JP2009264866A - Magnetic sensor and manufacturing method of the same - Google Patents

Magnetic sensor and manufacturing method of the same Download PDF

Info

Publication number
JP2009264866A
JP2009264866A JP2008113552A JP2008113552A JP2009264866A JP 2009264866 A JP2009264866 A JP 2009264866A JP 2008113552 A JP2008113552 A JP 2008113552A JP 2008113552 A JP2008113552 A JP 2008113552A JP 2009264866 A JP2009264866 A JP 2009264866A
Authority
JP
Japan
Prior art keywords
magnetic
substrate
magnetoresistive element
magnetic sensor
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008113552A
Other languages
Japanese (ja)
Other versions
JP5426839B2 (en
Inventor
Shigeo Koseki
栄男 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohden Co Ltd
Original Assignee
Kohden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohden Co Ltd filed Critical Kohden Co Ltd
Priority to JP2008113552A priority Critical patent/JP5426839B2/en
Publication of JP2009264866A publication Critical patent/JP2009264866A/en
Application granted granted Critical
Publication of JP5426839B2 publication Critical patent/JP5426839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a suitable magnetic sensor which has high accuracy and can be miniaturized, wherein a positioning error between a magnetoresistance element and a permanent magnet is eliminated by a simple and low-cost method. <P>SOLUTION: In a magnetic sensor which detects magnetic field change produced by the relative movement between a detecting object and the sensor, the magnetic sensor includes a substrate, a magnetoresistance element formed on a surface of the substrate, and a magnetic body formed on the surface opposite to the surface on which the magnetoresistance element on the substrate is formed. The magnetic body is constituted of a mixture of magnetic powder and a resin, wherein the mixture is cast into a recessed part of the substrate to be cured and is magnetized. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、検出対象物の運動によって生じる相対的な磁界変化を検出する磁気センサにおいて、磁気抵抗素子に印加するバイアス磁界を発生させるバイアス磁石を具備した磁気センサ及び磁気センサの製造方法に関するものである。   The present invention relates to a magnetic sensor for detecting a relative magnetic field change caused by the movement of a detection object, and a magnetic sensor including a bias magnet that generates a bias magnetic field to be applied to a magnetoresistive element, and a method for manufacturing the magnetic sensor. is there.

検出対象物の運動によって生じる相対的な磁界変化を検出する磁気センサにおいて、Ni、Fe、Co等の強磁性金属を主成分とする合金の薄膜で形成された磁気抵抗素子が広く使用されている。この磁気抵抗素子は、磁界の強さ方向に応じて抵抗値が変化する性質を有し、磁気抵抗素子の応答は、ΔR/R(ΔR=強磁性薄膜金属の抵抗の変化、R=強磁性薄膜金属の公称抵抗)として測定される。 In a magnetic sensor for detecting a relative magnetic field change caused by the movement of a detection object, a magnetoresistive element formed of a thin film of an alloy mainly composed of a ferromagnetic metal such as Ni, Fe, Co or the like is widely used. . This magnetoresistive element has a property that the resistance value changes according to the direction of the strength of the magnetic field. The response of the magnetoresistive element is ΔR / R 0 (ΔR = change in resistance of the ferromagnetic thin film metal, R 0 = Measured as the nominal resistance of the ferromagnetic thin film metal).

例えば、図5(a)に示すように、強磁性薄膜金属からなる磁気抵抗素子の電流の流れる方向(Y方向)に対して垂直の方向(X方向)に磁界Hが印加されているとき、磁界の強さ(H)と磁気抵抗素子の抵抗値変化を表すΔR/Rとの関係は、図5(b)に示すような釣鐘形状(ΔR/RはHに略比例して減少)のグラフとなる。この磁気抵抗素子の抵抗値変化を強磁性薄膜金属のパターンで等価回路を組み電圧変化として出力に変換することで、磁気センサが構成される。等価回路の一例としては、例えば、図5(c)に示すように2つの磁気抵抗素子を用いる場合や、図5(d)に示すように4つの磁気抵抗素子を用いる場合など、様々な回路構成が既に提案されている。 For example, as shown in FIG. 5A, when a magnetic field H is applied in a direction (X direction) perpendicular to a current flowing direction (Y direction) of a magnetoresistive element made of a ferromagnetic thin film metal, The relationship between the strength (H) of the magnetic field and ΔR / R 0 representing the change in the resistance value of the magnetoresistive element is a bell shape (ΔR / R 0 is approximately proportional to H 2 ) as shown in FIG. Decrease) graph. A magnetic sensor is configured by converting the change in the resistance value of the magnetoresistive element into an output as a voltage change by combining an equivalent circuit with a ferromagnetic thin film metal pattern. As an example of the equivalent circuit, for example, when two magnetoresistive elements are used as shown in FIG. 5C, or when four magnetoresistive elements are used as shown in FIG. A configuration has already been proposed.

このように抵抗値変化が飽和しない領域で磁気センサとして活用する場合、NiFe合金で約300A/m、NiCo合金及びNiFeCo合金で約1kA/mの異方性磁界を持つことにより、図6のように磁界を正負連続印加した時にゼロ磁界近辺ではヒステリシスが生じるという問題がある。   When utilizing as a magnetic sensor in a region where the change in resistance value is not saturated in this manner, the NiFe alloy has an anisotropic magnetic field of about 300 A / m, and the NiCo alloy and NiFeCo alloy have an anisotropic magnetic field of about 1 kA / m, as shown in FIG. However, there is a problem that hysteresis occurs in the vicinity of the zero magnetic field when a magnetic field is applied continuously in positive and negative directions.

しかしながら、図7(a)に示すように、磁気抵抗素子の延伸方向に並行にバイアス磁界(Fe合金で約300A/m以上、NiCo合金及びNiFeCo合金で約1kA/m以上)を印加することで、図7(b)の破線ようにヒステリシスは解消される。更に磁界強度を上げると、図7(c)で示すように、動作範囲(抵抗値変化率が飽和しない範囲)が高磁界側に広がる。   However, as shown in FIG. 7A, by applying a bias magnetic field (about 300 A / m or more for Fe alloy, about 1 kA / m or more for NiCo alloy and NiFeCo alloy) in parallel with the extending direction of the magnetoresistive element. The hysteresis is eliminated as shown by the broken line in FIG. When the magnetic field strength is further increased, as shown in FIG. 7C, the operating range (a range in which the rate of change in resistance value is not saturated) extends to the high magnetic field side.

また、正負の磁界の判定が必要な場合、図8(a)に示すように、磁気抵抗素子の延伸方向に垂直にバイアス磁界を印加することで、図8(b)の破線のようにバイアス磁界の強度に応じて動作点(抵抗値変化が0%の点)がシフトする。よって磁界の正負の判定が可能となる。   When it is necessary to determine whether the magnetic field is positive or negative, as shown in FIG. 8A, by applying a bias magnetic field perpendicular to the extending direction of the magnetoresistive element, the bias as shown by the broken line in FIG. The operating point (point where the resistance change is 0%) is shifted according to the strength of the magnetic field. Therefore, it is possible to determine whether the magnetic field is positive or negative.

