JP2016003866A - Gmi element for z-axis, and ultrathin three-dimensional gmi sensor - Google Patents

Gmi element for z-axis, and ultrathin three-dimensional gmi sensor Download PDF

Info

Publication number
JP2016003866A
JP2016003866A JP2014122265A JP2014122265A JP2016003866A JP 2016003866 A JP2016003866 A JP 2016003866A JP 2014122265 A JP2014122265 A JP 2014122265A JP 2014122265 A JP2014122265 A JP 2014122265A JP 2016003866 A JP2016003866 A JP 2016003866A
Authority
JP
Japan
Prior art keywords
gmi
coil
axis
electrodes
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014122265A
Other languages
Japanese (ja)
Inventor
本蔵 義信
Yoshinobu Motokura
義信 本蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magnedesign Co Ltd
Original Assignee
Magnedesign Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnedesign Co Ltd filed Critical Magnedesign Co Ltd
Priority to JP2014122265A priority Critical patent/JP2016003866A/en
Publication of JP2016003866A publication Critical patent/JP2016003866A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To develop an ultrasmall/ultrathin high-performance three-dimensional GMI sensor by solving a trade-off problem between a wire length and a magnetic field detection performance in the GMI sensor.SOLUTION: Solder joint and an assembly method such as a conductive post are combined with a fine coil, a combination unit element of a right-handed coil and a left-handed coil, a GMI element having a size of 0.2 mm and an integrated circuit chip, to thereby achieve simultaneously detectability improvement of a three-dimensional GMI sensor and micro-sizing.

Description

本発明は、X軸Y軸Z軸の3つのGMI素子をひとつの集積基板上に組み付けて方位センサなどの使用される3次元タイプのGMIセンサの磁界検出性能を改善すると同時に3次元GMIセンサの厚みを薄くし、サイズを小さくすることを可能にする技術に関するものである。 The present invention improves the magnetic field detection performance of a three-dimensional type GMI sensor used such as an orientation sensor by assembling three GMI elements of the X axis, the Y axis, and the Z axis on one integrated substrate, and at the same time, The present invention relates to a technique that makes it possible to reduce the thickness and the size.

方位センサは、X軸、Y軸およびZ軸の3つの磁気センサ素子と集積回路を組み合わせて地磁気ベクトルを測定し、その値から方位を計算するものである。スマートホン、タブレット、インターネットTVのリモコン、モーションゲーム、モーションキャプチャなどで加速度センサ、振動式ジャイロセンサと組合せてリアルタイム3次元方位計として広く使用されているが、近年これらの装置の一層の高感度化、低ノイズ化、測定レンジのワイドレンジ化とともに小型化、薄型化が強く要求されている。 The azimuth sensor measures the geomagnetic vector by combining three magnetic sensor elements of the X axis, Y axis and Z axis and an integrated circuit, and calculates the azimuth from the measured value. It is widely used as a real-time three-dimensional azimuth meter in combination with an accelerometer and vibration gyro sensor in smart phones, tablets, remote controls for Internet TV, motion games, motion capture, etc. In recent years, these devices have become more sensitive. In addition, there is a strong demand for downsizing and thinning along with low noise and wide measurement range.

とくにスマートホンの薄型化に伴い、方位センサの高さを従来の1.0mmから0.6mm以下と40%以上の薄型化、サイズを従来の2.0mm角から1.5mm角以下と50%以上の小型化が求められている。そのために3次元磁界検出素子に対しても厚み0.2mm以下が求められている。また磁界検出性能面でも、ノイズは、標準偏差で2mG以下から0.5mG以下と4倍の性能アップが、測定レンジに対しては±12Gから±48Gへの拡大が求められている。 In particular, along with the reduction in the thickness of smart phones, the height of the orientation sensor has been reduced from 40 mm to 40 mm or less, from the conventional 1.0 mm to 0.6 mm or less, and the size has been reduced from 50 mm to 1.5 mm square or less from the conventional 2.0 mm square. The above miniaturization is demanded. Therefore, a thickness of 0.2 mm or less is also required for a three-dimensional magnetic field detection element. Also, in terms of magnetic field detection performance, the noise is required to increase by 4 times from 2 mG or less to 0.5 mG or less in standard deviation, and from 12 G to 48 G for the measurement range.

方位センサには、磁界検出用素子としてホール素子、MR素子、GMR素子、MI(Magneto−Impedanceの略)素子、GMI(Giant―Magneto−Impedance素子)等が用いられる。X軸、Y軸、およびZ軸方向の磁界ベクトル成分Hx、Hy、Hzの強さを測定するために、X軸素子、Y軸素子およびZ軸素子の3つの素子を用いて測定を行う。 In the azimuth sensor, a Hall element, an MR element, a GMR element, an MI (abbreviation of magneto-impedance) element, a GMI (giant-magneto-impedance element), or the like is used as a magnetic field detection element. In order to measure the strength of the magnetic field vector components Hx, Hy, and Hz in the X-axis, Y-axis, and Z-axis directions, measurement is performed using three elements, that is, the X-axis element, the Y-axis element, and the Z-axis element.

ホール素子タイプの方位センサは、サイズ要求を満たすことができるが、ノイズが標準偏差で10mG程度と1mG以下の要求に対して大きすぎるという欠点があり、ホールセンサの感度を改善してノイズを低減することは原理上困難である。MI素子タイプの方位センサは、Z軸素子の高さは0.6mmと高い。これは素子の長さと磁界検出性能とがトレードオフの関係にあるため、この高さを低くすることは困難である。 Hall element type azimuth sensors can meet size requirements, but have the disadvantage that noise is too large for demands of standard deviation of around 10mG and less than 1mG, improving Hall sensor sensitivity and reducing noise This is difficult in principle. In the MI element type azimuth sensor, the height of the Z-axis element is as high as 0.6 mm. Since the element length and the magnetic field detection performance are in a trade-off relationship, it is difficult to reduce the height.

これに対して、MI素子と磁性材料を組み合わせた3次元一体素子が特許文献1に開示されているが、パーマロイ心棒によるZ軸方向磁界を平面方向に変向する力はきわめて弱い。そのため長くて直径の大きなパーマロイ心棒を必要とし、一体素子の厚みが0.5mm以上必要でセンサ厚みを薄くすることはできていない。現在、3次元方位センサの磁界検出性能とセンサ小型化・薄肉化を同時に実現するために、以上述べたような多くの開発が取り組まれているが、いまだに実現に至っていない。 On the other hand, a three-dimensional integrated element in which an MI element and a magnetic material are combined is disclosed in Patent Document 1, but the force that changes the Z-axis direction magnetic field in the plane direction by the permalloy mandrel is extremely weak. Therefore, a long and large permalloy mandrel is required, the thickness of the integral element is 0.5 mm or more, and the sensor thickness cannot be reduced. At present, many developments as described above have been made in order to simultaneously realize the magnetic field detection performance of the three-dimensional azimuth sensor and the downsizing / thinning of the sensor, but it has not yet been realized.

超高感度マイクロ磁気センサであるMIセンサの検出原理は、感磁体であるアモルファスワイヤに高周波通電して、そのインピーダンス変化から磁界を測定するセンサである。あるいはワイヤに検出コイルを巻きつけ、そのワイヤにパルス通電しワイヤ表面にスピン波を惹起してその際に生じる検出コイル電圧で磁界を測定するタイプとふたつの検出方式がある。ここでは前者をMI(Magneto−Impedance)センサと呼称し、後者をGMIセンサと呼称する。なお、本センサの原理をめぐって異なった学術的見解と高周波キャリアセンサとか縦型FGセンサなどの呼称が提唱されている。本発明はGMIセンサの検知方式をベースに取り組んだものである。 The detection principle of the MI sensor, which is an ultra-sensitive micro magnetic sensor, is a sensor that measures a magnetic field from a change in impedance by applying high-frequency current to an amorphous wire that is a magnetic sensitive body. Alternatively, there are two types of detection methods: a type in which a detection coil is wound around a wire, a pulse current is applied to the wire, a spin wave is generated on the surface of the wire, and a magnetic field is measured with a detection coil voltage generated at that time. Here, the former is called an MI (Magneto-Impedance) sensor, and the latter is called a GMI sensor. In addition, different scientific views on the principle of this sensor and names such as a high-frequency carrier sensor or a vertical FG sensor have been proposed. The present invention is based on the GMI sensor detection method.

