JPH04152688A - Magnetoresistance element - Google Patents

Magnetoresistance element

Info

Publication number
JPH04152688A
JPH04152688A JP2278214A JP27821490A JPH04152688A JP H04152688 A JPH04152688 A JP H04152688A JP 2278214 A JP2278214 A JP 2278214A JP 27821490 A JP27821490 A JP 27821490A JP H04152688 A JPH04152688 A JP H04152688A
Authority
JP
Japan
Prior art keywords
film
magnet
thin film
magnetic field
ferromagnetic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2278214A
Other languages
Japanese (ja)
Inventor
Michiko Endou
みち子 遠藤
Shinkichi Shimizu
信吉 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2278214A priority Critical patent/JPH04152688A/en
Publication of JPH04152688A publication Critical patent/JPH04152688A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize a magnetoresistance element and to easily position a ferromagnetic thin film resistive element by a method wherein a film magnet formed through a thick film technique is used as a permanent magnet. CONSTITUTION:Thick film paste is prepared using (Sm-Co) alloy powder, the paste is printed on a chip mounting lead frame 7 and dried up, the printed paste is burned into an alloy film in nitrogen flow, a magnetic field is applied to the alloy film to magnetize it in the bias applying direction of a ferromagnetic thin film resistive element, and then the alloy film is made to serve as a film magnet 10. Then, a ferromagnetic thin film resistive element 5 is mounted on the film magnet 10 with adhesive agent, and the input-output terminals of the element 5 are connected to the lead frame 7 with bonding wires 8, and the assembly concerned is molded with resin into a magnetoresistance element.

Description

【発明の詳細な説明】 〔概要〕 バーバーポール型の磁気抵抗素子に関し、小型化と製造
収率を向上することを目的とし、強磁性薄膜抵抗素子の
裏面にバイアス磁界発生用の永久磁石を装着してなるバ
ーバーポール型の磁気抵抗素子において、該磁界発生用
の磁石として磁性材料粉末を主成分とするペーストを印
刷焼成した後、着磁した膜磁石を用いてなることを特徴
として磁気抵抗素子を構成する。
[Detailed Description of the Invention] [Summary] A permanent magnet for generating a bias magnetic field is attached to the back surface of a ferromagnetic thin film resistance element for the purpose of miniaturization and improvement of manufacturing yield regarding a barber pole type magnetoresistive element. A barber-pole type magnetoresistive element comprising: a film magnet magnetized after printing and firing a paste containing magnetic material powder as a main component as a magnet for generating the magnetic field; Configure.

〔産業上の利用分野〕[Industrial application field]

本発明は磁気抵抗素子の小型化に関する。 The present invention relates to miniaturization of magnetoresistive elements.

磁気抵抗素子は磁気センサとして以前より使用されてい
るが、最近はマイクロエレクトロニックス技術が進み、
小型で高感度のバーバーポール型の素子が実用化されて
いる。
Magnetoresistive elements have been used as magnetic sensors for some time, but recently, with advances in microelectronics technology,
A small and highly sensitive barber pole type element has been put into practical use.

本発明は更にこれを小型化した磁気抵抗素子に関するも
のである。
The present invention further relates to a magnetoresistive element that is miniaturized.

〔従来の技術〕[Conventional technology]

磁気抵抗素子(Magnet Registive E
lement  略称MR素子)は磁界によって電気抵
抗が変化する磁気抵抗効果を利用する素子であり、強磁
性体では自発磁化の方向の変化により抵抗が変化するの
を利用している。
Magnet Resistive Element
An MR element (abbreviated as MR element) is an element that utilizes the magnetoresistive effect in which electrical resistance changes depending on a magnetic field, and utilizes the fact that in a ferromagnetic material, resistance changes due to a change in the direction of spontaneous magnetization.

第2図は従来のバーバーポール型磁気抵抗素子の草面図
、また第3図はこの原理図である。
FIG. 2 is a plan view of a conventional barber pole type magnetoresistive element, and FIG. 3 is a diagram of its principle.

すなわち、強磁性体たとえばパーマロイにッケル・鉄、
 Ni−Fe合金)をスパッタ法などによりガラス基板
やシリコン(Si)基板上に膜形成して細長い薄膜抵抗
体lを形成すると、形状磁気異方性により自発磁化の方
向2は薄膜抵抗体1の長手方向に揃っている。
That is, ferromagnetic materials such as permalloy, nickel iron,
When an elongated thin film resistor l is formed by forming a film of Ni-Fe alloy) on a glass substrate or silicon (Si) substrate by sputtering or the like, the direction of spontaneous magnetization 2 is the same as that of the thin film resistor 1 due to shape magnetic anisotropy. Aligned in the longitudinal direction.

