be obtained. As a result, it was possible to obtain an adherend having a waveform distortion rate of 2% or less and a single pitch accuracy of 2% or less.

表2は、6極着磁において、重なり合い率66.7%で着磁された被着磁体のスキュー角に対応する磁気特性を示す。また、表3は、4極着磁において、重なり合い率66.7%で着磁された被着磁体のスキュー角度に対応する磁気特性を示す。   Table 2 shows the magnetic characteristics corresponding to the skew angle of the magnetized body magnetized with the overlapping rate of 66.7% in the 6-pole magnetization. Table 3 shows the magnetic characteristics corresponding to the skew angle of the magnetized body magnetized with the overlapping rate of 66.7% in the quadrupole magnetization.

Figure 0005615892
Figure 0005615892

Figure 0005615892
Figure 0005615892

表2及び表3において、スキュー角度を小さくするほど、波形歪み率が大きくなることが明らかとなり、波形歪み率2%以内を達成したスキュー角度は、12度〜20度の範囲であった。また、単ピッチ精度については、スキュー角度を小さくするほど単ピッチ精度が小さくなり、スキュー角度12度未満であっても、単ピッチ精度2%以内を達成するものの、上述したように、波形歪み率2%以内を達成しなかった。   In Tables 2 and 3, it was found that the smaller the skew angle, the larger the waveform distortion rate. The skew angle at which the waveform distortion rate was within 2% was in the range of 12 degrees to 20 degrees. As for the single pitch accuracy, the smaller the skew angle, the smaller the single pitch accuracy, and even if the skew angle is less than 12 degrees, the single pitch accuracy is within 2%. Within 2% was not achieved.

上記の結果から、重なり合い率50%超、回転軸方向の変位1mmあたりのスキュー角度12〜20度となる傾斜着磁を行うことで、永久磁石式磁気エンコーダによりアブソリュート角度を高精度に検出することが実現される。   Based on the above results, the absolute angle can be detected with high accuracy by the permanent magnet type magnetic encoder by performing the gradient magnetization exceeding the overlap rate of 50% and the skew angle of 12 to 20 degrees per 1 mm displacement in the rotation axis direction. Is realized.

なお、アブソリュート角度を検出するには、sin波形出力とcos波形出力の2種類の出力を得る必要があるが、スキュー角度に応じて、2つのホール素子を回転軸方向に沿って所定間隔で配置することで、位相が90度ずれたsin波形出力とcos波形出力を得ることができる。また、2つのホール素子の間隔が予め決まっている構成において、その間隔に合わせて、位相が90度ずれたsin波形出力とcos波形出力となるようにスキュー角度を決定し、そのスキュー角度となるように着磁動作を行うことで、正確な位相差90度の両波形出力を得られる。   In order to detect the absolute angle, it is necessary to obtain two types of outputs, a sin waveform output and a cosine waveform output, but two Hall elements are arranged at predetermined intervals along the rotation axis direction according to the skew angle. By doing so, a sin waveform output and a cos waveform output whose phases are shifted by 90 degrees can be obtained. In a configuration in which the interval between the two Hall elements is determined in advance, the skew angle is determined so that the sin waveform output and the cosine waveform output are shifted by 90 degrees in accordance with the interval, and the skew angle is obtained. By performing the magnetizing operation in this way, it is possible to obtain both waveform outputs with an accurate phase difference of 90 degrees.

