JP2001040470A - Copper target material for sputtering, and its manufacture - Google Patents

Copper target material for sputtering, and its manufacture

Info

Publication number
JP2001040470A
JP2001040470A JP11218100A JP21810099A JP2001040470A JP 2001040470 A JP2001040470 A JP 2001040470A JP 11218100 A JP11218100 A JP 11218100A JP 21810099 A JP21810099 A JP 21810099A JP 2001040470 A JP2001040470 A JP 2001040470A
Authority
JP
Japan
Prior art keywords
copper
thickness
sputtering
target material
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11218100A
Other languages
Japanese (ja)
Other versions
JP3997375B2 (en
Inventor
Makoto Oba
誠 大場
Shoji Kuma
彰二 隈
Takashi Ishida
隆 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP21810099A priority Critical patent/JP3997375B2/en
Publication of JP2001040470A publication Critical patent/JP2001040470A/en
Application granted granted Critical
Publication of JP3997375B2 publication Critical patent/JP3997375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a target material in which the direction of sputtering of copper atoms is regulated to the direction perpendicular to the surface, by constituting the target material so that it is composed of a copper material in which crystals with surface-oriented (110) plane comprise a specific volume percentage or more of the whole and the crystals are uniformly distributed from the surface toward the center. SOLUTION: Crystals with (110) plane comprise >=80 vol.% of the whole. In this method of manufacturing the copper target material for sputtering, it is preferable to apply cold rolling to a copper material while regulating the percentage of reduction in thickness at every pass to >10%, to work the copper material to a thickness <=15% of the thickness before cold rolling, to regulate the copper purity of the copper material, to >=99.9%, to form the copper material by applying hot rolling, after casting, to a stock as a starting material and further to apply heat treatment to the copper material before cold rolling. Because cold rolling is performed while regulating the the percentage of reduction in thickness to >10% at each pass, the orientation ratio of (110) plane from the surface can be regulated to >=80% and the distribution of the orientation ratio of (110) plane in a thickness direction can be uniformized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スパッタ用銅ター
ゲット材およびその製造方法に関し、特に、銅原子の飛
びの方向を表面に垂直にしたスパッタ用銅ターゲット材
とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper target material for sputtering and a method for manufacturing the same, and more particularly to a copper target material for sputtering in which the direction of the jump of copper atoms is perpendicular to the surface and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年におけるウルトララージ配線は、高
速化のためにアルミニウムから銅へと変わりつつあり、
一方、その配線方式としては、ダマシン法と呼ばれる埋
め込みタイプの配線が増える傾向にある。
2. Description of the Related Art In recent years, ultra-large wiring is changing from aluminum to copper in order to increase the speed.
On the other hand, as the wiring method, there is a tendency to increase an embedded wiring called a damascene method.

【0003】ダマシン法に基づく配線においては、溝の
内部への銅膜の形成が必要となるため、これには、スパ
ッタリング法が採用されるのが普通である。しかし、タ
ーゲット材から放出される銅原子によって膜を形成し、
従って、細密成膜が可能なスパッタリング法ではある
が、アスペクト比が大きな溝を対象とするとき、均一な
膜厚の形成が難しくなる問題を有している。
In the wiring based on the damascene method, it is necessary to form a copper film inside the trench. Therefore, a sputtering method is usually employed for this. However, a film is formed by the copper atoms released from the target material,
Therefore, although the sputtering method enables fine film formation, it has a problem that it is difficult to form a uniform film thickness when a groove having a large aspect ratio is targeted.

【0004】溝幅に対して深さが深くなり、アスペクト
比が大きくなるのに伴って、溝の深奥部への膜の形成は
難しくなる。通常、これに対しては、スパッタ量を多く
することで対処しているが、スパッタ量を多くすると、
溝の縁部の膜厚が大きくなるため、次工程の電気メッキ
工程において溝の閉塞を招き、配線内にボイドを残すよ
うになる。
[0004] As the depth becomes deeper with respect to the groove width and the aspect ratio becomes larger, it becomes more difficult to form a film in the deep part of the groove. Usually, this is dealt with by increasing the amount of spatter, but when the amount of spatter is increased,
Since the film thickness at the edge of the groove is increased, the groove is closed in the subsequent electroplating step, and a void is left in the wiring.

