JP2001041768A - Magnetic potentiometer - Google Patents

Magnetic potentiometer

Info

Publication number
JP2001041768A
JP2001041768A JP11216453A JP21645399A JP2001041768A JP 2001041768 A JP2001041768 A JP 2001041768A JP 11216453 A JP11216453 A JP 11216453A JP 21645399 A JP21645399 A JP 21645399A JP 2001041768 A JP2001041768 A JP 2001041768A
Authority
JP
Japan
Prior art keywords
magnetic
substrate
potentiometer
detection element
magnetic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11216453A
Other languages
Japanese (ja)
Inventor
Yoshihiro Tsuboi
義博 坪井
Atsushi Kawamoto
淳 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11216453A priority Critical patent/JP2001041768A/en
Publication of JP2001041768A publication Critical patent/JP2001041768A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PROBLEM TO BE SOLVED: To stabilize with high accuracy an output signal corresponding to a rotational angle amount or a linear movement amount by constituting a magnetic member of a permanent magnet magnetized in a single pole style in a direction opposite to a magnetic detection element, and regularly changing an area of the magnetic member opposite to the magnetic detection element along a relative movement direction. SOLUTION: In the case of a rotary potentiometer, the shape of a magnetic member 1a is formed in a substantially spiral style such that it is formed on a substrate 2a of a disk shape along a circle corresponding to locii 3a of relative movement of a magnetic detection element 5 so that each distance (h) between opposite ends on the circle may be equal and changed linearly 3a of relative movement of a magnetic detection element 5. The substrate 2a with such a substantially spiral magnetic member 1a is supported so as to be rotatable with a shaft 4 fixed at an axis thereof, and the magnetic detection element 5 is positioned at a specified interval from the substrate 2a in opposition to the member 1a. The rotary potentiometer is constructed in this way.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、計測器、電気機
器、電気機械等などの回転角度量や直線移動量を検出す
る磁気式ポテンショメータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic potentiometer for detecting a rotation angle amount and a linear movement amount of a measuring instrument, an electric device, an electric machine or the like.

【0002】[0002]

【従来の技術】一般的に用いられている接触型のポテン
ショメータは、エポキシ樹脂などの絶縁性基板上にカー
ボン系抵抗ペーストを印刷し、焼成固化させた抵抗体基
板と、該基板に接して相対運動をする接触端子とで構成
されている。この接触型ポテンショメータの場合、カー
ボン抵抗体と接触端子との間に適当な潤滑剤を供給して
接触抵抗を低下させ、接触端子によるカーボン抵抗体表
面のダメージの低減を図っている。
2. Description of the Related Art A contact-type potentiometer generally used is a method in which a carbon-based resistive paste is printed on an insulating substrate such as an epoxy resin and then fired and solidified. And a moving contact terminal. In the case of this contact potentiometer, an appropriate lubricant is supplied between the carbon resistor and the contact terminal to reduce the contact resistance, thereby reducing the damage of the carbon resistor surface by the contact terminal.

【0003】一方、磁気信号を利用した非接触型のポテ
ンショメータとしては、磁気検出素子に対向させて多極
着磁させた永久磁石を相対的に移動可能に配置したポテ
ンショメータがある。この磁気式ポテンショメータで
は、多極着磁した永久磁石の回転や直線移動によって磁
気抵抗素子に加わる磁束が変化し、この磁束の変化によ
り正弦波形の出力が得られるようになっている。しか
し、多極着磁するためには、移動する磁性部材と同期さ
せてコイルの電流を交番させ、多数のN極とS極を交互
に着磁する必要があり、極めて面倒で非効率的であっ
た。
On the other hand, as a non-contact type potentiometer utilizing a magnetic signal, there is a potentiometer in which a multi-polarized permanent magnet is disposed so as to be relatively movable, facing a magnetic detecting element. In this magnetic potentiometer, the magnetic flux applied to the magnetoresistive element changes due to the rotation or linear movement of the multipolar magnetized permanent magnet, and a sine waveform output is obtained by the change in the magnetic flux. However, in order to perform multi-pole magnetization, it is necessary to alternate the current of the coil in synchronization with the moving magnetic member and alternately magnetize a large number of N poles and S poles, which is extremely troublesome and inefficient. there were.