このように磁気抵抗素子にX〜Y方向にバイアス磁界を印加した磁気センサは、各種用途に使用できる。このような磁気抵抗素子にバイアス磁界を印加して利用する磁気センサとしては、例えば、特許文献1及び特許文献2が既に提案されている。   Thus, the magnetic sensor in which the bias magnetic field is applied to the magnetoresistive elements in the X to Y directions can be used for various applications. For example, Patent Document 1 and Patent Document 2 have already been proposed as magnetic sensors to be used by applying a bias magnetic field to such a magnetoresistive element.

特許文献1に記載の磁気式検出器は、磁気抵抗素子とバイアス磁界用磁石を同時に位置決めするための位置決め部を設けたことを特徴とするものであり、従来の位置決め冶具による取り付けが不要となり、取り付け時間が減少するという効果を実現している。   The magnetic detector described in Patent Document 1 is characterized by providing a positioning unit for positioning the magnetoresistive element and the bias magnetic field magnet at the same time. The effect of reducing the installation time is realized.

また、特許文献2に記載の磁気抵抗センサは、磁石からの磁力線が、少なくともセンサの敏感なエリア内のセンシング方向(y方向)において垂直にガイドされるようにしてなる構造を前記磁石が有することを特徴とするもので、これにより、センサ要素の特性曲線のオフセットの原因となるセンサ要素と磁石間の位置決め平面内の敏感な方向における磁場が最小に抑えられ、磁気抵抗センサのその後のトリミングが不要となるというものである。
特開平11−211409号公報 特表2005−501265号公報
In addition, in the magnetoresistive sensor described in Patent Document 2, the magnet has a structure in which the lines of magnetic force from the magnet are guided vertically in at least the sensing direction (y direction) in the sensitive area of the sensor. This minimizes the magnetic field in the sensitive direction in the positioning plane between the sensor element and the magnet, which causes an offset in the characteristic curve of the sensor element, and subsequent trimming of the magnetoresistive sensor. It becomes unnecessary.
Japanese Patent Application Laid-Open No. 11-21409 JP 2005-501265 A

前記特許文献1に記載の磁気式検出器及び特許文献2に記載の磁気抵抗センサは、それぞれ用途は異なるものの、いずれも磁気抵抗素子へのバイアス磁界を印加する方法として永久磁石を接着する方法を採用している。この種の用途では、磁気抵抗素子に印加される磁界強度として約15mT以上の磁束密度が必要である。このような場合、小さくて強力な永久磁石を磁気抵抗素子に近接接着するより、大きな永久磁石を磁気抵抗素子より離間して接着する方法の方が、接着による位置決め誤差によるバイアス磁界の強度のばらつきがある程度緩和される。すなわち、バイアス磁界を発生する永久磁石は、小型化して近接配置しようとすると位置決めが難しいという問題点がある。   Although the magnetic detector described in Patent Document 1 and the magnetoresistive sensor described in Patent Document 2 are used for different purposes, a method of applying a permanent magnet as a method of applying a bias magnetic field to the magnetoresistive element is used. Adopted. In this type of application, a magnetic flux density of about 15 mT or more is required as the magnetic field strength applied to the magnetoresistive element. In such a case, the method of bonding a large permanent magnet away from the magnetoresistive element rather than adhering a small and strong permanent magnet to the magnetoresistive element is more uneven in bias magnetic field intensity due to positioning errors due to bonding. Is relaxed to some extent. That is, there is a problem in that it is difficult to position a permanent magnet that generates a bias magnetic field if the permanent magnet is reduced in size and placed close together.

等価回路を構成する磁気抵抗素子(例えば、図5(d)で示した等価回路の各磁気抵抗素子(R1〜R4))に印加される磁界が不均一であると、Voutのオフセット電位が変動したり、出力感度のばらつきや出力波形に歪が生じたりするという問題が生じる。これと同様の問題を解決するめに、特許文献2では永久磁石の形状に工夫を凝らし、特許文献1では接着精度の向上がはかられている。   If the magnetic field applied to the magnetoresistive elements constituting the equivalent circuit (for example, the magnetoresistive elements (R1 to R4) of the equivalent circuit shown in FIG. 5D) is nonuniform, the offset potential of Vout varies. Problems such as variations in output sensitivity and distortion in the output waveform. In order to solve the same problem as this, Patent Document 2 devised the shape of the permanent magnet, and Patent Document 1 attempts to improve the adhesion accuracy.

しかしながら、磁気抵抗素子が形成された基板とリードフレームの接着精度、パッケージ成型精度、永久磁石の接着精度等、接着工法を取る限り工法そのものの精度に限界があるという問題点がある。   However, there is a problem that the accuracy of the method itself is limited as long as the bonding method is adopted, such as the bonding accuracy between the substrate on which the magnetoresistive element is formed and the lead frame, the package molding accuracy, and the permanent magnet bonding accuracy.

本発明は、上記問題点に鑑みなされたものであり、簡単で安価な方法で磁気抵抗素子と永久磁石との位置決め誤差を解消し、高精度でかつ小型化が可能な好適な磁気センサを提供することを目的とするものである。   The present invention has been made in view of the above problems, and provides a suitable magnetic sensor capable of eliminating a positioning error between a magnetoresistive element and a permanent magnet by a simple and inexpensive method and capable of being highly accurate and miniaturized. It is intended to do.

請求項1記載の発明は、検出対象物との間の相対的運動によって生じる磁界変化を検出する磁気センサにおいて、前記磁気センサは、基板と、この基板の表面に形成された磁気抵抗素子と、前記基板における前記磁気抵抗素子の形成面と反対面に形成された磁性体とを具備し、前記磁性体は、磁性粉と樹脂とを混合したものを前記基板の凹部に流し込んで硬化し、着磁したものからなることを特徴とする磁気センサである。   The invention according to claim 1 is a magnetic sensor for detecting a magnetic field change caused by relative movement between the object to be detected, the magnetic sensor comprising: a substrate; a magnetoresistive element formed on the surface of the substrate; A magnetic body formed on a surface of the substrate opposite to the surface on which the magnetoresistive element is formed. The magnetic body is a mixture of magnetic powder and resin that is poured into a concave portion of the substrate, cured, and attached. It is a magnetic sensor characterized by comprising a magnetic material.

請求項2記載の発明は、請求項1に加えて、磁性粉は、磁性体全体に対し希土類で50〜90wt%の配合率としたことを特徴とする磁気センサである。   The invention according to claim 2 is the magnetic sensor according to claim 1, wherein the magnetic powder has a rare earth content of 50 to 90 wt% with respect to the entire magnetic material.

