JP2004297917A - Permanent magnet superior in multi-pole magnetization - Google Patents

Permanent magnet superior in multi-pole magnetization Download PDF

Info

Publication number
JP2004297917A
JP2004297917A JP2003087643A JP2003087643A JP2004297917A JP 2004297917 A JP2004297917 A JP 2004297917A JP 2003087643 A JP2003087643 A JP 2003087643A JP 2003087643 A JP2003087643 A JP 2003087643A JP 2004297917 A JP2004297917 A JP 2004297917A
Authority
JP
Japan
Prior art keywords
magnetization
permanent magnet
less
pitch
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003087643A
Other languages
Japanese (ja)
Inventor
Noriyuki Umano
則之 馬野
Yoshikazu Aikawa
芳和 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2003087643A priority Critical patent/JP2004297917A/en
Publication of JP2004297917A publication Critical patent/JP2004297917A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet which is superior in multi-pole magnetization for an industrial encoder, capable of detecting positions and other equipment requiring accuracy. <P>SOLUTION: This permanent magnet superior in multi-pole magnetization is subjected to heat treatment at the Curie point or higher, when it is subjected to multi-pole magnetization, to at least 20 poles, for reducing the residual magnetism to 5% or less of the magnetizing peak value, thus improving the pitch width accuracy. Furthermore, this permanent magnet having superior multi-pole magnetization is subjected to heat treatment at the Curie point or higher, when it is subjected to fine magnetization of not more than 500 μm in the pitch value width for reducing the residual magnetism to 5% or lower of the magnetizing peak value, thus improving the pitch width accuracy. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、位置検出可能な産業モータ用エンコーダ、その他精度を要求する機器用の多極着磁性に優れた永久磁石に関するものである。
【0002】
【従来の技術】
近年、各種機器の小型化に伴って、永久磁石型モータや磁気式エンコーダ等についても益々小型化、高特性化、低価格化の要求が高まっている。そのため、永久磁石型モータや磁気式エンコーダ等に用いる永久磁石についても、小型で高特性であり、加工が容易で生産性の高い永久磁石が求められている。しかし、このような小型化の要求により、一般的には、例えば特許文献1にあるようなフェライトの焼結体が用いられている。しかし、焼結磁石は益々加工が困難になり、ボンド磁石は小型化するほど高い特性を維持することが難しくなる。
【0003】
一方、モータや産業機器において、位置や角度を制御する際、エンコーダが幅広く使用されている。図3は、一般的な多極着磁したリング状の磁気エンコーダの概略図である。この図に示すように、磁気エンコーダ1はピッチで磁気パターンが形成されたエンコーダ板2と磁電変換素子3から構成される。この中でも磁気式には永久磁石が使用されているが、加工において磁気を帯びその残留磁気の影響で多極着磁を行なった場合のピッチ幅の精度が悪く、制御機器の性能を低下させる。
