JP2001021242A - 冷凍機 - Google Patents

冷凍機

Info

Publication number
JP2001021242A
JP2001021242A JP11191552A JP19155299A JP2001021242A JP 2001021242 A JP2001021242 A JP 2001021242A JP 11191552 A JP11191552 A JP 11191552A JP 19155299 A JP19155299 A JP 19155299A JP 2001021242 A JP2001021242 A JP 2001021242A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
bypass
temperature
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11191552A
Other languages
English (en)
Inventor
Hideya Hirano
秀弥 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11191552A priority Critical patent/JP2001021242A/ja
Publication of JP2001021242A publication Critical patent/JP2001021242A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】 【課題】 冷媒の有無を確認して運転動作を制御する信
頼性の高い冷凍機を得る。 【解決手段】 圧縮機、凝縮器、絞り機構、及び蒸発器
が順次配管で接続されて成る冷凍機において、前記絞り
機構と並列に設けられ、前記凝縮器の出口側冷媒を前記
冷凍機の低圧回路へバイパスさせるバイパス回路と、こ
のバイパス回路の途中に設けられ、前記冷媒を絞るバイ
パス絞り機構と、このバイパス絞り機構後の前記バイパ
ス回路の出口側部位に設けられ、当該出口側部位の冷媒
の温度を検出する冷媒温度検出手段と、この冷媒温度検
出手段の検出結果に基づいて、当該検出結果が所定温度
以上の時は、前記圧縮機の運転を停止させる制御手段
と、を備え、前記バイパス絞り機構から前記出口側部位
までの冷媒が、外気等の熱源で温められるようにしたこ
とを特徴とする冷凍機。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】この発明は、高圧側の冷媒液
に応じて圧縮機の動作を制御する冷凍機に関するもので
ある。
【0002】
【従来の技術】図10は従来の冷凍機の構成図であり、
この図において、1は圧縮機、2は水冷式シェル&チュ
ーブ形凝縮器、3はこの凝縮器2からの冷媒を流した
り、流さなかったりする開閉弁、4は膨張弁、5は蒸発
器であり、これらのものは冷媒配管で順次接続されてい
る。また、凝縮器2の出口部(底部)と圧縮機1の冷媒
吸入側部とは冷却バイパス回路8によって結ばれ、この
冷却バイパス回路には、凝縮器2から圧縮機1へ流すバ
イパス冷媒量を調整する温度膨張弁7と、この温度膨張
弁7へ凝縮器2の液冷媒の一部を流したり、流さなかっ
たりするバイパス開閉弁6が設けられている。
【0003】なお、この冷却バイパス回路8に設けられ
た温度膨張弁7の感温筒7aは圧縮機1の吐出配管に取
り付けられ、当該吐出配管温度によって膨張弁7の開度
を調整して、冷媒量を調整する。また、9は水冷式シェ
ル・チューブ形凝縮器2の上部と底部とに配管を介して
接続され、凝縮器2内の冷媒液面を検知するフロート式
液面検知器であり、10はこの液面検知器9からの信号
に基づいて、圧縮機の運転動作を制御する制御手段であ
る。
【0004】次に、この動作について説明する。まず、
冷凍機が運転されると、冷媒は圧縮機1で圧縮され、高
温高圧のガスとなって凝縮器3へ流れ、ここで凝縮さ
れ、高圧の液となり、この高圧の冷媒液は冷却バイパス
回路へ流れる一方、多くは絞り機構4へ流れて減圧さ
れ、低圧の気・液混合の冷媒となって蒸発器5へ送られ
る。次に、この蒸発器5で冷媒は被冷却物と熱交換さ
れ、気・液混合の冷媒の冷媒液は蒸発し、ガス冷媒とな
って圧縮機1に吸入され、再び圧縮機1で圧縮され、同
じ動作を繰り返す。
【0005】また一方、冷却バイパス回路8へ流れた高
圧の冷媒液は、開閉弁6が開いている時は、温度膨張弁
7によって減圧され、低圧の気・液2相混合冷媒となっ
て圧縮機1に吸入され、圧縮機1を冷却しながら、圧縮
エネルギーによって温められ、ガス化され、前述の蒸発
器5から圧縮機1へ吸入されたガス冷媒と混合された
後、圧縮機1で圧縮される。
【0006】なお、この時、図11に示すように、フロ
ート式液面検知器9が、水冷式シェル・チューブ形凝縮
器2内の冷媒液が充分にない、即ち冷却バイパス回路8
を介して圧縮機1へ流れる圧縮機冷却用液冷媒が充分に
ないことを検知すると、OFF信号を制御手段10(図
示せず)へ送信するので、制御手段10は圧縮機冷却用
液冷媒がないから、圧縮機の温度が上昇し、摺動部分等
が焼付く恐れがあると判断して、圧縮機1の運転を停止
する。
【0007】しかし、一般的に、水冷式シェル・チュー