1:被着磁体、2:コア、2a:先端面(円弧面)、2b:凸部、2c:凸部、2d:貫通孔、3:導電線、10:回転保持部、12:モータ、14:エンコーダ、16:着磁ヘッド、17:垂直駆動部、18:電源装置、20:制御手段、21:制御回路、22:全体制御装置   1: magnetized body, 2: core, 2a: tip surface (arc surface), 2b: convex portion, 2c: convex portion, 2d: through hole, 3: conductive wire, 10: rotation holding portion, 12: motor, 14 : Encoder, 16: Magnetizing head, 17: Vertical drive unit, 18: Power supply device, 20: Control means, 21: Control circuit, 22: Overall control device

Claims (3)

円筒状の被着磁体の周面に対向する位置に着磁ヘッドを配置し、前記被着磁体の周面を極数M(Mは2以上の自然数)で多極着磁する着磁方法において、
前記着磁ヘッドに交番電流を供給しながら、前記被着磁体の回転軸に沿って、前記着磁ヘッド又は前記被着磁体を相対的に移動させ、且つ、前記被着磁体の回転軸を中心に、前記被着磁体又は前記着磁ヘッドを相対的にP回(Pは2以上の自然数)以上回転させて、少なくともP×M回の着磁動作を行い、
P×M回の着磁動作のうちのN(Nは1以上の自然数)回目の着磁動作により着磁された周面領域の周方向に隣接した周面領域にN+1回目の着磁動作を行い、
P×M回の着磁動作のうちのN(Nは1以上の自然数)回目の着磁動作により着磁された周面領域の回転軸高さ方向の半分を超える部分に重なるように、N+M回目の着磁動作を行い、
N回目の着磁位置に対して、N+M回目の着磁位置が回転軸方向高さ1mm変位あたり中心角12〜20度分ずれるように、N+M回目の着磁動作を行うことを特徴とする着磁方法。
In a magnetizing method in which a magnetizing head is arranged at a position facing a circumferential surface of a cylindrical magnetized body, and the circumferential surface of the magnetized body is multipolarized with the number of poles M (M is a natural number of 2 or more). ,
While supplying an alternating current to the magnetized head, the magnetized head or the magnetized body is relatively moved along the rotation axis of the magnetized body, and the rotation axis of the magnetized body is centered. Further, the magnetized body or the magnetized head is relatively rotated P times (P is a natural number of 2 or more), and at least P × M times of magnetizing operation is performed.
The N + 1th magnetization operation is performed on the circumferential surface area adjacent to the circumferential direction of the circumferential surface region magnetized by the N (N is a natural number of 1 or more) magnetization operation among the P × M magnetization operations. Done
N + M so as to overlap with a portion of the peripheral surface region magnetized by the Nth (N is a natural number of 1 or more) magnetization operation of P × M times and exceeding half of the rotational axis height direction. Perform the second magnetizing operation,
The N + M-th magnetization operation is performed such that the N + M-th magnetization position is shifted by a center angle of 12 to 20 degrees per displacement of 1 mm in height in the rotation axis direction with respect to the N-th magnetization position. Magnetic method.
円筒形の被着磁体の周面を周方向に極性が交互に変化するよう多極着磁する着磁装置において、
被着磁体の周面に対向して接触又は近接し、且つ前記周面に沿った円弧面を形成する先端部を有するコアを有し、前記円弧面に当該円弧面の一端側から他端側に延びる導電線を位置決めして配置する位置決め手段が設けられ、前記円弧面の一端側から他端側への方向が周方向に垂直となるように配置される着磁ヘッドと、
前記着磁ヘッドの円弧面が前記被着磁体の周方向に相対的に回転又は移動し、且つ前記被着磁体の回転軸方向に沿って移動するように、前記被着磁体又は前記着磁ヘッドを回転又は移動させる駆動部と、
前記駆動部により前記被着磁体又は前記着磁ヘッドを回転又は移動させながら、前記導電線に交番電流を供給する電源とを備え
前記被着磁体の周面を極数M(Mは2以上の自然数)で多極着磁する際に、前記着磁ヘッドに交番電流を供給しながら、前記駆動部は、前記被着磁体の回転軸に沿って、前記着磁ヘッド又は前記被着磁体を相対的に移動させ、且つ、前記被着磁体の回転軸を中心に、前記被着磁体又は前記着磁ヘッドを相対的にP回(Pは2以上の自然数)以上回転させて、少なくともP×M回の着磁動作を行い、
P×M回の着磁動作のうちのN(Nは1以上の自然数)回目の着磁動作により着磁された周面領域の周方向に隣接した周面領域にN+1回目の着磁動作を行い、
P×M回の着磁動作のうちのN(Nは1以上の自然数)回目の着磁動作により着磁された周面領域の回転軸高さ方向の半分を超える部分に重なるように、N+M回目の着磁動作を行い、
N回目の着磁位置に対して、N+M回目の着磁位置が回転軸方向高さ1mm変位あたり中心角12〜20度分ずれるように、N+M回目の着磁動作を行うことを特徴とする着磁装置。
In a magnetizing apparatus that magnetizes multiple poles so that the polarity alternately changes in the circumferential direction on the circumferential surface of a cylindrical magnetized body,
A core having a tip part that forms an arcuate surface along the peripheral surface and is in contact with or close to the peripheral surface of the adherend, and the other end side from the arcuate surface to the arcuate surface Positioning means for positioning and arranging the conductive wire extending in the direction, and a magnetizing head arranged so that a direction from one end side to the other end side of the arc surface is perpendicular to the circumferential direction;