【0004】
【引用文献】
(1)特許文献1(特開平10−325738号公報)
【0005】
【発明が解決しようとする課題】
上述したようにモータや産業機器において位置や角度を制御する磁気式エンコーダの中で、その絶対位置を検出できるものは、何相にも着磁した永久磁石が使用されているが、加工において磁気を帯びその残留磁気の影響で多極着磁を行なった場合のピッチ幅の精度が悪く、制御機器の性能を低下させ、かつ、コストが高く、また、小型化が出来ないという問題がある。
【0006】
【課題を解決するための手段】
上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、キューリー点以上の温度で熱処理を行い、残留磁気を着磁ピーク値の5%以下に低減することでピッチ幅の精度を向上する安価な永久磁石を提供するものである。その発明の要旨とするところは、
(1)20極以上の多極着磁を施すに当たり、キューリー点以上の温度での熱処理で残留磁気を着磁ピーク値の5%以下に低減し、ピッチ幅精度を向上させたことを特徴とする多極着磁性に優れた永久磁石。
【0007】
(2)ピッチ値幅500μm以下の微細着磁を施すに当たり、キューリー点以上の温度での熱処理で残留磁気を着磁ピーク値の5%以下に低減し、ピッチ幅精度を向上させたことを特徴とする多極着磁性に優れた永久磁石。
(3)20極以上の多極着磁を施し、かつ、ピッチ値幅500μm以下の微細着磁を施すに当たり、キューリー点以上の温度での熱処理で残留磁気を着磁ピーク値の5%以下に低減し、ピッチ幅精度を向上させたことを特徴とする多極着磁性に優れた永久磁石。
(4)前記(1)〜(3)に記載の磁石材料がMnAlC磁石であることを特徴とする多極着磁性に優れた永久磁石である。
【0008】
【発明の実施の形態】
以下、本発明について図面に従って詳細に説明する。
図1は、円筒形の側面に2層着磁した場合のエンコーダ用磁石の着磁形態を示す図である。この図に示すように、磁石1の着磁高さ4、各層間のギャップ5を持つ多層着磁したものである。図2は、本発明に係るエンコーダ用磁石の着磁形態を示す図である。この図に示すように、着磁ヘッド6を用いて磁石1を回転しながら、1極づつ順次着磁をする回転方式(ヘッド着磁)によって、ピッチ幅500μm以下の微細着磁磁気スケール7を形成した。同様にしてレーザ8を照射しキューリー点以上に加熱して残留磁気を着磁ピーク値の5%以下に抑え、ピッチ幅精度を向上させるものである。
【0009】
磁性体をキューリー点以上に加熱する方法としては、YAGレーザ、COレーザ、エキシマレーザ、半導体レーザ、または電子レーザ等を使用することができる。残留磁気が着磁ピーク値の5%を超えると、残留磁気の上に着磁され、各極のピーク値がばらつきピッチ幅の精度が悪くなるため、ピーク値の5%以下とした。特に、ピッチ値幅500μm以下の微細着磁を施す場合に、ピッチ幅の精度が向上し、さらには、20極以上の多極着磁の場合に顕著な効果を有する。
【0010】
磁石材料としては、MnAlC磁石を用いることにより良好な加工性を有し、しかも、表面粗度がRa=0.2μm程度であり、良好な表面粗度を有し、かつ寸法精度の高い磁気スケールを作製することが可能となる。また、この磁石材料としてのMnAlC磁石はガスアトマイズ法によって製造された粉末を用いた熱間押出し工法によって製造するため、長尺磁石についても問題なく作製することができるエンコーダ用磁石を提供することができる。
【0011】
【実施例】
以下、本発明について実施例によって具体的に説明する。
供試材として、ガスアトマイズ法によりMnAlC粉末を作製し、カプセルに充填した後、700℃に加熱し温間押出し法により固化成形し、所定形状に加工し、寸法φ10×L10mmのものを用い、着磁方法として着磁ヘッドを用いて磁石を回転しながら、1極づつ順次着磁をする回転方式によって、レーザ照射による加熱を行い、表1に示すピッチ幅、極数の微細着磁磁気スケールを形成した。磁気測定方法としては、感磁素子としてホール素子を用いて表面磁束密度を測定し、波形をX−Y記録した。また、評価方法としては、3次元磁場解析により、各着磁部の波形を調査した。その結果を表1に示す。
【0012】
表1に示すように、No.5〜6およびNo.11〜12はフェライトおよびMnAlC材質での本発明例であり、No.1〜4およびNo.7〜10は比較例である。比較例No.1は熱処理がない場合であり、比較例No.2〜4はフェライトでのキューリー点450℃未満の場合であり、いずれも残留磁気が高く、ピッチ幅にばらつきがある。また、比較例No.7〜10はMnAlCでのキューリー点300℃未満の場合であり、これらも残留磁気が高く、ピッチ幅にばらつきがある。これに対し、本発明例は、いずれも残留磁気が低減され、ピッチ幅にばらつきの小さいことが判る。
【0013】
【表1】