特許第4626728号Japanese Patent No. 4626728

本発明者は、長年3次元GMIセンサの磁界検出性能と超小型化・超薄肉化のトレードオフの問題について解決を試みた。その経過の中で明らかになった課題について以下に説明する。
GMIセンサの検出原理は、感磁体であるアモルファスワイヤに検出コイルを巻きつけ、そのワイヤにパルス通電しワイヤ表面にスピン波を惹起してその際に生じる検出電圧を検出コイルで検知するものである。
The present inventor has tried to solve the problem of the trade-off between the magnetic field detection performance of the three-dimensional GMI sensor and the miniaturization and ultrathinning for many years. The issues that have been clarified during this process are described below.
The detection principle of the GMI sensor is that a detection coil is wound around an amorphous wire, which is a magnetic sensitive body, a pulse is applied to the wire, a spin wave is generated on the surface of the wire, and a detection voltage generated at that time is detected by the detection coil. .

したがって検磁体であるアモルファスワイヤの長さを短くすると、ワイヤ内に作用する反磁界が強くなると同時にコイル巻き数も少なくなってセンサの検出性能は大幅に低下する。
このセンサの磁界検出性能を改善するためには、コイルピッチを微細化してコイル巻き数を大幅に増加させる必要がある。しかし、コイル巻数を増やすと、コイル抵抗、コイルの寄生容量、およびパルス通電による寄生電圧が大きくなって、磁化に比例した検出電圧が低減し、その結果、磁界検出性能の向上は見られなかった。
Therefore, if the length of the amorphous wire as the magnetic detecting body is shortened, the demagnetizing field acting on the wire becomes stronger and the number of coil turns is reduced, and the detection performance of the sensor is greatly lowered.
In order to improve the magnetic field detection performance of this sensor, it is necessary to increase the number of coil turns significantly by reducing the coil pitch. However, when the number of turns of the coil is increased, the coil resistance, the parasitic capacitance of the coil, and the parasitic voltage due to pulse energization increase, and the detection voltage proportional to the magnetization decreases. As a result, the improvement of the magnetic field detection performance was not seen. .

次に、超小型化・超薄型化については、現在の3次元GMIセンサ(方位センサ)のサイズは、2×2×1.0mmである。集積回路チップは、面積2平方mm以下、厚み0.2mmのサイズ程度である。センサの厚みは、回路基板、集積回路チップ、GMI素子厚み、およびZ軸用GMI素子の高さ、ワイヤボンディング高さおよび樹脂モールドなどで決まっている。GMI素子、集積回路チップおよびセンサ基板の3つの部品をワイヤボンディングで接続して、最後に樹脂パッケージする方法では、センサ厚みおよびサイズを十分小さくすることができない。 Next, regarding the miniaturization and ultrathinning, the size of the current three-dimensional GMI sensor (orientation sensor) is 2 × 2 × 1.0 mm. The integrated circuit chip has a size of about 2 square mm or less and a thickness of 0.2 mm. The thickness of the sensor is determined by the circuit board, integrated circuit chip, GMI element thickness, the height of the Z-axis GMI element, the wire bonding height, the resin mold, and the like. In the method of connecting the three components of the GMI element, the integrated circuit chip, and the sensor substrate by wire bonding and finally resin packaging, the sensor thickness and size cannot be sufficiently reduced.

したがって、まずコイルピッチの微細化と検出電圧対策、X軸、Y軸とZ軸用の超小型GMI素子、とくに0,2mm高さのZ軸用GMI素子を考案して、その素子と集積回路チップとをワイヤボンディング接合せずに直接接合を行い、さらに回路基板を排して集積回路チップ電極と外部電子回路基板と直接接続する接続方法とを組み合わせる方式を考案することで、センサ厚みは素子と集積回路チップの厚みの合計にまで薄肉化することができる技術を開発することが求められている。 Therefore, first of all, the miniaturization of coil pitch and countermeasures against detection voltage, X-axis, Y-axis and Z-axis ultra-compact GMI elements, especially Z-axis GMI elements with a height of 0,2 mm, were devised. The sensor thickness is determined by devising a method of combining the chip directly to the chip without wire bonding, and combining the connection method of removing the circuit board and directly connecting the integrated circuit chip electrode and the external electronic circuit board. Therefore, it is required to develop a technique capable of reducing the thickness to the total thickness of the integrated circuit chip.

本発明は、以上のような技術背景に鑑みて、X軸、Y軸、Z軸の3つの超小型GMI素子と集積回路チップを組み合わせて、磁界検出性能の向上と同時にセンサの厚みを0.5mm以下に小さくする技術を提供するものである。 In view of the above technical background, the present invention combines three micro GMI elements of the X axis, Y axis and Z axis and an integrated circuit chip to improve the magnetic field detection performance and reduce the thickness of the sensor to 0. A technique for reducing the size to 5 mm or less is provided.

本発明者は、上記課題を解決するために、GMI素子のコイルピッチの微細化、微細化による検出電圧対策、GMI素子のデザイン、電極位置、ワイヤボンディングに代わる接続法およびGMI素子を集積回路面上に設置したことによる凸面付の集積回路チップと電子回路基板との接続方法を多次元的に検討した結果、本発明に至った。 In order to solve the above-mentioned problems, the present inventor reduced the coil pitch of the GMI element, measures for detecting voltage by miniaturization, GMI element design, electrode position, connection method instead of wire bonding, and GMI element on the integrated circuit surface. As a result of multidimensional examination of the method of connecting the integrated circuit chip with a convex surface and the electronic circuit board by being placed above, the present invention has been achieved.

まず、コイルピッチの微細化によるコイル巻き数の増加のために、電極配線基板上に感磁体である磁性ワイヤとその周りに巻き付けて形成したコイルが、凹形状のコイル下部と凸形状のコイル上部およびジョイント部の3層の構造からなり、そのコイルと磁性ワイヤの間は絶縁材料で遮断する。この3層構造によりコイルピッチを30μmから5μmと微細化する技術を考案して、ワイヤ長さを短くしてもコイル巻き数を大幅に増加させることを可能とした。 First, in order to increase the number of coil turns by miniaturizing the coil pitch, a magnetic wire as a magnetic sensitive body and a coil formed by winding it around the electrode wiring board are composed of a concave coil lower part and a convex coil upper part. And a three-layer structure of the joint portion, and the coil and the magnetic wire are shielded by an insulating material. With this three-layer structure, a technique for reducing the coil pitch from 30 μm to 5 μm has been devised, and the number of coil turns can be greatly increased even if the wire length is shortened.

次に、これまでセンサの厚みを支配する要素は0.6mm程度もあるZ軸素子の高さであった。これは磁界検出性能がワイヤ長さに依存しており、ワイヤ長さを短くするとコイル巻き数も減少して極端に磁界検出力が低下してしまうためであった。上述のコイルピッチの微細化技術の考案により、コイル巻き数を大幅に増加させて、ワイヤ長さを0.2mm以下で素子の高さも0.2mm以下のZ軸用GMIを考案した。 Next, the element that controls the thickness of the sensor has been the height of the Z-axis element which is about 0.6 mm. This is because the magnetic field detection performance depends on the wire length, and if the wire length is shortened, the number of coil turns is also reduced and the magnetic field detection power is extremely reduced. By devising the above-described coil pitch miniaturization technology, the number of coil turns was greatly increased, and a Z-axis GMI with a wire length of 0.2 mm or less and an element height of 0.2 mm or less was devised.