然し、この素子の長手方向とは直角に磁界3を加えると
、磁界3の大きさに比例して薄膜抵抗体lを構成してい
るドメインの磁化回転が生ずるために薄膜抵抗体1の抵
抗が変化する。
However, when a magnetic field 3 is applied perpendicularly to the longitudinal direction of this element, the magnetization rotation of the domains constituting the thin film resistor 1 occurs in proportion to the magnitude of the magnetic field 3, so that the resistance of the thin film resistor 1 decreases. Change.

そこで、薄膜抵抗体lに定電流を通じておき、この抵抗
変化を検出するのが磁気抵抗素子である。
Therefore, a magnetoresistive element is used to pass a constant current through the thin film resistor l and detect this change in resistance.

然し、この場合の抵抗変化は磁界の印加方向には依存し
ないために、これを改良し、正より負の成る磁界範囲に
おいて抵抗変化が直線的に生ずるように改良したのがバ
ーバーポール型の磁気抵抗素子であって、第3図に示す
ように薄膜抵抗体1の上に金(Au)などの金属よりな
るバーバーポール状の金属パターン4を形成し、電流の
伝導方向を変えている。
However, since the resistance change in this case does not depend on the direction of the applied magnetic field, barber pole type magnetism has been improved so that the resistance change occurs linearly in the magnetic field range from positive to negative. As shown in FIG. 3, the resistance element is a barber pole-shaped metal pattern 4 made of metal such as gold (Au) formed on a thin film resistor 1 to change the direction of current conduction.

このようにして強磁性薄膜抵抗素子5を形成した後、更
に磁界の変動による不安定性を無くするために、バイア
ス磁界発生機構として、第2図に示すように、この素子
5の背後で素子5の自発磁化の方向(長手方向)と磁界
の方向が平行となるように永久磁石6を配置してバイア
ス磁界を与えている。
After forming the ferromagnetic thin film resistive element 5 in this manner, in order to further eliminate instability due to fluctuations in the magnetic field, a bias magnetic field generating mechanism is installed behind the element 5 as shown in FIG. A bias magnetic field is applied by arranging the permanent magnets 6 so that the direction of spontaneous magnetization (longitudinal direction) and the direction of the magnetic field are parallel to each other.

なお、第2図には強磁性薄膜抵抗素子5を回路接続する
ためのリードフレーム7とボンディングワイヤ8との関
係を示している。
Incidentally, FIG. 2 shows the relationship between the lead frame 7 and the bonding wire 8 for connecting the ferromagnetic thin film resistance element 5 to a circuit.

こ\で、永久磁石6は強磁性薄膜抵抗素子5に較べると
大きく、そのため小型化の障害となっていた。
Here, the permanent magnet 6 is larger than the ferromagnetic thin film resistance element 5, which has been an obstacle to miniaturization.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

感度と安定性の優れた磁気抵抗素子としてバイアス磁界
発生用の永久磁石を備えたパーツく−ボール型磁気抵抗
素子が使用されている。
As a magnetoresistive element with excellent sensitivity and stability, a part-ball type magnetoresistive element equipped with a permanent magnet for generating a bias magnetic field is used.

然し、この強磁性薄膜抵抗素子の背後に設けられる永久
磁石は素子本体に較べると大きく、そのため小型化を阻
んでいる。
However, the permanent magnet provided behind this ferromagnetic thin film resistance element is larger than the element itself, which hinders miniaturization.

また薄膜抵抗体の自発磁化の方向に一致させて永久磁石
を配置する必要があるが、位置合わせを精度よく行うこ
とは容易ではない。
Furthermore, it is necessary to arrange the permanent magnets so as to match the direction of spontaneous magnetization of the thin film resistor, but it is not easy to precisely align the magnets.