ブ形凝縮器2内の冷媒液面は圧縮機1から間欠的に吐出
される冷媒の吐出脈動変化により、波打つようになるた
め、結果として、この脈動変化する液面をフロート式液
面検知器9は検知することになる。
【0008】従って、このような液面検知器9では、往
々にして、冷媒液が充分あるにも関わらず、吐出脈動に
よるフロートのオーバー動作の影響から冷媒液が不足し
ている。即ち、冷媒液面が充分に確保されていないから
圧縮機の温度が上昇し、摺動部分等が焼付く恐れがある
と判断して、圧縮機1の運転を停止させたり、或いは、
その逆に、冷媒液が不足しているにも関わらず、冷媒液
面が充分に確保されていないとして、圧縮機1の運転を
継続したりする。
【0009】そこで、このような液面高さの誤判断によ
る誤った制御を防止するため、図12に示すように、フ
ロートスイッチ9bがオフからオン、或いはオンからオ
フに切り換わっても、予め設定した所定時間、例えば1
分間の間、フロートスイッチ9bからその信号が送信さ
れ続けない限り、オンになった或いはオフになったとは
判断しないようにして制御する。
【0010】また、フロート検知方式は、機械式のた
め、吐出脈動等によってフロート部が拗れたり、均圧が
上手くゆかないと、フロートが液面に追従しなくなり、
この追従しなくなった液面の信号を送信する。即ち、冷
媒が無いにも関わらず、有ると言う信号を送信するた
め、吐出ガス温度の上昇による圧縮機の破損が発生する
ことがしばしばある。
【0011】
【発明が解決しようとする課題】以上説明したように、
従来の冷凍機は、複雑な構成で、しかも誤信号を送信す
るフロートス式液面検知器で冷媒液面を検知するため、
わざわざ、この吐出脈動の影響による誤信号を防止する
ため、複雑な制御をしたり、タイムラグを設けなければ
ならないという問題点があった。
【0012】また、この従来のフロート検知方式の冷凍
機では、間接式のため、吐出脈動等によってフロート部
が拗れたり、均圧が上手くゆかないと、フロートが液面
に追従しなくなり、この追従しなくなった液面の信号を
送信して制御する。即ち、誤った制御をするという問題
点があった。
【0013】この発明は以上の問題を解消するためにな
されたもので、冷却に関与する適正冷媒量を判断して、
冷媒不足の温度上昇に起因して発生するトラブルを未然
に防止して冷却する信頼性の高い冷凍機を得ることを目
的とする。
【0014】
【課題を解決するための手段】この発明の冷凍機は、圧
縮機、凝縮器、絞り機構、及び蒸発器が順次配管で接続
されて成る冷凍機において、前記絞り機構と並列に設け
られ、前記凝縮器の出口側冷媒を前記冷凍機の低圧回路
へバイパスさせるバイパス回路と、このバイパス回路の
途中に設けられ、前記冷媒を絞るバイパス絞り機構と、
このバイパス絞り機構後の前記バイパス回路の出口側部
位に設けられ、当該出口側部位の冷媒の温度を検出する
冷媒温度検出手段と、この冷媒温度検出手段の検出結果
に基づいて、当該検出結果が所定温度以上の時は、前記
圧縮機の運転を停止させる制御手段と、を備え、前記バ
イパス絞り機構から前記出口側部位までの冷媒が、外気
等の熱源で温められるようにしたものである。
【0015】また、圧縮機、凝縮器、受液器、絞り機
構、及び蒸発器が順次配管で接続されて成る冷凍機にお
いて、前記絞り機構と並列に設けられ、前記受液器の出
口側冷媒を前記冷凍機の低圧回路へバイパスさせるバイ
パス回路と、このバイパス回路の途中に設けられ、前記
冷媒を絞るバイパス絞り機構と、このバイパス絞り機構
後の前記バイパス回路の出口側部位に設けられ、当該出
口側部位の冷媒の温度を検出する冷媒温度検出手段と、
この冷媒温度検出手段の検出結果に基づいて、当該検出
結果が所定温度以上の時は、前記圧縮機の運転を停止さ
せる制御手段と、を備え、前記バイパス絞り機構から前
記出口側部位までの冷媒が、外気等の熱源で温められる
ようにしたものである。
【0016】また、前記バイパス回路の入口部が、前記
凝縮器の冷媒出口よりも高い所定の位置に接続され、前
記冷媒をバイパスさせるものである。
【0017】また、前記バイパス回路の入口部が、前記
受液器の冷媒出口よりも高い所定の位置に接続され、前
記冷媒をバイパスさせるものである。
【0018】また、前記バイパス回路が、前記絞り機構
及び前記蒸発器と並列に設けられ、その出口側部位が前
記圧縮機の吸入側に接続され、前記圧縮機からの熱を接
続部材を介して前記出口側部位の冷媒に伝えるようにし
たものである。
【0019】また、開閉弁が、前記バイパス回路に設け
られ、前記圧縮機の停止時には閉じるものである。
【0020】また、前記制御手段が、前記圧縮機始動後
の所定時間の間、前記冷媒温度検出手段の検出結果に関
わらず、前記圧縮機を運転するものである。
【0021】
【発明の実施の形態】実施の形態1.以下に、この発明
の実施の形態1について説明する。図1はこの発明の実
施の形態1に示す冷凍機の構成であり、図2は冷凍機制
御装置の構成図であり、図1において、1は圧縮機、2
は水冷式シェルアンドチューブ形や2重管式や空冷式等
の凝縮器、3は運転時に開いて凝縮器からの冷媒を流
し、停止時に閉じて膨張弁4へ流さなくする主開閉弁、
4は絞り機構である膨張弁、5は蒸発器であり、これら
は冷媒配管を介して順次連結されている。なお、絞り機
構4が開閉弁機能を有する電気式膨張弁の時は、主開閉