請求項3記載の発明は、磁気センサと検出対象物との間の相対的運動によって生じる磁界変化を検出するための磁気センサを、基板に磁気抵抗素子と磁性体とを設けて形成する方法において、前記基板の一方の面に磁気抵抗素子を形成する工程と、前記基板の他方の面であって、前記磁気抵抗素子に関連した位置に形成した凹部に磁性粉と樹脂とを混合したものを流し込んで前記磁性体となる硬化物を形成する工程と、この硬化物に着磁して永久磁石を構成する工程とからなることを特徴とする磁気センサの製造方法である。   According to a third aspect of the present invention, there is provided a method of forming a magnetic sensor for detecting a magnetic field change caused by relative movement between a magnetic sensor and a detection object by providing a magnetoresistive element and a magnetic body on a substrate. A step of forming a magnetoresistive element on one surface of the substrate, and a mixture of magnetic powder and resin in a recess formed on the other surface of the substrate at a position related to the magnetoresistive element. A method for manufacturing a magnetic sensor, comprising: a step of forming a cured product that is poured into the magnetic material, and a step of forming a permanent magnet by magnetizing the cured product.

請求項4記載の発明は、磁気センサと検出対象物との間の相対的運動によって生じる磁界変化を検出するための磁気センサを、基板に磁気抵抗素子と磁性体とを設けて形成する方法において、シリコン、ガラス又はセラミックからなる前記基板の一方の面に、磁気抵抗素子、電極、保護膜等を形成する工程と、前記基板の他方の面であって、前記磁気抵抗素子に関連した位置に、エッチング工法又はマイクロブラスト工法で凹部を形成し、この凹部に、磁性粉と樹脂とを混合したものをポッティング又は印刷工法で流し込んで前記磁性体となる硬化物を形成する工程と、この硬化物に着磁して永久磁石を構成する工程とからなることを特徴とする磁気センサの製造方法である。   According to a fourth aspect of the present invention, there is provided a method of forming a magnetic sensor for detecting a magnetic field change caused by a relative motion between a magnetic sensor and a detection object by providing a substrate with a magnetoresistive element and a magnetic body. A step of forming a magnetoresistive element, an electrode, a protective film, etc. on one surface of the substrate made of silicon, glass or ceramic, and the other surface of the substrate at a position related to the magnetoresistive element A step of forming a concave portion by an etching method or a microblast method, and pouring a mixture of magnetic powder and resin into the concave portion by a potting or printing method to form a cured product that becomes the magnetic body, and this cured product And a step of forming a permanent magnet by magnetizing the magnetic sensor.

請求項5記載の発明は、請求項3又は4に加えて、硬化物に着磁して永久磁石を構成した後に、この磁性体を目的の磁力となるように研磨する工程を付加したことを特徴とする磁気センサの製造方法である。   In addition to claim 3 or 4, the invention according to claim 5 adds a step of polishing the magnetic body so as to have a desired magnetic force after magnetizing the cured product to form a permanent magnet. It is the manufacturing method of the magnetic sensor characterized.

請求項6記載の発明は、請求項3、4又は5に加えて、磁性体を構成する硬化物中の磁性粉は、磁性体全体に対し希土類で50〜90wt%の配合率としたことを特徴とする磁気センサの製造方法である。   In addition to claim 3, 4 or 5, the invention of claim 6 is characterized in that the magnetic powder in the cured product constituting the magnetic body has a rare earth content of 50 to 90 wt% with respect to the entire magnetic body. It is the manufacturing method of the magnetic sensor characterized.

請求項7記載の発明は、請求項3又は4において、基板の一方の面に磁気抵抗素子を形成する工程と、前記基板の他方の面であって、前記磁気抵抗素子に関連した位置に形成した凹部に磁性粉と樹脂とを混合したものを流し込んで前記磁性体となる硬化物を形成する工程との工程のうち、いずれか一方の工程を先に行い、いずれか他方の工程を後で行うようにしたことを特徴とする磁気センサの製造方法である。   According to a seventh aspect of the present invention, in the third or fourth aspect, the step of forming a magnetoresistive element on one surface of the substrate and the other surface of the substrate formed at a position related to the magnetoresistive element One of the steps of the step of pouring a mixture of magnetic powder and resin into the recessed portion to form a cured product that becomes the magnetic body is performed first, and the other step is performed later. A method of manufacturing a magnetic sensor characterized in that the method is performed.

請求項1記載の発明によれば、磁性粉と樹脂とを混合したものを基板に流し込んで硬化し、この硬化物を後から着磁して永久磁石を構成するようにしたので、磁気抵抗素子との位置関係精度が保証される。よって磁気抵抗素子に均一にバイアス磁界が印加されVoutのオフセット電位が変動したり、出力感度のばらつきや出力波形に歪が生じたりするという問題点が解消され高精度で小型化が可能となる。また、磁気抵抗素子との位置関係精度は保証され、かつ磁性体を着磁した後の磁石の形状も凹部の形状によって決定され形状精度も保証される。よって磁気抵抗素子に均一にバイアス磁界が印加されVoutのオフセット電位が変動したり、出力感度のばらつきや出力波形に歪が生じたりするという問題点が解消され高精度で小型化が可能となる。   According to the first aspect of the present invention, a mixture of magnetic powder and resin is poured into a substrate and cured, and the cured product is subsequently magnetized to form a permanent magnet. And the positional relationship accuracy is guaranteed. Therefore, the problem that the bias magnetic field is uniformly applied to the magnetoresistive element, the offset potential of Vout fluctuates, the output sensitivity varies and the output waveform is distorted is eliminated, and the miniaturization can be performed with high accuracy. In addition, the positional relation accuracy with the magnetoresistive element is guaranteed, and the shape of the magnet after magnetizing the magnetic material is also determined by the shape of the recess, and the shape accuracy is also guaranteed. Therefore, the problem that the bias magnetic field is uniformly applied to the magnetoresistive element, the offset potential of Vout fluctuates, the output sensitivity varies and the output waveform is distorted is eliminated, and the miniaturization can be performed with high accuracy.

請求項2記載の発明によれば、磁性粉は、磁性体全体に対し希土類で50〜90wt%の配合率としたので、磁気抵抗素子に印加されるバイアス磁界の磁力が、混合率に比例して約30mT以下の範囲となり、広範囲でかつばらつきの少ない磁界強度を得ることが出来る。また、希土類(SmFeN)の磁性粉では、VSM測定にてiHc(保持力)で約700kA/mとなり、反磁界に強い特性が得られることが出来る。   According to the second aspect of the present invention, since the magnetic powder is a rare earth compound of 50 to 90 wt% with respect to the entire magnetic material, the magnetic force of the bias magnetic field applied to the magnetoresistive element is proportional to the mixing ratio. Thus, the magnetic field strength can be obtained within a wide range and with little variation. In addition, with rare earth (SmFeN) magnetic powder, iHc (retention force) is about 700 kA / m in VSM measurement, and a strong characteristic against a demagnetizing field can be obtained.