これらのことから、永久磁石を小型化して作業性を向上
することが課題である。
For these reasons, the challenge is to reduce the size of permanent magnets and improve workability.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は強磁性薄膜抵抗素子の裏面にバイアス磁界
発生用の磁石を装着してなるバーバーポール型の磁気抵
抗素子において、磁界発生用の磁石として磁性材料粉末
を主成分とするペーストを印刷焼成した後、着磁した膜
磁石を用いてなることを特徴として磁気抵抗素子を構成
することにより解決することができる。
The above problem is solved by printing and firing a paste mainly composed of magnetic material powder as a magnet for generating a magnetic field in a barber pole type magnetoresistive element in which a magnet for generating a bias magnetic field is attached to the back side of a ferromagnetic thin film resistance element. This problem can be solved by constructing a magnetoresistive element characterized by using a magnetized film magnet.

〔作用〕[Effect]

本発明は永久磁石として、厚膜技術を用いて形成した膜
磁石を使用するものである。
The present invention uses a film magnet formed using thick film technology as a permanent magnet.

このようにすると、通常用いられているフェライト磁石
などに較べてはるかに薄くなり、また印刷法によって形
成されるために強磁性薄膜抵抗素子の位置決めを精度よ
く行うことができる。
In this way, the ferromagnetic thin film resistance element can be positioned with high precision because it is much thinner than a commonly used ferrite magnet, and because it is formed by a printing method.

〔実施例〕〔Example〕

磁性粉として平均粒径が1μmのサマリウム・コバルト
(Sm−Co)合金粉末を用い、次のようにして厚膜ペ
ーストを作った。
A thick film paste was made in the following manner using samarium-cobalt (Sm-Co) alloy powder with an average particle size of 1 μm as the magnetic powder.

Sm−Co粉末          ・・・100重量
部ポリメチルメタアクリレート(略称PMMA)(バイ
ンダ)・・・ 3重量部 テルピネオール(溶剤)    ・・・ 10  〃メ
チルエチルケトン(溶剤)  ・・・100〃を混合し
、ボールミルを用いて24時間に亙って混練して厚膜ペ
ーストを作った。
Sm-Co powder...100 parts by weight Polymethyl methacrylate (PMMA) (binder)...3 parts by weight Terpineol (solvent)...10 Methyl ethyl ketone (solvent)...100 were mixed and milled in a ball mill. A thick film paste was made by kneading for 24 hours.

このペーストを用い、スクリーンプリント法を用い、第
1図に示すように銅(Cu)合金よりなり厚さが250
μmのチップ載置用のリードフレーム7の上に印刷し、
乾燥した後、窒素(N2)気流中で640℃、60分の
条件で焼成して3X3mmで厚さが10μmの合金膜を
作り、これにIOKガウスの磁界を与えて強磁性薄膜抵
抗素子のバイアス印加方向に着磁し、膜磁石10とした
。(以上同図A)次に、この膜磁石IOの上に従来の方
法でSiチップ上に形成しである2画角の強磁性薄膜抵
抗素子5を接着剤を用いて搭載し、強磁性薄膜抵抗素子
5の入出力端子とリードフレーム7とをボンディングワ
イヤ8で接続した。
Using this paste and using the screen printing method, as shown in Figure 1, a copper (Cu) alloy with a thickness of 250mm
Printed on the lead frame 7 for mounting micrometer chips,
After drying, the alloy film is baked at 640°C for 60 minutes in a nitrogen (N2) stream to form a 3x3mm alloy film with a thickness of 10μm.A magnetic field of IOK Gauss is applied to this to bias the ferromagnetic thin film resistance element. It was magnetized in the direction of application to form a film magnet 10. (A in the same figure) Next, on this film magnet IO, a ferromagnetic thin film resistance element 5 formed on a Si chip using a conventional method and having two angles of view is mounted using adhesive. The input/output terminals of the resistive element 5 and the lead frame 7 were connected with bonding wires 8.

そして、これを樹脂モールドすることで本発明に係る磁
気抵抗素子が完成した。
Then, by resin molding this, a magnetoresistive element according to the present invention was completed.

か−る磁気抵抗素子の最大の抵抗変化率は2%であり、
バイアス発生用として永久磁石を用いたものと同じ特性
を示した。
The maximum resistance change rate of such a magnetoresistive element is 2%,
It exhibited the same characteristics as those using permanent magnets for bias generation.

具体的には西端子ブリッジ型の構成において、入力端子
間に5 mAの電流を通じである場合に600eの磁界
を抵抗素子の長手方向に対して直角に加えた場合、出力
端子間に40 mVの出力を得ることができた。
Specifically, in a west terminal bridge type configuration, when a 5 mA current is passed between the input terminals and a 600 e magnetic field is applied perpendicular to the longitudinal direction of the resistor element, a 40 mV voltage is generated between the output terminals. I was able to get the output.