弁3は不要となる。
【0022】また、12は絞り機構4と並列に設けら
れ、凝縮器2の出口側部と冷凍機の低圧回路(例えば、
圧縮機1の冷媒吸入側部又は蒸発器5の入口部)とを結
ぶバイパス回路であり、この冷却バイパス回路12に
は、凝縮器2から低圧回路へバイパスする冷媒量を調整
するバイパス絞り機構13(具体的にはキャピラリーチ
ューブや、温度式膨張弁や、電気式膨張弁等)と、この
バイパス絞り機構13後の冷媒温度を検出する冷媒温度
検出手段14が設けられている。
【0023】なお、このバイパス絞り機構13の開度は
キヤピラリを用いると一定になり、温度式膨張弁又は電
気式膨張弁を用いる場合は、圧縮機1の吐出冷媒温度や
蒸発器出口のスーパーヒートによって調節し、バイパス
冷媒量を調整するものの、冷媒液が不足するとスーパー
ヒートの調整ができなくなり、やがては、温度が増大し
て行く。
【0024】次に、このように構成された冷凍機の動作
について図1、2を用いて説明する。まず、冷凍機が運
転されると、冷媒は圧縮機1で圧縮され、高温高圧のガ
スとなって凝縮器3へ流れ、ここで凝縮され、高圧の液
となり、この高圧液冷媒の一部はバイパス回路12へ流
れる一方、多くは絞り機構4へ流れ、この絞り機構4で
減圧され、低圧の気・液混合の冷媒となって蒸発器5へ
流れるため、この蒸発器5で被冷却物と熱交換されて蒸
発し、全てガス冷媒となり、圧縮機1に吸入された後、
再び圧縮され、同じ動作を繰り返す。
【0025】なお、この時、バイパス回路12へ流れた
高圧液冷媒の一部は、バイパス絞り機構13によって減
圧され、低圧の気・液2相混合冷媒となって低圧回路
(例えば、圧縮機1の入口側又は蒸発器5の入口側)へ
流れるため、この低圧回路へ流れた低圧液冷媒はバイパ
ス回路12の出口までの配管からの放熱、言い換えれ
ば、外気の熱、或いは、圧縮機1からの熱に温められて
蒸発し、全てガス冷媒となり、圧縮機1に吸入され、再
び圧縮される。
【0026】即ち、この低圧液冷媒が蒸発器5の入口側
へ流れるようにした時は、バイパス絞り機構13からバ
イパス回路12の出口までの配管長さを充分取り、放熱
部分を有るようにし、図3に示すように、その配管から
の放熱によってバイパス冷媒を蒸発させ、全てガス冷媒
にした後、蒸発器5を介して再び圧縮機1に吸入される
ようにする。また、この低圧液冷媒が圧縮機1入口側へ
流れるようにした時は、バイパス冷媒が圧縮機1を冷却
する一方、逆に圧縮機1の圧縮熱によって温められると
共に、バイパス回路12の配管からの放熱によって、ガ
ス化され、再び圧縮機1で圧縮される。
【0027】また、この状態で、バイパス絞り機構13
後のバイパス回路12の出口部位に設けられた冷媒温度
検出手段14が予め設定された所定温度(例えば、低圧
圧力に相当する温度が5℃以下で、高圧圧力に相当する
温度が30℃以上の場合に、15℃)以上の温度を検出
すると、冷凍機内の冷媒が不足して温度上昇したと判断
し、制御手段15が圧縮機1の動作を停止する。
【0028】なお、冷媒が不足し、バイパス回路12に
流れるガス冷媒が多くになると、図3に示すように、減
圧作用が大きくなり、外気との温度差が大きくなるの
で、バイパス回路の表面からの外気への熱放出が多くな
ると共に、バイパス冷媒の冷却効果も小さくなるので、
温度上昇し易くなるため、この現象から制御手段は冷媒
が充分に有るか否かを、的確に冷媒温度検出手段14は
判断できるものの、余りも放熱量を少なくすると、即
ち、放熱量をゼロにすると、極端に冷媒が不足しない限
り検出できなようになるため、吐出ガス温度が上昇し、
圧縮機1が破損してしまう恐れある。従って、バイパス
冷媒量に応じた放熱部をバイパス絞り機構13後のバイ
パス回路12に設ける必要がある。
【0029】また、この時、凝縮器2からバイパス回路
12に流れ込む冷媒が冷媒液であるか冷媒ガスである
か、言い換えれば、冷媒が充分有るか否かは、バイパス
回路12が凝縮器2の出口より高い部位に接続された
か、或いは、低い部位に接続されたかにより異なる。即
ち、高い部位に接続された場合は、冷媒の過不足を速く
検出することができるため、スピーディに冷媒の過不足
を判断して温度上昇による圧縮機の破損を防止できると
共に、凝縮器の冷媒出口と所定の高さ位置までの間の滞
留冷媒によって被冷却物を手動・強制冷却することがで
きるようになる、即ち、圧縮機の温度上昇等を見ながら
手動運転等により強制的に冷却運転ができるようになる
ため、特に、短時間でも被冷却物を冷却し、腐らすこと
なく、冷媒不足にも対応できる使い勝手の良い冷凍機が
得られるというメリットがある。
【0030】一方、凝縮器2の底部と同等の低い部位に
接続された場合は、被冷却物の冷却や温度上昇による圧
縮機の破損防止に対してはやや難はあるものの、冷凍機
内の冷媒を充分に活用して冷却しながら冷媒の不足を確
実に検出して圧縮機の駆動を停止する信頼性の高い冷凍
機が得られるというメリットがある。
【0031】また、以上の構成においては、圧縮機の吐
出冷媒が脈動しても、凝縮器出口の冷媒の脈動は小さく
抑えられるため、安定した検出・制御ができる。また、
仮にバイパス回路12の絞り機構13に吐出脈動により
液冷媒とガス冷媒が交互に供給されるようになったとし
ても、その混合された比に応じた温度を冷媒温度検知手
段14が検出することになるので、このことを考慮して