さらに、コイル巻き数の増加に伴う寄生電圧に対しては、左巻きコイルタイプと右巻きコイルタイプの
二つのコイルを組み合わせて寄生電圧をキャンセルする技術を考案した。超ミクロの現象であるスピン波による磁化変化を検知するGMI素子においては、コイルの巻き数を増やすことは重要であるが、それに伴って寄生電圧も増加するので、左巻きコイルと右巻きコイルの二つのコイルを組み合わせたユニットが基本単位となる。そこで本発明では、この基本単位をGMI素子ユニットと呼称する。
Furthermore, a technique has been devised for canceling the parasitic voltage by combining two coils of a left-handed coil type and a right-handed coil type against a parasitic voltage accompanying an increase in the number of coil turns. In a GMI element that detects a change in magnetization due to a spin wave, which is an ultra-micro phenomenon, it is important to increase the number of turns of the coil. However, the parasitic voltage also increases with this, so there are two types of left-handed and right-handed coils. A unit that combines two coils is the basic unit. Therefore, in the present invention, this basic unit is referred to as a GMI element unit.

コイル抵抗とコイルの寄生容量に対しては、検出コイル電圧をこれまでのサンプルホールド回路に直接
入力するのではなくパルス対応型バッファー回路を介して、コイル抵抗によるIRドロップ(電圧降下)
を抑制することを考案した。しかし、現実の回路ではコイル、電極、ワイヤボンディング配線などに小さな寄生容量が存在し、それを介してコイルに電流が流れて電圧降下が生じる。残存する寄生容量に対しては、電極サイズを小さくし、ワイヤボンディング配線から半田接続に切り替えるなどして電圧降下を無視できる程度まで低減した。
For coil resistance and parasitic capacitance of the coil, IR drop (voltage drop) due to coil resistance is not directly input to the sample-and-hold circuit so far but via a pulse-compatible buffer circuit.
Devised to suppress However, in an actual circuit, a small parasitic capacitance exists in a coil, an electrode, a wire bonding wiring, etc., and a current flows through the coil via the parasitic capacitance, thereby causing a voltage drop. The remaining parasitic capacitance was reduced to a level where the voltage drop could be ignored by reducing the electrode size and switching from wire bonding wiring to solder connection.

具体的にその構造を説明すると、Z軸用GMI素子は、2本の磁性ワイヤに微細なコイルピッチの右巻きコイルと左巻きコイルをそれぞれ巻きつけたGMI素子ユニットを一個あるいは複数個と4個の電極とからなり、電極と端子の接続については、2個のワイヤ電極とワイヤ端子をワイヤにパルス電流は反対方向に流れるように直列接続し、また2個のコイル電極とコイル端子を検出コイル出力電圧が逆極性になるように直列接続した配線構造とした。 Specifically, the structure of the Z-axis GMI element is such that one or a plurality of GMI element units each including a right-handed coil and a left-handed coil having a fine coil pitch are wound around two magnetic wires. It consists of electrodes, and the connection between the electrodes and terminals is made by connecting two wire electrodes and wire terminals in series so that the pulse current flows through the wires in the opposite direction, and the two coil electrodes and coil terminals are output to the detection coil. The wiring structure was connected in series so that the voltage had a reverse polarity.

Z軸用GMI素子の電極は、素子平面を集積回路チップ面に立てて取り付けた時に、集積回路チップとGMI素子の両者の電極が半田で接合できるように4つの電極が取付け面側に並んで配置する構造とした。 The electrodes of the Z-axis GMI element are arranged on the mounting surface side so that when the element plane is mounted on the surface of the integrated circuit chip, the electrodes of the integrated circuit chip and the GMI element can be joined with solder. It was set as the structure to arrange.

つぎに3つのGMI素子を集積回路チップ上面(1mm角から1.5mm角)に設置を可能とするために、そのサイズは0.2mm角程度の超小型サイズとした。代表的サイズは、X軸用とY軸用は同じで0.2×0.2×0.2mm(厚み0.2mm)である。Z軸用は、0.2×0.3×0.2mm(高さ0.2mm)である。 Next, in order to make it possible to install the three GMI elements on the upper surface of the integrated circuit chip (from 1 mm square to 1.5 mm square), the size was set to an ultra-small size of about 0.2 mm square. The typical size is the same for the X-axis and the Y-axis and is 0.2 × 0.2 × 0.2 mm (thickness 0.2 mm). For the Z-axis, it is 0.2 × 0.3 × 0.2 mm (height 0.2 mm).

X軸用とY軸用のGMI素子は、Z軸用素子のGMI素子ユニットと同じ構造、同じサイズとした。4つの電極については、素子の縦方向と横方向に対して対称になるように配置し、素子平面と集積回路チップ面は対面して両者の電極を半田で接合した時に、固定維持力のバランスを確保した。 The X-axis and Y-axis GMI elements have the same structure and the same size as the Z-axis element GMI element unit. The four electrodes are arranged so as to be symmetric with respect to the vertical and horizontal directions of the element, and when the element plane and the integrated circuit chip face each other and the electrodes are joined by soldering, the balance of the fixing and maintaining force is balanced. Secured.

センサの厚みはワイヤボンディング接合によって厚くなっていたが、GMI素子と集積回路チップの両者の電極を直接半田接合することで、センサの厚みを薄くした。 Although the thickness of the sensor was increased by wire bonding, the thickness of the sensor was reduced by directly soldering the electrodes of both the GMI element and the integrated circuit chip.

さらに集積回路チップと外部の回路基板との接続については、GMI素子の高さと同じ厚みの導電性材料ポストを集積回路チップ上の外部接続用電極に取り付けて行うことにした。最後に樹脂モールドを行い、電極面を研磨して平坦化した。その上でポスト電極に半田を付けて電極とした。
その結果、従来2×2×1mmのサイズから1.2×1.2×0.4mmの小型・薄型の3次元GMIセンサを製作することが可能となった。
Further, the connection between the integrated circuit chip and the external circuit board is performed by attaching a conductive material post having the same thickness as the height of the GMI element to the external connection electrode on the integrated circuit chip. Finally, resin molding was performed, and the electrode surface was polished and flattened. Then, solder was attached to the post electrode to form an electrode.
As a result, it has become possible to manufacture a small and thin three-dimensional GMI sensor of 1.2 × 1.2 × 0.4 mm from the conventional size of 2 × 2 × 1 mm.

性能面では、微細コイルを使ってコイル巻き数を増やし、右巻きコイルと左巻きコイルを使ってパルス電流が作る寄生電圧を除去してSN比を改善とノイズを低減して、また素子面のコイル電極サイズを最小化する、と同時にワイヤボンディングを省略することによってコイルの寄生容量を低減し、さらにパルス対応型のバッハー回路にコイル電圧を直接入力することによって、微細コイル化により増大した抵抗によるIRドロップ(電圧降下)を抑制して、検出力の大幅アップを実現した。具体的にはノイズは標準偏差で2mGから0.5mG,測定レンジは±12Gから±48Gへと改善した。 In terms of performance, the number of coil turns is increased using fine coils, the parasitic voltage created by the pulse current is removed using right-handed and left-handed coils to improve the SN ratio and reduce noise, and the coil on the element side By reducing the parasitic capacitance of the coil by minimizing the electrode size and at the same time omitting wire bonding, and by directly inputting the coil voltage to the pulse-compatible buffer circuit, the IR due to the increased resistance due to the miniaturization of the coil Suppressing the drop (voltage drop) realizes a significant increase in detection power. Specifically, the noise was improved from 2 mG to 0.5 mG in standard deviation, and the measurement range was improved from ± 12 G to ± 48 G.

以上述べたように、超薄型3次元GMIセンサは、コイルピッチの微細化、コイル巻き数の増加による寄生電圧のキャンセル、およびコイルの寄生容量に対してはパルス対応型のバッファー回路などからなる
要素技術を活用して、薄型Z軸用GMI素子とセンサ厚みを増加させない組み付け方法を組み合わせた本発明によってはじめて実現できる。
As described above, the ultra-thin three-dimensional GMI sensor is composed of a pulse-corresponding buffer circuit and the like for miniaturization of the coil pitch, cancellation of the parasitic voltage due to the increase in the number of coil turns, and parasitic capacitance of the coil. It can be realized for the first time by the present invention that combines a thin Z-axis GMI element and an assembly method that does not increase the sensor thickness by utilizing elemental technology.