〔発明の効果〕〔Effect of the invention〕

永久磁石を膜磁石に換える本発明の実施により、磁気抵
抗素子が小型化すると共に強磁性薄膜抵抗素子の位置決
めが容易になり、これにより製造収率の向上が可能にな
る。
By implementing the present invention by replacing permanent magnets with film magnets, the magnetoresistive element becomes smaller and the positioning of the ferromagnetic thin film resistance element becomes easier, thereby making it possible to improve the manufacturing yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る磁気抵抗素子の工程を示す断面図
、 第2図は従来の磁気抵抗素子の断面図、第3図はバーバ
ーポール型磁気抵抗素子の原理図、 である。 図において、 1は薄膜抵抗体、    2は自発磁化の方向、5は強
磁性薄膜抵抗素子、6は永久磁石、lOは膜磁石、 である。
FIG. 1 is a sectional view showing the process of manufacturing a magnetoresistive element according to the present invention, FIG. 2 is a sectional view of a conventional magnetoresistive element, and FIG. 3 is a principle diagram of a barber pole type magnetoresistive element. In the figure, 1 is a thin film resistor, 2 is a direction of spontaneous magnetization, 5 is a ferromagnetic thin film resistance element, 6 is a permanent magnet, and IO is a film magnet.

Claims (1)

【特許請求の範囲】 強磁性薄膜抵抗素子の裏面にバイアス磁界発生用の永久
磁石を装着してなるバーバーポール型の磁気抵抗素子に
おいて、 該磁界発生用の磁石として磁性材料粉末を主成分とする
ペーストを印刷焼成した後、着磁した膜磁石を用いてな
ることを特徴とする磁気抵抗素子。
[Scope of Claims] A barber pole type magnetic resistance element comprising a permanent magnet for generating a bias magnetic field attached to the back surface of a ferromagnetic thin film resistance element, wherein the magnet for generating the magnetic field has a magnetic material powder as a main component. A magnetoresistive element characterized by using a film magnet magnetized after printing and firing a paste.
JP2278214A 1990-10-17 1990-10-17 Magnetoresistance element Pending JPH04152688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2278214A JPH04152688A (en) 1990-10-17 1990-10-17 Magnetoresistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2278214A JPH04152688A (en) 1990-10-17 1990-10-17 Magnetoresistance element

Publications (1)

Publication Number Publication Date
JPH04152688A true JPH04152688A (en) 1992-05-26

Family

ID=17594194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2278214A Pending JPH04152688A (en) 1990-10-17 1990-10-17 Magnetoresistance element

Country Status (1)

Country Link
JP (1) JPH04152688A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205435A (en) * 2007-01-24 2008-09-04 Fujikura Ltd Magnetic impedance effect element
JP2009264866A (en) * 2008-04-24 2009-11-12 Hamamatsu Koden Kk Magnetic sensor and manufacturing method of the same
US8143169B2 (en) 2007-03-29 2012-03-27 Allegro Microsystems, Inc. Methods for multi-stage molding of integrated circuit package
US8461677B2 (en) 2008-12-05 2013-06-11 Allegro Microsystems, Llc Magnetic field sensors and methods for fabricating the magnetic field sensors
US9299915B2 (en) 2012-01-16 2016-03-29 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US9304175B2 (en) 2006-02-23 2016-04-05 Nxp B.V. Magnetoresistive sensor device and method of fabricating such magnetoresistive sensor device
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10215550B2 (en) 2012-05-01 2019-02-26 Allegro Microsystems, Llc Methods and apparatus for magnetic sensors having highly uniform magnetic fields
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US10725100B2 (en) 2013-03-15 2020-07-28 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an externally accessible coil
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US10921391B2 (en) 2018-08-06 2021-02-16 Allegro Microsystems, Llc Magnetic field sensor with spacer
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11961920B2 (en) 2023-04-26 2024-04-16 Allegro Microsystems, Llc Integrated circuit package with magnet having a channel