Figure 2004297917
【0014】
【発明の効果】
以上述べたように、本発明による熱処理という簡便な方法により、高精度な着磁のできる安価な永久磁石を製造できる極めて優れた効果を奏するものである。
【図面の簡単な説明】
【図1】円筒形の側面に2層着磁した場合のエンコーダ用磁石の着磁形態を示す図である。
【図2】本発明に係るエンコーダ用磁石の着磁形態を示す図である。
【図3】一般的な多極着磁したリング状の磁気エンコーダの概略図である。
【符号の説明】
1 磁気エンコーダ
2 エンコーダ板
3 磁電変換素子
4 着磁高さ
5 ギャップ
6 着磁ヘッド
7 磁気スケール
8 レーザ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an encoder for an industrial motor capable of detecting a position, and a permanent magnet excellent in multipolar magnetism for other devices requiring accuracy.
[0002]
[Prior art]
In recent years, along with miniaturization of various devices, demands for miniaturization, high performance, and low price of permanent magnet type motors and magnetic encoders have been increasing. For this reason, permanent magnets that are small, have high characteristics, are easy to process, and have high productivity are also required for permanent magnets used in permanent magnet motors, magnetic encoders, and the like. However, due to such a demand for miniaturization, a ferrite sintered body as disclosed in Patent Document 1, for example, is generally used. However, it becomes more difficult to process sintered magnets, and it becomes more difficult to maintain high characteristics as the size of bonded magnets is reduced.
[0003]
On the other hand, encoders are widely used for controlling positions and angles in motors and industrial equipment. FIG. 3 is a schematic view of a general multi-pole magnetized ring-shaped magnetic encoder. As shown in FIG. 1, the magnetic encoder 1 includes an encoder plate 2 on which a magnetic pattern is formed at a pitch and a magnetoelectric conversion element 3. Among them, a permanent magnet is used in the magnetic method. However, the precision of the pitch width when performing multi-polar magnetization due to the influence of the residual magnetism during processing is poor, and the performance of the control device is deteriorated.
[0004]
[References]
(1) Patent Document 1 (JP-A-10-325738)
[0005]
[Problems to be solved by the invention]
As described above, among the magnetic encoders that control the position and angle of motors and industrial equipment, those that can detect the absolute position use permanent magnets that are magnetized in any phase. However, there is a problem that the accuracy of the pitch width when multipolar magnetization is performed due to the influence of the residual magnetism is poor, the performance of the control device is reduced, the cost is high, and the size cannot be reduced.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the inventors have made intensive developments. As a result, heat treatment is performed at a temperature equal to or higher than the Curie point, and the residual magnetism is reduced to 5% or less of the magnetization peak value. The present invention provides an inexpensive permanent magnet that improves the precision of the magnet. The gist of the invention is that
(1) When performing multi-pole magnetization of 20 poles or more, the remnant magnetism is reduced to 5% or less of the magnetization peak value by heat treatment at a temperature higher than the Curie point, and the pitch width accuracy is improved. Permanent magnet with excellent multipolar magnetism.
[0007]
(2) When performing fine magnetization with a pitch value width of 500 μm or less, the residual magnetism is reduced to 5% or less of the magnetization peak value by heat treatment at a temperature equal to or higher than the Curie point, and the pitch width accuracy is improved. Permanent magnet with excellent multipolar magnetism.
(3) When performing multi-pole magnetization of 20 poles or more and performing fine magnetization with a pitch value width of 500 μm or less, heat treatment at a temperature above the Curie point reduces the residual magnetism to 5% or less of the magnetization peak value. A permanent magnet with improved multi-pole magnetism characterized by improved pitch width accuracy.
(4) A permanent magnet excellent in multipolar magnetization, wherein the magnet material described in (1) to (3) is a MnAlC magnet.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a magnetized form of an encoder magnet when two layers are magnetized on a cylindrical side surface. As shown in this figure, the magnet 1 is multilayer-magnetized with a magnetization height 4 and a gap 5 between each layer. FIG. 2 is a diagram showing a magnetized form of the encoder magnet according to the present invention. As shown in this figure, a minute magnetized magnetic scale 7 having a pitch width of 500 μm or less is formed by a rotation method (head magnetization) that sequentially magnetizes one pole at a time while rotating the magnet 1 using the magnetized head 6. Formed. Similarly, the laser 8 is irradiated and heated above the Curie point to suppress the residual magnetism to 5% or less of the magnetization peak value, thereby improving the pitch width accuracy.
[0009]
As a method for heating the magnetic material to a temperature higher than the Curie point, a YAG laser, a CO 2 laser, an excimer laser, a semiconductor laser, an electron laser, or the like can be used. If the residual magnetism exceeds 5% of the peak value of the magnetization, it is magnetized on the residual magnetism, and the peak value of each pole varies and the accuracy of the pitch width deteriorates. In particular, when performing fine magnetization with a pitch value width of 500 μm or less, the accuracy of the pitch width is improved, and further, there is a remarkable effect in the case of multipolar magnetization with 20 or more poles.
[0010]
As a magnet material, a magnetic scale having good workability by using a MnAlC magnet, having a surface roughness of about 0.2 μm, having good surface roughness, and having high dimensional accuracy. Can be manufactured. In addition, since the MnAlC magnet as the magnet material is manufactured by a hot extrusion method using a powder manufactured by a gas atomization method, it is possible to provide an encoder magnet that can manufacture a long magnet without any problem. .
[0011]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples.
As a test material, a MnAlC powder was prepared by a gas atomizing method, filled into a capsule, heated to 700 ° C., solidified and formed by a warm extrusion method, processed into a predetermined shape, and used in a size of φ10 × L10 mm. As a magnetizing method, heating by laser irradiation is performed by a rotation method of sequentially magnetizing one pole at a time while rotating the magnet using a magnetizing head, and a fine magnetized magnetic scale having a pitch width and the number of poles shown in Table 1 is used. Formed. As a magnetism measuring method, a surface magnetic flux density was measured using a Hall element as a magnetic sensing element, and the waveform was recorded in XY. In addition, as an evaluation method, a waveform of each magnetized portion was examined by three-dimensional magnetic field analysis. Table 1 shows the results.
[0012]
As shown in Table 1, 5-6 and No. 5 Nos. 11 to 12 are examples of the present invention using ferrite and MnAlC materials. Nos. 1 to 4 and Nos. 7 to 10 are comparative examples. Comparative Example No. Comparative example No. 1 is a case without heat treatment. Nos. 2 to 4 are the cases where the Curie point of ferrite is lower than 450 ° C., all of which have high remanence and vary in pitch width. In Comparative Example No. Nos. 7 to 10 are cases where the Curie point of MnAlC is lower than 300 ° C., and these also have high remanence and a variation in pitch width. On the other hand, in each of the examples of the present invention, it can be seen that the remanence is reduced and the pitch width has a small variation.
[0013]
[Table 1]
Figure 2004297917
[0014]
【The invention's effect】
As described above, by the simple method of heat treatment according to the present invention, an extremely excellent effect of manufacturing an inexpensive permanent magnet capable of high-accuracy magnetization can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a magnetized form of an encoder magnet when two layers are magnetized on a cylindrical side surface.
FIG. 2 is a diagram showing a magnetized form of an encoder magnet according to the present invention.
FIG. 3 is a schematic diagram of a general multi-pole magnetized ring-shaped magnetic encoder.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Magnetic encoder 2 Encoder board 3 Magnetoelectric conversion element 4 Magnetization height 5 Gap 6 Magnetization head 7 Magnetic scale 8 Laser