予め設定した所定温度を充分に高く設定しておけば、吐
出脈動による温度変化に充分対応できるようになると共
に、冷媒温度検知手段14が取り付けられた配管等の熱
マスによっても吐出脈動による温度変化が緩和されるこ
とになるので、信頼性の高い検出・制御ができるように
なる。
【0032】とは言っても、所定温度を充分に高く設定
できない時や配管等の熱マスが小さいときは、吐出脈動
による温度変化に対応することができない恐れがあるの
で、所定温度以上超えても、直ちに冷媒がなくなったと
判断せずに、その温度状態を所定時間以上、例えば1分
間以上継続した場合は、冷媒がなくなったと判断するよ
うにしてもよい。
【0033】以上説明したように、前記凝縮器の出口側
冷媒を前記冷凍機の低圧回路へバイパスさせるバイパス
回路と、このバイパス回路の途中に設けられ、前記冷媒
を絞るバイパス絞り機構と、このバイパス絞り機構後の
前記バイパス回路の出口側部位に設けられ、当該出口側
部位の冷媒の温度を検出する冷媒温度検出手段と、この
冷媒温度検出手段の検出結果に基づいて、当該検出結果
が所定温度以上の時は、前記圧縮機の運転を停止させる
制御手段と、を備え、前記バイパス絞り機構から前記出
口側部位までの冷媒が、外気等の熱源で温められるよう
にしたので、制御手段が、冷媒温度検出手段の検出結果
から、当該検出結果が所定温度以上の時は、正確に冷媒
が不足したと判断して圧縮機を停止するようになるた
め、冷媒不足の温度上昇に起因して発生するトラブルを
未然に防止して冷却する信頼性の高い冷凍機が得られ
る。
【0034】また、バイパス回路の入口部が、前記凝縮
器の冷媒出口よりも高い所定の位置に接続され、前記冷
媒をバイパスさせるので、スピーディに冷媒の過不足を
判断て温度上昇による圧縮機の破損を防止できるように
なると共に、凝縮器の冷媒出口と所定の高さ位置までの
間の滞留冷媒によって被冷却物を冷却することができる
ようになる、即ち、圧縮機の温度上昇等を見ながら手動
運転等により強制的に冷却運転ができるようになるた
め、特に、被冷却物を短時間でも冷却しながら腐らすこ
となく、冷媒不足にも対応できる使い勝手の良い冷凍機
が得られる。
【0035】実施の形態2.以下に、この発明の実施の
形態2について説明する。この実施の形態2において
は、図4、5に示すように、実施の形態1の冷凍機の構
成に冷媒のガスと液に分離して貯流する受液器17を、
凝縮器2と絞り機構示との間に追加付記すると共に、こ
の追加付記した受液器17の出口側部と冷凍機の低圧回
路(例えば、圧縮機1の冷媒吸入側部又は蒸発器5の入
口部)とを結でバイパス回路12を形成したものであ
り、その他の構成は実施の形態1で説明したとほぼ同じ
構成となる。
【0036】即ち、この図3において、1は圧縮機、2
は水冷式シェルアンドチューブ形や2重管式や空冷式等
の凝縮器、17はこの凝縮器2からの冷媒をガスと液に
分離して貯流する受液器、3は運転時に開いて凝縮器か
らの冷媒を流し、停止時に閉じて膨張弁4へ流さなくす
る主開閉弁、4は絞り機構である膨張弁、5は蒸発器で
あり、これらは冷媒配管を介して順次連結されている。
なお、絞り機構4が開閉弁機能を有する電気式膨張弁の
時は、主開閉弁3は不要となる。
【0037】また、12は絞り機構4と並列に設けら
れ、受液器17の出口側部と冷凍機の低圧回路(例え
ば、圧縮機1の冷媒吸入側部又は蒸発器5の入口部)と
を結ぶバイパス回路であり、この冷却バイパス回路に
は、凝縮器2から低圧回路へバイパスする冷媒量を調整
するバイパス絞り機構13(具体的にはキャピラリーチ
ューブや、温度式膨張弁や、電気式膨張弁等)と、この
バイパス絞り機構13後の冷媒温度を検出する冷媒温度
検出手段14が設けられて構成されている。
【0038】次に、このように構成された冷凍機の動作
について説明する。まず、冷凍機が運転されると、冷媒
は圧縮機1で圧縮され、高温高圧のガスとなって凝縮器
3へ流れ、ここで凝縮され、高圧の液となり受液器17
へ流れて貯流され、この貯流された高圧液冷媒の一部は
バイパス回路12へ流れる一方、多くは絞り機構4へ流
れ、この絞り機構4で減圧され、低圧の気・液混合の冷
媒となって蒸発器5へ流れるため、この蒸発器5で被冷
却物と熱交換されて蒸発し、全てガス冷媒となり、圧縮
機1に吸入された後、再び圧縮され、同じ動作を繰り返
す。
【0039】なお、これ以降の動作は、実施の形態1で
説明した通りであり、この説明における凝縮器2と言う
言葉を受液器17と言う言葉にほぼ置き換えて説明する
だけなので、詳細な説明は割愛する。
【0040】以上説明したように、前記受液器の出口側
冷媒を前記冷凍機の低圧回路へバイパスさせるバイパス
回路と、このバイパス回路の途中に設けられ、前記冷媒
を絞るバイパス絞り機構と、このバイパス絞り機構後の
前記バイパス回路の出口側部位に設けられ、当該出口側
部位の冷媒の温度を検出する冷媒温度検出手段と、この
冷媒温度検出手段の検出結果に基づいて、当該検出結果
が所定温度以上の時は、前記圧縮機の運転を停止させる
制御手段と、を備え、前記バイパス絞り機構から前記出
口側部位までの冷媒が、外気等の熱源で温められるよう
にしたので、制御手段が、冷媒温度検出手段の検出結果
から、当該検出結果が所定温度以上の時は、正確に冷媒
が不足したと判断して圧縮機を停止するようになるた