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9304175B2 (en) 2006-02-23 2016-04-05 Nxp B.V. Magnetoresistive sensor device and method of fabricating such magnetoresistive sensor device
JP2008205435A (en) * 2007-01-24 2008-09-04 Fujikura Ltd Magnetic impedance effect element
US8143169B2 (en) 2007-03-29 2012-03-27 Allegro Microsystems, Inc. Methods for multi-stage molding of integrated circuit package
JP2009264866A (en) * 2008-04-24 2009-11-12 Hamamatsu Koden Kk Magnetic sensor and manufacturing method of the same
US8461677B2 (en) 2008-12-05 2013-06-11 Allegro Microsystems, Llc Magnetic field sensors and methods for fabricating the magnetic field sensors
US8486755B2 (en) 2008-12-05 2013-07-16 Allegro Microsystems, Llc Magnetic field sensors and methods for fabricating the magnetic field sensors
US9620705B2 (en) 2012-01-16 2017-04-11 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US9299915B2 (en) 2012-01-16 2016-03-29 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US10333055B2 (en) 2012-01-16 2019-06-25 Allegro Microsystems, Llc Methods for magnetic sensor having non-conductive die paddle
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US10230006B2 (en) 2012-03-20 2019-03-12 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an electromagnetic suppressor
US11828819B2 (en) 2012-03-20 2023-11-28 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US11677032B2 (en) 2012-03-20 2023-06-13 Allegro Microsystems, Llc Sensor integrated circuit with integrated coil and element in central region of mold material
US11444209B2 (en) 2012-03-20 2022-09-13 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an integrated coil enclosed with a semiconductor die by a mold material
US10916665B2 (en) 2012-03-20 2021-02-09 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an integrated coil
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US10215550B2 (en) 2012-05-01 2019-02-26 Allegro Microsystems, Llc Methods and apparatus for magnetic sensors having highly uniform magnetic fields
US9817078B2 (en) 2012-05-10 2017-11-14 Allegro Microsystems Llc Methods and apparatus for magnetic sensor having integrated coil
US11680996B2 (en) 2012-05-10 2023-06-20 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having integrated coil
US10725100B2 (en) 2013-03-15 2020-07-28 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an externally accessible coil
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10254103B2 (en) 2013-07-19 2019-04-09 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US11313924B2 (en) 2013-07-19 2022-04-26 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10670672B2 (en) 2013-07-19 2020-06-02 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US11307054B2 (en) 2014-10-31 2022-04-19 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10753768B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10837800B2 (en) 2016-06-08 2020-11-17 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US10921391B2 (en) 2018-08-06 2021-02-16 Allegro Microsystems, Llc Magnetic field sensor with spacer
US11686599B2 (en) 2018-08-06 2023-06-27 Allegro Microsystems, Llc Magnetic field sensor
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11961920B2 (en) 2023-04-26 2024-04-16 Allegro Microsystems, Llc Integrated circuit package with magnet having a channel

Similar Documents

Publication Publication Date Title
JPH04152688A (en) Magnetoresistance element
US6020738A (en) Device for magnetizing magnetoresistive thin film-sensor elements in a bridge connection
US20030070497A1 (en) Rotation angle sensor capable of accurately detecting rotation angle
WO2012097673A1 (en) Independently packaged bridge type magnetic field sensor
JP2015108640A (en) Arrangements for integrated sensor
JPH11505966A (en) Magnetic field sensor with bridge circuit of magnetoresistive bridge element
JP2002502549A (en) Giant magnetoresistive all-metal solid-state device
KR20060050168A (en) Azimuth meter having spin-valve giant magneto-resistive elements
JPS6022726B2 (en) displacement detector
TWI695965B (en) Magnetic field sensing device
JP2001159542A (en) Rotation angle sensor and rotation angle sensor unit
JP2000193407A (en) Magnetic positioning device
JP2008209224A (en) Magnetic sensor
JP5426839B2 (en) Manufacturing method of magnetic sensor
KR100704856B1 (en) Compact Micro Magnetic Field Detecting Sensor Using Magneto Impedance Effects and Method for Making the Same
WO2018008176A1 (en) Magnetic sensor and current sensor provided with same
JP3024218B2 (en) Magnetic signal detector
JPH054037U (en) Current detection sensor
JP2016003866A (en) Gmi element for z-axis, and ultrathin three-dimensional gmi sensor
JP3449160B2 (en) Magnetoresistive element and rotation sensor using the same
JP2020178045A (en) Magnetoresistance element, and manufacturing method thereof
JP2002204001A (en) Magnetic signal sensor and method of manufacturing the same
JP2514338B2 (en) Current detector
JP6222897B2 (en) Multi-axis magnetic sensor and manufacturing method thereof
JP4773066B2 (en) Gear sensor