請求項3記載の発明によれば、基板の一方の面に磁気抵抗素子を形成する工程と、前記基板の他方の面であって、前記磁気抵抗素子に関連した位置に形成した凹部に磁性粉と樹脂とを混合したものを流し込んで前記磁性体となる硬化物を形成する工程と、この硬化物に着磁して永久磁石を構成する工程とによって磁気センサを形成するようにしたので、磁気抵抗素子との位置関係精度は保証され、かつ磁性体を着磁した後の磁石の形状も凹部の形状によって決定され形状精度も保証される。よって磁気抵抗素子に均一にバイアス磁界が印加されVoutのオフセット電位が変動したり、出力感度のばらつきや出力波形に歪が生じたりするという問題点が解消され高精度で小型化が可能となる。   According to the third aspect of the present invention, the step of forming the magnetoresistive element on one surface of the substrate, and the magnetic powder in the recess formed on the other surface of the substrate at a position related to the magnetoresistive element. The magnetic sensor is formed by a process of forming a cured product that becomes the magnetic body by pouring a mixture of a resin and a resin, and a step of forming a permanent magnet by magnetizing the cured product. The positional relationship accuracy with the resistance element is guaranteed, and the shape of the magnet after magnetizing the magnetic material is also determined by the shape of the recess, and the shape accuracy is also guaranteed. Therefore, the problem that the bias magnetic field is uniformly applied to the magnetoresistive element, the offset potential of Vout fluctuates, the output sensitivity varies and the output waveform is distorted is eliminated, and the miniaturization can be performed with high accuracy.

請求項4記載の発明によれば、シリコン、ガラス又はセラミックからなる基板の一方の面に、磁気抵抗素子、電極、保護膜等を形成する工程と、前記基板の他方の面であって、前記磁気抵抗素子に関連した位置に、エッチング工法又はマイクロブラスト工法で凹部を形成し、この凹部に、磁性粉と樹脂とを混合したものをポッティング又は印刷工法で流し込んで前記磁性体となる硬化物を形成する工程と、この硬化物に着磁して永久磁石を構成する工程とによって磁気センサを形成するようにしたので、エッチング工法又はマイクロブラスト工法によって凹部形状の精度は数μm以下の精度が可能となる。   According to the invention of claim 4, a step of forming a magnetoresistive element, an electrode, a protective film, etc. on one surface of a substrate made of silicon, glass or ceramic, and the other surface of the substrate, A concave portion is formed at a position related to the magnetoresistive element by an etching method or a microblast method, and a mixture of magnetic powder and resin is poured into the concave portion by a potting or printing method to obtain a cured product that becomes the magnetic body. Since the magnetic sensor is formed by the step of forming and the step of forming a permanent magnet by magnetizing the cured product, the accuracy of the recess shape can be as high as several μm or less by the etching method or the microblast method. It becomes.

請求項5記載の発明によれば、請求項3又は4に加えて、硬化物に着磁して永久磁石を構成した後に、この永久磁石からなる磁性体を目的の磁力となるように研磨する工程を付加したので、着磁後のバイアス磁界の磁力は、磁性体厚に比例したばらつきの少ない磁界強度を得ることが出来た。このことにより、磁性粉の混合率や硬化後の着磁量を変更することなく磁気抵抗素子に印加される磁界強度を広い範囲で調整することが可能となる。   According to the invention of claim 5, in addition to claim 3 or 4, after the cured material is magnetized to form a permanent magnet, the magnetic material made of the permanent magnet is polished so as to have a target magnetic force. Since a process was added, the magnetic field strength of the bias magnetic field after magnetization was able to obtain a magnetic field strength with little variation proportional to the thickness of the magnetic material. This makes it possible to adjust the magnetic field strength applied to the magnetoresistive element in a wide range without changing the mixing ratio of the magnetic powder and the amount of magnetization after curing.

請求項6記載の発明によれば、磁性粉は、磁性体全体に対し希土類で50〜90wt%の配合率としたので、磁気抵抗素子に印加されるバイアス磁界の磁力が、混合率に比例して約30mT以下の範囲となり、広範囲でかつばらつきの少ない磁界強度を得ることが出来る。また、希土類(SmFeN)の磁性粉では、VSM測定にてiHc(保持力)で約700kA/mとなり、反磁界に強い特性が得られることが出来る。   According to the invention described in claim 6, since the magnetic powder is a rare earth compound with a mixing ratio of 50 to 90 wt% with respect to the entire magnetic material, the magnetic force of the bias magnetic field applied to the magnetoresistive element is proportional to the mixing ratio. Thus, the magnetic field strength can be obtained within a wide range and with little variation. In addition, with rare earth (SmFeN) magnetic powder, iHc (retention force) is about 700 kA / m in VSM measurement, and a strong characteristic against a demagnetizing field can be obtained.

本発明による磁気センサは、磁気センサと検出対象物との間の相対的運動によって生じる磁界変化を検出するための磁気センサを、基板に磁気抵抗素子と磁性体とを設けて形成する方法において、シリコン、ガラス又はセラミックからなる前記基板の一方の面に、磁気抵抗素子、電極、保護膜等を形成する工程と、前記基板の他方の面であって、前記磁気抵抗素子に関連した位置に、エッチング工法又はマイクロブラスト工法で凹部を形成し、この凹部に、磁性粉と樹脂とを混合したものをポッティング又は印刷工法で流し込んで前記磁性体となる硬化物を形成する工程と、この硬化物に着磁して永久磁石を構成する工程とからなることを特徴とする。以下、詳細に説明を行う。   A magnetic sensor according to the present invention is a method of forming a magnetic sensor for detecting a magnetic field change caused by a relative motion between a magnetic sensor and a detection object by providing a magnetoresistive element and a magnetic body on a substrate. A step of forming a magnetoresistive element, an electrode, a protective film, etc. on one surface of the substrate made of silicon, glass or ceramic, and the other surface of the substrate at a position related to the magnetoresistive element, A step of forming a concave portion by an etching method or a microblast method, and pouring a mixture of magnetic powder and resin into the concave portion by a potting or printing method to form a cured product that becomes the magnetic body, And a step of forming a permanent magnet by magnetizing. Details will be described below.

本発明の実施例を図面に基づいて説明する。図1に示すのは、本発明の一実施例として個片化された磁気センサ10の構造図を示す。磁気センサ10は、基板13の表面に磁気抵抗素子11と電極12が形成されている。基板13の裏面には凹部14が形成され、この凹部14には、磁性粉と樹脂の硬化物であり、硬化後に着磁されて永久磁石とした磁性体15が形成されており、この磁性体15を用いた磁気センサとこの磁気センサの製造方法が本発明の特徴である。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a structural diagram of a magnetic sensor 10 singulated as an embodiment of the present invention. In the magnetic sensor 10, a magnetoresistive element 11 and an electrode 12 are formed on the surface of a substrate 13. A concave portion 14 is formed on the back surface of the substrate 13, and a magnetic material 15 is formed in the concave portion 14, which is a cured product of magnetic powder and resin, and is magnetized after curing to be a permanent magnet. 15 is a feature of the present invention and a method of manufacturing the magnetic sensor.