め、冷媒不足の温度上昇に起因して発生するトラブルを
未然に防止して冷却する信頼性の高い冷凍機が得られ
る。
【0041】また、バイパス回路の入口部が、前記受液
器の冷媒出口よりも高い所定の位置に接続され、前記冷
媒をバイパスさせるので、スピーディに冷媒の過不足を
判断て温度上昇による圧縮機の破損を防止できるように
なると共に、凝縮器の冷媒出口と所定の高さ位置までの
間の滞留冷媒によって被冷却物を冷却することができる
ようになる、即ち、圧縮機の温度上昇等を見ながら手動
運転等により強制的に冷却運転ができるようになるた
め、特に、被冷却物を短時間でも冷却しながら腐らすこ
となく、冷媒不足にも対応できる使い勝手の良い冷凍機
が得られる。
【0042】実施の形態3.以下に、この発明の実施の
形態3について説明する。この実施の形態3において
は、図6に示すように、実施の形態1又は2のバイパス
回路12の出口部位を圧縮機1の吸入側配管に接続した
ものである。なお、その他の構成は実施の形態1又は2
で説明したとおりである。
【0043】次に、このように構成された動作について
説明する。まず、前述したように、バイパス回路12の
出口部位を圧縮機1の吸入側配管に接続する構成にする
と、液冷媒が多くある時は、バイパス回路12の冷媒は
蒸発器5を介さずに圧縮機1の吸入側に流れるため、圧
縮機1を冷却し、低い温度に維持する。
【0044】また、凝縮器2または受液器17の出口側
冷媒が冷媒不足して、液冷媒が少なくなり、冷却効果が
小さい時は、圧縮機1からの圧縮エネルギー熱を直接的
に配管等を介して貰うため、温度上昇し易くなる。従っ
て、この温度上昇を冷媒温度検出手段14が的確にキャ
ッチして制御手段へ送信するので、制御手段は圧縮機1
の動作を停止するようになる。
【0045】以上説明したように、バイパス回路12の
出口部位を圧縮機1の吸入側配管に接続し、前記圧縮機
からの熱を接続部材を介して前記出口側部位の冷媒に伝
えるようにしたので、運転時には、バイパス冷媒によっ
て温度上昇を抑制しながら、逆に、圧縮機からの圧縮エ
ネルギー熱を直接的に配管等を介して貰うようになるの
で、特に、冷媒不足時の温度上昇の勾配が大きくなるた
め、冷媒不足を的確にキャッチして、温度上昇に起因し
て発生するトラブルを未然に防止して冷却する信頼性の
高い冷凍機が得られる。
【0046】実施の形態4.以下に、この発明の実施の
形態4について説明する。この実施の形態4において
は、図7に示すように、実施の形態1から3までのバイ
パス回路12に圧縮機1の運転時に開き、停止時に閉じ
るバイパス開閉弁6を設けたものである。なお、その他
の構成は実施の形態1から3までに説明したいずれかの
構成である。
【0047】次に、このように動作について図7、8を
用いて説明する。まず、圧縮機1が運転すると、バイパ
ス開閉弁6が開くので、凝縮器2又は受液器の出口側冷
媒はバイパス回路12のバイパス絞り機構13を介して
低圧回路へ流れ、実施の形態1から3までに説明したい
ずれかの動作をする。
【0048】次に、圧縮機1が停止すると、バイパス開
閉弁6が閉じるので、凝縮器2又は受液器の出口側冷媒
はバイパス回路12を介して低圧回路側へ流れなくな
る。従って、冷却を必要としない圧縮機停止時には、低
圧回路側へ流れなくなるので、無駄なエネルギーが消費
されなくなる。
【0049】以上説明したように、開閉弁が、前記バイ
パス回路に設けられ、前記圧縮機の停止時には閉じるの
で、冷却を必要としない圧縮機停止時には、低圧回路側
へ流れなくなり、無駄なエネルギーが消費されなくなる
ため、経済的な冷凍機が得られる。
【0050】実施の形態5 以下にこの発明実施の形態5について図9を用いて説明
する。本実施の形態においては、前述の実施の形態1か
ら4までのいずれの構成において、制御手段15が、圧
縮機始動後の所定時間の間、冷媒温度検出手段14の検
出結果に関わらず、圧縮機1を運転するものである。
【0051】次に、この動作について説明する。まず、
図9に示すように、制御手段15が、時刻Aで被冷却物
が充分冷却されたと判断して圧縮機1を停止すると、冷
媒が流れなくなるため、時刻Aで温度検出器14が検出
した設定温度TH1より低い温度が上昇し、やがては設
定温度TH1を超えるようになる。
【0052】次に、この停止状態で被冷却物の温度が上
昇し、圧縮機1を運転しようと思っても、前述したよう
に、バイパス回路12の温度検出器14が設定温度TH
1より高い温度を検出している恐れがあるために、実際
には冷媒が有るにも関わらず、冷媒が無くなったと誤判
断して、圧縮機1の停止状態を維持する恐れがある。
【0053】従って、本実施の形態では、制御手段15
が、圧縮機始動後の所定時間の間、冷媒温度検出手段1
4の検出結果に関わらず、圧縮機1を運転し、冷媒を流
し、温度検出器14が検出する温度が下がるようにす
る。
【0054】この結果、冷媒温度検出手段14の検出温
度が設定温度TH1より下がった時は、圧縮機1の運転
を継続し、下がらなかった時は、圧縮機1の運転を停止
するようにする。
【0055】以上説明したように、制御手段が、圧縮機
始動後の所定時間の間、冷媒温度検出手段の検出結果に
関わらず、圧縮機を運転するようにしたので、冷媒が有
るにも関わらず、冷媒が無いと誤った判断をしないよう
