JP2001012209A - Steam gas turbine united engine device - Google Patents
Steam gas turbine united engine deviceInfo
- Publication number
- JP2001012209A JP2001012209A JP2000024552A JP2000024552A JP2001012209A JP 2001012209 A JP2001012209 A JP 2001012209A JP 2000024552 A JP2000024552 A JP 2000024552A JP 2000024552 A JP2000024552 A JP 2000024552A JP 2001012209 A JP2001012209 A JP 2001012209A
- Authority
- JP
- Japan
- Prior art keywords
- turbine
- steam
- combustor
- heat exchanger
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2200/00—Mathematical features
- F05B2200/30—Mathematical features miscellaneous
- F05B2200/31—Mathematical features miscellaneous odd
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、蒸気ガスタービン
合体機関、詳しくは、ガスタービンの全多数燃焼器の外
壁を、略螺旋状の熔接構造水冷外壁熱交換器又は、螺旋
状の水冷外壁単位組立構造熱交換器又は、螺旋状の溶接
構造水冷外壁単位組立て構造熱交換器として、小径多数
蜂の巣状に短小化することで、合理的円筒形状を可能に
すると共に、大幅高圧化及び大幅に能率の良い熱交換を
可能にし、該燃焼器兼熱交換器を用途に合わせて小径多
数蜂の巣状に短小化することで、熱交換伝熱面積を増大
すると共に、短小高圧容器として燃料供給手段を従来技
術の3倍前後に最上流側に増設容易にし、該燃焼器兼熱
交換器内に蒸気過熱器を、略螺旋状に直線に近づけたも
のも含めて具備して、過熱蒸気溜より過熱蒸気を噴射す
るロケット等を含めて、該過熱蒸気により出力を得る蒸
気タービンと、該燃焼ガスにより出力を得るガスタービ
ンにより、各種航空機、各種船舶、各種車両、各種発電
設備等あらゆる用途に対応可能にして、磁気摩擦動力伝
達装置も適宜に含めた新技術の各種蒸気ガスタービン合
体機関に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined steam and gas turbine engine, and more particularly, to an outer wall of a multi-combustor of a gas turbine, wherein a substantially spiral welded water cooling outer wall heat exchanger or a spiral water cooling outer wall unit is used. As a heat exchanger with an assembled structure or a spirally welded water-cooled outer wall unit as a unitary structure heat exchanger, it is possible to make a reasonable cylindrical shape by shortening it into a large number of small diameter honeycombs, and it is possible to greatly increase the pressure and greatly improve efficiency. In addition to increasing the heat exchange heat transfer area by reducing the size of the combustor / heat exchanger into a large number of small-diameter honeycombs according to the application, the conventional fuel supply means is used as a short and high pressure vessel. Around three times the technology, it is easy to add to the uppermost stream side, and a steam superheater is provided in the combustor / heat exchanger, including one that is nearly linear in a spiral shape. Including rockets that spray By using a steam turbine that obtains output from the superheated steam and a gas turbine that obtains output from the combustion gas, it can be used in various applications such as various aircraft, various ships, various vehicles, and various types of power generation equipment. The present invention also relates to a new technology of various types of steam gas turbine united engines, which also includes a suitable engine.
【0002】[0002]
【従来の技術】蒸気タービン・ガスタービン複合機関の
うち、ガスタービン燃焼器の内部に熱交換器を設けた先
行技術として特開昭50−89737号が開示されてい
る。この発明は、ガスタービン燃焼器の高温領域に、蒸
気タービンサイクルの過熱器乃至再熱器を設けることに
よって、特別の補助的な燃焼器を必要とすることなく、
蒸気タービンサイクルの過熱蒸気温度を高め、複合プラ
ント全体の効率向上を図るものである。又、特開昭52
−156248号は、ガスタービン間の燃焼ガスとの熱
交換によって蒸発を行なうことにより、廃熱回収ボイラ
出口廃ガス温度の低下を図り、ボイラ効率を向上させる
ことが開示されている。しかし、これらは、いずれも過
給ボイラサイクルの熱効率の向上を図るもので、ガスタ
ービンの圧力比と比出力の同時上昇を図るものでもガス
タービンの熱効率上昇を図るものでもない。2. Description of the Related Art Japanese Patent Application Laid-Open No. 50-97737 discloses a prior art in which a heat exchanger is provided inside a gas turbine combustor in a combined steam turbine / gas turbine engine. The present invention provides a steam turbine cycle superheater or reheater in a high temperature region of a gas turbine combustor, thereby eliminating the need for a special auxiliary combustor.
The purpose is to increase the superheated steam temperature of the steam turbine cycle and improve the efficiency of the entire combined plant. Also, Japanese Patent Laid-Open No. 52
No. 156248 discloses that by performing evaporation by heat exchange with combustion gas between gas turbines, the temperature of waste gas at the outlet of the waste heat recovery boiler is reduced, and the boiler efficiency is improved. However, none of these aims to improve the thermal efficiency of the supercharging boiler cycle, and does not aim to simultaneously increase the pressure ratio and the specific output of the gas turbine, nor to increase the thermal efficiency of the gas turbine.
【0003】又、先の出願としてガスタービン燃焼器を
改良した、特願平6−330862号、特願平7−14
5074号、特願平7−335595号、特願平8−4
1998号、特願平8−80407号、特願平8−14
3391号、特願平8−204049号、特願平8−2
72806号、特願平9−106925号、特願平9−
181944号、特願平10−134720号、特願平
10−134721号、特願平11−69406号、特
願平11−77189号があります。以上先の出願に基
づく優先権主張出願は概略的に、全動翼を含む及び/ガ
スタービンの全複数の燃焼器を長大化して、該水冷外壁
を螺旋状に具備して高圧容器とした熱交換器としても兼
用して、大部分の供給熱量を過熱蒸気に変換可能にする
ことにより、タービン耐熱限界温度を越えることなく圧
力比及び比出力を極限まで同時に上昇可能にする装置及
び方法とするものです。[0003] Further, as a prior application, a gas turbine combustor is improved.