【0005】このため、以上の問題の解決策として、銅
膜の形成速度、銅膜の形成対象である基板の温度、高周
波出力、同周波数等の調整、コリメータの挿入、あるい
はプラズマの形状調整などスパッタリング作業について
の様々な検討が行われており、一方、銅原子を放出する
ターゲット材においても、成膜の均一化を目的とした種
々の検討が行われている。
[0005] Therefore, as a solution to the above problems, adjustment of the copper film formation speed, the temperature of the substrate on which the copper film is formed, high-frequency output, the same frequency, etc., insertion of a collimator, or adjustment of the shape of plasma, etc. Various studies have been made on the sputtering operation. On the other hand, various studies have been made on a target material that emits copper atoms with the aim of making the film uniform.

【0006】ターゲット材において重要なことは、結晶
が(110)面を表面に向けるような組織を多く有して
いることである。ターゲット材の表面の面指数が(11
1)のとき、銅原子の飛び出し方向には角度が付くのに
対して、面指数が(110)のときには、銅原子は、タ
ーゲット材の表面から垂直方向に飛び出すようになる。
従って、アスペクト比の大きな溝の深奥部に均一に銅膜
を形成するためには、(110)面を多く持つターゲッ
ト材を使用することが有利となる。
What is important in the target material is that the crystal has many structures such that the (110) plane faces the surface. The surface index of the surface of the target material is (11
In the case of 1), the direction in which the copper atoms pop out has an angle, whereas when the plane index is (110), the copper atoms fly out in the vertical direction from the surface of the target material.
Therefore, it is advantageous to use a target material having a large number of (110) planes in order to uniformly form a copper film in a deep portion of a groove having a large aspect ratio.

【0007】このため、(110)面を冷間圧延加工に
よって生成させる試みが行われている。銅箔のような、
厚さが0.5mm以下の薄肉材においては、冷間圧延加
工が繰り返し施されることで所定の厚さに仕上げられる
結果、その組織の中に(110)面を有することが知ら
れており、この銅箔における(110)面の生成を銅タ
ーゲット材に応用することが検討されている。
For this reason, attempts have been made to generate the (110) plane by cold rolling. Like copper foil,
It is known that a thin material having a thickness of 0.5 mm or less can be finished to a predetermined thickness by repeatedly performing cold rolling to have a (110) plane in its structure. Application of the generation of the (110) plane in the copper foil to a copper target material has been studied.

【0008】[0008]

【発明が解決しようとする課題】しかし、従来の冷間圧
延を応用したスパッタ用銅ターゲット材によると、厚さ
に限界があり、これをターゲット材として必要な3mm
以上の銅材に適用して(110)面を生成させることは
難しく、実際に適用した結果では、(110)面の生成
度合は、圧延材の厚さ方向において局部的に発生する程
度であり、厚さ方向に均一かつ高配向率のもとに生成さ
せることは難しい。このため、銅原子の飛びの方向は、
表面に対して傾斜する。
However, according to the conventional copper target material for sputtering to which cold rolling is applied, the thickness is limited, and the thickness is required to be 3 mm.
It is difficult to generate the (110) plane by applying to the above copper material, and as a result of actual application, the degree of generation of the (110) plane is such that it is locally generated in the thickness direction of the rolled material. However, it is difficult to produce the film with uniform orientation in the thickness direction and high orientation ratio. For this reason, the direction of the jump of the copper atom is
Tilt to the surface.

【0009】従って、本発明の目的は、銅原子の飛びの
方向を表面に垂直にしたスパッタ用銅ターゲット材およ
びその製造方法を提供することにある。
Accordingly, an object of the present invention is to provide a copper target material for sputtering in which the direction of the jump of copper atoms is perpendicular to the surface, and a method of manufacturing the same.

【0010】[0010]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、表面に向いた(110)面を有する結晶
が体積において全体の80%以上の割合を有し、前記結
晶が表面から中心に向かって均一に分布している銅材に
よって構成されることを特徴とするスパッタ用銅ターゲ
ット材を提供するものである。
According to the present invention, in order to achieve the above object, a crystal having a (110) plane facing the surface has a ratio of at least 80% of the whole by volume, and the crystal has a surface The present invention provides a copper target material for sputtering characterized by being formed of a copper material uniformly distributed from the center toward the center.

【0011】また、本発明は、上記の目的を達成するた
め、冷間圧延加工を繰り返し施された銅材より構成され
るスパッタ用銅ターゲット材の製造方法において、毎回
の厚さ減少率が10%を超えるようにして前記銅材に前
記冷間圧延加工を施すことを特徴とするスパッタ用銅タ
ーゲット材の製造方法を提供するものである。
Further, in order to achieve the above object, the present invention provides a method for manufacturing a copper target material for sputtering comprising a copper material repeatedly subjected to cold rolling, wherein the rate of thickness reduction is 10%. %, Wherein the cold rolling process is performed on the copper material so as to exceed 0.1%.

