JP6021239B2 - 3D magnetic field detection element and 3D magnetic field detection device - Google Patents

3D magnetic field detection element and 3D magnetic field detection device Download PDF

Info

Publication number
JP6021239B2
JP6021239B2 JP2013025648A JP2013025648A JP6021239B2 JP 6021239 B2 JP6021239 B2 JP 6021239B2 JP 2013025648 A JP2013025648 A JP 2013025648A JP 2013025648 A JP2013025648 A JP 2013025648A JP 6021239 B2 JP6021239 B2 JP 6021239B2
Authority
JP
Japan
Prior art keywords
magnetic field
field detection
axis
magnetic
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013025648A
Other languages
Japanese (ja)
Other versions
JP2014153309A (en
JP2014153309A5 (en
Inventor
本蔵 義信
義信 本蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
magnedesign cooperation
Original Assignee
magnedesign cooperation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by magnedesign cooperation filed Critical magnedesign cooperation
Priority to JP2013025648A priority Critical patent/JP6021239B2/en
Publication of JP2014153309A publication Critical patent/JP2014153309A/en
Publication of JP2014153309A5 publication Critical patent/JP2014153309A5/ja
Application granted granted Critical
Publication of JP6021239B2 publication Critical patent/JP6021239B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、方位センサなどに用いられるX軸Y軸Z軸の3つの磁気検出素子の機能をひとつの基板上に実現することにより、方位センサの高い感度、低いノイズ、広い測定レンジなどの基本性能を維持した状態で、3次元磁界検出素子の高さを薄くし、サイズを小さくすることを可能とし、および3次元磁界検出装置を可能にする技術に関するものである。The present invention realizes the basic functions of high sensitivity, low noise, wide measurement range, etc. of the azimuth sensor by realizing the functions of the three magnetic detection elements of the X, Y, and Z axes used in the azimuth sensor on one substrate. The present invention relates to a technology that makes it possible to reduce the height and size of a three-dimensional magnetic field detection element while maintaining performance , and to enable a three-dimensional magnetic field detection device .

方位センサは、X軸、Y軸およびZ軸の3つの磁気センサ素子と集積回路を組み合わせて地磁気ベクトルを測定し、その値から方位を計算するものである。スマートホン、タブレット、インターネットTVのリモコン、モーションゲーム、モーションキャプチャなどで、加速度センサ、振動式ジャイロセンサと組合せて3次元方位計として広く使用されているが、
近年これらの装置の一層の高感度化、低ノイズ化、測定レンジのワイドレンジ化とともに小型化、薄型化が強く要求されている。特にスマートホンの薄型化に伴い、方位センサの高さを従来の1.0mmから0.6mmと40%以上の薄型化、サイズを従来の2.0mm角から1.5mm角と50%以上の小型化が求められている。またノイズに関しても、従来の10mG以下から1mG以下と10倍の性能アップが求められている。
The azimuth sensor measures the geomagnetic vector by combining three magnetic sensor elements of the X axis, Y axis and Z axis and an integrated circuit, and calculates the azimuth from the measured value. It is widely used as a three-dimensional azimuth meter in combination with an accelerometer and vibration gyro sensor in smart phones, tablets, remote controls for Internet TV, motion games, motion capture, etc.
In recent years, there has been a strong demand for downsizing and thinning of these apparatuses together with higher sensitivity, lower noise, and wider measurement range. In particular, along with the thinning of smart phones, the orientation sensor height has been reduced from 40 mm to 40 mm or more, from 1.0 mm to 0.6 mm, and the size has been reduced from conventional 2.0 mm square to 1.5 mm square by 50% or more. Miniaturization is required. In addition, with respect to noise, a 10-fold increase in performance from the conventional 10 mG or less to 1 mG or less is required.

方位センサには、磁界検出用素子としてホール素子、MR素子、MI(Magne−Impedanceの略)素子等が用いられる。通常、X軸方向、Y軸方向、およびZ軸方向の磁界ベクトル成分Hx、Hy、Hzの強さを測定するために、X軸素子、Y軸素子、Z軸素子の3つの素子を用いて測定を行う。ホール素子の場合は素子面と垂直方向に磁界を検知するので、Z軸素子を面上に配置し、X軸素子、Y軸素子をセンサ基板に立てて組み付ける必要がある。一方、MR素子やMI素子などは素子面と平行な磁界を検知するので、X軸素子とY軸素子は面上に配置して、Z軸素子をセンサ基板(Z軸方向)に立てて組み付ける必要がある。3つの素子を使う限り、センサの高さが大きくなるという問題があった。In the azimuth sensor, a Hall element, MR element, MI (abbreviation of Magne-Impedance) element, or the like is used as a magnetic field detection element. Usually, in order to measure the strength of the magnetic field vector components Hx, Hy, and Hz in the X-axis direction , the Y-axis direction , and the Z-axis direction, three elements of the X-axis element, the Y-axis element, and the Z-axis element are used. Measure. In the case of a Hall element, since a magnetic field is detected in a direction perpendicular to the element surface, it is necessary to place the Z-axis element on the surface and assemble the X-axis element and the Y-axis element upright on the sensor substrate. On the other hand, since the MR element, MI element, etc. detect a magnetic field parallel to the element surface, the X-axis element and the Y-axis element are arranged on the surface, and the Z-axis element is mounted upright on the sensor substrate (Z-axis direction). There is a need. As long as three elements are used, there is a problem that the height of the sensor increases.

この問題に対して、旭化成(株)社がホール素子を使って、ひとつの基板上にZ軸素子4個を配置してX軸素子とY軸素子を使わずに3次元磁界検出素子の開発に成功し、方位センサ(品番AKM8974)として生産販売している。その3次元磁界検出素子の構造は、基板上にX軸方向とY軸方向にそれぞれ一対のZX1素子とZX2素子および一対のZY1素子とZY2素子をクロス状に配置しその中心部に磁性材料であるパーマロイの薄円盤を配置したものである。この装置は、3次元の磁界ベクトルを、まずZ軸方向の磁界はZX1素子、ZX2素子、ZY1素子、ZY2素子の4つの出力を加算することによって検知し、X軸方向の磁界とY軸方向の磁界はそれぞれパーマロイ円盤によってZ軸方向に変向成分を発生させて、X軸方向の磁界はZX1素子とZX2素子の出力の差分で、Y軸方向の磁界はZY1素子とZY2素子の出力の差分で検知するものである。センサ基板面上に立てる素子が無いので、高さは薄く、サイズは小さくすることができる。ホール素子のように素子面と垂直の磁界を検知することができる磁界検出素子は容易に装置を薄く できるが、ホールセンサなどのこの種の磁界検出素子は、ノイズが10mG程度と1mG以下の要求に対して大きすぎるという欠点があり、使用にあたっては大きな問題であった。  To solve this problem, Asahi Kasei Co., Ltd. uses Hall elements to place four Z-axis elements on a single substrate,Not useIn addition, the company succeeded in developing a three-dimensional magnetic field detection element and produced and sold it as an orientation sensor (part number AKM8974). The three-dimensional magnetic field detection element has a structure in which a pair of ZX1 elements and ZX2 elements and a pair of ZY1 elements and ZY2 elements are arranged in a cross shape on the substrate in the X-axis direction and the Y-axis direction, respectively, with a magnetic material at the center. A permalloy thin disk is placed. This device detects a three-dimensional magnetic field vector. First, the magnetic field in the Z-axis direction is detected by adding the four outputs of the ZX1, ZX2, ZY1, and ZY2 elements. Each of these magnetic fields generates a direction change component in the Z-axis direction by a permalloy disk, the magnetic field in the X-axis direction is the difference between the outputs of the ZX1 element and the ZX2 element, and the magnetic field in the Y-axis direction is the output of the ZY1 element and the ZY2 element. It is detected by the difference. Since there is no element to stand on the sensor board surface, the height can be reduced and the size can be reduced.it can. A magnetic field detection element that can detect a magnetic field perpendicular to the element surface, such as a Hall element, easily thins the device. Yes, butThis type of magnetic field detecting element such as a hall sensor has a drawback that noise is too large for the requirement of about 10 mG and 1 mG or less, and has been a big problem in use.