【0004】このような磁気式ポテンショメータの代表
例として、例えば電気音響(株)から市販されているポ
テンショメータLP−18Sがある。このLP−18S
は、非磁性シャフトの先端に多極着磁された永久磁石を
備え、この永久磁石に対向して磁気抵抗素子が2個所定
の角度で設置されている。また、磁気抵抗素子の背面に
は対向ヨークが設けられ、この対向ヨークと前記永久磁
石によって平衡磁場が作られるようになっている。しか
し、多極着磁が必要であるうえ、高インピーダンスを確
保するために、磁気抵抗素子の形状は全体がドーナツ状
で且つ内周側と外周側に多数の切込みを設けた複雑な形
状となっており、その加工や取り付けが極め複雑であっ
た。
As a typical example of such a magnetic potentiometer, there is a potentiometer LP-18S commercially available from, for example, Electroacoustics. This LP-18S
Has a multi-pole magnetized permanent magnet at the tip of a non-magnetic shaft, and two magneto-resistive elements are installed at a predetermined angle facing the permanent magnet. An opposing yoke is provided on the back surface of the magnetoresistive element, and a balanced magnetic field is generated by the opposing yoke and the permanent magnet. However, in addition to the need for multipolar magnetization, the shape of the magnetoresistive element has a donut shape and a complex shape with a large number of cuts on the inner and outer sides to ensure high impedance. The processing and installation were extremely complicated.

【0005】更に、磁気検出素子として簡単なホール素
子を用いる場合、安定した正弦波形を得るために、ホー
ル素子を永久磁石とヨークで挟むように配置した上で、
ヨークの形状を工夫したり、特公昭60−41476号
公報及び特公昭60−41477号公報に記載されるよ
うに永久磁石をホール素子に対して傾斜させて配置する
ことが提案されている。しかしながら、ヨークの形状を
複雑にしたり、永久磁石とホール素子とを相対的に傾斜
させるためには、複雑な部品加工が必要となるうえ、そ
の取り付けにも高い精度が要求される。
Further, when a simple Hall element is used as the magnetic detecting element, the Hall element is arranged so as to be sandwiched between the permanent magnet and the yoke in order to obtain a stable sine waveform.
It has been proposed to devise the shape of the yoke, or to arrange the permanent magnet at an angle to the Hall element as described in JP-B-60-41476 and JP-B-60-41477. However, in order to complicate the shape of the yoke or to relatively incline the permanent magnet and the Hall element, complicated component processing is required, and high precision is required for the attachment.

【0006】[0006]

【発明が解決しようとする課題】上記したように、接触
式ポテンショメータでは、接触端子が抵抗体基板に接触
しているため、その間に潤滑剤などを供給したとして
も、接触端子によるカーボン抵抗体表面のダメージは免
れない。このため、抵抗体表面のダメージが電気ノイズ
を生じる原因となるうえ、接触式ポテンショメータは寿
命が短いという欠点があった。
As described above, in the contact type potentiometer, since the contact terminals are in contact with the resistor substrate, even if a lubricant or the like is supplied during the contact terminals, the surface of the carbon resistor by the contact terminals is reduced. Is inevitable. For this reason, the surface of the resistor causes electric noise, and the contact potentiometer has a short life.

【0007】一方、非接触による磁気式ポテンショメー
タの場合、面倒で非効率な多極着磁が必要であるうえ、
高インピーダンスで安定した出力を得るためには、上記
したように特殊な形状の磁気検出素子を用いたり、ヨー
クの形状や配置に特別な工夫を加える必要があった。し
かし、これらの部品の加工精度や貼付精度が出力信号の
精度を大きく左右するので、これらの精度を確保するた
めに部品加工や組立工程が複雑になり、面倒な多極着磁
の工程と共にコストアップを招く大きな原因となってい
た。
On the other hand, in the case of a non-contact magnetic potentiometer, troublesome and inefficient multipolar magnetization is required, and
In order to obtain a stable output with high impedance, it was necessary to use a magnetic detecting element having a special shape as described above, or to add special measures to the shape and arrangement of the yoke. However, since the processing accuracy and attachment accuracy of these components greatly affect the accuracy of the output signal, the component processing and assembly processes are complicated to ensure these accuracy, and the complicated multi-pole magnetization process and cost It was a major cause of up.