【0012】厚さ減少率10%以上は、本発明によって
はじめて見いだされた冷間圧延加工による銅ターゲット
材の製造条件である。元の素材から所定の厚さの銅ター
ゲット材とするまでの毎回の冷間圧延をこの条件のもと
で実施することが、(110)面の高密度生成を可能に
するものであり、この結果、80%以上という高い(1
10)面の体積割合と、それによる銅原子の垂直方向へ
の飛び、およびそれによる均一成膜が可能となる。
The thickness reduction rate of 10% or more is a condition for producing a copper target material by cold rolling, which was first found by the present invention. Performing cold rolling each time from the original material to a copper target material having a predetermined thickness under these conditions enables high-density generation of the (110) plane. As a result, as high as 80% or more (1
10) The volume ratio of the plane, the resulting vertical jump of copper atoms, and the resulting uniform film formation.

【0013】本発明の効果をより高めるためには、得ら
れるターゲット材の厚さが、冷間圧延加工前の厚さの1
5%以下となるまで圧延することが望ましく、圧延加工
度がこれよりも小さくなると、(110)面を表面に向
けて持つ結晶の割合が小さくなり、良好な特性が得にく
くなる。
[0013] In order to further enhance the effect of the present invention, the thickness of the target material to be obtained must be one of the thickness before cold rolling.
Rolling is desirably performed to 5% or less, and when the rolling degree is smaller than this, the ratio of crystals having the (110) plane toward the surface decreases, and it becomes difficult to obtain good characteristics.

【0014】銅材としては、99.9%以上の純度を有
していることが好ましく、また、その元となる素材とし
ては、鋳造の後に熱間圧延加工を施されることによって
鋳造組織を破壊されていることが好ましく、さらには、
冷間圧延加工を施される前に焼鈍されていることが好ま
しい。
It is preferable that the copper material has a purity of 99.9% or more, and the base material thereof has a cast structure by being subjected to hot rolling after casting. It is preferably destroyed, and furthermore,
Preferably, annealing is performed before cold rolling.

【0015】[0015]

【発明の実施の形態】次に、本発明によるスパッタ用銅
ターゲット材およびその製造方法の実施の形態を説明す
る。
Next, an embodiment of a copper target material for sputtering and a method for manufacturing the same according to the present invention will be described.

【実施例1】厚さ150mm、銅純度99.95%の鋳
造板型素材に熱間圧延加工を施すことによって板厚55
mmまで圧延し、これにより鋳造組織を破壊した銅の素
材を準備した。次に、この素材に400℃×1時間の熱
処理を行った後、以下のパススケジュールによる冷間圧
延加工を施すことによって所定の銅材を製造した。な
お、以下のパススケジュールにおていは、矢印の次に圧
延後の厚さを記し、( )内にそのときの厚さ減少率を
記す(以下同じ)。
EXAMPLE 1 A hot-rolling process was performed on a cast plate material having a thickness of 150 mm and a copper purity of 99.95% to obtain a plate thickness of 55 mm.
mm, to thereby prepare a copper material whose cast structure was destroyed. Next, after subjecting this material to heat treatment at 400 ° C. × 1 hour, a predetermined copper material was produced by performing cold rolling according to the following pass schedule. In the following pass schedule, the thickness after rolling is described next to the arrow, and the thickness reduction rate at that time is described in parentheses (the same applies hereinafter).

【0016】55mm→44.5mm(19.1%)→
35.7mm(19.8%)→28.7mm(19.6
%)→23.2mm(19.2%)→18.8mm(1
9.0%)→15.1mm(19.7%)→12.2m
m(19.2%)→9.9mm(18.9%)→8.0
mm(19.2%)。加工前の厚さに対する加工後の厚
さ比率:14.5%。
55 mm → 44.5 mm (19.1%) →
35.7 mm (19.8%) → 28.7 mm (19.6%)
%) → 23.2 mm (19.2%) → 18.8 mm (1
9.0%) → 15.1mm (19.7%) → 12.2m
m (19.2%) → 9.9 mm (18.9%) → 8.0
mm (19.2%). The ratio of the thickness before processing to the thickness before processing: 14.5%.