一方、MI素子はノイズ1mG以下に改善することは可能であるが、Z軸素子を基板面上に立てて組み付けた場合、MI素子の高さと検出感度は背反するためその高さを小さくすることは困難であった。というのは、MI素子は、アモルファスワイヤ等の感磁体に検出コイル巻き付けたもので、感磁体に高周波のパルス電流等を流して、その時に発生する外部磁界に比例した検出コイル電圧を検知するものである。MI素子の検出感度はMI素子の長さやコイルの巻数に比例するので検出磁界の方向に長さに依存するためである。On the other hand, the MI element can be improved to a noise of 1 mG or less, but when the Z-axis element is assembled on the substrate surface, the height of the MI element and the detection sensitivity are contradictory, so the height should be reduced. Was difficult. Since, MI elements, those in the magnetic sensitive member of amorphous wire, such as wound detection coil by flowing a high-frequency pulse current such as the magnetic sensitive member, for detecting a detection coil voltage proportional to the external magnetic field generated at that time Is. This is because the detection sensitivity of the MI element is proportional to the length of the MI field and the number of turns of the coil, and therefore depends on the length of the detection magnetic field.

特許第4626728号Japanese Patent No. 4626728

これに対して、特許文献1は、ひとつの基板上にX軸素子とY軸素子を配置してZ軸素子機能を備えた一体型のMIセンサ装置が記載している。基板面上にX軸方向とY軸方向にそれぞれ一対のX1軸素子とX2軸素子およびY1軸素子とY2軸素子をクロス状に配置しその中心点下部にパーマロイ心棒を配置したものである。この装置は、3次元の磁界ベクトルを、まずX軸方向の磁界はX1軸素子とX2軸素子の出力を加算することによって検知し、Y軸方向の磁界はY1軸素子とY2軸素子の出力を加算することによって検知し、さらにZ軸方向の磁界はZ軸方向磁界をパーマロイ心棒によって平面方向に変向成分を発生させ、それをX1軸素子とX2軸素子の出力の差分とY1軸素子とY2軸素子の出力の差分とを加算することで検知するものである。
しかしパーマロイ心棒によるZ軸方向磁界を平面方向に変向する力はきわめて弱い。そのため長くて直径の大きなパーマロイを必要とし、装置の厚みは0.5mm以上必要で実用的でなかった。
On the other hand, Patent Document 1 describes an integrated MI sensor device having an X-axis element function and a Z-axis element function arranged on a single substrate. A pair of X1-axis elements, X2-axis elements, Y1-axis elements, and Y2-axis elements are arranged in a cross shape on the substrate surface in the X-axis direction and Y-axis direction, respectively, and a permalloy mandrel is arranged below the center point. This device detects a three-dimensional magnetic field vector. First, the magnetic field in the X-axis direction is detected by adding the outputs of the X1-axis element and the X2-axis element, and the magnetic field in the Y-axis direction is output from the Y1-axis element and the Y2-axis element. Further, the magnetic field in the Z-axis direction is generated by a permalloy mandrel in the plane direction by the permalloy mandrel, and the difference between the output of the X1-axis element and the X2-axis element and the Y1-axis element And the difference between the outputs of the Y2 axis elements are detected.
However, the force that changes the Z-axis direction magnetic field in the plane direction by the permalloy mandrel is extremely weak. Therefore, a long and large-diameter permalloy is required, and the thickness of the apparatus is 0.5 mm or more, which is not practical.

以上のように、一つの基板上にX軸素子、Y軸素子を各個と軟磁性体を配置し、Z軸素子機能を実現する一体型の装置が発明されているが、ホール素子タイプではノイズが高いなど性能面で十分でなく、MI素子タイプは厚さの点で一層の改善が必要とされている。  As described above, an integrated device has been invented in which the X-axis element and the Y-axis element and the soft magnetic material are arranged on one substrate to realize the Z-axis element function. However, the MI element type is required to be further improved in terms of thickness.

本発明は、以上のような技術的背景に鑑みて、複数個のX軸、Y軸のMI素子を一つの基板上に形成して、Z軸素子の機能を実現して、小さなノイズで、従来よりも格段に薄型化し得る磁界検出装置を提供するものである。なお本発明はMI素子に限定されるものではなくて、磁性材料を感磁体として磁界検出素子配置面に平行な磁界を検知するタイプの磁界検出素子に提供できる。In view of the technical background as described above, the present invention forms a plurality of X-axis and Y-axis MI elements on one substrate to realize the function of the Z-axis element, and with small noise, It is an object of the present invention to provide a magnetic field detection device that can be made much thinner than before. The present invention is not limited to the MI element, and can be provided for a type of magnetic field detection element that detects a magnetic field parallel to the magnetic field detection element arrangement surface using a magnetic material as a magnetic sensitive body.

本発明者は、MI素子の両端部に、一方の上部に軟磁性体を、他方の下部に軟磁性体を設けて、それら二つの軟磁性体と素子とを使ってクランク状の磁気回路を形成すればZ軸方向の磁界を効果的に検出することを考案した。
第一の発明は、基板の磁界検出素子配置面平行方向の磁界を検出するタイプの磁界検出素子を使って、基板面上に4つの磁界検出素子を、原点を中心にして第1軸方向に沿って二つ、第軸と交差する第軸方向に沿って二つ配置し、さらに原点の下部の基板内と4つの素子の原点と反対側の端部の上部に軟磁性を配置した構造により磁界検出素子と軟磁性体の間に磁気回路を形成する磁界検出ユニットを有することによって、4つの磁界検出素子の出力からX軸、Y軸およびZ軸方向の磁界の強さを効果的に検出することを とする3次元磁界検出素子である。
ここで、好ましくは、上部の軟磁性体の高さは0.05mmから0.2mm程度でMI素子とのギャップは0.02mm以下とし、同様の下部の軟磁性体も同様の大きさと位置関係として、三つの部品はクランク状に配置される。
なお、軟磁性体の上下方向の配置については、上下方向は相対的で、原点の基板上部と 4つの磁界検出素子の原点と反対側の端部の下部に軟磁性体を配置した構造にすることも 可能である。
The present inventor provided a soft magnetic body at one upper portion and a soft magnetic body at the other lower portion at both ends of the MI element, and formed a crank-like magnetic circuit by using these two soft magnetic bodies and the element. It was devised to effectively detect the magnetic field in the Z-axis direction if formed .
The first invention uses a magnetic field detection element of a type that detects a magnetic field in a direction parallel to the magnetic field detection element arrangement surface of the substrate, and has four magnetic field detection elements on the substrate surface in the first axial direction with the origin as the center. along two, the second axial direction two arranged along a further upper soft magnetic body origin opposite ends of the lower substrate and the four elements of the origin intersects the first axis By having a magnetic field detection unit that forms a magnetic circuit between the magnetic field detection element and the soft magnetic material by the arrangement structure, the strength of the magnetic field in the X-axis, Y-axis, and Z-axis directions can be determined from the outputs of the four magnetic field detection elements. is a three-dimensional magnetic field detection element according to feature to effectively detected.
Here, preferably, the height of the upper soft magnetic body is about 0.05 mm to 0.2 mm, the gap with the MI element is 0.02 mm or less, and the same lower soft magnetic body has the same size and positional relationship. The three parts are arranged in a crank shape.
The vertical arrangement of the soft magnetic material is relative to the vertical direction, and the soft magnetic material is arranged at the upper part of the substrate at the origin and the lower part of the end opposite to the origin of the four magnetic field detection elements. It is also possible.

クランク状の磁気回路の機能を説明すると、Z軸方向の磁界は素子の片方の端にある軟磁性体から素子の中の磁性ワイヤを通過して、他方の軟磁性体に流れる。Z軸方向の磁界がX軸とY軸の面内方向の放射線状に流れる磁界に変向される。この時、基板面上にあるアモルファスワイヤには、Z軸方向の磁界に比例した強い磁界が流れることになる。このことにより、両端にある軟磁性体が小さくても、大きな出力を得ることができる。従って、この磁気回路を活用すれば素子の高さを、特許文献1の0.5mmレベルから0.10mmから0.30mm程度の小さなものにすることができる。Describing the function of the crank-shaped magnetic circuit, the magnetic field in the Z-axis direction flows from the soft magnetic body at one end of the element through the magnetic wire in the element to the other soft magnetic body. The magnetic field in the Z-axis direction is changed to a magnetic field that flows radially in the in-plane directions of the X-axis and the Y-axis. At this time, a strong magnetic field proportional to the magnetic field in the Z-axis direction flows through the amorphous wire on the substrate surface. Thus, even with a small soft magnetic material at each end, a large output can be obtained. Therefore, if this magnetic circuit is utilized, the height of the element can be reduced from the 0.5 mm level of Patent Document 1 to about 0.10 mm to 0.30 mm.