【0008】本発明は、このような従来の事情に鑑み、
非効率的な多極着磁を行う必要がなく、一方向への一回
の着磁でよく、しかも簡単な磁気検出素子を用いること
ができ、回転角度量や直線運動量に対応する出力信号が
高精度に安定して得られる磁気式ポテンショメータを安
価に提供することを目的とする。
The present invention has been made in view of such a conventional situation,
There is no need to perform inefficient multipolar magnetization, one magnetization in one direction is sufficient, and a simple magnetic detection element can be used, and output signals corresponding to the rotation angle and linear momentum can be obtained. It is an object of the present invention to provide a magnetic potentiometer that can be stably obtained with high accuracy at a low cost.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する磁気式ポテンショメータは、磁性
部材の磁極から生じる磁気を検出する磁気検出素子と、
該磁気検出素子に対向して相対的に移動する基板と、該
基板に設けられた磁性部材とを備える磁気式ポテンショ
メータにおいて、前記磁性部材が前記磁気検出素子との
対向方向に単極着磁された永久磁石であって、該磁性部
材の磁気検出素子との対向面積が相対的移動方向に沿い
規則的に変化していることを特徴とする。
To achieve the above object, a magnetic potentiometer provided by the present invention comprises: a magnetic detecting element for detecting magnetism generated from a magnetic pole of a magnetic member;
In a magnetic potentiometer including a substrate relatively moving to face the magnetic detection element and a magnetic member provided on the substrate, the magnetic member is unipolarly magnetized in a direction facing the magnetic detection element. Wherein the area of the magnetic member facing the magnetic sensing element changes regularly along the direction of relative movement.

【0010】上記本発明の磁気式ポテンショメータは、
被検出体が回転運動を行う場合には、基板と磁気検出素
子とが相対的に回転移動するロータリーポテンショメー
タとし、また被検出体が直線運動を行う場合には、基板
と磁気検出素子とが相対的に直線移動するリニアポテン
ショメータとして構成することができる。
[0010] The magnetic potentiometer of the present invention is
When the object to be detected performs a rotary motion, the substrate and the magnetic detection element are rotated relative to each other. When the object to be detected performs a linear motion, the substrate and the magnetic detection element are moved relative to each other. It can be configured as a linear potentiometer that moves linearly.

【0011】[0011]

【発明の実施の形態】本発明の磁気式ポテンショメータ
では、同一出願人による先の出願、特開平9−1490
3号公報記載の線形磁区と同様に、一方向に単極着磁し
た磁性部材を使用する。即ち、磁性部材は磁気検出素子
との対向方向に単極着磁すれば良く、例えば磁気検出素
子と対向する基板表面側がN極及びその反対側(基板裏
面側)がS極となるように配向させて着磁することがで
きる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A magnetic potentiometer according to the present invention is disclosed in an earlier application filed by the same applicant, as disclosed in Japanese Patent Application Laid-Open No.
As in the case of the linear magnetic domain described in Japanese Patent Application Laid-Open No. 3 (1993) -1991, a magnetic member unipolarly magnetized in one direction is used. That is, the magnetic member may be unipolarly magnetized in the direction facing the magnetic detection element. For example, the magnetic member is oriented such that the substrate surface side facing the magnetic detection element has an N pole and the opposite side (substrate back side) has an S pole. It can be magnetized.

【0012】また、本発明の磁気式ポテンショメータ
は、磁性部材の形状が一定ではなく、磁気検出素子との
対向面積が相対的移動方向に沿い規則的に変化している
点に大きな特徴がある。磁気検出素子との対向面積が規
則的に変化する磁性部材の形状としては、相対的に移動
する磁気検出素子の軌跡に沿って、その軌跡の中心から
磁性部材の両端までの距離が直線的に増加又は減少する
ように形成すれることが好ましい。
Further, the magnetic potentiometer of the present invention is characterized in that the shape of the magnetic member is not constant, and the area facing the magnetic detecting element changes regularly along the direction of relative movement. The shape of the magnetic member whose area opposed to the magnetic detection element changes regularly is such that the distance from the center of the trajectory to both ends of the magnetic member is linear along the trajectory of the relatively moving magnetic detection element. Preferably, it is formed to increase or decrease.