になるため、信頼性の高い冷凍機が得られる。
【0056】
【発明の効果】この発明は以上説明したように構成され
ているので、以下に示すような効果を奏する。
【0057】前記凝縮器の出口側冷媒を前記冷凍機の低
圧回路へバイパスさせるバイパス回路と、このバイパス
回路の途中に設けられ、前記冷媒を絞るバイパス絞り機
構と、このバイパス絞り機構後の前記バイパス回路の出
口側部位に設けられ、当該出口側部位の冷媒の温度を検
出する冷媒温度検出手段と、この冷媒温度検出手段の検
出結果に基づいて、当該検出結果が所定温度以上の時
は、前記圧縮機の運転を停止させる制御手段と、を備
え、前記バイパス絞り機構から前記出口側部位までの冷
媒が、外気等の熱源で温められるようにしたので、制御
手段が、冷媒温度検出手段の検出結果から、当該検出結
果が所定温度以上の時は、正確に冷媒が不足したと判断
して圧縮機を停止するようになるため、冷媒不足の温度
上昇に起因して発生するトラブルを未然に防止して冷却
する信頼性の高い冷凍機が得られる。
【0058】また、前記受液器の出口側冷媒を前記冷凍
機の低圧回路へバイパスさせるバイパス回路と、このバ
イパス回路の途中に設けられ、前記冷媒を絞るバイパス
絞り機構と、このバイパス絞り機構後の前記バイパス回
路の出口側部位に設けられ、当該出口側部位の冷媒の温
度を検出する冷媒温度検出手段と、この冷媒温度検出手
段の検出結果に基づいて、当該検出結果が所定温度以上
の時は、前記圧縮機の運転を停止させる制御手段と、を
備え、前記バイパス絞り機構から前記出口側部位までの
冷媒が、外気等の熱源で温められるようにしたので、制
御手段が、冷媒温度検出手段の検出結果から、当該検出
結果が所定温度以上の時は、正確に冷媒が不足したと判
断して圧縮機を停止するようになるため、冷媒不足の温
度上昇に起因して発生するトラブルを未然に防止して冷
却する信頼性の高い冷凍機が得られる。
【0059】また、バイパス回路の入口部が、前記凝縮
器の冷媒出口よりも高い所定の位置に接続され、前記冷
媒をバイパスさせるので、スピーディに冷媒の過不足を
判断て温度上昇による圧縮機の破損を防止できるように
なると共に、凝縮器の冷媒出口と所定の高さ位置までの
間の滞留冷媒によって被冷却物を冷却することができる
ようになる、即ち、圧縮機の温度上昇等を見ながら手動
運転等により強制的に冷却運転ができるようになるた
め、特に、被冷却物を短時間でも冷却しながら腐らすこ
となく、冷媒不足にも対応できる使い勝手の良い冷凍機
が得られる。
【0060】また、バイパス回路の入口部が、前記受液
器の冷媒出口よりも高い所定の位置に接続され、前記冷
媒をバイパスさせるので、スピーディに冷媒の過不足を
判断て温度上昇による圧縮機の破損を防止できるように
なると共に、凝縮器の冷媒出口と所定の高さ位置までの
間の滞留冷媒によって被冷却物を冷却することができる
ようになる、即ち、圧縮機の温度上昇等を見ながら手動
運転等により強制的に冷却運転ができるようになるた
め、特に、被冷却物を短時間でも冷却しながら腐らすこ
となく、冷媒不足にも対応できる使い勝手の良い冷凍機
が得られる。
【0061】また、バイパス回路の入口部が、前記受液
器の冷媒出口よりも高い所定の位置に接続され、前記冷
媒をバイパスさせるので、スピーディに冷媒の過不足を
判断て温度上昇による圧縮機の破損を防止できるように
なると共に、凝縮器の冷媒出口と所定の高さ位置までの
間の滞留冷媒によって被冷却物を冷却することができる
ようになる、即ち、圧縮機の温度上昇等を見ながら手動
運転等により強制的に冷却運転ができるようになるた
め、特に、被冷却物を短時間でも冷却しながら腐らすこ
となく、冷媒不足にも対応できる使い勝手の良い冷凍機
が得られる。
【0062】また、バイパス回路12の出口部位を圧縮
機1の吸入側配管に接続し、前記圧縮機からの熱を接続
部材を介して前記出口側部位の冷媒に伝えるようにした
ので、運転時には、バイパス冷媒によって温度上昇を抑
制しながら、逆に、圧縮機からの圧縮エネルギー熱を直
接的に配管等を介して貰うようになるので、特に、冷媒
不足時の温度上昇の勾配が大きくなるため、冷媒不足を
的確にキャッチして、温度上昇に起因して発生するトラ
ブルを未然に防止して冷却する信頼性の高い冷凍機が得
られる。
【0063】また、開閉弁が、前記バイパス回路に設け
られ、前記圧縮機の停止時には閉じるので、冷却を必要
としない圧縮機停止時には、低圧回路側へ流れなくな
り、無駄なエネルギーが消費されなくなるため、経済的
な冷凍機が得られる。
【0064】また、制御手段が、圧縮機始動後の所定時
間の間、冷媒温度検出手段の検出結果に関わらず、圧縮
機を運転するようにしたので、冷媒が有るにも関わら
ず、冷媒が無いと誤った判断をしないようになるため、
信頼性の高い冷凍機が得られる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による冷凍機の冷媒
系統図。
【図2】 この発明の実施の形態1による冷凍機制御装
置の構成図。
【図3】 この発明の実施の形態1による冷凍機の冷媒
サイクル図。
【図4】 この発明の実施の形態2による冷凍機の冷媒
系統図。
【図5】 この発明の実施の形態2による別の事例の冷
凍機の冷媒系統図。
【図6】 この発明の実施の形態3による冷凍機の冷媒
系統図。