3次元方位計において、磁界検出力の向上と超薄型化の両特性の改善が求められているが、両者はトレードオフ関係にあって実現が困難であった。本発明は、コイルピッチの微細化、右巻き左巻きコイルの組合せユニット化、半田接合法を可能とする電極配置、センサと外部電子回路基板へ取り付けるポスト構造の採用およびパルス対応型のバッハー回路を介しての信号処理などの新技術を有機的に組合せて、磁界検出性能を損なうことなく超薄型3次元方位計の実現に成功したもので、スマートホン、ウェアラブルコンピュータなどの超薄型モバイル端末への搭載を可能にする産業上極めて有用なものである。
In a three-dimensional azimuth meter, improvement in both characteristics of magnetic field detection power and ultra-thinness is required, but both are difficult to realize because of a trade-off relationship. The present invention provides a coil pitch miniaturization, a combination of right-handed and left-handed coils, electrode placement that enables soldering, adoption of a post structure attached to a sensor and an external electronic circuit board, and a pulse-compatible buffer circuit. Organically combining new technologies such as signal processing, and succeeded in realizing an ultra-thin three-dimensional azimuth meter without compromising magnetic field detection performance. To ultra-thin mobile terminals such as smart phones and wearable computers It is extremely useful in the industry that makes it possible to mount.

実施例1に係るZ軸用のGMI素子の配線図Wiring diagram of GMI element for Z axis according to embodiment 1 実施例2に係るX軸用およびY軸用のGMI素子の配線図Wiring diagram of X-axis and Y-axis GMI elements according to Example 2 実施例2に係る3次元GMIセンサの組立て図Assembly drawing of 3D GMI sensor according to embodiment 2 実施例2に係るアナログ信号処理の回路図Circuit diagram of analog signal processing according to embodiment 2 実施例2に係るセンサの電子回路図Electronic circuit diagram of sensor according to embodiment 2

発明の実施形態を挙げて本発明をより詳しく説明する。
第1実施形態のZ軸用GMI素子は、素子平面上に2本の磁性ワイヤとそれに微細なコイルピッチの右巻きコイルと左巻きコイルをそれぞれ巻きつけたGMI素子ユニットを一個あるいは複数個および4個の電極とが存在し、電極と端子の接続については、2個のワイヤ電極と4個のワイヤ端子をワイヤにパルス電流は反対方向に流れるように直列接続し、また2個のコイル電極と4個のコイル端子を検出コイル出力電圧が反転するように直列接続した配線構造を有し、ワイヤの長さが0.2mm以下のGMI素子ユニットからなり、さらに4つの電極は、この素子平面を集積回路チップ面に立てて取り付けた時に集積回路チップとGMI素子の両者の電極が半田で接合できるように取付け面側に一列に並んで配置されており、Z軸方向の素子高さが0.20mm以下で、しかもコイル巻き数が30回以上を有することを特徴としている。
The present invention will be described in more detail with reference to embodiments of the invention.
The Z-axis GMI element according to the first embodiment includes one, a plurality, and four GMI element units each including two magnetic wires and a right-handed coil and a left-handed coil each having a fine coil pitch wound on the element plane. As for the connection between the electrode and the terminal, two wire electrodes and four wire terminals are connected in series so that the pulse current flows in the opposite direction to the wire, and the two coil electrodes and the four terminals are connected. It has a wiring structure in which the coil terminals are connected in series so that the detection coil output voltage is inverted, and consists of a GMI element unit with a wire length of 0.2 mm or less, and four electrodes are integrated into this element plane. The electrodes of the integrated circuit chip and the GMI element are arranged in a line on the mounting surface side so that they can be joined together by solder when mounted upright on the circuit chip surface. Height below 0.20 mm, yet is characterized in that the number of coil turns has more than 30 times.

コイル巻き数に比例してパルス電流によって誘引される寄生電圧が増加する。この対策としては、右巻きコイルにプラス方向にパルス電流を流し、左巻きコイルにマイナス方向にパルス電流を流して、その上でふたつの検出コイルの出力電圧極性を逆にして直列接続すると、外部磁界に比例した出力電圧は同符号になって直列接合した出力は2倍に増える。同時にパルス通電が作る円周方向磁界により発生する寄生電圧は異符号になってその出力をキャンセルして消失させることができる。また二つのコイル端子の取り出し位置のワイヤ電位の電位差によっても寄生電圧が生じるが、コイル端子をその電位が同程度になる位置に設置して、パルス通電時に生じる寄生電圧の軽減を図る。 The parasitic voltage induced by the pulse current increases in proportion to the number of coil turns. As a countermeasure, if a pulse current flows in the positive direction through the right-handed coil, a pulse current flows in the negative direction through the left-handed coil, and then the output voltage polarities of the two detection coils are reversed and connected in series, The output voltage proportional to is the same sign, and the output connected in series is doubled. At the same time, the parasitic voltage generated by the circumferential magnetic field generated by pulse energization has a different sign, and the output can be canceled and lost. A parasitic voltage is also generated due to the potential difference between the wire potentials at the two coil terminal extraction positions. However, the coil terminal is installed at a position where the potentials are approximately equal to each other to reduce the parasitic voltage generated during pulse energization.

測定レンジについては、磁性ワイヤの長さを0.2mm以下と短く制御することで、±3Gから±200Gに調整することが可能である。検出力については、ワイヤ長さが短くなってもコイルピッチを1μmから20μmの範囲で微細化することによって、またGMI素子ユニット個数を増やすことによってコイルの巻き総数を増加させて改善することができる。この時コイルの抵抗は、既存のGMI素子の抵抗1Ωから100Ω〜1KΩと増加するので、パルス対応型バッファー回路でコイル電圧を検知することが必要である。コイルの寄生容量については、ワイヤボンディング省略することと電極サイズを小さくしで寄生容量の低減を図ることが望ましい。 The measurement range can be adjusted from ± 3 G to ± 200 G by controlling the length of the magnetic wire as short as 0.2 mm or less. The detection power can be improved by reducing the coil pitch in the range of 1 μm to 20 μm and increasing the total number of coil turns by increasing the number of GMI element units even when the wire length is shortened. . At this time, since the resistance of the coil increases from 1Ω of the existing GMI element to 100Ω to 1KΩ, it is necessary to detect the coil voltage with a pulse-compatible buffer circuit. Regarding the parasitic capacitance of the coil, it is desirable to reduce the parasitic capacitance by omitting wire bonding and reducing the electrode size.

Z軸用GMI素子は集積回路チップ面上立てて取り付けられ接着剤で固定される。4つの電極は取付け面側に一列に並んで設置されており、集積回路チップ面上の相対する電極に半田で直接接続される。この接続法により、センサの厚みは、集積回路チップの厚さとZ軸用GMI素子の高さでの合計とすることができる。通常集積回路チップの厚さは0.20mm以下であるので、本発明のZ軸用GMI素子の高さは0.20mm以下とすると、GMIセンサの厚みは、0.40mm以下とすることができる。 The Z-axis GMI element is mounted upright on the surface of the integrated circuit chip and fixed with an adhesive. The four electrodes are arranged in a line on the mounting surface side, and are directly connected to opposing electrodes on the integrated circuit chip surface by solder. By this connection method, the thickness of the sensor can be the sum of the thickness of the integrated circuit chip and the height of the Z-axis GMI element. Since the thickness of the integrated circuit chip is usually 0.20 mm or less, when the height of the Z-axis GMI element of the present invention is 0.20 mm or less, the thickness of the GMI sensor can be 0.40 mm or less. .