【0013】具体的な磁性部材の形状として、ロータリ
ーポテンショメータの場合には、例えば図1に示すよう
に、円板状の基板2a上に磁気検出素子の相対的移動の
軌跡3aに相当する円周(1点鎖線で表示)に沿って、
その円周上から両端までの距離hが等しく且つ直線的に
変化している形状(以下、略螺旋状という)の磁性部材
1aを形成する。かかる略螺旋状の磁性部材1aを設け
た基板2aを、図2に示すように、その軸中心に固定し
たシャフト4で回転可能に支持し、磁性部材1aに対向
して磁気検出素子5を基板2aから所定間隔をおいて設
置することにより、ロータリーポテンショメータを構成
することができる。
As a specific shape of the magnetic member, in the case of a rotary potentiometer, for example, as shown in FIG. 1, a circle corresponding to a locus 3a of relative movement of a magnetic detecting element is formed on a disk-shaped substrate 2a. (Indicated by the dashed line)
A magnetic member 1a having a shape in which the distance h from the circumference to both ends is equal and changes linearly (hereinafter referred to as a substantially spiral shape) is formed. As shown in FIG. 2, a substrate 2a provided with such a substantially helical magnetic member 1a is rotatably supported by a shaft 4 fixed to the center of the shaft, and a magnetic detection element 5 is disposed opposite the magnetic member 1a. By installing the rotary potentiometer at a predetermined interval from 2a, a rotary potentiometer can be configured.

【0014】また、リニアポテンショメータの場合に
は、例えば図3に示すように、細長い板状の基板2b上
に磁気検出素子の相対的移動の軌跡3bに相当する直線
(1点鎖線で表示)に沿って、その直線上から両端まで
の距離hが等しく且つ直線的に変化している形状(以
下、二等辺三角形状という)の磁性部材1bとする。こ
の二等辺三角形状の磁性部材1bを設けた基板2bを、
図4に示すように、その長手方向に沿って直線的に移動
可能に支持し、磁性部材1bに対向して磁気検出素子5
を基板2bから所定間隔をおいて設置することにより、
リニアポテンショメータが構成される。
In the case of a linear potentiometer, for example, as shown in FIG. 3, a straight line (indicated by a one-dot chain line) corresponding to a locus 3b of relative movement of the magnetic detecting element is formed on an elongated plate-like substrate 2b. Along the length, the magnetic member 1b has a shape in which the distance h from the straight line to both ends is equal and linearly changes (hereinafter, referred to as an isosceles triangle). The substrate 2b provided with the isosceles triangular magnetic member 1b is
As shown in FIG. 4, it is supported so as to be linearly movable along its longitudinal direction, and is opposed to the magnetic member 1b.
Is disposed at a predetermined interval from the substrate 2b,
A linear potentiometer is configured.

【0015】その結果、本発明の磁気式ポテンショメー
タでは、基板2a、2bの回転又は直線的な移動に伴っ
て、磁気検出素子5と対向する磁性部材1a、1bの対
向面積が変わるので、磁気検出素子5で検出される磁束
密度も連続的に変化する。この磁束密度の変化がリニア
になるように磁性部材1a、1bの磁気検出素子5との
対向面積を規則的に変化させることによって、回転角度
量や直線移動量に対応するリニアな出力信号を安定して
得ることができる。
As a result, in the magnetic potentiometer of the present invention, the facing area of the magnetic members 1a and 1b facing the magnetic detecting element 5 changes with the rotation or linear movement of the substrates 2a and 2b. The magnetic flux density detected by the element 5 also changes continuously. By regularly changing the area of the magnetic members 1a and 1b facing the magnetic detection element 5 so that the change of the magnetic flux density becomes linear, a linear output signal corresponding to the rotation angle amount or the linear movement amount is stabilized. Can be obtained.

【0016】磁気検出素子としては、公知のホール素子
や磁気抵抗素子等が利用できる。しかも、磁性部材の形
状を上記のごとく例えば略螺旋状又は二等辺三角形状に
形成してあり、磁性部材の移動に伴って磁気検出素子が
検知する磁束密度の変化もリニアになるので、複雑な形
状の磁気検出素子を用いる必要がなく、通常市販されて
いるInSb系やGaAs系などの安価なホール素子を
用いて正確な検出が可能である。
As the magnetic detecting element, a known Hall element, a magneto-resistive element, or the like can be used. Moreover, the shape of the magnetic member is formed, for example, in a substantially spiral or isosceles triangular shape as described above, and the change in magnetic flux density detected by the magnetic detection element along with the movement of the magnetic member is also linear, which is complicated. It is not necessary to use a magnetic detecting element having a shape, and accurate detection can be performed using an inexpensive Hall element such as an InSb-based or GaAs-based commercially available element.