本発明の3次元磁界検出素子は、磁界検出素子配置面と平行方向の磁界を検出するタイプの磁界検出素子を使って、基板平面上に4つの磁界検出素子を、原点を中心にしてX軸方向に二つ、Y軸方向に二つ配置し、さらに原点の下部と4つの素子の原点と反対側の端部の上部に軟磁性部材を配置して、4つのクランク状の磁気回路を形成したものである。ここでX1軸素子とX2軸素子は反対称的にクランク状の磁気回路を形成しており、両者の出力はZ軸方向の磁界の強さに比例する大きさで両者の絶対値は同じ、符号は反対である。従って両出力の差分を取れば、その差分はZ軸方向の磁界の強さに比例する。同様にY1軸素子とY2軸素子は反対称的にクランク状の磁気回路を形成しており、その出力の差分をとれば、Z軸磁界の強さに比例する。このX軸出力の差分とY軸出力の差分を合計すれば、Z軸方向の磁界の強さを算出することができる。The three-dimensional magnetic field detection element of the present invention uses a magnetic field detection element of a type that detects a magnetic field in a direction parallel to the magnetic field detection element placement surface, and has four magnetic field detection elements on the substrate plane and the X axis centered on the origin. Two in the direction and two in the Y-axis direction, and furthermore, a soft magnetic member is arranged at the lower part of the origin and the upper part of the end opposite to the origin of the four elements to form four crank-shaped magnetic circuits It is a thing. Here, the X1-axis element and the X2-axis element form a crank-shaped magnetic circuit in an antisymmetric manner, and their outputs are in proportion to the strength of the magnetic field in the Z-axis direction and the absolute values of both are the same. The sign is opposite. Therefore, if the difference between both outputs is taken, the difference is proportional to the strength of the magnetic field in the Z-axis direction. Similarly, the Y1-axis element and the Y2-axis element form an asymmetric crank-shaped magnetic circuit, and if the difference between the outputs is taken, it is proportional to the strength of the Z-axis magnetic field. By summing the difference between the X-axis output and the Y-axis output, the strength of the magnetic field in the Z-axis direction can be calculated.

また、X1軸素子とX2軸素子の出力は、その大きさはX軸方向の磁界の強さに比例した値で、その符号は同符号である。両者の出力の加算値からX軸方向の磁界の強さを求めることができる。同様にY軸方向の磁界の強さもY1軸素子とY2軸素子の出力の加算値から求めることができる
上述のように、本発明の3次元磁界検出素子は、基板の磁気検出素子配置面と平行方向 の磁界を検出するタイプの磁界検出素子を使って、基板上の原点を中心にして、第1軸方 向に一対の前記磁界検出素子を備え、第1軸方向と交差する第2軸方向に一対の前記磁界 検出素子を備えてなり、かつ、前記原点および前記磁界検出素子の原点とは反対側の前記 磁界検出素子の端部にそれぞれ軟磁性体を備えて、前記磁界検出素子と前記磁界検出素子 の両側の前記軟磁性体とにより形成される磁気回路は、前記原点を中心に反対称的なクラ ンク状であることを特徴とするものである。
Further, the outputs of the X1-axis element and the X2-axis element are values whose magnitude is proportional to the strength of the magnetic field in the X-axis direction, and the signs thereof are the same. The strength of the magnetic field in the X-axis direction can be obtained from the sum of both outputs. Similarly, the strength of the magnetic field in the Y-axis direction can be obtained from the sum of the outputs of the Y1-axis element and the Y2-axis element.
As described above, the three-dimensional magnetic field detection element of the present invention uses a magnetic field detection element of a type that detects a magnetic field in a direction parallel to the magnetic detection element arrangement surface of the substrate, and has the first on the substrate as the center. a pair of the magnetic field detection element on the axis direction, the second axis direction intersecting the first axis direction becomes a pair of the magnetic field detecting element, and, contrary to the origin of the origin and the magnetic field detecting element And a magnetic circuit formed by the magnetic field detection element and the soft magnetic body on both sides of the magnetic field detection element is antisymmetric about the origin. it is characterized in that a specific class link shape.

よって、基板上に二つのX軸素子と二つのY軸素子を配置し、その端部の上下位置に小さな軟磁性体を配置して、両者の間に磁気回路を形成させることを特徴とする本発明の3次 磁界検出素子は、基板材料の厚さを考慮した装置の高さを0.1〜0.3mmと小さくすることができる Therefore, to place the two X-axis element and two Y-axis elements on a substrate, by placing a small soft magnet in the vertical position of the end portion, characterized in that to form a magnetic circuit between the two 3D magnetic field detecting element of the present invention, the height of the device in consideration of the thickness of the substrate material can be reduced to 0.1 to 0.3 mm.

上述した3次元磁界検出素子は、同サイズの集積回路チップとCSP(チップサイズパッケージ)法で電極用半田パッドなどを用いて接合して使用することが望ましい。前記MIセンサの集積回路は、パルス発振回路、信号処理回路、及び、前記演算手段を含む電子回路で形成されている。信号処理回路の一例としてはバッファ回路、サンプルタイミング調整回路、電子スイッチ、ホールド回路および増幅回路からなっている。本発明は、本発明装置と信号処理回路および集積回路チップとの配線との組合せについては、いろいろな場合が可能である。本発明装置はその組合せに制約されるものではない。The above-described three-dimensional magnetic field detecting element is desirably used by being joined to an integrated circuit chip of the same size by using a solder pad for an electrode by the CSP (chip size package) method. The integrated circuit of the MI sensor is formed of a pulse oscillation circuit, a signal processing circuit, and an electronic circuit including the arithmetic means. An example of the signal processing circuit includes a buffer circuit, a sample timing adjustment circuit, an electronic switch, a hold circuit, and an amplifier circuit. In the present invention, various combinations are possible for the combination of the device of the present invention and the wiring of the signal processing circuit and the integrated circuit chip. The device of the present invention is not limited to the combination.

また、3次元磁界検出装置を駆動する電子回路は、パルス回路から同時に4つの素子にパルス電流を流して、4つの信号処理回路で同時にコイル電圧を検知した後で、所定の演算を行うことによってX軸、Y軸およびZ軸方向の磁界の強さを求めることが望ましい。ほかにも電子スイッチでX軸素子の測定とY軸素子の測定の切替を瞬時、例えば1μ秒で行い、一つのパルス発振回路と二つの検波回路を使って測定し、測定値をデータ保存して所定の演算を行ってもよい。集積回路との組合せ方によって本発明が制約されるものではないことは明らかである。
本発明素子と信号処理回路、集積回路のシリコン基板との組合せた磁界検出装置である方位センサの厚みの合計は、0.3〜0.6mmときわめて薄くすることができる。ここでシリコン基板の図示は省略する。
The electronic circuit that drives the three-dimensional magnetic field detection device performs a predetermined calculation after a pulse current is simultaneously supplied from the pulse circuit to the four elements, and the coil voltage is simultaneously detected by the four signal processing circuits. It is desirable to determine the strength of the magnetic field in the X-axis, Y-axis, and Z-axis directions. In addition, the electronic switch switches the measurement of the X-axis element and the measurement of the Y-axis element instantaneously, for example, in 1 microsecond, and measures using one pulse oscillation circuit and two detection circuits, and saves the measured value as data Then, a predetermined calculation may be performed. Obviously, the present invention is not limited by the combination with the integrated circuit.
The total thickness of the azimuth sensor, which is a magnetic field detection device in which the element of the present invention is combined with the silicon substrate of the signal processing circuit and the integrated circuit, can be made extremely thin as 0.3 to 0.6 mm. Here, illustration of the silicon substrate is omitted.