【0017】この圧延銅材から8枚のサンプルを切り出
し、エッチングによって厚さ方向に0.5mmずつずら
した位置で1mm厚さの板を製作した後、これを対象に
X線回析を行ったところ、表面から厚さの中心に向け
て、89%、93%、94%、93%、93%、94
%、94%および95%と、高くかつ均一な(110)
面の配向率を示した。
Eight samples were cut out from the rolled copper material, and a plate having a thickness of 1 mm was produced at a position shifted by 0.5 mm in the thickness direction by etching, and then subjected to X-ray diffraction. However, from the surface toward the center of the thickness, 89%, 93%, 94%, 93%, 93%, 94%
%, 94% and 95%, high and uniform (110)
The orientation ratio of the plane is shown.

【0018】[0018]

【参考例】実施例1の冷間圧延加工において、厚さが1
2.2mmの段階の銅材からサンプルを採取し、同じ手
法に基づいてX線回析を行ったところ、表面からの(1
10)面の配向率は、68%、73%、72%、74
%、72%、70%、70%、71%、73%、74
%、75%および79%と全般に低い結果となった。こ
の例における加工前に対する加工後の厚さの比率は、2
2%であり、圧延不足が結果となって現れている。圧延
加工は、加工前の厚さの15%以下まで行うことが望ま
しい。
[Reference Example] In the cold rolling of Example 1, the thickness was 1
A sample was taken from a copper material at a stage of 2.2 mm, and subjected to X-ray diffraction based on the same method.
10) The orientation ratio of the plane is 68%, 73%, 72%, 74%.
%, 72%, 70%, 70%, 71%, 73%, 74
%, 75% and 79%. In this example, the ratio of the thickness after processing to the thickness before processing is 2
2%, which indicates that insufficient rolling has resulted. Rolling is desirably performed to 15% or less of the thickness before processing.

【0019】[0019]

【実施例2】実施例1と同じ銅の素材を使用して、以下
のパススケジュールによる冷間圧延加工を実施した。5
5mm→49.0mm(10.9%)→43.7mm
(10.8%)→39mm(10.8%)→35mm
(10.3%)→31mm(11.4%)→27.5m
m(11.3%)→24.5mm(10.9%)→22
mm(10.2%)→19.7mm(10.5%)→1
7.5mm(11,2%)→15.7mm(10.3
%)→14mm(10.8%)→12.5mm(10.
7%)→11.2mm(10.4%)→10mm(1
0.7%)→9mm(10.0%)→8mm(11.1
%)。加工後/加工前の厚さ比率:14.5%。
Example 2 Using the same copper material as in Example 1, cold rolling was performed according to the following pass schedule. 5
5mm → 49.0mm (10.9%) → 43.7mm
(10.8%) → 39mm (10.8%) → 35mm
(10.3%) → 31mm (11.4%) → 27.5m
m (11.3%) → 24.5mm (10.9%) → 22
mm (10.2%) → 19.7mm (10.5%) → 1
7.5 mm (11,2%) → 15.7 mm (10.3%
%) → 14 mm (10.8%) → 12.5 mm (10.
7%) → 11.2 mm (10.4%) → 10 mm (1
0.7%) → 9mm (10.0%) → 8mm (11.1)
%). Thickness ratio after processing / before processing: 14.5%.

【0020】得られた銅材から実施例1と同様にしてサ
ンプルを作製し、X線回析を行った結果、表面からの
(110)面の配向率は、80%、87%、86%、8
5%、87%、89%、90%および91%を示した。
A sample was prepared from the obtained copper material in the same manner as in Example 1, and X-ray diffraction was performed. As a result, the orientation ratio of the (110) plane from the surface was 80%, 87%, 86%. , 8
5%, 87%, 89%, 90% and 91%.

【0021】実施例1に比べると全体的に低く、特に、
表層部での低下が大きかったが、表層部は、圧延後に機
械加工が施されるので問題はなく、また、この程度の配
向性を有していればターゲット材として充分であり、ス
パッタ条件に影響を与えるようなことはない。
As a whole, it is lower than that of the first embodiment.
Although there was a large drop in the surface layer, there was no problem because the surface layer was machined after rolling, and if it had this degree of orientation, it was sufficient as a target material, and There is no impact.