【0017】また、基板上に設ける磁性部材は、単極着
磁でよいため、基板に所定の形状の永久磁石を埋め込む
ことでも形成できるが、ペースト状の磁石組成物を用い
て所定形状に形成したボンド磁石が好ましい。例えば、
予め基板に形成した所定形状の凹部に磁石組成物を充填
するか、又は基板に磁石組成物を所定のパターンで印刷
した後、加熱固化させる。このように基板上に形成され
た所定形状の磁性部材は、その後磁気検出素子との対向
方向にのみ単極着磁する、例えば磁気検出素子に対向す
る基板表面側がN極で且つその反対側がS極となるよう
に着磁するだけでよい。
The magnetic member provided on the substrate may be formed by embedding a permanent magnet having a predetermined shape in the substrate, since the magnetic member may be formed by monopolar magnetization. However, the magnetic member may be formed into a predetermined shape using a paste-like magnet composition. Bonded magnets are preferred. For example,
The magnet composition is filled in a concave portion having a predetermined shape formed in advance on the substrate, or the magnet composition is printed on the substrate in a predetermined pattern, and then heated and solidified. The magnetic member of a predetermined shape formed on the substrate in this manner is then monopolar magnetized only in the direction facing the magnetic sensing element. For example, the surface of the substrate facing the magnetic sensing element is an N pole and the opposite side is S pole. It only needs to be magnetized to be a pole.

【0018】尚、ボンド磁石は磁性粉をバインダー樹脂
で結合したものであり、磁性粉としてはSmCo系、N
dFeB系、SmFeN系、フェライト系などの通常の
磁性粉を1種又は2種以上組み合わせて用いることがで
きる。特に、SmCo系、NdFeB系、SmFeN系
等の希土類元素を含有するボンド磁石を用いることによ
って、一層精度の良いポテンショメータを提供すること
ができる。また、基板としては、従来と同様に、非磁性
体のみならず、強磁性体以外の常磁性体などを用いるこ
ともできる。
The bond magnet is obtained by binding magnetic powder with a binder resin.
Ordinary magnetic powders such as dFeB, SmFeN, and ferrite can be used alone or in combination of two or more. In particular, by using a bond magnet containing a rare earth element such as an SmCo-based, NdFeB-based, or SmFeN-based, a more accurate potentiometer can be provided. Further, as the substrate, not only a non-magnetic material but also a paramagnetic material other than a ferromagnetic material can be used as in the related art.

【0019】[0019]

【実施例】実施例1 バインダー樹脂である分子量100万のポリイソブチレ
ン(20℃の貯蔵弾性率G'値:3×10dyne/
cm)100重量部に、SmCo系磁性粉800重
量部、及びトルエン1000重量部を加え、ホモミキサ
ーを用いて均一に撹拌混合した。得られたペースト状の
磁石組成物を、図1に示すように、シャフト4に固定さ
れた外径40mm×内径20mm×厚み1mmのエポキ
シ系樹脂からなる円板状の基板2a上に、略螺旋状に印
刷塗布した後、120℃で3時間の乾燥硬化処理を行っ
た。
【Example】Example 1  Polyisobutylene having a molecular weight of 1,000,000 as a binder resin
(Storage modulus G 'value at 20 ° C .: 3 × 106dyne /
cm2) 100 parts by weight of SmCo5800 magnetic powder
And 1000 parts by weight of toluene.
The mixture was uniformly stirred and mixed using a mixer. The resulting paste-like
The magnet composition was fixed to the shaft 4 as shown in FIG.
Epoxy with outer diameter 40mm x inner diameter 20mm x thickness 1mm
A substantially spiral mark is formed on a disk-shaped substrate 2a made of silicone resin.
After printing and coating, dry and cure at 120 ° C for 3 hours
Was.