第2の実施形態の超薄型3次元GMIセンサは、X軸、Y軸、Z軸の3方向の磁界を検出する3つのGMI素子と集積回路チップとを一つのパッケージとして組み合わせたものである。Z軸用のGMI素子は、請求項1のそれを使用し、素子平面を集積回路チップ面に対して垂直に取り付けて両者の電極を半田で接合する。望ましいサイズは、0.20mm以下×0,30mm以下×0,20mm以下である。X軸とY軸用のGMI素子は、第1の実施形態に記載されたGMI素子ユニットと同じ配線構造をもったもので、望ましいサイズは0.20mm以下×0.30mm以下×0.20mm以下である。4つの電極に関しては素子のX軸とY軸の軸に対して対称になるように配置し、素子平面と集積回路チップ面は対面して両者の電極を半田で接合する時に、固定維持力のバランスを確保できる。 The ultra-thin three-dimensional GMI sensor of the second embodiment is a combination of three GMI elements that detect magnetic fields in three directions of the X axis, the Y axis, and the Z axis and an integrated circuit chip as one package. . The Z-axis GMI element uses that of claim 1, the element plane is attached perpendicular to the integrated circuit chip surface, and both electrodes are joined by soldering. A desirable size is 0.20 mm or less × 0, 30 mm or less × 0, 20 mm or less. The X-axis and Y-axis GMI elements have the same wiring structure as the GMI element unit described in the first embodiment, and a desirable size is 0.20 mm or less × 0.30 mm or less × 0.20 mm or less. It is. The four electrodes are arranged so as to be symmetrical with respect to the X-axis and Y-axis of the element. When the element plane and the integrated circuit chip face each other and the electrodes are joined by soldering, the fixing and maintaining force is reduced. A balance can be secured.

さらに集積回路チップと外部の回路基板とを接続する電極には素子の厚みと同じ厚みの導電性材料ポストを取り付けて外部の回路基板の電極と半田接続を行う。最後に樹脂でモールドした後、ポスト面を研磨して平滑面を確保する。この結果、3次元センサの厚みは集積回路チップの厚さとZ軸用GMI素子の高さでの合計となり、0.40mm以下が実現する。また素子面積は、集積回路チップ面積と同一となり、望ましくは1.5mm以下×1.5mm以下である。 Further, a conductive material post having the same thickness as the element is attached to the electrode that connects the integrated circuit chip and the external circuit board, and solder connection with the electrode of the external circuit board is performed. Finally, after molding with resin, the post surface is polished to ensure a smooth surface. As a result, the thickness of the three-dimensional sensor is the sum of the thickness of the integrated circuit chip and the height of the Z-axis GMI element, which is 0.40 mm or less. The element area is the same as the integrated circuit chip area, and is preferably 1.5 mm or less × 1.5 mm or less.

信号処理用アナログ電子回路は、パルス発振器、GMI素子、パルス対応型のバッファー回路、電子スイッチ、検波タイミング回路とサンプルホールド回路および増幅器で構成されている。コイル電圧は直接バッファー回路に入力する。 The analog electronic circuit for signal processing includes a pulse oscillator, a GMI element, a pulse-compatible buffer circuit, an electronic switch, a detection timing circuit, a sample hold circuit, and an amplifier. The coil voltage is input directly to the buffer circuit.

バッファー回路は、入力側と出力側の電位は同じで、入力側は高インピーダンスで、出力側は低インピーダンス回路を操作することができる回路であるが、通常その周波数帯域は10MHz以下で、GMIセンサで取り扱うGHzオーダの信号に追従しない。しかしながら周波数帯域は10MHz以下のバッファー回路と出力側回路を高インピーダンスのサンプルホールド回路を結合した場合、パルス通電したナノ秒以下の一瞬の電子スイッチがON状態とすると出力側の電圧は入力側のパルス電位に追従して変化することを見出した。この構成を本発明においてはパルス対応型のバッファー回路と呼称する。 The buffer circuit is a circuit in which the input side and the output side have the same potential, the input side has a high impedance, and the output side can operate a low impedance circuit. Usually, the frequency band is 10 MHz or less, and the GMI sensor Does not follow the signals in the order of GHz. However, when a high-impedance sample-and-hold circuit is combined with a buffer circuit with a frequency band of 10 MHz or less and an output-side circuit, the output-side voltage is set to the input-side pulse when the pulsed energized electronic switch is turned on for an instant. It was found that it changes following the potential. This configuration is referred to as a pulse-compatible buffer circuit in the present invention.

3次元GMIセンサの電子回路は、3つの信号処理回路に切り替えスイッチを介してデジタル回路と接続しており、デジタル回路は、ADコンバータ、方位計算をする演算回路および通信回路から構成されている。
本発明の3次元GMIセンサは、厚み0.4mm以下、断面は1,5mm×1.5mm以下と超小型・超薄型で、しかも磁界検出性能としても、ノイズは標準偏差で0.5mG,測定レンジは±48Gと優れた性能を実現することができている。
The electronic circuit of the three-dimensional GMI sensor is connected to a digital circuit via a changeover switch in three signal processing circuits, and the digital circuit is composed of an AD converter, an arithmetic circuit for calculating a direction, and a communication circuit.
The three-dimensional GMI sensor of the present invention has a thickness of 0.4 mm or less, a cross section of 1,5 mm × 1.5 mm or less, and is ultra-compact and ultra-thin. The measurement range is ± 48G, and excellent performance can be realized.

図面を参照しつつ以下に挙げる実施例に基づいて本発明を詳細に説明する。
[実施例1]
実施例1に係るZ軸用のGMIセンサ素子1の配線構造を図1に示す。
単位磁界検出素子の構造は、次のとおりである。基板の大きさは、長さ0.3mm、幅0.2mm、高さ0.2mmである。感磁体は、CoFeSiB系合金を使った直径10μmでガラス被覆されたアモルファス磁性ワイヤ11である。磁性ワイヤ11の一部を基板に形成された溝12に埋設し、溝12には底面に下部コイルを配置し、ワイヤ上部に上部コイルを配置し両者を樹脂で固定して基板の平面上で電気的に接合する構造である。コイルについては、コイル外径を30μm、コイルの側面の平面接続部を5μm、コイルの凸部を20μmで、線幅2μm、コイルピッチを4μmとした。単位磁界検出素子のサイズは、ワイヤ長さ200μm、コイル長さ160μm、溝深さ6μm、コイル凸部の高さ7μmと微細である。
The present invention will be described in detail based on the following examples with reference to the drawings.
[Example 1]
FIG. 1 shows a wiring structure of the Z-axis GMI sensor element 1 according to the first embodiment.
The structure of the unit magnetic field detection element is as follows. The size of the substrate is 0.3 mm in length, 0.2 mm in width, and 0.2 mm in height. The magnetic sensitive body is an amorphous magnetic wire 11 made of a CoFeSiB alloy and coated with glass with a diameter of 10 μm. A part of the magnetic wire 11 is embedded in a groove 12 formed on the substrate, a lower coil is disposed on the bottom surface of the groove 12, an upper coil is disposed on the upper portion of the wire, and both are fixed with a resin, on the plane of the substrate. It is a structure that is electrically joined. As for the coil, the outer diameter of the coil was 30 μm, the planar connection portion on the side surface of the coil was 5 μm, the convex portion of the coil was 20 μm, the line width was 2 μm, and the coil pitch was 4 μm. The size of the unit magnetic field detection element is as fine as a wire length of 200 μm, a coil length of 160 μm, a groove depth of 6 μm, and a coil convexity height of 7 μm.

素子1の配線構造は、2本のワイヤ11を溝12に沿って設置し、その一方に右巻きの検出コイル13Rを、他方に左巻きの検出コイル13Lを取り付ける。2本の磁性ワイヤは直列に接続して両者に流れるパルス電流を逆方向とする。集積回路チップ接続用入力電極16から入った電流は、右巻きコイル側のワイヤ接続端子14Rに入り、ワイヤを流れて他方のワイヤ接続端子15Rから出て、つぎに直列接続された左巻きコイル側のワイヤ接続端子15Lに入り、ワイヤを流れて他方のワイヤ接続端子14Lから出て、集積回路チップ接続用グランド電極17に流れ出る。 In the wiring structure of the element 1, two wires 11 are installed along the groove 12, and a right-handed detection coil 13R is attached to one of them and a left-handed detection coil 13L is attached to the other. The two magnetic wires are connected in series so that the pulse current flowing through them is reversed. The current input from the integrated circuit chip connection input electrode 16 enters the wire connection terminal 14R on the right-handed coil side, flows through the wire, exits from the other wire connection terminal 15R, and then on the left-handed coil side connected in series. The wire connection terminal 15L enters, flows through the wire, exits from the other wire connection terminal 14L, and flows out to the integrated circuit chip connection ground electrode 17.