【0022】[0022]

【比較例1】実施例1と同じ銅の素材を使用して、以下
のパススケジュールによる冷間圧延加工を実施した。5
5mm→50.6mm(8.0%)→46.6mm
(7.9%)→42.9mm(7.9%)→39.5m
m(7.9%)→36.3mm(8.1%)→33.4
mm(8.0%)→30.7mm(8.1%)→28.
1mm(8.5%)→25.9mm(7.8%)→2
3.8mm(8.1%)→21.9mm(8.0%)→
20.1mm(8.2%)→18.5mm(8.0%)
→17mm(8.1%)→15.6mm(8.2%)→
14.4mm(7.7%)→13.2mm(8.3%)
→12.1mm(8.3%)→11.1mm(8.3
%)→10.2mm(8.1%)→9.4mm(7.8
%)→8.6mm(8.5%)→8.0mm(7.0
%)。加工後/加工前の厚さ比率:14.5%。
Comparative Example 1 Using the same copper material as in Example 1, cold rolling was performed according to the following pass schedule. 5
5mm → 50.6mm (8.0%) → 46.6mm
(7.9%) → 42.9mm (7.9%) → 39.5m
m (7.9%) → 36.3 mm (8.1%) → 33.4
mm (8.0%) → 30.7 mm (8.1%) → 28.
1mm (8.5%) → 25.9mm (7.8%) → 2
3.8mm (8.1%) → 21.9mm (8.0%) →
20.1mm (8.2%) → 18.5mm (8.0%)
→ 17mm (8.1%) → 15.6mm (8.2%) →
14.4mm (7.7%) → 13.2mm (8.3%)
→ 12.1 mm (8.3%) → 11.1 mm (8.3%)
%) → 10.2 mm (8.1%) → 9.4 mm (7.8
%) → 8.6 mm (8.5%) → 8.0 mm (7.0
%). Thickness ratio after processing / before processing: 14.5%.

【0023】得られた銅材から実施例1と同様にしてサ
ンプルを作製し、X線回析を実施したところ、表面から
の(110)面の配向率は、40%、53%、50%、
43%、40%、44%、49%および54%であり、
配向性が低いうえに厚さ方向に不均一な配向分布を示し
た。
A sample was prepared from the obtained copper material in the same manner as in Example 1, and X-ray diffraction was performed. The orientation ratio of the (110) plane from the surface was 40%, 53%, and 50%. ,
43%, 40%, 44%, 49% and 54%,
The orientation was low and the orientation distribution was uneven in the thickness direction.

【0024】[0024]

【比較例2】実施例1と同じ銅の素材を使用して、以下
のパススケジュールによる冷間圧延加工を実施した。5
5mm→50.6mm(8.0%)→46.6mm
(7.9%)→42.9mm(7.9%)→39.5m
m(7.9%)→36.3mm(8.1%)→33.4
mm(8.0%)→30.7mm(8.1%)→28.
2mm(8.1%)→23.2mm(17.7%)→1
8.8mm(19.0%)→15.1mm(19.7
%)→12.2mm(19.2%)→9.9mm(1
8.9%)→8.0m(19.2%)。加工後/加工前
の厚さ比率:14.5%。
Comparative Example 2 Using the same copper material as in Example 1, cold rolling was performed according to the following pass schedule. 5
5mm → 50.6mm (8.0%) → 46.6mm
(7.9%) → 42.9mm (7.9%) → 39.5m
m (7.9%) → 36.3 mm (8.1%) → 33.4
mm (8.0%) → 30.7 mm (8.1%) → 28.
2mm (8.1%) → 23.2mm (17.7%) → 1
8.8 mm (19.0%) → 15.1 mm (19.7%)
%) → 12.2 mm (19.2%) → 9.9 mm (1
8.9%) → 8.0m (19.2%). Thickness ratio after processing / before processing: 14.5%.

【0025】厚さ28.2mmまでを10%未満の厚さ
減少率で圧延加工し、それ以降を10%を超す厚さ減少
率のもとに圧延加工したもので、これより製作された実
施例1と同様のサンプルを対象にX線回析を行ったとこ
ろ、表面からの(110)面の配向率は、69%、81
%、80%、71%、62%、65%、73%および8
5%であった。厚さ方向のバラツキが大きく、好ましく
なかった。
Rolled up to a thickness of 28.2 mm with a thickness reduction rate of less than 10%, and thereafter rolled under a thickness reduction rate of more than 10%. When X-ray diffraction was performed on the same sample as in Example 1, the orientation ratio of the (110) plane from the surface was 69%, 81%.
%, 80%, 71%, 62%, 65%, 73% and 8
5%. The variation in the thickness direction was large, which was not preferable.