【0020】次に、この略螺旋状の磁性部材1aをパル
ス着磁機を用いてアキシャル方向に単極着磁し、1回の
着磁操作で基板表面側がN極及びその裏面側がS極に着
磁した略螺旋状の磁性部材1aを有する円板状の基板2
aを製造した。尚、得られた略螺旋状の磁性部材1a
は、磁気検出素子の相対的移動の軌跡3aに相当する円
周上にあり、その円周上から両端までの距離hが直線的
に変化していて、その幅2hは一端で最大1mmであ
り、その一端から他端(幅2hがゼロの点)までの円周
に沿った長さが50mmである。
Next, the substantially spiral magnetic member 1a is monopolarly magnetized in the axial direction by using a pulse magnetizer, and the substrate front side becomes an N pole and the rear side becomes an S pole in one magnetization operation. Disc-shaped substrate 2 having magnetized substantially spiral magnetic member 1a
a was produced. In addition, the obtained substantially spiral magnetic member 1a
Is on the circumference corresponding to the locus 3a of relative movement of the magnetic sensing element, the distance h from the circumference to both ends changes linearly, and the width 2h is 1 mm at the maximum at one end. The length along the circumference from one end to the other end (the point where the width 2h is zero) is 50 mm.

【0021】この基板2aの磁性部材1aに対向させ
て、図2に示すように、磁気検出素子5として縦横約1
mm角のホール素子(旭化成電子製HW−108E)を
基板2aとの間隔が0.1mmになるように配置し、磁
気式ロータリーポテンショメータを作製した。
As shown in FIG. 2, facing the magnetic member 1a of the substrate 2a,
A Hall element (HW-108E manufactured by Asahi Kasei Denshi) with a square mm was arranged so that the distance from the substrate 2a was 0.1 mm, and a magnetic rotary potentiometer was manufactured.

【0022】得られた磁気式ロータリーポテンショメー
タにおいて、ホール素子からなる磁気検出素子5を定格
電圧にて駆動し、シャフト4を回転させたところ、図5
に示すように、その回転角度に応じて磁気検出素子5の
出力電圧はリニアに変化することが確認された。
In the obtained magnetic rotary potentiometer, the magnetic detection element 5 composed of a Hall element was driven at a rated voltage and the shaft 4 was rotated.
As shown in the figure, it has been confirmed that the output voltage of the magnetic detection element 5 changes linearly according to the rotation angle.

【0023】実施例2 NdFeB系磁性粉を用いた以外は上記実施例1と同様
にして、磁性粉とバインダー樹脂のポリイソブチレンと
溶媒のトルエンとからなる磁石組成物を作製した。この
磁石組成物を、図3に示すように、幅5mm×長さ30
mm×厚み1mmのエポキシ系樹脂からなる板状の基板
2b上に、二等辺三角形状に印刷塗布した後、120℃
で3時間の乾燥硬化処理を行った。
[0023]Example 2  Same as Example 1 except that NdFeB-based magnetic powder was used
With magnetic powder and binder resin polyisobutylene
A magnet composition comprising toluene as a solvent was prepared. this
As shown in FIG. 3, the magnet composition was 5 mm wide × 30 mm long.
mm x 1 mm thick plate made of epoxy resin
After printing and applying in the form of an isosceles triangle on 2b, 120 ° C
For 3 hours.

【0024】次に、この二等辺三角形状の磁性部材1b
をパルス着磁機を用いてアキシャル方向に単極着磁し、
1回の着磁操作で基板表面側がN極及び裏面側がS極に
着磁した二等辺三角形状の磁性部材1bを有する板状の
基板2bを得た。尚、得られた二等辺三角形状の磁性部
材1bは、磁気検出素子の相対的移動の軌跡3bに相当
する直線上にあり、その直線上から両端までの距離hが
直線的に変化していて、その幅2hは一端で最大1mm
であり、その一端から他端(幅2hがゼロの点)までの
直線に沿った長さが30mmである。
Next, the isosceles triangular magnetic member 1b
Is unipolarly magnetized in the axial direction using a pulse magnetizer,
By a single magnetizing operation, a plate-like substrate 2b having an isosceles triangular magnetic member 1b with the substrate front side magnetized to the N pole and the back side magnetized to the S pole was obtained. The obtained isosceles triangular magnetic member 1b is on a straight line corresponding to the locus 3b of the relative movement of the magnetic sensing element, and the distance h from the straight line to both ends changes linearly. , Its width 2h is 1mm at the maximum at one end
And the length along a straight line from one end to the other end (the point where the width 2h is zero) is 30 mm.