高い感度と適切な測定レンジの両立について説明すると、MI素子の出力はある磁界の強さでピーク値をとり、測定レンジはそのピーク間で制約される。測定レンジはMI素子の長さを短くしてワイヤの反磁界を大きくすることによって拡大することができる。このようにMI素子の長さを調整して、感度と背反関係にある測定レンジを所定の範囲に調整するのが一般的な方法である。本発明においても、X軸方向、Y軸方向の磁界測定にこの一般的方法が適用できる。さらにZ軸方向の磁界測定についてはMI素子の長さが短いほど、磁気抵抗の小さな磁気回路が形成できるので感度は向上し、より小さな軟磁性体で両者の両立を実現できることを意味する。言い換えれば本発明において、感度と測定レンジの両立は損なわれることはない。Explaining the compatibility between high sensitivity and an appropriate measurement range, the output of the MI element takes a peak value at a certain magnetic field strength, and the measurement range is restricted between the peaks. The measurement range can be expanded by reducing the length of the MI element and increasing the demagnetizing field of the wire. In this way, it is a general method to adjust the length of the MI element to adjust the measurement range that is in a contradictory relationship with the sensitivity to a predetermined range. Also in the present invention, this general method can be applied to magnetic field measurement in the X-axis direction and the Y-axis direction. Further, in the magnetic field measurement in the Z-axis direction, the shorter the MI element length, the more the magnetic circuit having a lower magnetic resistance can be formed, so that the sensitivity is improved, and it means that both can be realized with a smaller soft magnetic material. In other words, in the present invention, compatibility between sensitivity and measurement range is not impaired.

本発明装置の高感度化を図るためには、3次元磁界検出素子の例えば、正方形の基板を考えたとき、各辺をと横にするとき、その各辺と45度をなす対角線上にX軸とY軸をとってMI素子を配置することが望ましい。このことにより、同サイズの基板に対して、MI素子の長さを長く取れる。つまり、感磁体(アモルファスワイヤ等)の長さや検出コイルの巻数を大きくすることができて出力電圧の向上を図ることが可能となるからである。In order to increase the sensitivity of the device of the present invention, for example, when considering a square substrate of a three-dimensional magnetic field detection element, when each side is vertically and horizontally, it is on a diagonal line forming 45 degrees with each side. It is desirable to arrange the MI element along the X axis and the Y axis. Thereby, the length of the MI element can be increased with respect to the substrate of the same size. That is, the length of the magnetic sensitive body (amorphous wire or the like) and the number of turns of the detection coil can be increased, and the output voltage can be improved.

さらなる高感度化は、同一基板内に本発明の第一の発明である3次元磁界検出素子(磁界検出ユニット)を複数個配置することによって実現できる。
すなわち、第二の発明は、第一の発明に記載されている磁界検出ユニットを同一基板平面上に複数個配置したことを特徴とする3次元磁界検出素子である。
第一の発明の4つの磁気検出素子からなる磁界検出ユニットを基本単位にして複数ユニットを基板上に配置し、対応するユニットの数だけ駆動回路と検波回路を備えた集積回路と組み合わせることによって実現できる。駆動回路については、X軸方向、Y軸方向の素子のワイヤ電極をそれぞれ直列的に電気的接合して励磁パルス電流を流すことによって一つだけにすることもできる。また検波回路についても、X1軸素子、X2軸素子、Y1軸素子およびY2軸素子それぞれに対応する複数個のピックアップコイルの出力電極を直列接合することによって、信号処理回路数を磁界検出ユニットのときと同じ4つのままとすることができる。
更に、第三の発明は、第一の発明に記載されている3次元磁界検出素子と集積回路チップとを接合した3次元磁界検出素子装置である。このように接合することで、基板方向に素子を薄くすることができる。
Further enhancement of sensitivity can be realized by arranging a plurality of three-dimensional magnetic field detection elements (magnetic field detection units) according to the first invention of the present invention on the same substrate.
That is, the second invention is a three-dimensional magnetic field detection element characterized in that a plurality of magnetic field detection units described in the first invention are arranged on the same substrate plane.
Realized by combining a plurality of units on the substrate with the magnetic field detection unit comprising the four magnetic detection elements of the first invention as a basic unit and combining them with an integrated circuit having a drive circuit and a detection circuit as many as the corresponding units. it can. Regarding the drive circuit, the number of wire electrodes of the elements in the X-axis direction and the Y-axis direction can be electrically connected in series and the excitation pulse current can be made to flow to one. Also for the detection circuit, the number of signal processing circuits can be reduced by connecting the output electrodes of a plurality of pickup coils corresponding to the X1-axis element, X2-axis element, Y1-axis element, and Y2-axis element in series. The same four can remain.
Furthermore, a third invention is a three-dimensional magnetic field detection element device in which the three-dimensional magnetic field detection element described in the first invention and an integrated circuit chip are joined. By bonding in this way, the element can be thinned in the direction of the substrate.

実施例1に係る3次元磁界検出素子の平面図である。3 is a plan view of a three-dimensional magnetic field detection element according to Embodiment 1. FIG. その平面図中に示したA−Aで切断した断面図である。It is sectional drawing cut | disconnected by AA shown in the top view. 実施例1に係るMI素子の基本構造を示す平面図である。1 is a plan view showing a basic structure of an MI element according to Example 1. FIG. 実施例1に係るクランク状の磁気回路である。1 is a crank-shaped magnetic circuit according to a first embodiment. 実施例1に係る素子の電子回路図である。1 is an electronic circuit diagram of an element according to Example 1. FIG. 実施例1に係る3次元素子の電子回路図である。3 is an electronic circuit diagram of a three-dimensional element according to Example 1. FIG. 実施例2に係る3次元磁界検出素子の平面図である。6 is a plan view of a three-dimensional magnetic field detection element according to Embodiment 2. FIG. 実施例3に係る3次元磁界検出素子(装置)の平面図である。6 is a plan view of a three-dimensional magnetic field detection element (device) according to Embodiment 3. FIG.

発明の実施形態を挙げて本発明をより詳しく説明する。
本発明の3次元磁界検出装置は、磁気インピーダンス素子(MI素子)を用いて磁気を検出する装置である。MI素子は、前述したように磁場(磁界)などの時期に感応してインピーダンス変化や磁束量変化を生じ得る感磁体と、その感磁体の変化量を検出する検出手段とを有する。感磁体はその材質や形態を問わない。また検知手段も感磁体のインピーダンスを直接検出するものでも、感磁体の周囲に巻回され磁束量変化に応じた起電力を出力するピックアップコイル(検出コイル)等でもよい。感磁体は通常はアモルファスワイヤなどの軟磁性材からなり、相応の長さを有するワイヤまたは薄膜からなる。感磁体は、強度やコストなどの点で、特に零磁歪のアモルファスワイヤが好ましい。
The present invention will be described in more detail with reference to embodiments of the invention.
The three-dimensional magnetic field detection apparatus of the present invention is an apparatus that detects magnetism using a magnetic impedance element (MI element). As described above, the MI element includes a magnetic sensitive body that can cause an impedance change and a magnetic flux amount change in response to a time such as a magnetic field (magnetic field), and a detection unit that detects the amount of change of the magnetic sensitive body. The material and form of the magnetosensitive material are not limited. Further, the detection means may be one that directly detects the impedance of the magnetic body, or may be a pickup coil (detection coil) that is wound around the magnetic body and outputs an electromotive force according to a change in the amount of magnetic flux. The magnetic sensitive body is usually made of a soft magnetic material such as an amorphous wire, and is made of a wire or a thin film having a corresponding length. The magnetosensitive body is particularly preferably a zero magnetostrictive amorphous wire in terms of strength and cost.

軟磁性体は、基板上に配置されたX1軸素子、X2軸素子、Y1軸素子、Y2軸素子と4つのクランク状の磁気回路を形成して、Z軸方向の磁界を基板上のX軸方向とY軸方向に変向して、Z軸方向の磁界の強さを検出することを可能とするものである。ただし、このような軟磁性体による磁気回路形成が可能である限り、軟磁性体の材質、形態は問わない。軟磁性体は、高透磁率であるほど、磁場の集磁効果が大きくて好ましい、軟磁性体の形状は、反磁界係数を小さくしてZ軸方向の磁界によって効果的に磁化しうる形状であると好ましい。The soft magnetic material forms an X1-axis element, an X2-axis element, a Y1-axis element, a Y2-axis element and four crank-shaped magnetic circuits arranged on the substrate, and applies a magnetic field in the Z-axis direction to the X-axis on the substrate. The direction is changed to the Y-axis direction, and the strength of the magnetic field in the Z-axis direction can be detected. However, as long as the magnetic circuit can be formed using such a soft magnetic material, the material and form of the soft magnetic material are not limited. The higher the magnetic permeability of the soft magnetic material, the larger the magnetic field collecting effect, which is preferable. The soft magnetic material has a shape that can be effectively magnetized by a magnetic field in the Z-axis direction by reducing the demagnetizing factor. Preferably there is.