磁性粉と樹脂の硬化物である磁性体を着磁することで永久磁石となり、この永久磁石から磁気抵抗素子にバイアス磁界が印加される。小さな永久磁石であっても磁気抵抗素子に近接しているため、約30mTの比較的大きなバイアス磁界が磁気抵抗素子に印加でき、磁気センサとして小型化が可能となる。また、永久磁石が磁気抵抗素子に近接しているが、従来技術と異なり接着工法をとらないため磁気抵抗素子との位置関係精度は保証され、かつ永久磁石の形状も凹部の形状によって決定され形状精度も保証される。よって、磁気抵抗素子に均一にバイアス磁界が印加されることになり、Voutのオフセット電位が変動したり、出力感度のばらつきや出力波形に歪が生じたりするという問題点を解消して高精度で小型な磁気センサを構成することが可能となる。   A permanent magnet is formed by magnetizing a magnetic material that is a cured product of magnetic powder and resin, and a bias magnetic field is applied from the permanent magnet to the magnetoresistive element. Since even a small permanent magnet is close to the magnetoresistive element, a relatively large bias magnetic field of about 30 mT can be applied to the magnetoresistive element, and the magnetic sensor can be miniaturized. Also, the permanent magnet is close to the magnetoresistive element, but unlike the conventional technology, the adhesive method is not used, so the positional relationship accuracy with the magnetoresistive element is guaranteed, and the shape of the permanent magnet is also determined by the shape of the recess. Accuracy is also guaranteed. Therefore, the bias magnetic field is uniformly applied to the magnetoresistive element, and the problems that the offset potential of Vout fluctuates, variation in output sensitivity and distortion in the output waveform are solved with high accuracy. A small magnetic sensor can be configured.

この本発明の磁気センサ10の製造方法の一例を図2に基づいて説明する。この図2に基づいて説明する製造方法は、複数の磁気センサを同一基板上に同時に形成した上で、後から個片化するものである。
先ず、図2(a)に示すように、シリコン、ガラス若しくはセラミックからなる基板13の表面に、磁気抵抗素子11や電極12、保護膜等(図示せず)をアレイ状に形成する工程によって、基板13の表面の加工を行う。
An example of a method for manufacturing the magnetic sensor 10 of the present invention will be described with reference to FIG. In the manufacturing method described with reference to FIG. 2, a plurality of magnetic sensors are simultaneously formed on the same substrate and then separated into individual pieces.
First, as shown in FIG. 2A, the magnetoresistive element 11, the electrode 12, the protective film, etc. (not shown) are formed in an array on the surface of the substrate 13 made of silicon, glass or ceramic. The surface of the substrate 13 is processed.

次に、図2(b)に示すように、基板13の裏面には、エッチィング工法、若しくはマイクロブラスト工法によって凹部14がアレイ状に形成される。この凹部14は、基板13の表面に形成した各磁気抵抗素子と位置関係が調整されている。マイクロブラスト工法では、シリコンカーバイト若しくはアルミナで#300〜1000の粒径で行えば、製作された凹部14の形状の精度は、エッチィング工法と同様数μm以下の精度が可能となる。表面の磁気抵抗素子のパターン位置と、裏面の凹部(61)はフォトリソグラフィでアライメントされているため、数μm以下の位置精度が保証される。   Next, as shown in FIG. 2B, recesses 14 are formed in an array on the back surface of the substrate 13 by an etching method or a microblast method. The position of the recess 14 is adjusted with each magnetoresistive element formed on the surface of the substrate 13. In the microblasting method, if the silicon carbide or alumina is used with a particle size of # 300 to 1000, the accuracy of the shape of the manufactured recess 14 can be several μm or less as in the etching method. Since the pattern position of the magnetoresistive element on the front surface and the recess (61) on the back surface are aligned by photolithography, positional accuracy of several μm or less is guaranteed.

前記実施例では、基板の一方の面に磁気抵抗素子を形成する工程を先に行い、基板の他方の面であって、磁気抵抗素子に関連した位置に形成した凹部に磁性粉と樹脂とを混合したものを流し込んで磁性体となる硬化物を形成する工程を後で行ったが、順序を逆にして基板の他方の面であって、磁気抵抗素子に関連した位置に形成した凹部に磁性粉と樹脂とを混合したものを流し込んで磁性体となる硬化物を形成する工程を先に行い、基板の一方の面に磁気抵抗素子を形成する工程を後で行うようにしてもよい。   In the above-described embodiment, the step of forming the magnetoresistive element on one surface of the substrate is performed first, and the magnetic powder and the resin are placed in the concave portion formed on the other surface of the substrate at a position related to the magnetoresistive element. The process of forming the hardened material that becomes the magnetic material by pouring the mixed material was performed later, but the order was reversed and the other side of the substrate was magnetically formed in the recess formed at the position related to the magnetoresistive element. A process of forming a cured product that becomes a magnetic material by pouring a mixture of powder and resin may be performed first, and a process of forming a magnetoresistive element on one surface of the substrate may be performed later.

前記凹部14の形成後、図2(c)に示すように、個片化される前の状態においてこの凹部14に磁性粉と樹脂の混合物である磁性体15をポッティング若しくは印刷工法で流し込み、その後に硬化処理を行う。このことで、個々の磁気センサの磁性体量は均一化できる。最後に、磁性体15の着磁を行うことで、磁性体15が永久磁石となって磁気センサ10が完成する。なお、磁性体15への着磁は、図2(c)に示す一体基板の状態で行ってもよいし、個片化後に着磁してもよい。   After the formation of the recess 14, as shown in FIG. 2 (c), the magnetic material 15, which is a mixture of magnetic powder and resin, is poured into the recess 14 in a state before being singulated, and thereafter The curing process is performed. As a result, the amount of magnetic material of each magnetic sensor can be made uniform. Finally, by magnetizing the magnetic body 15, the magnetic body 15 becomes a permanent magnet and the magnetic sensor 10 is completed. Magnetization of the magnetic body 15 may be performed in the state of the integrated substrate shown in FIG. 2C, or may be magnetized after separation.

このように、磁性体15をポッティング若しくは印刷工法で流し込み硬化してこれを着磁することで、着磁後の永久磁石の機能としてばらつきが軽減される。また、磁石の磁性方向は着磁で設定できる為、容易に極性方向が定めることが可能である。さらに、この構造の特徴として、コイル又はヨーク付きコイルで容易に着磁が行える為、飽和着磁(磁性粉特性である保持力の2〜5倍)が可能となり、磁性粉と樹脂の混合物である磁性体でも安定性のある磁気特性が得られる。   In this way, by casting and hardening the magnetic body 15 by potting or printing and magnetizing it, the variation as a function of the permanent magnet after magnetization is reduced. Moreover, since the magnetic direction of the magnet can be set by magnetization, the polarity direction can be easily determined. Furthermore, as a feature of this structure, since it can be easily magnetized with a coil or a coil with a yoke, saturation magnetization (2 to 5 times the holding force, which is a magnetic powder characteristic) is possible, and a mixture of magnetic powder and resin is used. Stable magnetic characteristics can be obtained even with certain magnetic materials.