右巻きコイル13Rにプラス方向にパルス電流が流れ、左巻きコイル13Lにマイナス方向にパルス電流が流れる。この時のふたつの検出コイルの出力は、両者の出力電圧極性が逆になるように直列接続する。つまりコイル出力電極18と右巻きコイルのプラス出力端子181を接続し、右側コイルのマイナス出力端子182を左側コイルのプラス出力端子183に接続し、最後に左側コイルのマイナス側出力端子184をコイルグランド電極19に接続する。 A pulse current flows in the positive direction through the right-handed coil 13R, and a pulse current flows in the negative direction through the left-handed coil 13L. The outputs of the two detection coils at this time are connected in series so that their output voltage polarities are opposite. That is, the coil output electrode 18 and the positive output terminal 181 of the right-hand coil are connected, the negative output terminal 182 of the right coil is connected to the positive output terminal 183 of the left coil, and finally the negative output terminal 184 of the left coil is connected to the coil ground. Connect to electrode 19.

右巻コイルに外部磁界に比例した出力電圧がプラス電圧を出力すると、左巻コイルはマイナス電圧を出力するが、出力電圧極性を逆にして直列接続しているので、出力電圧は同符号になって2倍に増える。一方パルス通電が作る円周方向磁界によって発生する寄生電圧は、右巻コイルにプラス電圧が出力されると、左巻コイルには、コイル巻きの向きと電流の向きの両方が反対なのでプラス電圧となり、極性を逆にして直列接続しているので、両者は異符号になってその出力は消失する。言い換えれば、右巻コイルに派生する寄生電圧と左巻きコイルに派生する寄生電圧の極性が逆接続でキャンセルされることを意味している。結局組合せコイル(基本ユニット素子)の出力は、磁界に比例した成分のみが出力することになる。 If the output voltage proportional to the external magnetic field outputs a positive voltage to the right-hand coil, the left-hand coil outputs a negative voltage, but the output voltage has the same sign because the output voltage polarity is reversed and connected in series. Twice as much. On the other hand, the parasitic voltage generated by the circumferential magnetic field generated by pulse energization is a positive voltage when a positive voltage is output to the right-handed coil because both the direction of coil winding and the current direction are opposite to the left-handed coil. Since the polarities are reversed and they are connected in series, both have different signs and the output disappears. In other words, the polarity of the parasitic voltage derived from the right-handed coil and the polarity of the parasitic voltage derived from the left-handed coil are canceled by reverse connection. Eventually, only the component proportional to the magnetic field is output from the combination coil (basic unit element).

さらにコイル電圧の出力電極18とグランド電極19の位置をワイヤ入力端子16とグランド端子17から遠ざけ通電時のワイヤ電圧による寄生電圧の発生を軽減する必要がある。そこで両コイル端子をワイヤ電位の電位が同じになる右巻きコイル側のワイヤ接続用端子25Rと左巻きコイル側のワイヤ接続用端子25Lの近傍の位置に設置して、パルス通電時に生じるふたつの検出コイル電極間の電位差によって生じる寄生電圧の軽減を図った。 Furthermore, the positions of the coil voltage output electrode 18 and the ground electrode 19 must be kept away from the wire input terminal 16 and the ground terminal 17 to reduce the occurrence of parasitic voltage due to the wire voltage during energization. Therefore, the two coil coils are generated at the time of pulse energization by installing both coil terminals at positions in the vicinity of the wire-connecting terminal 25R on the right-handed coil side and the wire-connecting terminal 25L on the left-handed coil side. The parasitic voltage generated by the potential difference between the electrodes was reduced.

4個の電極の配置については、集積回路チップ面に立てて固定する時の端面に整列して配置した。電極に半田を取り付けて集積回路チップ面上の電極に直接半田接合できる構造とした。 As for the arrangement of the four electrodes, the electrodes were arranged in alignment with the end face when standing and fixing on the integrated circuit chip surface. Solder is attached to the electrodes so that the solder can be directly soldered to the electrodes on the surface of the integrated circuit chip.

コイル抵抗は200Ωであったが、図4に示すパルス対応型のバッファー回路4に接続して出力電圧を測定した結果、出力は所定の出力電圧を得ることができた。
本素子と集積回路チップとの接続は、ワイヤおよび検出コイルの4つの電極と集積回路チップ側の接続用電極とを半田で直接接続した。
Although the coil resistance was 200Ω, the output voltage was measured by connecting to the pulse corresponding buffer circuit 4 shown in FIG. 4, and as a result, the output was able to obtain a predetermined output voltage.
For connection between this element and the integrated circuit chip, the four electrodes of the wire and the detection coil and the connection electrode on the integrated circuit chip side were directly connected by solder.

パルス発振器41から1GHzの換算周波数をもつパルス電流をGMI素子1に通電し、その時に発生するコイル電圧をパルス対応型バッファー回路43で検知する。この時コイル抵抗は大きいが、コイルの寄生容量が極限的に抑制されているため、コイルには極微小電流が流れるだけで、その電圧降下はコイル出力電圧の5%と非常に小さい。バッファー回路の入力側回路と出力側回路ともに高インピーダンスで、通常のバッファー回路の概念、つまり入力側回路は高インピーダンスで出力側回路は低インピーダンスと大きく異なっている。しかしワイヤのパルス電流によってコイルに一瞬の電流が流れ、電子スイッチ45が開閉した一瞬のみ、つまり出力側のコンデンサーが充電されるナノ秒以下の時間間隔のみバッファー回路として機能するパルス対応型バッファー回路43によってコイル電圧は減衰することなくコンデンサー46にサンプルホールドされ増幅器47を介して出力される。 A pulse current having a conversion frequency of 1 GHz is supplied from the pulse oscillator 41 to the GMI element 1, and a coil voltage generated at that time is detected by the pulse corresponding buffer circuit 43. At this time, although the coil resistance is large, since the parasitic capacitance of the coil is extremely suppressed, only a very small current flows through the coil, and the voltage drop is as small as 5% of the coil output voltage. Both the input side circuit and the output side circuit of the buffer circuit have high impedance, and the concept of a normal buffer circuit, that is, the input side circuit is high impedance and the output side circuit is greatly different from low impedance. However, an instantaneous current flows through the coil by the pulse current of the wire, and the pulse corresponding buffer circuit 43 that functions as a buffer circuit only for the moment when the electronic switch 45 is opened and closed, that is, for the time interval of nanoseconds or less when the output side capacitor is charged. Thus, the coil voltage is sampled and held in the capacitor 46 without being attenuated, and is output through the amplifier 47.

測定レンジについては、磁性ワイヤの長さを0.2mmとして、±48Gとした。検出力については、ワイヤ長さが短くなってもコイルピッチを4μmと微細化し、コイルの巻き数を80回と増加させて、検出能力をノイズの標準偏差σで0.2mGと改善した。素子のサイズは、ワイヤ間を40μmとすることによって、0.20mm×0.30mm×0.20mmとした。 Regarding the measurement range, the length of the magnetic wire was 0.2 mm and ± 48 G. Regarding the detection power, the coil pitch was reduced to 4 μm even when the wire length was shortened, the number of coil turns was increased to 80, and the detection capability was improved to 0.2 mG with a noise standard deviation σ. The element size was set to 0.20 mm × 0.30 mm × 0.20 mm by setting the distance between the wires to 40 μm.

[実施例2]
実施例2に係るX軸用およびY軸用のGMI素子の平面図を図2に、3次元GMIセンサの組立て図を図3に、信号処理用にアナログ回路図を図4に、および3次元GMIセンサの回路図を図5に示す。
Z軸用のGMI素子は、実施例1のものを採用し、X軸用とY軸用のGMI素子の磁界検出部であるGMI素子ユニットの構造はZ軸用のものと同じとした。4つの電極21,25、26、29はX軸とY軸に対称になるように配置した。Z軸用のGMI素子のサイズは、0.20mm×0.30mm×0.20mmで、X軸用素子とY軸用素子のサイズは0.20mm×0.20mm×0.20mmとした。
[Example 2]
FIG. 2 is a plan view of the X-axis and Y-axis GMI elements according to the second embodiment, FIG. 3 is an assembly diagram of the three-dimensional GMI sensor, FIG. 4 is an analog circuit diagram for signal processing, and three-dimensional A circuit diagram of the GMI sensor is shown in FIG.
The Z-axis GMI element is the same as that of Example 1, and the structure of the GMI element unit, which is the magnetic field detection unit of the X-axis and Y-axis GMI elements, is the same as that for the Z-axis. The four electrodes 21, 25, 26, and 29 are arranged so as to be symmetric with respect to the X axis and the Y axis. The size of the Z-axis GMI element was 0.20 mm × 0.30 mm × 0.20 mm, and the size of the X-axis element and the Y-axis element was 0.20 mm × 0.20 mm × 0.20 mm.