【図7】 この発明の実施の形態4による冷凍機の冷媒
系統図。
【図8】 この発明の実施の形態4による冷凍機制御装
置。
【図9】 この発明の実施の形態5による冷凍機の検出
冷媒温度変化図。
【図10】 従来の冷凍機の冷媒系統図。
【図11】 従来の冷凍機の液面検知装置の断面図。
【図12】 従来の冷凍機制御装置の構成図。
【符号の説明】
1 圧縮機、 2 凝縮器、 3 主開閉弁、 4 絞
り機構、 5 蒸発器、 6 バイパス開閉弁、 7
温度膨張弁、 8 冷媒液戻し配管、 9 液面検知装
置、 9a ケース、 9b フロートスイッチ、 9
c フロート、10 冷媒液、 11 冷凍機制御装
置、 12 バイパス回路、 13 バイパス絞り機
構、 14 温度検出器、 15 制御手段、 17
受液器。

Claims (7)

    【特許請求の範囲】
  1. 【請求項1】 圧縮機、凝縮器、絞り機構、及び蒸発器
    が順次配管で接続されて成る冷凍機において、前記絞り
    機構と並列に設けられ、前記凝縮器の出口側冷媒を前記
    冷凍機の低圧回路へバイパスさせるバイパス回路と、こ
    のバイパス回路の途中に設けられ、前記冷媒を絞るバイ
    パス絞り機構と、このバイパス絞り機構後の前記バイパ
    ス回路の出口側部位に設けられ、当該出口側部位の冷媒
    の温度を検出する冷媒温度検出手段と、この冷媒温度検
    出手段の検出結果に基づいて、当該検出結果が所定温度
    以上の時は、前記圧縮機の運転を停止させる制御手段
    と、を備え、前記バイパス絞り機構から前記出口側部位
    までの冷媒が、外気等の熱源で温められるようにしたこ
    とを特徴とする冷凍機。
  2. 【請求項2】 圧縮機、凝縮器、受液器、絞り機構、及
    び蒸発器が順次配管で接続されて成る冷凍機において、
    前記絞り機構と並列に設けられ、前記受液器の出口側冷
    媒を前記冷凍機の低圧回路へバイパスさせるバイパス回
    路と、このバイパス回路の途中に設けられ、前記冷媒を
    絞るバイパス絞り機構と、このバイパス絞り機構後の前
    記バイパス回路の出口側部位に設けられ、当該出口側部
    位の冷媒の温度を検出する冷媒温度検出手段と、この冷
    媒温度検出手段の検出結果に基づいて、当該検出結果が
    所定温度以上の時は、前記圧縮機の運転を停止させる制
    御手段と、を備え、前記バイパス絞り機構から前記出口
    側部位までの冷媒が、外気等の熱源で温められるように
    したことを特徴とする冷凍機。
  3. 【請求項3】 前記バイパス回路の入口部が、前記凝縮
    器の冷媒出口よりも高い所定の位置に接続され、前記冷
    媒をバイパスさせることを特徴とする請求項1に記載の
    冷凍機。
  4. 【請求項4】 前記バイパス回路の入口部が、前記受液
    器の冷媒出口よりも高い所定の位置に接続され、前記冷
    媒をバイパスさせることを特徴とする請求項2に記載の
    冷凍機。
  5. 【請求項5】 前記バイパス回路が、前記絞り機構及び
    前記蒸発器と並列に設けられ、その出口側部位が前記圧
    縮機の吸入側に接続され、前記圧縮機からの熱を接続部
    材を介して前記出口側部位の冷媒に伝えるようにしたこ
    とを特徴とする請求項1又は請求項2のいずれかに記載
    の冷凍機。
  6. 【請求項6】 開閉弁が、前記バイパス回路に設けら
    れ、前記圧縮機の停止時には閉じることを特徴とする請
    求項1から請求項5までのいずれかに記載の冷凍機。
  7. 【請求項7】 前記制御手段が、前記圧縮機始動後の所
    定時間の間、前記冷媒温度検出手段の検出結果に関わら
    ず、前記圧縮機を運転することを特徴とする請求項1か
    ら請求項6までのいずれかに記載の冷凍機。
JP11191552A 1999-07-06 1999-07-06 冷凍機 Pending JP2001021242A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11191552A JP2001021242A (ja) 1999-07-06 1999-07-06 冷凍機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11191552A JP2001021242A (ja) 1999-07-06 1999-07-06 冷凍機

Publications (1)

Publication Number Publication Date
JP2001021242A true JP2001021242A (ja) 2001-01-26

Family

ID=16276583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11191552A Pending JP2001021242A (ja) 1999-07-06 1999-07-06 冷凍機

Country Status (1)

Country Link
JP (1) JP2001021242A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350014A (ja) * 2001-05-22 2002-12-04 Daikin Ind Ltd 冷凍装置