【0025】この基板2bの磁性部材1bに対向させ
て、図4に示すように、磁気検出素子5として縦横約1
mm角のホール素子(旭化成電子製HW−108E)を
基板2aとの間隔が0.1mmになるように配置し、磁
気式リニアポテンショメータを作製した。
As shown in FIG. 4, facing the magnetic member 1b of the substrate 2b, a
A Hall element (HW-108E manufactured by Asahi Kasei Electronics) with a square mm was arranged so that the distance from the substrate 2a was 0.1 mm, to produce a magnetic linear potentiometer.

【0026】この磁気式リニアポテンショメータのホー
ル素子からなる磁気検出素子5を定格電圧にて駆動し、
基板2bを直線方向に移動させたところ、図5に示すよ
うに、その移動距離に応じて磁気検出素子5の出力電圧
はリニアに変化することが確認された。
A magnetic detecting element 5 comprising a Hall element of this magnetic linear potentiometer is driven at a rated voltage,
When the substrate 2b was moved in a linear direction, as shown in FIG. 5, it was confirmed that the output voltage of the magnetic sensing element 5 changed linearly according to the movement distance.

【0027】[0027]

【発明の効果】本発明によれば、面倒で非効率な多極着
磁を行う必要がなく、一回の着磁処理で一方向への単極
着磁を行えば良く、しかも磁気検出素子として簡単なホ
ール素子を用いることができ、回転角度量や直線移動量
に対応するリニアな出力信号が高精度に安定して得られ
る磁気式ポテンショメータを安価に提供することができ
る。
According to the present invention, it is not necessary to perform troublesome and inefficient multipolar magnetization, and it is sufficient to perform unipolar magnetization in one direction by one magnetization process, and furthermore, the magnetic detecting element is used. Thus, a magnetic potentiometer that can obtain a linear output signal corresponding to the rotation angle amount and the linear movement amount with high accuracy and stability can be provided at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の略螺旋形の磁性部材を設けた基板を示
す概略の平面図である。
FIG. 1 is a schematic plan view showing a substrate provided with a substantially spiral magnetic member of the present invention.

【図2】本発明のロータリーポテンショメータの要部を
示す概略の側面図である。
FIG. 2 is a schematic side view showing a main part of the rotary potentiometer of the present invention.

【図3】本発明の二等辺三角形状の磁性部材を設けた基
板を示す概略の平面図である。
FIG. 3 is a schematic plan view showing a substrate provided with an isosceles triangular magnetic member of the present invention.

【図4】本発明のリニアポテンショメータの要部を示す
概略の側面図である。
FIG. 4 is a schematic side view showing a main part of the linear potentiometer of the present invention.

【図5】本発明のポテンショメータにおける回転角度又
は移動距離と出力電圧との関係を示すグラフである。
FIG. 5 is a graph showing a relationship between a rotation angle or a moving distance and an output voltage in the potentiometer of the present invention.

【符号の説明】[Explanation of symbols]

1a、1b 磁性部材 2a、2b 基板 3a、3b 磁気検出素子の相対的移動の軌跡 4 シャフト 5 磁気検出素子 1a, 1b Magnetic member 2a, 2b Substrate 3a, 3b Locus of relative movement of magnetic detecting element 4 Shaft 5 Magnetic detecting element

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F063 AA02 AA35 DA19 DD02 EA02 EA03 GA52 GA72 GA74 GA77 GA79 KA01 KA05 2F077 JJ01 JJ03 JJ08 JJ22 VV11 VV33 VV35  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F063 AA02 AA35 DA19 DD02 EA02 EA03 GA52 GA72 GA74 GA77 GA79 KA01 KA05 2F077 JJ01 JJ03 JJ08 JJ22 VV11 VV33 VV35