軟磁性体の配置位置は、磁気回路を効果的に形成されやすい位置に配置されると好ましい。例えば、軟磁性体の磁極面とアモルファスワイヤ端部とを出来るだけ近づけて磁気回路抵抗を小さくするようにする。断面積と厚みで表現される軟磁性体の大きさは、素子の長さや直径に相対的関係があり、素子が長いほど軟磁性体の厚みを厚くすることが好ましい。The arrangement position of the soft magnetic material is preferably arranged at a position where the magnetic circuit is easily formed effectively. For example, the magnetic circuit resistance is reduced by bringing the magnetic pole surface of the soft magnetic material and the end of the amorphous wire as close as possible. The size of the soft magnetic material expressed by the cross-sectional area and the thickness has a relative relationship with the length and diameter of the element, and it is preferable that the thickness of the soft magnetic material is increased as the element becomes longer.

本発明の趣旨に沿う限り、X軸素子とY軸素子または軟磁性体の配置は、両軸は直角であることが望ましいが、直角からある角度ずれている場合は素子出力にその角度ずれに応じた適切な補正演算を行うことによって処理することができる。As long as the gist of the present invention is met, it is desirable that the X-axis element and the Y-axis element or the soft magnetic material are arranged at right angles to each other. Processing can be performed by performing an appropriate correction calculation in accordance with this.

X軸方向とY軸方向は、素子基板形状の方向と横方向に一致していることが望ましいが、一致していない場合はそのズレ角度を測定して補正演算を加えることで対応することができる。It is desirable that the X-axis direction and the Y-axis direction match the vertical and horizontal directions of the element substrate shape, but if they do not match, measure the deviation angle and apply a correction calculation. Can do.

勿論、対称に配置されるMI素子同士または磁気回路を形成する軟磁性体同士は、それぞれ感応特性、検出特性または集磁特性などは、実質的に同一であることが望ましい。特性が異なる場合は、各素子の測定値は電子回路と演算処理装置に送られて補正して同一化することによって処理することができるOf course, it is desirable that the MI elements arranged symmetrically or the soft magnetic materials forming the magnetic circuit have substantially the same sensitivity characteristics, detection characteristics, magnetic collection characteristics, and the like. If the characteristics are different, the measured values of each element can be processed by being sent to the electronic circuit and the arithmetic processing unit to be corrected and made identical.

いずれにしろ、X方向の一対のMI素子またはY方向の一対のMI素子と軟磁性体との対称性を巧みに利用して、演算式中の補正係数または補正項等を簡略化できるようにすると、高精度な磁界検出が容易となり好ましい。  In any case, the correction coefficient or the correction term in the arithmetic expression can be simplified by skillfully using the symmetry between the pair of MI elements in the X direction or the pair of MI elements in the Y direction and the soft magnetic material. Then, highly accurate magnetic field detection becomes easy and preferable.

本発明は、Z軸方向の磁場を基板上に設置したX軸素子とY軸素子と軟磁性体とで磁気回路を形成することによって、3軸の磁界を検出する磁界検出装置の小型化または薄型化を図れる点に特徴がある。本発明の複合素子と集積回路とを接合は、ワイヤボンディングを使って行うこともできるが、ワイヤボンディングのための余分に面積と高さが必要となる。そこで磁界検出素子と集積回路とを積層してパッド接合することによって両者を電気的に接合することが、全体的な小型化または薄型化をより進めるために望ましい。The present invention reduces the size of a magnetic field detection device that detects a magnetic field of three axes by forming a magnetic circuit with an X-axis element, a Y-axis element, and a soft magnetic material in which a magnetic field in the Z-axis direction is placed on a substrate. It is characterized in that it can be made thinner. The composite element of the present invention and the integrated circuit can be bonded using wire bonding, but extra area and height are required for wire bonding. Therefore, it is desirable to laminate the magnetic field detection element and the integrated circuit and to electrically bond them by pad bonding in order to further reduce the overall size or thickness.

また、集積される層は、磁界検出素子と集積回路チップ層には限らない。本発明の3次元磁界検出装置は加速度センサ、温度センサなどと積層されて複合型センサとして組立て使用できる。Further, the layers to be integrated are not limited to the magnetic field detection element and the integrated circuit chip layer. The three-dimensional magnetic field detection apparatus of the present invention can be assembled and used as a composite sensor by being laminated with an acceleration sensor, a temperature sensor, or the like.

図面を参照しつつ以下に挙げる実施例に基づいて詳細に説明する。
[実施例1]
実施例1に係る3次元磁界検出素子1を図1に示す。図1は3次元磁界検出素子1の平面図であり、図2は図1中に示したA−A線における断面図である。図3はMI素子の基 本構造を示す平面図である。
The present invention will be described in detail based on the following examples with reference to the drawings.
[Example 1]
A three-dimensional magnetic field detection element 1 according to Example 1 is shown in FIG. FIG. 1 is a plan view of the three-dimensional magnetic field detection element 1, and FIG. 2 is a cross-sectional view taken along the line AA shown in FIG. Figure 3 is a plan view showing a basic structure of the MI element.

3次元磁界検出素子1は、地磁気など微小磁界を検出することができる4つのMI素子2、
すなわちX1軸素子2X1、X2軸素子2X2、Y1軸素子2Y1およびY2軸素子2Y2と、それらMI素子に配置された基板11と、4つの素子の共通の原点位置の下側方向に基板11に形成されたホールに配置された棒状の軟磁性体31と、4つの素子の基板11の外縁方向の端部の上部に配置された棒状の軟磁性体32の3層構造、および電極からなる。電極は4つの素子ワイヤと連結したワイヤ用端子23と接続されている電極パッ ド24と、4つの検出コイルの検出コイル用端子25と接続されている電極パッド26とから成り立っている。上部位置に配置される集積回路シリコン基板(図示せず)とは上記電極に接合用の半田パッドを設置して連結することができる。
The three-dimensional magnetic field detection element 1 includes four MI elements 2 that can detect a minute magnetic field such as geomagnetism,
That is, the X1 axis element 2X1, the X2 axis element 2X2, the Y1 axis element 2Y1 and the Y2 axis element 2Y2, the substrate 11 arranged in these MI elements, and the lower side of the common origin position of the four elements are formed on the substrate 11 It comprises a three-layer structure of a rod-shaped soft magnetic body 31 disposed in the formed hole, a bar-shaped soft magnetic body 32 disposed on the upper end of the four-element substrate 11 in the outer edge direction, and electrodes. Electrode is made up of four of the electrodes pads 24 connected with the wire terminal 23 which is connected to the element wires, four detection coils of the detection coil terminal 25 and the connected electrode pads 26.. An integrated circuit silicon substrate (not shown) disposed at the upper position can be connected to the electrodes by installing solder pads for bonding.

基板11の原点位置に設置される軟磁性体31は、基板11の原点位置にZ軸を軸線とする直径100μm、深さ200μmの円筒状の穴を設け、そこにメッキ法で45at%Ni−Fe組成のパーマロイ合金を埋め込んだものである。基板上面11の上部に設置される軟磁性体32は、アモルファス21の端部に直径50μm、厚み50μmのボタン状の45at%Ni−Fe組成のメッキ法で形成したパーマロイ合金である。軟磁性体3には、純Ni、純鉄、他組成のパーマロイ合金、センダスト、パーメンジュール等の公知軟磁性材料を使用することができる。The soft magnetic material 31 installed at the origin position of the substrate 11 is provided with a cylindrical hole having a diameter of 100 μm and a depth of 200 μm with the Z axis as the axis at the origin position of the substrate 11, and 45 at% Ni− A permalloy alloy having an Fe composition is embedded. The soft magnetic material 32 installed on the upper surface of the substrate upper surface 11 is a permalloy alloy formed by a button-like 45 at% Ni—Fe plating method having a diameter of 50 μm and a thickness of 50 μm at the end of the amorphous 21. As the soft magnetic material 3, known soft magnetic materials such as pure Ni, pure iron, permalloy alloys of other compositions, sendust, and permendur can be used.