以上のようにして構成された磁気センサ10の特性について説明する。
一例として、図4(a)に示すように、大きさ2mm×2mm、厚さ0.35mmのガラス基板13の表面に、磁気抵抗素子11及び電極12を形成して特性を測定することとした(本出願人による先の特開2006−208025号公報の図3に記載)。このガラス基板13の表面には、図3(a)に示すパターンの磁気抵抗素子を形成する。この8つの磁気抵抗素子は、図3(b)のように結線してそれぞれ電極12(図3(a)においては省略)を形成する。また、図4(a)に示すように、基板13の裏面にφ1.5深さ0.25mmの凹部(55)を形成し、この凹部14に磁性粉と樹脂混合物である磁性体を流し込み硬化し磁性体15を作成する。その後、図4(b)に示す極性方向となるように空芯コイルにて、飽和磁場で着磁を行う。この着磁により、磁性体15は永久磁石となり、図4(c)に示すように各磁気抵抗素子にバイアス磁界が印加される。
The characteristics of the magnetic sensor 10 configured as described above will be described.
As an example, as shown in FIG. 4A, the characteristics were measured by forming the magnetoresistive element 11 and the electrode 12 on the surface of a glass substrate 13 having a size of 2 mm × 2 mm and a thickness of 0.35 mm. (Described in FIG. 3 of the aforementioned Japanese Patent Application Laid-Open No. 2006-208025 by the present applicant). On the surface of the glass substrate 13, a magnetoresistive element having a pattern shown in FIG. The eight magnetoresistive elements are connected as shown in FIG. 3B to form electrodes 12 (omitted in FIG. 3A). Also, as shown in FIG. 4A, a recess (55) having a depth of 0.25 mm is formed on the back surface of the substrate 13, and a magnetic material that is a mixture of magnetic powder and resin is poured into the recess 14 and cured. The magnetic body 15 is created. Thereafter, the air core coil is magnetized with a saturated magnetic field so as to be in the polarity direction shown in FIG. By this magnetization, the magnetic body 15 becomes a permanent magnet, and a bias magnetic field is applied to each magnetoresistive element as shown in FIG.

以上のような構造において、図3(b)に示す結線状態におけるVout1〜Vout4のオフセット電位の測定を着磁前後で行ったところ、電位の変動が約1mV/V以下で抑えられることができた。   In the structure as described above, when the offset potentials of Vout1 to Vout4 in the connection state shown in FIG. 3B were measured before and after magnetization, fluctuations in potential could be suppressed to about 1 mV / V or less. .

次に、磁性粉についてフェライト系磁性粉及び希土類(SmFeN)系磁性粉で、エポキシ樹脂との混合率を変え、磁性体を製作し、フェライト系で1000kA/m、希土類(SmFeN)で2400kA/mで着磁を行い磁気抵抗素子に印加されたバイアス磁界の強度を確認した。   Next, the magnetic powder is made of ferrite-based magnetic powder and rare-earth (SmFeN) -based magnetic powder, the mixing ratio with the epoxy resin is changed, and a magnetic material is manufactured. Ferrite-based 1000 kA / m, rare-earth (SmFeN) 2400 kA / m Magnetization was performed to confirm the intensity of the bias magnetic field applied to the magnetoresistive element.

フェライト系の磁性粉では、図4(c)で示した各々の磁気抵抗素子に印加されるバイアス磁界の磁力が、約10mT以下の範囲において、ばらつきの少ない磁界強度を得ることが出来た。   With the ferrite-based magnetic powder, it was possible to obtain a magnetic field strength with little variation when the magnetic force of the bias magnetic field applied to each of the magnetoresistive elements shown in FIG. 4C was about 10 mT or less.

希土類(SmFeN)の磁性粉を50〜90wt%の配合率で定めると、図7aで示した各々の磁気抵抗素子に印加されるバイアス磁界の磁力が、混合率に比例して約30mT以下の範囲となり、広範囲でかつばらつきの少ない磁界強度を得ることが出来た。
また、希土類(SmFeN)の磁性粉では、VSM測定にてiHc(保持力)で約700kA/mとなり、反磁界に強い特性が得られることが出来た。好ましい状態として希土類(SmFeN)の磁性粉を用いることでVout1〜Vout4のオフセット電位の変動が無く動作範囲(検出対象物との間の相対的運動によって生じる磁界変化の範囲)を広く取ることが可能である。
When the rare earth (SmFeN) magnetic powder is determined at a blending ratio of 50 to 90 wt%, the magnetic force of the bias magnetic field applied to each magnetoresistive element shown in FIG. 7a is in a range of about 30 mT or less in proportion to the mixing ratio. Thus, it was possible to obtain a magnetic field intensity with a wide range and little variation.
In addition, with rare earth (SmFeN) magnetic powder, iHc (retention force) was about 700 kA / m in VSM measurement, and a strong characteristic against demagnetizing fields could be obtained. By using rare earth (SmFeN) magnetic powder as a preferred state, there is no fluctuation in the offset potential of Vout1 to Vout4, and it is possible to widen the operating range (range of magnetic field change caused by relative motion with the object to be detected). It is.

さらに、図4(b)の着磁前の状態(図2(c)の状態)で裏面を研磨し、基板厚と磁性体厚を削り段階的に薄くした。すると、着磁後のバイアス磁界の磁力は、磁性体厚に比例したばらつきの少ない磁界強度を得ることが出来た。このことにより、初期の工程で磁性粉の混合率や硬化後の着磁量を変更することなく製造し、製造後に研磨することで磁気抵抗素子に印加される磁界強度を広い範囲で調整することが可能であることが分かった。   Further, the back surface was polished in the state before magnetization of FIG. 4B (the state of FIG. 2C), and the thickness of the substrate and the thickness of the magnetic material were reduced gradually. As a result, it was possible to obtain a magnetic field strength with little variation in the magnetic field of the bias magnetic field after magnetization in proportion to the thickness of the magnetic material. This makes it possible to adjust the magnetic field strength applied to the magnetoresistive element in a wide range by manufacturing without changing the mixing ratio of magnetic powder and the amount of magnetization after curing in the initial process and polishing after manufacturing. Was found to be possible.

前記実施例においては、図3(a)に示す磁気抵抗素子のパターンで説明を行ったが、これは一例に過ぎず、本発明はこれに制限されるものではなく、様々なパターンレイアウトのものに対して適用できるものである(例えば、特開平11−211409号公報の図9、特開昭59−19810号公報の図8に記載など)。即ち、本発明の製造方法を永久磁石の接着工法を用いていた磁気センサに対して適用することで、従来の永久磁石の接着工法のリードフレームの接着精度、パッケージ成型精度、永久磁石の接着精度等に限界があるという問題点を解消し、高精度でかつ小型化が可能な好適な磁気センサを提供することが可能となる。   In the above-described embodiment, the magnetoresistive element pattern shown in FIG. 3A has been described. However, this is only an example, and the present invention is not limited to this, and has various pattern layouts. (For example, described in FIG. 9 of Japanese Patent Laid-Open No. 11-21409, FIG. 8 of Japanese Patent Laid-Open No. 59-19810, etc.). That is, by applying the manufacturing method of the present invention to a magnetic sensor that uses a permanent magnet bonding method, the lead frame bonding accuracy, package molding accuracy, and permanent magnet bonding accuracy of the conventional permanent magnet bonding method are described. Therefore, it is possible to provide a suitable magnetic sensor that can eliminate the problem of limitations in the above and can be miniaturized with high accuracy.