The magnetized body or the magnetized head so that the arc surface of the magnetized head rotates or moves relatively in the circumferential direction of the magnetized body and moves along the rotation axis direction of the magnetized body. A drive unit for rotating or moving
A power supply for supplying an alternating current to the conductive wire while rotating or moving the magnetized body or the magnetized head by the driving unit ;
When the peripheral surface of the magnetized body is multipolar magnetized with the number of poles M (M is a natural number of 2 or more), the drive unit supplies the alternating current to the magnetized head, The magnetized head or the magnetized body is relatively moved along the rotation axis, and the magnetized body or the magnetized head is relatively moved P times around the axis of rotation of the magnetized body. (P is a natural number of 2 or more) and at least P × M times of magnetization operation,
The N + 1th magnetization operation is performed on the circumferential surface area adjacent to the circumferential direction of the circumferential surface region magnetized by the N (N is a natural number of 1 or more) magnetization operation among the P × M magnetization operations. Done
N + M so as to overlap with a portion of the peripheral surface region magnetized by the Nth (N is a natural number of 1 or more) magnetization operation of P × M times and exceeding half of the rotational axis height direction. Perform the second magnetizing operation,
The N + M-th magnetization operation is performed such that the N + M-th magnetization position is shifted by a center angle of 12 to 20 degrees per displacement of 1 mm in height in the rotation axis direction with respect to the N-th magnetization position. Magnetic device.
請求項において、
前記着磁ヘッドの前記位置決め手段は、それぞれ前記円弧面の一端側から他端側に直線状に延び且つ極性が変化する方向に所定間隔で並列に配置される第1の配置領域、第2の配置領域及び第3の配置領域を前記円弧面に形成し、
前記導電線は、前記円弧面の一端側において、前記第2の配置領域の延長線上から所定角度折り曲げられて前記第1の配置領域に配置され、前記第1の配置領域に沿って前記円弧面の一端側から他端側へ延び、前記円弧面の他端側で逆方向に折り曲げられ、前記第2の配置領域に沿って前記円弧面の他端側から一端側へ延び、前記円弧面の一端側でさらに逆方向に折り曲げられ、前記第3の配置領域に沿って前記円弧面の一端側から他端側へ延び、前記第3の配置領域の他端側で前記第2の配置領域の延長線上に延びるように折り曲げられて配置されることを特徴とする着磁装置。
In claim 2 ,
The positioning means of the magnetizing head includes a first arrangement area, a second arrangement area, which extends linearly from one end side to the other end side of the arc surface and is arranged in parallel at predetermined intervals in a direction in which the polarity changes. Forming an arrangement area and a third arrangement area on the arc surface;
The conductive wire is bent at a predetermined angle from an extension line of the second arrangement region on one end side of the arc surface and arranged in the first arrangement region, and the arc surface along the first arrangement region Extending from one end side to the other end side, bent in the opposite direction on the other end side of the arc surface, extending from the other end side of the arc surface to the one end side along the second arrangement region, Further bent in the opposite direction on one end side, extends from one end side to the other end side of the arc surface along the third arrangement area, and the second arrangement area on the other end side of the third arrangement area. A magnetizing device, wherein the magnetizing device is arranged to be bent so as to extend on an extension line.
JP2012274445A 2012-12-17 2012-12-17 Magnetization method and apparatus Active JP5615892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012274445A JP5615892B2 (en) 2012-12-17 2012-12-17 Magnetization method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274445A JP5615892B2 (en) 2012-12-17 2012-12-17 Magnetization method and apparatus