MI素子2の構造を、図3を用いて説明する。
4つの素子は同じ構造を有しており、その構造は直径10μm、長さ400μmのアモルファスワイヤ21を中心部に配置し、その周りを内径30μm、コイルピッチ5μm巻数30回の検出コイル22を配置し、さらにワイヤ21とコイル22の両端にはそれぞれ電極端子であるワイヤ用端子23、検出コイル用端子25が取り付けられている。ワイヤ用端子23からの電極パッド24および検出コイル用端子25からの電極パッド26を それぞれ使って集積回路端子(図示せず)に対応している。各MI素子2の上記各端子と集積回路のシリコン基板の各端子とは、電極パッドで電気的に接合される。
The structure of the MI element 2 will be described with reference to FIG.
The four elements have the same structure. In the structure, an amorphous wire 21 having a diameter of 10 μm and a length of 400 μm is arranged at the center, and a detection coil 22 having an inner diameter of 30 μm, a coil pitch of 5 μm , and a winding number of 30 is provided. Further, wire terminals 23 and detection coil terminals 25 , which are electrode terminals, are attached to both ends of the wire 21 and the coil 22, respectively. An electrode pad 24 from the wire terminal 23 and an electrode pad 26 from the detection coil terminal 25 are used to correspond to an integrated circuit terminal (not shown). Each terminal of each MI element 2 and each terminal of the silicon substrate of the integrated circuit are electrically joined by electrode pads.

本実施例1の基板上に配置されたX1軸素子2X1、X2軸2X1、Y1軸素子2Y1、Y2軸素子2Y2の4つの素子と原点位置の軟磁性体と4つのワイヤ端部32の4つの軟磁性体とは、4つのクランク状の磁気回路を形成して、Z軸方向の磁界の強さを効果的に検出することを可能にする。  Four elements of the X1 axis element 2X1, X2 axis 2X1, Y1 axis element 2Y1, and Y2 axis element 2Y2 arranged on the substrate of the first embodiment, the soft magnetic body at the origin position, and the four wire end portions 32 The soft magnetic material forms four crank-shaped magnetic circuits, and makes it possible to effectively detect the strength of the magnetic field in the Z-axis direction.

クランク状の磁気回路の機能を、図4(図1のA−A断面図)を使って詳細に説明すると、Z軸方向の磁界HzはMI素子の両端にある軟磁性体を磁化する。MI素子端部の上部側にある軟磁性体32の下面の磁極をN極とすると、原点位置にある軟磁性体31の上面の磁極はS極となっており、その間にあるMI素子のアモルファスワイヤ21を介してクランク状の磁気回路を形成する。この時アモルファスワイヤには、Z軸方向の磁界に比例した強い磁界が流れることになる。この磁気回路形成によって効果的に大きな出力を得ることができるので、端部にある軟磁性体の高さは0.05mmと小さくすることができる。その結果、MI素子の厚み0.05mmと合わせて、3次元磁界検出素子の全体の高さを0.30mmとすることができたThe function of the crank-shaped magnetic circuit will be described in detail with reference to FIG. 4 (AA sectional view of FIG. 1). The magnetic field Hz in the Z-axis direction magnetizes the soft magnetic material at both ends of the MI element. When the magnetic pole on the lower surface of the soft magnetic body 32 on the upper side of the end of the MI element is an N pole, the magnetic pole on the upper surface of the soft magnetic body 31 at the origin position is an S pole, and the amorphous MI element between them A crank-shaped magnetic circuit is formed through the wire 21. At this time, a strong magnetic field proportional to the magnetic field in the Z-axis direction flows through the amorphous wire. Since a large output can be obtained effectively by this magnetic circuit formation, the height of the soft magnetic material at the end can be reduced to 0.05 mm. As a result, together with the thickness 0.05mm the MI element, the overall height of the three-dimensional magnetic field sensor could be 0.30 mm.

4つのMI素子の出力は個々に測定され、X1軸素子、X2軸素子、Y1軸素子およびY2軸素子の各素子の測定値をHx1、Hx2、Hy1、およびHy2とすると計算処理 によって、X軸方向、Y軸方向およびZ軸方向の磁界の強さHx、HyおよびHzが算出される。The outputs of the four MI elements are individually measured. If the measured values of the X1 axis element, the X2 axis element, the Y1 axis element, and the Y2 axis element are Hx1, Hx2, Hy1, and Hy2, a calculation process is performed. The magnetic field strengths Hx, Hy, and Hz in the direction , the Y-axis direction, and the Z-axis direction are calculated.

上述のように、X1軸素子とX2軸素子は反対称的にクランク状の磁気回路を形成しており、両者の素子の出力は、その大きさZ軸方向の磁界の強さに比例し符号は反対である。従って両出力の差分を取れば、その差分はZ軸方向の磁界の強さに比例する。同様にY1軸素子とY2軸素子はZ軸方向の磁界成分に対し反対称的にクランク状の磁気回路を形成しており、その出力の差分を取れば、Z軸素子の強さに比例する。このX軸出力の差分とY軸出力の差分を合計すれば、Z軸方向の磁界の強さを算出することができる。 As described above, the X1-axis element and the X2-axis element form a crank-shaped magnetic circuit in an antisymmetric manner, and the output of both elements is proportional to the magnitude of the magnetic field in the Z-axis direction. Is the opposite. Therefore, if the difference between both outputs is taken, the difference is proportional to the strength of the magnetic field in the Z-axis direction. Similarly, the Y1-axis element and the Y2-axis element form a crank-like magnetic circuit antisymmetrically with respect to the magnetic field component in the Z-axis direction, and if the difference between the outputs is taken, it is proportional to the strength of the Z-axis element. . By summing the difference between the X-axis output and the Y-axis output, the strength of the magnetic field in the Z-axis direction can be calculated.

また、X1軸素子とX2軸素子の出力は、X軸方向の磁界成分に対し対称的に磁気回路In addition, the outputs of the X1-axis element and the X2-axis element are symmetrical with respect to the magnetic field component in the X-axis direction. をしており、その大きさはX軸方向の磁界の強さに比例した値で、その符号は同符号であThe magnitude is proportional to the strength of the magnetic field in the X-axis direction, and the sign is the same sign. る。両者の出力の加算値からX軸方向の磁界の強さを求めることができる。The The strength of the magnetic field in the X-axis direction can be obtained from the sum of both outputs.
同様にY軸方向の磁界の強さもY1軸素子とY2軸素子の出力の加算値から求めることSimilarly, the strength of the magnetic field in the Y-axis direction is obtained from the sum of the outputs of the Y1-axis element and the Y2-axis element. ができる。Can do.

本実施例で使用した3次元磁界検出素子1の駆動用の電子回路を図5と図6を使って説An electronic circuit for driving the three-dimensional magnetic field detection element 1 used in this embodiment will be described with reference to FIGS. 明する。Light up.
まずMIセンサの電子回路8の基本動作を、図5を使って説明する。電子回路8は、パFirst, the basic operation of the electronic circuit 8 of the MI sensor will be described with reference to FIG. The electronic circuit 8 is ルス発振回路(パルス発信器)81および信号処理回路82を有する。信号処理回路82A pulse oscillation circuit 81 and a signal processing circuit 82 are included. Signal processing circuit 82 は、バッファ回路83、検波タイミング調整回路84と、電子スイッチ85と、サンプルIncludes a buffer circuit 83, a detection timing adjustment circuit 84, an electronic switch 85, and a sample. ホールド回路86および増幅器87とからなる。パルス発振回路81により発生した50It comprises a hold circuit 86 and an amplifier 87. 50 generated by the pulse oscillation circuit 81 0MHz相当の高周波のパルス電流をMI素子2のアモルファスワイヤ21へ供給する。A high-frequency pulse current corresponding to 0 MHz is supplied to the amorphous wire 21 of the MI element 2. そうすると、パルス電流によりアモルファスワイヤ21のワイヤ円周方向に生じた磁場とThen, the magnetic field generated in the wire circumferential direction of the amorphous wire 21 by the pulse current and 外部磁場とが作用して、その外部磁場に対応した電圧が検出コイル22に発生する。なおAn external magnetic field acts, and a voltage corresponding to the external magnetic field is generated in the detection coil 22. In addition ここでいうパルス周波数は、パルス電流の「立ち下がり」時間Δtの4倍をその周期としThe pulse frequency here has a period that is four times the “falling” time Δt of the pulse current. てその逆数をパルス周波数と便宜上定義した。The reciprocal was defined as the pulse frequency for convenience.