Claims (4)

20極以上の多極着磁を施すに当たり、キューリー点以上の温度での熱処理で残留磁気を着磁ピーク値の5%以下に低減し、ピッチ幅精度を向上させたことを特徴とする多極着磁性に優れた永久磁石。In performing multipolar magnetization of 20 or more poles, heat treatment at a temperature higher than the Curie point reduces residual magnetism to 5% or less of the magnetization peak value, and improves pitch width accuracy. A permanent magnet with excellent magnetizability. ピッチ値幅500μm以下の微細着磁を施すに当たり、キューリー点以上の温度での熱処理で残留磁気を着磁ピーク値の5%以下に低減し、ピッチ幅精度を向上させたことを特徴とする多極着磁性に優れた永久磁石。A multi-electrode characterized in that in performing fine magnetization with a pitch value width of 500 μm or less, the residual magnetism was reduced to 5% or less of the magnetization peak value by heat treatment at a temperature equal to or higher than the Curie point, and the pitch width accuracy was improved. A permanent magnet with excellent magnetizability. 20極以上の多極着磁を施し、かつ、ピッチ値幅500μm以下の微細着磁を施すに当たり、キューリー点以上の温度での熱処理で残留磁気を着磁ピーク値の5%以下に低減し、ピッチ幅精度を向上させたことを特徴とする多極着磁性に優れた永久磁石。When performing multi-pole magnetization of 20 poles or more and performing fine magnetization with a pitch value width of 500 μm or less, heat treatment at a temperature equal to or higher than the Curie point reduces residual magnetism to 5% or less of the magnetization peak value. Permanent magnet with excellent multi-pole magnetism characterized by improved width accuracy. 請求項1〜3に記載の磁石材料がMnAlC磁石であることを特徴とする多極着磁性に優れた永久磁石。4. A permanent magnet excellent in multipolar magnetism, wherein the magnet material according to claim 1 is a MnAlC magnet.
JP2003087643A 2003-03-27 2003-03-27 Permanent magnet superior in multi-pole magnetization Withdrawn JP2004297917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003087643A JP2004297917A (en) 2003-03-27 2003-03-27 Permanent magnet superior in multi-pole magnetization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003087643A JP2004297917A (en) 2003-03-27 2003-03-27 Permanent magnet superior in multi-pole magnetization