Publications (2)

Publication Number Publication Date
JP2014120600A JP2014120600A (en) 2014-06-30
JP5615892B2 true JP5615892B2 (en) 2014-10-29

Family

ID=51175198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274445A Active JP5615892B2 (en) 2012-12-17 2012-12-17 Magnetization method and apparatus

Country Status (1)

Country Link
JP (1) JP5615892B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018049871A (en) * 2016-09-20 2018-03-29 Ntn株式会社 Magnetization device of magnetic encoder and magnetization method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012331A (en) * 1998-06-25 2000-01-14 Sumitomo Metal Mining Co Ltd Method and apparatus for magnetizing
JP2000114042A (en) * 1998-10-07 2000-04-21 Fuji Xerox Co Ltd Magnetizing method
JP4846863B2 (en) * 2010-05-27 2011-12-28 磁化発電ラボ株式会社 Magnetizing apparatus and magnetizing head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018049871A (en) * 2016-09-20 2018-03-29 Ntn株式会社 Magnetization device of magnetic encoder and magnetization method
WO2018056256A1 (en) * 2016-09-20 2018-03-29 Ntn株式会社 Magnetic encoder magnetizing device and magnetizing method

Also Published As

Publication number Publication date
JP2014120600A (en) 2014-06-30

Similar Documents

Publication Publication Date Title
JP6410732B2 (en) Integrated multi-turn absolute position sensor for multi-pole count motors
KR101597639B1 (en) Absolute encoder device and motor
EP1099092B1 (en) Brushless electric motor with two perpendicular Hall transducers
EP1902287B1 (en) An apparatus for magnetizing a magnetizable element
CN106104211A (en) Magnetic-type position detecting device, magnetic-type method for detecting position
EP2843825B1 (en) Motor controller
JP2015114209A (en) Encoder and electric machinery
JP2016090243A (en) Magnetic type position detection device
JP5201493B2 (en) Position detection device and linear drive device
JP2007225536A (en) Device for detecting rotary motion
JP2009077500A (en) Motor
JP5615892B2 (en) Magnetization method and apparatus
JP4900838B2 (en) Position detection device and linear drive device
JPH11233338A (en) Multipolar magnetic ping
TW201524089A (en) Linear-rotary actuator and control method thereof
JP2015175762A (en) Encoder, electromechanical device, robot, and railway vehicle
JP4846863B2 (en) Magnetizing apparatus and magnetizing head
CN112539770B (en) Magnetic position sensor system
CN104280697B (en) For magnet sensor arrangement or the microtechnology component and its manufacturing method of magnetic actuator
JP2008014954A (en) Magnetic sensor
JP2015114208A (en) Encoder and electric machinery
JP2020537152A (en) Electromagnetic measurement system for measuring distances and angles using the magnetic impedance effect
JPH07174583A (en) Magnetic sensor and motor with mounted magnetic sensor
Kowalewski et al. An inexpensive Wiegand-sensor-based rotary encoder without rotating magnets for use in electrical drives
CN105423995A (en) Separation type round inductosyn having new structure sensing member

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140910

R150 Certificate of patent or registration of utility model

Ref document number: 5615892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250