検出コイル22の出力電圧はバッファ回路に入力される。バッファ回路の出力電圧は、検波タイミング調整回路84により、パルス電流の立下りから所定のタイミングで、電子スイッチ85を短時間スイッチング(オン−オフ)することでサンプルホールド回路86へ供給される。この時、検出コイル22に発生した電圧はサンプルホールド回路86のコンデンサ電圧としてホールドされ、このサンプリング電圧は、増幅器により増幅されて出力される。
The output voltage of the detection coil 22 is input to the buffer circuit. The output voltage of the buffer circuit is supplied to the sample hold circuit 86 by the detection timing adjustment circuit 84 by switching the electronic switch 85 for a short time (on-off) at a predetermined timing from the fall of the pulse current. At this time, the voltage generated in the detection coil 22 is held as a capacitor voltage of the sample hold circuit 86, and this sampling voltage is amplified by an amplifier and output.

つぎに、4つの素子を有する本実施例の電子回路の機能を、図6を使って説明する。本回路は、パルス発振回路(パルス発信器)81は一つで、信号処理回路82は各素子の出力を同時に測定するために4つを備えている。4つのMI素子からの出力は、切替スイッチ881を使って順番にADコンバータ882でデジタルデータに変換された後、演算回路883に転送され、適当な演算処理される。そこで3次元の磁界ベクトルの強さに換算される。その後、スマートホンなどのシステムを制御している中央演算装置にデータ通信回路を介して転送される。Next, the function of the electronic circuit of this embodiment having four elements will be described with reference to FIG. This circuit is one pulse oscillation circuit (pulse generator) 81, a signal processing circuit 82 is provided with four to measure the output of each element at the same time. Outputs from the four MI elements are sequentially converted into digital data by the AD converter 882 using the changeover switch 881, and then transferred to the arithmetic circuit 883 for appropriate arithmetic processing. Therefore, it is converted into the strength of a three-dimensional magnetic field vector . Thereafter, the data is transferred via a data communication circuit to a central processing unit that controls a system such as a smart phone.

[実施例2]
MI素子2の配置を3次元磁界検出素子1(図1)から変更した3次元磁界検出素子12の平面図を図7に示した。なお既述の3次元磁界検出素子と同様の部材はには、便宜上、同じ符号を示して付す(以下、同様である)。3次元磁界検出素子12では、正方形の 基板上に、その各辺と45度をなす対角線上にMI素子2を配置した。このようにMI素子2を
配置すると、同サイズの基板に対して、MI素子の長さを長く取れる。つまり、感磁体(アモルファスワイヤ等)の長さや検出コイルの巻数を大きくでき、出力電圧の向上を図れる。
[Example 2]
  A plan view of a three-dimensional magnetic field detection element 12 in which the arrangement of the MI element 2 is changed from the three-dimensional magnetic field detection element 1 (FIG. 1) is shown in FIG. For the sake of convenience, the same members as those of the above-described three-dimensional magnetic field detection element are denoted by the same reference numerals (Less than,The same). In the three-dimensional magnetic field detection element 12, a square shape On boardIn addition, the MI element 2 is arranged on a diagonal line forming 45 degrees with each side. In this way, the MI element 2 is
When arranged, the length of the MI element can be increased with respect to the substrate of the same size. That is, the length of the magnetic sensitive body (amorphous wire or the like) and the number of turns of the detection coil can be increased, and the output voltage can be improved.

[実施例3]
実施例3は、実施例1で示した3次元磁界検出素子1を磁気検出ユニットとして、その4個を正方形形状に組合せた3次元磁界検出素子13である。その平面図を図8に示す。
素子サイズを1.4mm角、高さ0.3mmで、サイズ1.4mm角の集積回路チップ(図示せず。)と組合せた3次元磁界検出装置14としての高さは0.5mmである。装置の側の電極と集積回路チップ側の電極とは半田パッドで接合した。実施例2の素子の出力は、実施例1のそれの4倍となる。
[Example 3]
The third embodiment is a three-dimensional magnetic field detection element 13 in which the three-dimensional magnetic field detection element 1 shown in the first embodiment is used as a magnetic detection unit and four of them are combined in a square shape. The plan view is shown in FIG.
The element size is 1.4 mm square, the height is 0.3 mm, and the height as the three-dimensional magnetic field detection device 14 combined with the 1.4 mm square integrated circuit chip (not shown) is 0.5 mm. The electrode on the device side and the electrode on the integrated circuit chip side were joined with a solder pad. The output of the element of Example 2 is four times that of Example 1.

電子回路は、一つのパルス発振回路と4個の検波タイミング調整回路およびADコンバータ、演算回路、通信回路などのデジタル回路からなっている。16個の素子のアモルファスワイヤ21は電気的に接合され、一つのパルス発振回路から供給されるパルスによって同期して励磁される。検出コイルはX1軸素子、X2軸素子、Y1軸素子、Y2軸素子の4つ種類に分けて、4個のX1軸素子を直列に連結し、その出力をX1軸素子専用の検波回路にて検知する。同様に、X2軸素子、Y1軸素子、Y2軸素子についてもそれ専用の検波回路で検知して、それを順次ADコンバータを介してデジタル信号に変換し演算回路で所定の計算式に従って、X軸方向、Y軸方向およびZ軸方向の磁界の強さに変換している。The electronic circuit is composed of a digital circuit such as one pulse oscillation circuit, four detection timing adjustment circuits, an AD converter, an arithmetic circuit, and a communication circuit. The amorphous wires 21 of the 16 elements are electrically joined and excited in synchronization with a pulse supplied from one pulse oscillation circuit. Detection coils X1-axis elements, X2 axis element, Y1 axis elements, is divided into four types of Y2 axis element, four X1-axis elements connected in series, the output to the X1 axis element dedicated detection circuit To detect. Similarly, the X2-axis element, the Y1-axis element, and the Y2-axis element are also detected by a dedicated detection circuit, which is sequentially converted into a digital signal via an AD converter, and an arithmetic circuit according to a predetermined calculation formula, Direction , Y-axis direction, and Z-axis direction magnetic field strength.

[実施例4]
実施例4は、本発明の3次元磁界検出素子と集積回路チップ、加速度センサ素子、振動式ジャイロ素子、圧力センサ素子を一体接合したものである。各素子は、各素子を貫くス ルーホールと電極パッドを使って対応する電極と接合される。本発明装置は、このように薄くて小型の複合センサの製作を可能にするものである。
[Example 4]
In Example 4, the three-dimensional magnetic field detection element of the present invention and an integrated circuit chip, an acceleration sensor element, a vibration gyro element, and a pressure sensor element are integrally joined. Each element is bonded to the corresponding electrode with a scan Ruhoru and electrode pads through the respective elements. The device of the present invention enables the production of such a thin and small composite sensor.

本発明の3次元磁界検出素子は、電子コンパス、磁気ジャイロ等の3次元の地磁気測定を必要とする3次元方位計に必要なもので、特に本発明の3次元磁界検出装置は、携帯電話をはじめとする携帯端末等のように、載置する基板に垂直な方向(いわゆるZ軸方向)に小型化、薄型化が必要なものに好適である。  The three-dimensional magnetic field detection element of the present invention is necessary for a three-dimensional azimuth meter that requires three-dimensional geomagnetic measurement, such as an electronic compass and a magnetic gyroscope. In particular, the three-dimensional magnetic field detection device of the present invention is a mobile phone. It is suitable for a device that requires downsizing and thinning in a direction perpendicular to the substrate to be placed (so-called Z-axis direction), such as a portable terminal.