【0026】[0026]

【比較例3】実施例1と同じ銅の素材を対象にして、以
下のパススケジュールに基づく冷間圧延加工を実施し
た。55mm→44.5mm(19.1%)→35.7
mm(19.8%)→28.7mm(19.6%)→2
3.2mm(19.2%)→21.5mm(7.3%)
→20.0mm(7.0%)→18.5mm(7.5
%)→17.0mm(8.1%)→15.6mm(8.
2%)→14.4mm(7.7%)→13.2mm
(8.3%)→12.1mm(8.3%)→11.1m
m(8.3%)→10.2mm(8.1%)→9.4m
m(7.8%)→8.6mm(8.5%)→8.0mm
(7.0%)。加工後/加工前の厚さ比率:14.5
%。
Comparative Example 3 The same copper material as in Example 1 was subjected to cold rolling based on the following pass schedule. 55 mm → 44.5 mm (19.1%) → 35.7
mm (19.8%) → 28.7mm (19.6%) → 2
3.2mm (19.2%) → 21.5mm (7.3%)
→ 20.0 mm (7.0%) → 18.5 mm (7.5
%) → 17.0 mm (8.1%) → 15.6 mm (8.
2%) → 14.4 mm (7.7%) → 13.2 mm
(8.3%) → 12.1mm (8.3%) → 11.1m
m (8.3%) → 10.2mm (8.1%) → 9.4m
m (7.8%) → 8.6mm (8.5%) → 8.0mm
(7.0%). Thickness ratio after processing / before processing: 14.5
%.

【0027】23.2mmまでの厚さ減少率を約20%
に設定し、それ以降を10%未満に設定して圧延加工を
行ったもので、X線回析の結果は、表面より71%、8
3%、81%、78%、72%、80%、85%および
87%の(110)面の配向率を示し、厚さ方向のバラ
ツキが大きかった。
The thickness reduction rate up to 23.2 mm is about 20%.
, And after that, rolling was performed with less than 10%, and the result of X-ray diffraction was 71%, 8% from the surface.
The orientation ratio of the (110) plane was 3%, 81%, 78%, 72%, 80%, 85% and 87%, and the dispersion in the thickness direction was large.

【0028】[0028]

【スパッタリングの実施結果】Siウエハの表面にCV
D法により4μm厚さのSiO2 膜を形成した後、この
SiO2 膜にフォトリソグラフィを施すことによって1
μm径の穴をあけ、これにより膜形成用材料を準備する
一方、実施例1および比較例1で圧延加工された銅材か
ら、厚さ6mm、直径200mmの円盤を切り出し、こ
れらを洗浄することによってスパッタ用銅ターゲット材
を準備した。
[Results of sputtering] CV on the surface of Si wafer
After forming the SiO 2 film of 4μm thickness by Process D, 1 by applying photolithography to the SiO 2 film
Drilling a hole having a diameter of μm, thereby preparing a material for film formation, and cutting out a disk having a thickness of 6 mm and a diameter of 200 mm from the copper material rolled in Example 1 and Comparative Example 1, and cleaning these. Thus, a copper target material for sputtering was prepared.

【0029】これらの銅ターゲット材を使用して同じ条
件でSiO2 膜へのスパッタリングを行ったところ、実
施例1に基づくターゲット材を使用したものが、穴の全
体に均一な銅膜が形成されていたのに対し、比較例2に
基づくターゲット材を使用したものは、穴の底部への銅
膜の形成がなく、両者の間には明確な差が認められた。
実施例2および他の比較例が実施例1および比較例1と
同様の結果となることは、それぞれの(110)面の配
向率からして明らかである。
When sputtering was performed on the SiO 2 film under the same conditions by using these copper target materials, the one using the target material according to Example 1 formed a uniform copper film over the entire hole. On the other hand, when the target material based on Comparative Example 2 was used, no copper film was formed on the bottom of the hole, and a clear difference was observed between the two.
It is clear from Example 2 and other comparative examples that the same results as in Example 1 and Comparative Example 1 were obtained from the orientation ratios of the respective (110) planes.