Publications (1)

Publication Number Publication Date
JP2004297917A true JP2004297917A (en) 2004-10-21

Family

ID=33401986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003087643A Withdrawn JP2004297917A (en) 2003-03-27 2003-03-27 Permanent magnet superior in multi-pole magnetization

Country Status (1)

Country Link
JP (1) JP2004297917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351627A (en) * 2005-06-13 2006-12-28 Fdk Corp Multipole magnetizing device for permanent magnet
US20110215797A1 (en) * 2010-03-05 2011-09-08 ASM Automation Sensorik Messteehnik GmbH Magnet assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351627A (en) * 2005-06-13 2006-12-28 Fdk Corp Multipole magnetizing device for permanent magnet
US20110215797A1 (en) * 2010-03-05 2011-09-08 ASM Automation Sensorik Messteehnik GmbH Magnet assembly

Similar Documents

Publication Publication Date Title
EP0478041A1 (en) Method of forming a magnetically-coded pattern in a permanent magnet material
US5089060A (en) Thermomagnetically patterned magnets and method of making same
JP5641157B2 (en) Magnetic measuring device
JP6132085B2 (en) Magnetic detector
WO2016021401A1 (en) Magnetic linear encoder
JP2004297917A (en) Permanent magnet superior in multi-pole magnetization
Kikuchi et al. Consideration of magnetization and detection on magnetic rotary encoder using finite element method
US9574906B2 (en) Magnetic medium for magnetic encoder, magnetic encoder and method for manufacturing magnetic medium
JP2003315088A (en) Distance sensor having magnetic electric conversion element
Töpfer et al. Multi-pole magnetization of NdFeB sintered magnets and thick films for magnetic micro-actuators
JP2000193407A (en) Magnetic positioning device
JP2960570B2 (en) Magnetic encoder
JP2010040914A (en) Magnetization method of multi-pole magnet, and multi-pole magnet and magnetic encoder using the same
JP2004294286A (en) Magnetic material for magnetic encoder
JP2004264222A (en) Magnetic marker for rotation angle sensor
JP2005077404A (en) Magnetic component for plurality of magnetic poles and its manufacturing method
JP2019002751A (en) Magnetic scale and magnetic encoder
JP6019433B2 (en) Two-way H coil angle measuring method and two-way H coil angle measuring device
JP2009264866A (en) Magnetic sensor and manufacturing method of the same
JP2633229B2 (en) Manufacturing method of multi-pole permanent magnet
JP2003257738A (en) Permanent magnet, its manufacturing method, and position sensor
JP2001041769A (en) Magnetic potentiometer
EP3985692A1 (en) Writing head and method of writing a magnetization pattern
JP2982468B2 (en) Magnetized body and manufacturing method thereof
JP2002340615A (en) Magnetic scale material for encoder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606