1:実施例1の3次元磁界検出素子
12:実施例2の3次元磁界検出素子
13:実施例3の3次元磁界検出素子
2:MI素子(2X1、2X2、2Y1、2Y2の4つの素子)
3:軟磁性体
31:アモルファスの一の端部で基板中心部、アモルファスワイヤの他の端部で基板外縁部
4:3次元磁界検出素子の高さ
5:MI素子絶縁保護用樹脂
6:クランク状の磁気回路
21:アモルファスワイヤ、22:検出コイル、23:ワイヤ用端子、24:電極パッド、25:コイル用端子、26:電極パッド
8:電子回路
81:パルス発信器、82:信号処理回路、83:バッファ回路、84:検波タイミング 調整回路、85:電子スイッチ、86:サンプルホールド回路、87:増幅器
88:デジタル回路
881:切替スイッチ、882:ADコンバータ、883:演算回路、884:データ通信回路
1: Three-dimensional magnetic field detection element of Example 1
12: Three-dimensional magnetic field detection element of Example 2
13: Three-dimensional magnetic field detection element of Example 3
2: MI element (four elements of 2X1, 2X2, 2Y1, 2Y2)
3: Soft magnetic material
31: AmorphousOneAt the edge of the substrate center, amorphous wireotherBoard edge at the edge
4: 3D magnetic field detectionelementHeight of
5: Resin for MI element insulation protection
6: Crank-shaped magnetic circuit
21: Amorphous wire, 22: Detection coil, 23:Wire terminal24: Electrode pad, 25:Coil terminal, 26: electrode pad
8: Electronic circuit
81: Pulse transmitter, 82: Signal processing circuit, 83: Buffer circuit, 84: Detection timing AdjustmentCircuit 85: Electronic switch 86: Sample hold circuit 87: Amplifier
88: Digital circuit
881: changeover switch, 882: AD converter, 883: arithmetic circuit, 884: data communication circuit
 

Claims (4)

基板の磁界検出素子配置面と平行方向の磁界を検出するタイプの磁界検出素子を使ってUsing a type of magnetic field detection element that detects a magnetic field parallel to the magnetic field detection element placement surface of the board ,
基板平面上に4つの前記磁界検出素子を、前記基板の原点を中心にして第1軸方向に二つTwo magnetic field detecting elements on the substrate plane are arranged in the first axis direction with the origin of the substrate as the center. 配置し、第1軸と交差する第2軸方向に二つ配置し、Two, arranged in the second axis direction intersecting the first axis,
さらに前記原点の下部の前記基板内と4つの前記磁界検出素子の前記原点と反対側の前Further, in the substrate below the origin and in front of the four magnetic field detecting elements on the opposite side of the origin. 記磁界検出素子の端部の上部に軟磁性体を配置することにより、By placing a soft magnetic material on the top of the end of the magnetic field detection element,
前記軟磁性体と前記磁界検出素子とからなる磁気回路を形成する磁界検出ユニットを備えA magnetic field detection unit for forming a magnetic circuit composed of the soft magnetic material and the magnetic field detection element; ることを特徴とする3次元磁界検出素子。A three-dimensional magnetic field detecting element.
請求項1に記載されている磁界検出ユニットを同一基板平面上に複数個配置することを特徴とする3次元磁界検出素子。A three-dimensional magnetic field detection element comprising a plurality of magnetic field detection units according to claim 1 arranged on the same substrate plane. 基板の磁界検出素子配置面の磁界を検出するタイプの磁界検出素子を使って、Using a magnetic field detection element of the type that detects the magnetic field on the magnetic field detection element placement surface of the board,
基板上の原点を中心にして、第1軸方向に一対の前記磁界検出素子を備え、第1軸方向とA pair of the magnetic field detection elements are provided in the first axial direction around the origin on the substrate, and the first axial direction 交差する第2軸方向に一対の前記磁界検出素子を備えてなり、A pair of the magnetic field detection elements in the intersecting second axis direction,
かつ、前記原点および前記磁界検出素子の前記原点と反対側の前記磁界検出素子の端部にAnd at the end of the magnetic field detection element on the opposite side of the origin and the origin of the magnetic field detection element. それぞれ軟磁性体を備えて、Each has a soft magnetic material,
前記磁界検出素子と前記磁界検出素子の両側の前記軟磁性体とにより形成される磁気回路Magnetic circuit formed by the magnetic field detection element and the soft magnetic material on both sides of the magnetic field detection element は、前記原点を中心に反対称的なクランク状であることを特徴とする3次元磁界検出素子Has a crank shape that is antisymmetric about the origin. .
請求項1から請求項3のいずれかに記載されている3次元磁界検出素子と集積回路チップとを接合していることを特徴とする3次元磁界検出措置。 A three-dimensional magnetic field detection measure comprising the integrated circuit chip and the three-dimensional magnetic field detection element according to any one of claims 1 to 3.
JP2013025648A 2013-02-13 2013-02-13 3D magnetic field detection element and 3D magnetic field detection device Active JP6021239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013025648A JP6021239B2 (en) 2013-02-13 2013-02-13 3D magnetic field detection element and 3D magnetic field detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013025648A JP6021239B2 (en) 2013-02-13 2013-02-13 3D magnetic field detection element and 3D magnetic field detection device

Publications (3)

Publication Number Publication Date
JP2014153309A JP2014153309A (en) 2014-08-25
JP2014153309A5 JP2014153309A5 (en) 2016-04-14
JP6021239B2 true JP6021239B2 (en) 2016-11-09

Family

ID=51575293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013025648A Active JP6021239B2 (en) 2013-02-13 2013-02-13 3D magnetic field detection element and 3D magnetic field detection device

Country Status (1)

Country Link
JP (1) JP6021239B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL267259A (en) * 2016-12-15 2019-07-31
JP2021056155A (en) * 2019-10-01 2021-04-08 ナノコイル株式会社 Twist stress sensor element and twist stress sensor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106461739B (en) * 2014-05-09 2019-06-07 爱知制钢株式会社 Magnetic detection device and its manufacturing method
JP6609947B2 (en) * 2015-03-18 2019-11-27 愛知製鋼株式会社 Magnetic detector
JP6021238B1 (en) * 2015-10-11 2016-11-09 マグネデザイン株式会社 Gradio sensor element and gradio sensor
US10890630B2 (en) * 2016-05-24 2021-01-12 Tdk Corporation Magnetic sensor
JP7262886B2 (en) 2017-07-21 2023-04-24 朝日インテック株式会社 Ultra-compact high-sensitivity magnetic sensor
JP6538943B2 (en) * 2017-08-31 2019-07-03 旭化成エレクトロニクス株式会社 Measuring device and measuring method
CN108469593A (en) * 2018-04-02 2018-08-31 南京麦科尼传感技术有限公司 A kind of comprehensive magnetic field gradient sensor of high-resolution orthogonal fluxgate based on amorphous wire orthogonal array
WO2020138170A1 (en) 2018-12-26 2020-07-02 旭化成エレクトロニクス株式会社 Magnetic field measuring device
US11497425B2 (en) 2019-03-08 2022-11-15 Asahi Kasei Microdevices Corporation Magnetic field measurement apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110456A1 (en) * 2009-03-26 2010-09-30 愛知製鋼株式会社 Magnetic detection device
JP5597206B2 (en) * 2009-12-02 2014-10-01 アルプス電気株式会社 Magnetic sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL267259A (en) * 2016-12-15 2019-07-31
EP3557271A4 (en) * 2016-12-15 2020-08-05 Asahi Intecc Co., Ltd. Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device
RU2737782C1 (en) * 2016-12-15 2020-12-02 Асахи Интекк Ко., Лтд. Element for detecting a three-dimensional magnetic field and a device for detecting a three-dimensional magnetic field
AU2017375137B2 (en) * 2016-12-15 2023-02-02 Asahi Intecc Co., Ltd. Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device
IL267259B2 (en) * 2016-12-15 2023-05-01 Asahi Intecc Co Ltd Three-dimensional magnetic field detection element and three-dimensional magnetic field detection device
JP2021056155A (en) * 2019-10-01 2021-04-08 ナノコイル株式会社 Twist stress sensor element and twist stress sensor

Also Published As

Publication number Publication date
JP2014153309A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
JP6021239B2 (en) 3D magnetic field detection element and 3D magnetic field detection device
JP2014153309A5 (en)
JP6222351B2 (en) Magnetic detection device and manufacturing method thereof
JP4626728B2 (en) Magnetic detector
JP6240994B1 (en) 3D magnetic field detection element and 3D magnetic field detection device
CN107850647B (en) Magnetic detection device
JP6800458B2 (en) 3D magnetic field detector
JP2005114489A (en) Magnetic azimuth detector
JP6800456B2 (en) 3D magnetic field detection element and 3D magnetic field detection device
JP6609947B2 (en) Magnetic detector
JP2016003866A (en) Gmi element for z-axis, and ultrathin three-dimensional gmi sensor
JP2019015550A (en) Three-dimensional magnetic field detection element
JPH04303707A (en) Electronic compass

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160210

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161001

R150 Certificate of patent or registration of utility model

Ref document number: 6021239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350