【0030】[0030]

【発明の効果】以上説明したように、本発明によるスパ
ッタ用銅ターゲット材およびその製造方法によれば、圧
延による厚さ減少率を毎回10%を超えるようにして冷
間圧延加工を行うため、表面からの(110)面の配向
率を80%以上にすることができるとともに、厚さ方向
における(110)面の配向率の分布を均一化すること
ができる。従って、銅原子の飛びの方向を表面に対して
垂直にしたスパッタ用銅ターゲット材を提供することが
できる。加工後の銅材の厚さを加工前の15%以下とす
るとき、この効果はより高まることになる。
As described above, according to the copper target material for sputtering and the method of manufacturing the same according to the present invention, cold rolling is performed so that the thickness reduction rate by rolling exceeds 10% each time. The orientation ratio of the (110) plane from the surface can be 80% or more, and the distribution of the orientation ratio of the (110) plane in the thickness direction can be made uniform. Accordingly, it is possible to provide a copper target material for sputtering in which the direction of flight of copper atoms is perpendicular to the surface. This effect is further enhanced when the thickness of the copper material after processing is set to 15% or less of that before processing.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 683 C22F 1/00 683 685 685Z (72)発明者 石田 隆 茨城県土浦市木田余町3550番地 日立伸材 株式会社内 Fターム(参考) 4K029 CA05 DC03 DC07 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 683 C22F 1/00 683 685 685Z (72) Inventor Takashi Ishida 3550 Kimachi Yomachi, Tsuchiura City, Ibaraki Prefecture Address F-term (reference) 4K029 CA05 DC03 DC07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】表面に向いた(110)面を有する結晶が
体積において全体の80%以上の割合を有し、 前記結晶が表面から中心に向かって均一に分布している
銅材によって構成されることを特徴とするスパッタ用銅
ターゲット材。
1. A crystal having a (110) plane facing the surface has a proportion of 80% or more of the whole by volume, and the crystal is made of a copper material uniformly distributed from the surface toward the center. A copper target material for sputtering.
【請求項2】冷間圧延加工を繰り返し施された銅材より
構成されるスパッタ用銅ターゲット材の製造方法におい
て、 毎回の厚さ減少率が10%を超えるようにして前記銅材
に前記冷間圧延加工を施すことを特徴とするスパッタ用
銅ターゲット材の製造方法。
2. A method of manufacturing a copper target material for sputtering, comprising a copper material repeatedly subjected to cold rolling, wherein the cold reduction is performed on the copper material such that the thickness reduction rate exceeds 10% each time. A method for producing a copper target material for sputtering, comprising performing cold rolling.
【請求項3】前記銅材は、前記冷間圧延加工が施される
前の厚さの15%以下の厚さに加工されることを特徴と
する請求項2項記載のスパッタ用銅ターゲット材の製造
方法。
3. A copper target material for sputtering according to claim 2, wherein said copper material is processed to a thickness of 15% or less of a thickness before said cold rolling is performed. Manufacturing method.
【請求項4】前記銅材は、99.9%以上の銅純度を有
することを特徴とする請求項2項記載のスパッタ用銅タ
ーゲット材の製造方法。
4. The method for producing a copper target material for sputtering according to claim 2, wherein said copper material has a copper purity of 99.9% or more.
【請求項5】前記銅材は、その元となる素材が、鋳造後
に熱間圧延加工を施されることを特徴とする請求項2項
記載のスパッタ用銅ターゲット材の製造方法。
5. The method for producing a copper target material for sputtering according to claim 2, wherein said copper material is subjected to hot rolling after casting.
【請求項6】前記銅材は、前記冷間圧延加工の前に熱処
理を施されることを特徴とする請求項2項記載のスパッ
タ用銅ターゲット材の製造方法。
6. The method according to claim 2, wherein the copper material is subjected to a heat treatment before the cold rolling.
JP21810099A 1999-07-30 1999-07-30 Sputtering copper target material and manufacturing method thereof Expired - Fee Related JP3997375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21810099A JP3997375B2 (en) 1999-07-30 1999-07-30 Sputtering copper target material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21810099A JP3997375B2 (en) 1999-07-30 1999-07-30 Sputtering copper target material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001040470A true JP2001040470A (en) 2001-02-13
JP3997375B2 JP3997375B2 (en) 2007-10-24

Family

ID=16714643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21810099A Expired - Fee Related JP3997375B2 (en) 1999-07-30 1999-07-30 Sputtering copper target material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3997375B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006076333A2 (en) * 2005-01-14 2006-07-20 Cabot Corporation High integrity sputtering target material and method for producing bulk quantities of same
WO2007103309A2 (en) * 2006-03-07 2007-09-13 Cabot Corporation Methods of producing deformed metal articles
WO2008041535A1 (en) 2006-10-03 2008-04-10 Nippon Mining & Metals Co., Ltd. Cu-Mn ALLOY SPUTTERING TARGET AND SEMICONDUCTOR WIRING
JP2009108412A (en) * 2008-11-10 2009-05-21 Nikko Kinzoku Kk Target
JP2014077182A (en) * 2012-10-12 2014-05-01 Sh Copper Products Corp Rolled copper foil
CN104694888A (en) * 2013-12-09 2015-06-10 有研亿金新材料股份有限公司 Preparation method of high-purity copper target