集積回路チップのサイズは、1.2mm×1.2mm×0.20mmとして、その上面にGMI素子と連結するためのX軸用とY軸用の電極35を8個およびZ軸用の電極34を4個の計12個取り付けた。また、12個の導電性ポスト36をチップ端部に沿って対称に取り付けた。 The size of the integrated circuit chip is 1.2 mm × 1.2 mm × 0.20 mm, and there are eight X-axis and Y-axis electrodes 35 and Z-axis electrodes 34 for connecting to the GMI element on the upper surface. A total of 12 were attached. Further, twelve conductive posts 36 were attached symmetrically along the chip end.

3個のGMI素子を集積回路チップ上に組み付けた後で、樹脂モールド37を行った後に、ポスト上面を研磨して平滑面として、銅ポストが露出してできた電極部に半田を塗布した。
以上の工法で組み立てられた実施例2の3次元GMIセンサは、断面1.2mm×1.2mmで厚み0.40mmのサイズであった。
After assembling the three GMI elements on the integrated circuit chip and performing resin molding 37, the upper surface of the post was polished to form a smooth surface, and solder was applied to the electrode portion formed by exposing the copper post.
The three-dimensional GMI sensor of Example 2 assembled by the above construction method had a cross section of 1.2 mm × 1.2 mm and a thickness of 0.40 mm.

実施例2の信号処理については、3つの素子いずれもコイル抵抗は200Ωであったが、図4に示すパルス対応型のバッファー回路43に接続して出力電圧を測定した結果、出力は所定の出力電圧を得ることができた。X軸素子、Y軸素子およびZ軸素子の出力特性の微妙な差異については各々の信号処理回路42でゲインを調整して、同じ出力特性にしてから、切替スイッチ52でX,Y、Zの順に切替ながら、信号をADコンバータ53に送り、デジタル変換されたデータを演算回路54で所定の演算をして、方位や角速度に変換し、通信回路55を経由して、外部の電子回路に転送することにした。 In the signal processing of Example 2, the coil resistance of each of the three elements was 200Ω. However, as a result of measuring the output voltage by connecting to the pulse corresponding buffer circuit 43 shown in FIG. Voltage could be obtained. For subtle differences in the output characteristics of the X-axis element, the Y-axis element, and the Z-axis element, the gains are adjusted by the respective signal processing circuits 42 to obtain the same output characteristics, and then the X, Y, and Z are changed by the changeover switch 52. While switching in order, the signal is sent to the AD converter 53, the digitally converted data is subjected to a predetermined calculation in the arithmetic circuit 54, converted into an azimuth and angular velocity, and transferred to an external electronic circuit via the communication circuit 55 Decided to do.

センサの磁界検出性能は、ワイヤ長さが短くなってもコイルピッチを4μmと微細化し、コイルの巻き数を80回と増加させて、検出能力を高め、そのノイズを標準偏差σで0.2mGと改善した。また測定レンジについては、磁性ワイヤの長さを0.2mmとして、±48Gであった。 The magnetic field detection performance of the sensor is as follows: even if the wire length is shortened, the coil pitch is reduced to 4 μm, the number of coil turns is increased to 80, the detection capability is improved, and the noise is 0.2 mG with a standard deviation σ. And improved. The measurement range was ± 48 G with the length of the magnetic wire being 0.2 mm.

実施例2の3次元GMIセンサは、断面1.2mm×1.2mmで厚み0.40mmと市販のGMIセンサのサイズ2×2×1mmに比べて体積で1/7と超小型化・超薄肉化を実現すると同時に、磁界検出性能もノイズは標準偏差で2mGから0.5mGへと改善し、測定レンジも±12Gから±48Gへと拡大しており、検出性能の大幅改善に成功した。
The three-dimensional GMI sensor of Example 2 has a cross-section of 1.2 mm × 1.2 mm and a thickness of 0.40 mm, which is 1/7 by volume compared to the size of a commercially available GMI sensor of 2 × 2 × 1 mm. At the same time as realizing fleshing, the magnetic field detection performance improved from 2 mG to 0.5 mG with a standard deviation, and the measurement range was expanded from ± 12 G to ± 48 G, and the detection performance was greatly improved.

本発明のZ軸用GMI素子とそれを使って組立てた3次元GMIセンサは、微小な地磁気を測定して、電子コンパスと磁気ジャイロ機能を使った長薄型リアルタイム三次元方位計を実現する。本発明の素子とそれを用いた3次元GMIセンサは、ウェアラブルコンピュータのモーション入力装置の要求特性、超小型化・超薄肉化およびノイズ低減と方位精度の向上とリアルタイム性の向上の要求に応えるもので、将来携帯電話やウェアラブルコンピュータのモーション入力装置として広く使用されると期待される。
The Z-axis GMI element of the present invention and the three-dimensional GMI sensor assembled using the Z-axis GMI element realize a long and thin real-time three-dimensional azimuth meter using an electronic compass and a magnetic gyro function. The element of the present invention and a three-dimensional GMI sensor using the element meet the required characteristics of wearable computer motion input devices, ultra-miniaturization, ultra-thinness, noise reduction, improvement in azimuth accuracy, and real-time improvement. Therefore, it is expected to be widely used as a motion input device for mobile phones and wearable computers in the future.

1:Z軸用のGMI素子
11:磁性ワイヤ、12:基板溝、13R :右巻きコイル、13L:左巻コイル
14R:右巻コイル側ワイヤ入力側端子、14L:左巻コイル側ワイヤグランド側端子、
15R:右巻コイル側ワイヤ接続用端子、15L:左巻コイル側ワイヤ接続用端子、
16:ASIC接続用入力電極、17:ASIC接続用グランド電極
18:コイル出力電極、
181:右巻コイルのプラス出力端子、182:右巻コイルのマイナス出力端子、
183:左巻コイルのプラス出力端子、184:左巻コイルのマイナス側出力端子
19:コイルグランド電極
2:X軸用およびY軸用のGMI素子
21:ASIC接続用入力電極、22:右巻コイル側ワイヤ入力側端子、23:両ワイヤ接続端子、
24:左巻コイル側ワイヤ接続用端子、25:ASIC接続用グランド電極
26:コイル出力電極、
27:右巻コイルのプラス出力端子、271:両コイルの接続部
28:左巻コイルのマイナス側出力端子
29:コイルグランド電極
3:集積回路チップ
31:Z軸素子、32:X軸素子、33:Y軸素子、34:Z軸素子用の電極
35:X軸、Y軸用の電極、36:導電性ポスト、37:モールド樹脂
4:電子回路
41:パルス発振器、42:信号処理回路、43:パルス対応型バッファー回路、
44:検波タイミング調整回路、45:電子スイッチ、46:サンプルホールド回路
47:増幅器
5:3次元GMIセンサの電子回路
51:デジタル回路、52:X,Y,Z軸の切替スイッチ、53:ADコンバータ、
54:演算回路、55:通信回路、56:出力端子