また、本発明は、応用として電流センサ、地磁気センサ等の比較的小さな動作範囲(バイアス磁界)のものに対しても適用できるものであり、これを制限するものではない。   Further, the present invention can be applied to a relatively small operating range (bias magnetic field) such as a current sensor and a geomagnetic sensor as an application, and is not limited thereto.

本発明による磁気センサ10の構成を表した断面図である。It is sectional drawing showing the structure of the magnetic sensor 10 by this invention. 本発明による磁気センサ10の製造工程を表した模式図である。It is the schematic diagram showing the manufacturing process of the magnetic sensor 10 by this invention. (a)は、本発明による磁気センサ10の基板表面に形成する磁気抵抗素子パターンの一例を表した模式図であり、(b)はその結線を表した回路図である。(A) is the schematic diagram showing an example of the magnetoresistive element pattern formed in the board | substrate surface of the magnetic sensor 10 by this invention, (b) is the circuit diagram showing the connection. (a)は、本発明による磁気センサ10の磁性体15の流し込み前の状態を表した断面図であり、(b)は、磁性体15を流し込み後の状態を表した断面図であり、(c)は、着磁後のバイアス磁界の方向を表した模式図である。(A) is sectional drawing showing the state before pouring of the magnetic body 15 of the magnetic sensor 10 by this invention, (b) is sectional drawing showing the state after pouring the magnetic body 15, ( (c) is a schematic diagram showing the direction of the bias magnetic field after magnetization. (a)は、一般的な磁気抵抗素子の構造を表した斜視図であり、(b)は、磁気抵抗素子への印加磁界と抵抗値変化の関係を表したグラフであり、(c)及び(d)は、磁気抵抗素子を用いた等価回路の一例を表した模式図である。(A) is the perspective view showing the structure of the general magnetoresistive element, (b) is the graph showing the relationship between the magnetic field applied to a magnetoresistive element, and resistance value change, (c) and (D) is the schematic diagram showing an example of the equivalent circuit using a magnetoresistive element. 磁気抵抗素子に生じるヒステリシスの様子を表したグラフである。It is a graph showing the mode of the hysteresis which arises in a magnetoresistive element. (a)は、磁気抵抗そしの延伸方向に平行にバイアス磁界を印加した場合の状態を表した模式図であり、(b)及び(c)は、この場合の特性を表したグラフである。(A) is the schematic diagram showing the state at the time of applying a bias magnetic field in parallel with the extending direction of a magnetoresistive, and (b) and (c) are the graphs showing the characteristic in this case. (a)は、磁気抵抗そしの延伸方向に垂直にバイアス磁界を印加した場合の状態を表した模式図であり、(b)は、この場合の特性を表したグラフである。(A) is the schematic diagram showing the state at the time of applying a bias magnetic field perpendicular | vertical to the extending | stretching direction of a magnetoresistive, and (b) is a graph showing the characteristic in this case.

符号の説明Explanation of symbols

10…磁気センサ、11…磁気抵抗素子、12…電極、13…基板、14…凹部、15…磁性体。 DESCRIPTION OF SYMBOLS 10 ... Magnetic sensor, 11 ... Magnetoresistive element, 12 ... Electrode, 13 ... Board | substrate, 14 ... Recessed part, 15 ... Magnetic body.

Claims (7)

検出対象物との間の相対的運動によって生じる磁界変化を検出する磁気センサにおいて、前記磁気センサは、基板と、この基板の表面に形成された磁気抵抗素子と、前記基板における前記磁気抵抗素子の形成面と反対面に形成された磁性体とを具備し、前記磁性体は、磁性粉と樹脂とを混合したものを前記基板の凹部に流し込んで硬化し、着磁したものからなることを特徴とする磁気センサ。   In the magnetic sensor for detecting a magnetic field change caused by relative movement with respect to a detection target, the magnetic sensor includes a substrate, a magnetoresistive element formed on the surface of the substrate, and the magnetoresistive element on the substrate. A magnetic body formed on a surface opposite to the formation surface, wherein the magnetic body is made by mixing a magnetic powder and a resin into a concave portion of the substrate, curing the magnetic body, and magnetizing the magnetic body. Magnetic sensor. 磁性粉は、磁性体全体に対し希土類で50〜90wt%の配合率としたことを特徴とする請求項1記載の磁気センサ。   The magnetic sensor according to claim 1, wherein the magnetic powder is a rare earth compound with a blending ratio of 50 to 90 wt% with respect to the entire magnetic material. 磁気センサと検出対象物との間の相対的運動によって生じる磁界変化を検出するための磁気センサを、基板に磁気抵抗素子と磁性体とを設けて形成する方法において、前記基板の一方の面に磁気抵抗素子を形成する工程と、前記基板の他方の面であって、前記磁気抵抗素子に関連した位置に形成した凹部に磁性粉と樹脂とを混合したものを流し込んで前記磁性体となる硬化物を形成する工程と、この硬化物に着磁して永久磁石を構成する工程とからなることを特徴とする磁気センサの製造方法。   In a method of forming a magnetic sensor for detecting a magnetic field change caused by a relative motion between a magnetic sensor and a detection object by providing a magnetoresistive element and a magnetic body on the substrate, the magnetic sensor is formed on one surface of the substrate. A step of forming a magnetoresistive element, and a hardening that becomes the magnetic body by pouring a mixture of magnetic powder and resin into a recess formed on the other surface of the substrate at a position related to the magnetoresistive element A method of manufacturing a magnetic sensor comprising: a step of forming an object; and a step of magnetizing the cured product to form a permanent magnet. 磁気センサと検出対象物との間の相対的運動によって生じる磁界変化を検出するための磁気センサを、基板に磁気抵抗素子と磁性体とを設けて形成する方法において、シリコン、ガラス又はセラミックからなる前記基板の一方の面に、磁気抵抗素子、電極、保護膜等を形成する工程と、前記基板の他方の面であって、前記磁気抵抗素子に関連した位置に、エッチング工法又はマイクロブラスト工法で凹部を形成し、この凹部に、磁性粉と樹脂とを混合したものをポッティング又は印刷工法で流し込んで前記磁性体となる硬化物を形成する工程と、この硬化物に着磁して永久磁石を構成する工程とからなることを特徴とする磁気センサの製造方法。   In a method of forming a magnetic sensor for detecting a magnetic field change caused by relative movement between a magnetic sensor and a detection object by providing a magnetoresistive element and a magnetic body on a substrate, the magnetic sensor is made of silicon, glass, or ceramic. A step of forming a magnetoresistive element, an electrode, a protective film, etc. on one surface of the substrate, and the other surface of the substrate at a position related to the magnetoresistive element by an etching method or a microblast method Forming a concave portion, pouring a mixture of magnetic powder and resin into the concave portion by a potting or printing method to form a cured product that becomes the magnetic body, and magnetizing the cured product to form a permanent magnet A method of manufacturing a magnetic sensor, comprising the steps of: 硬化物に着磁して永久磁石を構成した後に、この永久磁石からなる磁性体を目的の磁力となるように研磨する工程を付加したことを特徴とする請求項3又は4記載の磁気センサの製造方法。   The magnetic sensor according to claim 3 or 4, further comprising a step of polishing a magnetic body made of the permanent magnet so as to have a target magnetic force after magnetizing the cured product to form a permanent magnet. Production method. 磁性体を構成する硬化物中の磁性粉は、磁性体全体に対し希土類で50〜90wt%の配合率としたことを特徴とする請求項3、4又は5記載の磁気センサの製造方法。   6. The method of manufacturing a magnetic sensor according to claim 3, wherein the magnetic powder in the cured product constituting the magnetic body is a rare earth with a blending ratio of 50 to 90 wt% with respect to the entire magnetic body. 基板の一方の面に磁気抵抗素子を形成する工程と、前記基板の他方の面であって、前記磁気抵抗素子に関連した位置に形成した凹部に磁性粉と樹脂とを混合したものを流し込んで前記磁性体となる硬化物を形成する工程との工程のうち、いずれか一方の工程を先に行い、いずれか他方の工程を後で行うようにしたことを特徴とする請求項3又は4記載の磁気センサの製造方法。   Forming a magnetoresistive element on one surface of the substrate; and pouring a mixture of magnetic powder and resin into a recess formed on the other surface of the substrate at a position related to the magnetoresistive element. 5. The method according to claim 3, wherein any one of the steps of the step of forming a cured product to be a magnetic body is performed first, and the other step is performed later. Manufacturing method of the magnetic sensor.
JP2008113552A 2008-04-24 2008-04-24 Manufacturing method of magnetic sensor Active JP5426839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008113552A JP5426839B2 (en) 2008-04-24 2008-04-24 Manufacturing method of magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008113552A JP5426839B2 (en) 2008-04-24 2008-04-24 Manufacturing method of magnetic sensor