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 磁性部材の磁極から生じる磁気を検出す
る磁気検出素子と、該磁気検出素子に対向して相対的に
移動する基板と、該基板に設けられた磁性部材とを備え
る磁気式ポテンショメータにおいて、前記磁性部材が前
記磁気検出素子との対向方向に単極着磁された永久磁石
であって、該磁性部材の磁気検出素子との対向面積が相
対的移動方向に沿い規則的に変化していることを特徴と
する磁気式ポテンショメータ。
1. A magnetic potentiometer comprising: a magnetic detecting element for detecting magnetism generated from a magnetic pole of a magnetic member; a substrate relatively moving to face the magnetic detecting element; and a magnetic member provided on the substrate. In the above, the magnetic member is a permanent magnet that is unipolarly magnetized in a direction facing the magnetic detection element, and an area of the magnetic member facing the magnetic detection element changes regularly along a relative movement direction. A magnetic potentiometer characterized in that:
【請求項2】 前記磁気検出素子がホール素子であるこ
とを特徴とする、請求項1に記載の磁気式ポテンショメ
ータ。
2. The magnetic potentiometer according to claim 1, wherein said magnetic detecting element is a Hall element.
【請求項3】 前記磁性部材が希土類元素を含有するボ
ンド磁石であることを特徴とする、請求項1又は2に記
載の磁気式ポテンショメータ。
3. The magnetic potentiometer according to claim 1, wherein the magnetic member is a bonded magnet containing a rare earth element.
【請求項4】 前記基板と磁気検出素子とが相対的に回
転移動するロータリーポテンショメータであることを特
徴とする、請求項1〜3のいずれかに記載の磁気式ポテ
ンショメータ。
4. The magnetic potentiometer according to claim 1, wherein said substrate and said magnetic detecting element are rotary potentiometers which relatively rotate and move.
【請求項5】 前記基板と磁気検出素子とが相対的に直
線移動するリニアポテンショメータであることを特徴と
する、請求項1〜3のいずれかに記載の磁気式ポテンシ
ョメータ。
5. The magnetic potentiometer according to claim 1, wherein the substrate and the magnetic detection element are linear potentiometers that relatively linearly move.
JP11216453A 1999-07-30 1999-07-30 Magnetic potentiometer Pending JP2001041768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11216453A JP2001041768A (en) 1999-07-30 1999-07-30 Magnetic potentiometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11216453A JP2001041768A (en) 1999-07-30 1999-07-30 Magnetic potentiometer

Publications (1)

Publication Number Publication Date
JP2001041768A true JP2001041768A (en) 2001-02-16

Family

ID=16688757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11216453A Pending JP2001041768A (en) 1999-07-30 1999-07-30 Magnetic potentiometer

Country Status (1)

Country Link
JP (1) JP2001041768A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006113039A (en) * 2004-09-15 2006-04-27 Tokai Rika Co Ltd Magnetism detection device
CN109163676A (en) * 2018-09-29 2019-01-08 中国煤炭科工集团太原研究院有限公司 A kind of development machine suspending arm rotary angle detection method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006113039A (en) * 2004-09-15 2006-04-27 Tokai Rika Co Ltd Magnetism detection device
CN109163676A (en) * 2018-09-29 2019-01-08 中国煤炭科工集团太原研究院有限公司 A kind of development machine suspending arm rotary angle detection method and device

Similar Documents

Publication Publication Date Title
JPS60261350A (en) Angular position detector of rotary electronic machine rotorby electronic switching
JP2003199274A (en) Rotor, its manufacturing method, and rotating electric machine
JPH01297507A (en) Device for magnetically detecting position and speed
JPH07509348A (en) Multipolar magnet manufacturing method
JP3431471B2 (en) Pulse signal generator
JPH1014192A (en) Motor
JP2001041768A (en) Magnetic potentiometer
Luo et al. Multi-pole magnetization of high resolution magnetic encoder
JP2001041769A (en) Magnetic potentiometer
JP2000193407A (en) Magnetic positioning device
JPH0778528B2 (en) Magnetic sensor
JP3024218B2 (en) Magnetic signal detector
JPH0710245Y2 (en) Magnetic sensor
JPH063158A (en) Detector
JPH05126513A (en) Angle detector
JP2003194901A (en) Magnetic field sensor
JPS5930418Y2 (en) Magnetic rotation detection device
JP2002340615A (en) Magnetic scale material for encoder
JPH0750665Y2 (en) Magnetic encoder
JPS5817213Y2 (en) magnetic disc
JP4196797B2 (en) Magnetic encoder substrate and manufacturing method thereof
Campbell Magnetic rotary position encoders with magneto-resistive sensors
JPH0320779Y2 (en)
JP2004297917A (en) Permanent magnet superior in multi-pole magnetization
SU739443A1 (en) Electromagnetic pick-up