1: Z-axis GMI element 11: magnetic wire, 12: substrate groove, 13R: right-handed coil, 13L: left-handed coil 14R: right-handed coil side wire input side terminal, 14L: left-handed coil side wire ground side terminal ,
15R: Right-handed coil side wire connection terminal, 15L: Left-handed coil side wire connection terminal,
16: ASIC connection input electrode, 17: ASIC connection ground electrode, 18: coil output electrode,
181: Positive output terminal of right-handed coil, 182: Negative output terminal of right-handed coil,
183: Positive output terminal of left-handed coil 184: Negative-side output terminal of left-handed coil 19: Coil ground electrode 2: GMI element 21 for X-axis and Y-axis 21: Input electrode for ASIC connection, 22: Right-handed coil Side wire input side terminal, 23: both wire connection terminals,
24: Left-hand coil side wire connection terminal, 25: ASIC connection ground electrode 26: Coil output electrode,
27: Positive output terminal of right-handed coil, 271: Connection portion 28 of both coils: Negative-side output terminal of left-handed coil 29: Coil ground electrode 3: Integrated circuit chip 31: Z-axis element, 32: X-axis element, 33 : Y-axis element, 34: Z-axis element electrode 35: X-axis, Y-axis electrode, 36: Conductive post, 37: Mold resin 4: Electronic circuit 41: Pulse oscillator, 42: Signal processing circuit, 43 : Pulse-compatible buffer circuit,
44: detection timing adjustment circuit, 45: electronic switch, 46: sample hold circuit 47: amplifier 5: electronic circuit of three-dimensional GMI sensor 51: digital circuit, 52: X, Y, Z axis changeover switch, 53: AD converter ,
54: arithmetic circuit, 55: communication circuit, 56: output terminal


Claims (2)

超薄型3次元GMIセンサにおいて必要とされる高さの低いZ軸用GMI素子において、
素子平面上に長さが0.2mm以下の2本の磁性ワイヤとそれに微細なコイルピッチの右巻きコイルと左巻きコイルをそれぞれ巻きつけたGMI素子ユニットを一個あるいは複数個とコイル用電極2個とワイヤ通電用電極2個の合計4個の電極とが存在し、かつ、電極と端子の接続については2個のワイヤ電極と4個のワイヤ端子をワイヤにパルス電流は反対方向に流れるように直列接続するとともに2個のコイル電極と4個のコイル端子を検出コイル出力電圧が反転するように直列接続した配線構造を有するGMI素子ユニットからなり、
さらに、4つの電極はこの素子平面を集積回路チップ面に立てて取り付けた時に集積回路チップとGMI素子の両者の電極が半田で接合できるように取付け面側に一列に並んで配置されており、Z軸方向の素子高さが0.20mm以下で、しかもコイル巻き数が30回以上を有することを特徴とするZ軸用GMI素子
In the low-profile Z-axis GMI element required for an ultra-thin three-dimensional GMI sensor,
One or a plurality of GMI element units each including two magnetic wires having a length of 0.2 mm or less on the element plane and a right-handed coil and a left-handed coil each having a fine coil pitch, and two coil electrodes There are a total of four electrodes of two wire energizing electrodes, and the electrodes and terminals are connected in series so that the pulse current flows in the opposite direction through the two wire electrodes and the four wire terminals. It consists of a GMI element unit having a wiring structure in which two coil electrodes and four coil terminals are connected in series so that the detection coil output voltage is inverted.
Furthermore, the four electrodes are arranged in a line on the mounting surface side so that the electrodes of both the integrated circuit chip and the GMI element can be joined with solder when the element plane is mounted upright on the integrated circuit chip surface. Z-axis GMI element characterized in that the element height in the Z-axis direction is 0.20 mm or less and the number of coil turns is 30 or more.
X軸、Y軸、Z軸の3方向の磁界を検出する3つのGMI素子と集積回路チップとを一つのパッケージとして組み合わせた超薄型3次元GMIセンサにおいて、
X軸用とY軸用のGMI素子ユニットは、請求項1に記載されたZ軸用GMI素子ユニットと構成は同じで4つの電極は素子平面上にワイヤの両側の片面側に二つのワイヤ電極が、他方の片面側に二つのコイル電極が配置されており、素子平面と集積回路チップ面は並行に配置して両者の電極を半田で接合し、
かつ、請求項1に記載したZ軸用のGMI素子は、素子平面を集積回路チップ面に対して垂直に取り付けて両者の電極を半田で接合し、
さらに集積回路チップと外部の回路基板とを接続する電極には素子の厚みと同じ厚みの導電性材料ポストを取り付けて外部の回路基板の電極と半田接続を行うことを特徴とする超薄型3次元GMIセンサ。


In an ultra-thin 3D GMI sensor that combines three GMI elements that detect magnetic fields in three directions of the X-axis, Y-axis, and Z-axis and an integrated circuit chip as one package,
The X-axis and Y-axis GMI element units have the same configuration as the Z-axis GMI element unit described in claim 1, and the four electrodes are two wire electrodes on one side of the wire on the element plane. However, two coil electrodes are arranged on the other side, the element plane and the integrated circuit chip surface are arranged in parallel, and both electrodes are joined by soldering,
In addition, the Z-axis GMI element according to claim 1 attaches the element plane perpendicular to the integrated circuit chip surface and joins both electrodes with solder.
Further, an ultra-thin 3 is characterized in that a conductive material post having a thickness equal to the thickness of the element is attached to an electrode connecting the integrated circuit chip and the external circuit board to perform solder connection with the electrode of the external circuit board. Dimensional GMI sensor.


JP2014122265A 2014-06-13 2014-06-13 Gmi element for z-axis, and ultrathin three-dimensional gmi sensor Pending JP2016003866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014122265A JP2016003866A (en) 2014-06-13 2014-06-13 Gmi element for z-axis, and ultrathin three-dimensional gmi sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014122265A JP2016003866A (en) 2014-06-13 2014-06-13 Gmi element for z-axis, and ultrathin three-dimensional gmi sensor

Publications (1)

Publication Number Publication Date
JP2016003866A true JP2016003866A (en) 2016-01-12

Family

ID=55223257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014122265A Pending JP2016003866A (en) 2014-06-13 2014-06-13 Gmi element for z-axis, and ultrathin three-dimensional gmi sensor

Country Status (1)

Country Link
JP (1) JP2016003866A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230262A1 (en) * 2017-06-16 2018-12-20 朝日インテック株式会社 Ultra high-sensitivity micro magnetic sensor
WO2021094587A1 (en) * 2019-11-13 2021-05-20 eV-Technologies Spin-wave based magnetic and/or electro-magnetic field sensing device for dc, rf and millimeter-wave applications

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230262A1 (en) * 2017-06-16 2018-12-20 朝日インテック株式会社 Ultra high-sensitivity micro magnetic sensor
JP2019002851A (en) * 2017-06-16 2019-01-10 朝日インテック株式会社 Ultra-high sensitive micro magnetic sensor
US10989768B2 (en) 2017-06-16 2021-04-27 Asahi Intecc Co., Ltd. Ultra high-sensitivity micro magnetic sensor
WO2021094587A1 (en) * 2019-11-13 2021-05-20 eV-Technologies Spin-wave based magnetic and/or electro-magnetic field sensing device for dc, rf and millimeter-wave applications

Similar Documents

Publication Publication Date Title
JP6021239B2 (en) 3D magnetic field detection element and 3D magnetic field detection device
JP6222351B2 (en) Magnetic detection device and manufacturing method thereof
JP2014153309A5 (en)
US10551447B2 (en) Magnetic field sensing apparatus
CN109844553B (en) Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device
WO2010134348A1 (en) Flux gate senior and electronic azimuth indicator making use thereof
WO2015025606A1 (en) Magneto-impedance sensor element with electromagnetic coil and magneto-impedance sensor with electromagnetic coil
WO2018116852A1 (en) Current sensor
US8261458B2 (en) Geomagnetic sensor device and digital compass with the same
JP2005114489A (en) Magnetic azimuth detector
JP2016003866A (en) Gmi element for z-axis, and ultrathin three-dimensional gmi sensor
JP6800458B2 (en) 3D magnetic field detector
JP6800456B2 (en) 3D magnetic field detection element and 3D magnetic field detection device
JP6609947B2 (en) Magnetic detector
JP2002286822A (en) Magnetic sensor
JP2004061380A (en) Magnetic sensor and method of manufacturing the same
KR101023082B1 (en) Electronic compass having fluxgate device and Method of manufacturing electronic compass having fluxgate device
JP7215702B1 (en) Magnetic field vector sensor
WO2011155526A1 (en) Flux gate sensor, electronic direction finder using same, and current meter
JP2019015550A (en) Three-dimensional magnetic field detection element