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006076333A2 (en) * 2005-01-14 2006-07-20 Cabot Corporation High integrity sputtering target material and method for producing bulk quantities of same
WO2006076333A3 (en) * 2005-01-14 2006-09-28 Cabot Corp High integrity sputtering target material and method for producing bulk quantities of same
AT506547A5 (en) * 2006-03-07 2012-12-15 Cabot Corp METHOD FOR PRODUCING DEFORMED METAL OBJECTS
WO2007103309A3 (en) * 2006-03-07 2007-11-22 Cabot Corp Methods of producing deformed metal articles
WO2007103309A2 (en) * 2006-03-07 2007-09-13 Cabot Corporation Methods of producing deformed metal articles
AT506547B1 (en) * 2006-03-07 2013-02-15 Cabot Corp METHOD FOR PRODUCING DEFORMED METAL OBJECTS
US8382920B2 (en) 2006-03-07 2013-02-26 Global Advanced Metals, Usa, Inc. Methods of producing deformed metal articles
US8974611B2 (en) 2006-03-07 2015-03-10 Global Advanced Metals, Usa, Inc. Methods of producing deformed metal articles
CZ308045B6 (en) * 2006-03-07 2019-11-20 Cabot Corp A method of manufacturing a metal product and a metal plate produced by this method
WO2008041535A1 (en) 2006-10-03 2008-04-10 Nippon Mining & Metals Co., Ltd. Cu-Mn ALLOY SPUTTERING TARGET AND SEMICONDUCTOR WIRING
JP2009108412A (en) * 2008-11-10 2009-05-21 Nikko Kinzoku Kk Target
JP2014077182A (en) * 2012-10-12 2014-05-01 Sh Copper Products Corp Rolled copper foil
CN104694888A (en) * 2013-12-09 2015-06-10 有研亿金新材料股份有限公司 Preparation method of high-purity copper target
CN104694888B (en) * 2013-12-09 2017-05-10 有研亿金新材料股份有限公司 Preparation method of high-purity copper target

Also Published As

Publication number Publication date
JP3997375B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP4833515B2 (en) Powder metallurgy tantalum sputtering target with textured grains
JP3975414B2 (en) Sputtering copper target and method for producing the same
JP3403918B2 (en) High purity copper sputtering target and thin film
US5798005A (en) Titanium target for sputtering and production method for same
JPS6299461A (en) Thin film forming device
TW201250905A (en) Method and system for post-etch treatment of patterned substrate features
JP2002500963A (en) Diamond cutting tools
WO2013141231A1 (en) Tantalum sputtering target, method for manufacturing same, and barrier film for semiconductor wiring formed by using target
US6045634A (en) High purity titanium sputtering target and method of making
JP2001040470A (en) Copper target material for sputtering, and its manufacture
JP2007126748A (en) METHOD FOR PRODUCING HIGH-PURITY Ta MATERIAL FOR SEMICONDUCTOR DEVICE
KR100654520B1 (en) Copper alloy for semiconductor interconnections, fabrication method thereof, semiconductor device having copper alloy interconnections fabricated by the method, and sputtering target for fabricating copper alloy interconnections for semiconductors
JPH0230697A (en) Formation of vapor-phase synthesized diamond crystal and base material having diamond crystal
JPH06128737A (en) Sputtering target
JPS5886717A (en) Forming of single crystal silicon film
JP2007113117A (en) Method for manufacturing sputtering target
US4049521A (en) Cathode sputtering method for the manufacture of etched structures
JP2003166053A (en) Sputtering target
JP2945034B2 (en) Dry etching method
JPH05109668A (en) Manufacture of semiconductor device
JPH0747816B2 (en) Method for forming polycrystalline thin film
US20040084407A1 (en) Method for surface preparation to enable uniform etching of polycrystalline materials
JPH0533138A (en) Production of oxide film
JPS60113445A (en) Manufacture of semiconductor element
JP2000038659A (en) Sputtering target, wiring film and electronic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040813

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

LAPS Cancellation because of no payment of annual fees