WO2009084519A1 (ja) * 2007-12-28 2009-07-09 Daikin Industries, Ltd. 空気調和装置及び冷媒量判定方法
WO2015056704A1 (ja) * 2013-10-17 2015-04-23 東芝キヤリア株式会社 冷凍サイクル装置
JP2018119746A (ja) * 2017-01-26 2018-08-02 日立ジョンソンコントロールズ空調株式会社 冷凍装置
CN112923603A (zh) * 2021-03-05 2021-06-08 一冷豪申新能源(上海)有限公司 一种中深层地热磁悬浮离心热泵装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002350014A (ja) * 2001-05-22 2002-12-04 Daikin Ind Ltd 冷凍装置
US6845626B2 (en) 2001-05-22 2005-01-25 Daikin Industries, Ltd. Refrigeration apparatus
WO2009084519A1 (ja) * 2007-12-28 2009-07-09 Daikin Industries, Ltd. 空気調和装置及び冷媒量判定方法
JP2009162410A (ja) * 2007-12-28 2009-07-23 Daikin Ind Ltd 空気調和装置及び冷媒量判定方法
US8578725B2 (en) 2007-12-28 2013-11-12 Daikin Industries, Ltd. Air conditioning apparatus and refrigerant quantity determination method
EP2236960A4 (en) * 2007-12-28 2017-09-13 Daikin Industries, Ltd. Air conditioner and method of determining amount of refrigerant
WO2015056704A1 (ja) * 2013-10-17 2015-04-23 東芝キヤリア株式会社 冷凍サイクル装置
JPWO2015056704A1 (ja) * 2013-10-17 2017-03-09 東芝キヤリア株式会社 冷凍サイクル装置
JP2018119746A (ja) * 2017-01-26 2018-08-02 日立ジョンソンコントロールズ空調株式会社 冷凍装置
CN112923603A (zh) * 2021-03-05 2021-06-08 一冷豪申新能源(上海)有限公司 一种中深层地热磁悬浮离心热泵装置

Similar Documents

Publication Publication Date Title
EP3598037B1 (en) Refrigeration cycle device
US10247454B2 (en) Refrigerating apparatus
EP1826513B1 (en) Refrigerating air conditioner
US8899058B2 (en) Air conditioner heat pump with injection circuit and automatic control thereof
US9797639B2 (en) Method for operating a vapour compression system using a subcooling value
JPH09178274A (ja) 冷凍システム
JP2008032336A (ja) 二段膨張冷凍装置
US11149999B2 (en) Refrigeration cycle apparatus having foreign substance release control
US20100192607A1 (en) Air conditioner/heat pump with injection circuit and automatic control thereof
JP4809076B2 (ja) 冷凍システムおよび冷凍システムの運転方法
JP2006177597A (ja) 冷凍装置及びこれを用いた空気調和機
JP2011163729A (ja) 冷却装置
JP2002257427A (ja) 冷凍空調装置、及びその運転方法
JP2019035579A (ja) 冷凍装置
JP2001021242A (ja) 冷凍機
JP2004003717A (ja) 空気調和機
JP3993540B2 (ja) 冷凍装置
JP2004020070A (ja) ヒートポンプ式冷温水機
JPH1114165A (ja) 空気調和機
JP6449979B2 (ja) 冷凍装置
EP3978828B1 (en) Refrigeration cycle device
JP3317222B2 (ja) 冷凍装置
JP2002228284A (ja) 冷凍装置
JP2001280768A (ja) 冷凍装置
JPH03233262A (ja) 冷凍サイクル

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040624