Publications (2)

Publication Number Publication Date
JP2009264866A true JP2009264866A (en) 2009-11-12
JP5426839B2 JP5426839B2 (en) 2014-02-26

Family

ID=41390907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008113552A Active JP5426839B2 (en) 2008-04-24 2008-04-24 Manufacturing method of magnetic sensor

Country Status (1)

Country Link
JP (1) JP5426839B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056179A1 (en) * 2014-10-09 2016-04-14 パナソニックIpマネジメント株式会社 Magnetic sensor
US20170016745A1 (en) * 2014-03-24 2017-01-19 Panasonic Intellectual Property Management Co., Ltd. Magnetic sensor
EP4325233A1 (en) * 2022-08-18 2024-02-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a magnetic field sensor chip having an integrated back bias magnet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291589A (en) * 1988-09-29 1990-03-30 Asahi Chem Ind Co Ltd Magneto-electric converting element
JPH04152688A (en) * 1990-10-17 1992-05-26 Fujitsu Ltd Magnetoresistance element
JPH0564786U (en) * 1992-02-06 1993-08-27 株式会社三協精機製作所 Magnetic sensor
JPH05332703A (en) * 1992-06-04 1993-12-14 Murata Mfg Co Ltd Long type magnetic sensor
JPH0631159U (en) * 1992-09-22 1994-04-22 株式会社三協精機製作所 Hall element substrate
JP2003007542A (en) * 2000-10-25 2003-01-10 Nec Tokin Corp Magnetic core and inductance component using the same
WO2003090289A1 (en) * 2002-04-19 2003-10-30 Asahi Kasei Electronics Co., Ltd. Magnetoelectric transducer and its manufacturing method
JP2004340669A (en) * 2003-05-14 2004-12-02 Murata Mfg Co Ltd Rotary magnetometric sensor
JP2005003477A (en) * 2003-06-11 2005-01-06 Matsushita Electric Ind Co Ltd Magnetic sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291589A (en) * 1988-09-29 1990-03-30 Asahi Chem Ind Co Ltd Magneto-electric converting element
JPH04152688A (en) * 1990-10-17 1992-05-26 Fujitsu Ltd Magnetoresistance element
JPH0564786U (en) * 1992-02-06 1993-08-27 株式会社三協精機製作所 Magnetic sensor
JPH05332703A (en) * 1992-06-04 1993-12-14 Murata Mfg Co Ltd Long type magnetic sensor
JPH0631159U (en) * 1992-09-22 1994-04-22 株式会社三協精機製作所 Hall element substrate
JP2003007542A (en) * 2000-10-25 2003-01-10 Nec Tokin Corp Magnetic core and inductance component using the same
WO2003090289A1 (en) * 2002-04-19 2003-10-30 Asahi Kasei Electronics Co., Ltd. Magnetoelectric transducer and its manufacturing method
JP2004340669A (en) * 2003-05-14 2004-12-02 Murata Mfg Co Ltd Rotary magnetometric sensor
JP2005003477A (en) * 2003-06-11 2005-01-06 Matsushita Electric Ind Co Ltd Magnetic sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170016745A1 (en) * 2014-03-24 2017-01-19 Panasonic Intellectual Property Management Co., Ltd. Magnetic sensor
WO2016056179A1 (en) * 2014-10-09 2016-04-14 パナソニックIpマネジメント株式会社 Magnetic sensor
US10094890B2 (en) 2014-10-09 2018-10-09 Panasonic Intellectual Property Management Co., Ltd. Magnetic sensor
EP4325233A1 (en) * 2022-08-18 2024-02-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for producing a magnetic field sensor chip having an integrated back bias magnet

Also Published As

Publication number Publication date
JP5426839B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
US8129988B2 (en) Method and system for adjusting the sensitivity of a magnetoresistive sensor
JP5271448B2 (en) Magnetic position detector
CN1940586B (en) Magnetic field detector and manufacturing method thereof
US9279866B2 (en) Magnetic sensor
JP6107942B2 (en) Magnetic current sensor and current measuring method
JP2009527758A (en) Magnetoresistive sensor device and method of manufacturing a magnetoresistive sensor device
JP2011176012A (en) Magnetic sensor, magnetic detector, and magnetic head
JP6132085B2 (en) Magnetic detector
JP5426839B2 (en) Manufacturing method of magnetic sensor
US9574906B2 (en) Magnetic medium for magnetic encoder, magnetic encoder and method for manufacturing magnetic medium
JP2000180524A (en) Magnetic field sensor
JP2000193407A (en) Magnetic positioning device
JP6555421B2 (en) Magnetic sensor and current sensor including the same
JP4953569B2 (en) Thin film magnetoresistive element and magnetic sensor using thin film magnetoresistive element
JP2004325344A (en) Magnetosensitive element integrated with control element
KR100196654B1 (en) Magnetoresistive sensor having a bias field applied at approximately 56 deg
JP2017122645A (en) Magnetic sensor
JP5479796B2 (en) Component arrangement structure of magnetic sensor
JP6222897B2 (en) Multi-axis magnetic sensor and manufacturing method thereof
JP4677828B2 (en) Method for adjusting magnetic characteristics of magnet apparatus
JP4773066B2 (en) Gear sensor
JP2015194389A (en) Magnetic field detection device and multi piece substrate
WO2019049414A1 (en) Magnetic sensor and current sensor provided with same
JP2006138707A (en) Rotation detector
JP2000088941A (en) Magnetic field sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20130919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5426839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250