No. 5074, Japanese Patent Application No. 7-335595, Japanese Patent Application No. 8-4
1998, Japanese Patent Application No. 8-80407, Japanese Patent Application No. 8-14
No. 3391, Japanese Patent Application No. 8-204049, Japanese Patent Application No. 8-2
No. 72806, Japanese Patent Application No. 9-106925, Japanese Patent Application No. 9-106
There are 181944, Japanese Patent Application No. 10-134720, Japanese Patent Application No. 10-134721, Japanese Patent Application No. 11-69406, and Japanese Patent Application No. 11-77189. The priority claim application based on the above-mentioned prior application generally includes a heat exchanger including a whole rotor blade and / or a plurality of combustors of a gas turbine being lengthened, and a water-cooled outer wall spirally provided as a high-pressure vessel. An apparatus and method that can simultaneously increase the pressure ratio and the specific output to the maximum without exceeding the turbine heat-resistant limit temperature by being able to convert most of the supplied heat into superheated steam, also serving as an exchanger. Thing.
【0004】[0004]
【発明が解決しようとする課題】ガスタービンサイクル
の性能として重要なものに、熱効率及び比出力があり、
圧力比が大きい程高い熱効率が得られ、熱効率(圧力
比)が一定では、サイクルに供給する熱量が大きい程大
きな比出力が得られる。即ち、この圧力比及び比出力の
増大は、いずれもタービンの耐熱限界温度で大きな制約
を受ける。このため、タービンの耐熱限界温度を越える
ことなく圧力比及び供給熱量(燃料燃焼質量)を極限ま
で増大する方法は、供給熱量(燃料発熱量)の大部分を
過熱蒸気に変換して蒸気タービン等に使用して、熱効率
×比出力=圧力比×燃焼ガス質量=速度×質量を大増大
する(谷川力学では、質量X速度が仕事をし、高温は単
位容積質量小=仕事量の減少要因と考える)と共に、燃
焼ガス温度が、タービン入口耐熱限界温度以下から、4
00℃前後となるように、限りなく熱交換して得た、超
臨界を含む過熱蒸気により、圧力を圧力比の10倍前後
に大上昇して噴射する、ロケットとすることも含めて、
人や荷物を運輸する用途や、排気温度を0℃以下とする
ことも含めて、熱や電気や冷熱を供給する用途に使用す
ることを目的とする。What is important as the performance of a gas turbine cycle is thermal efficiency and specific power.
The higher the pressure ratio, the higher the thermal efficiency is obtained. If the thermal efficiency (pressure ratio) is constant, the larger the amount of heat supplied to the cycle, the higher the specific output. That is, the increase in the pressure ratio and the specific output is greatly restricted by the heat-resistant limit temperature of the turbine. For this reason, the method of increasing the pressure ratio and supply heat quantity (fuel combustion mass) to the maximum without exceeding the heat-resistant limit temperature of the turbine is to convert most of the supply heat quantity (fuel heat quantity) into superheated steam and to use a steam turbine or the like. The thermal efficiency x specific output = pressure ratio x combustion gas mass = velocity x mass greatly increases (in Tanikawa Mechanics, mass x velocity works, high temperature decreases unit volume mass = decrease factor of work At the same time, when the combustion gas temperature falls below the turbine inlet heat resistant limit temperature,
Including a rocket that injects a superheated steam containing supercritical fluid, which is obtained by infinitely exchanging heat so as to be around 00 ° C. and injects the pressure by greatly increasing the pressure to about 10 times the pressure ratio,
It is intended to be used for transporting people or luggage, or for supplying heat, electricity or cold, including reducing the exhaust temperature to 0 ° C. or lower.
【0005】即ち、ガスタービンの圧力比及び、比出力
を増大するための障害は、供給熱量のうち燃料発熱量で
あり、燃料発熱量の用途は過熱蒸気や蒸気に変換する
と、各種蒸気タービンを含めて、限りなく多いため、先
の出願ではガスタービン燃焼器を長大化して、対応して
おりましたが、形状が複雑悪化するのに加えて、長大化
困難な用途も多いため、逆の小径多数蜂の巣状に設けて
短小化・高圧化し、燃焼ガスを内径内側から、ガスター
ビンに供給して、合理的円筒形状に構成すると共に、伝
熱面積を大増大した熱交換器としても兼用して、最上流
側多数の燃料供給手段により、燃料発熱量を過熱蒸気に
大変換して、ガスタービンの耐熱限界温度を越えること
なく、又は400℃前後まで限りなく熱交換して、圧力
比及び比出力を、極限まで増大させることができる機関
を提供し、例えば燃料燃焼質量を、最大で理論空燃比ま
で、従来技術の4倍前後に増大可能にして、圧力比及び
燃料燃焼質量の増大により、供給熱量のうち、ガスター
ビンの使用熱量を低減して、ガスタービンの熱効率及び
比出力を、上昇する装置を提供すると共に、外気熱エネ
ルギも過熱蒸気に変換して、燃焼ガスと燃焼ガス温度が
タービン耐熱限界温度以下となるように、熱交換して得
た過熱蒸気により、蒸気タービン圧縮機及び、蒸気ター
ビン及び、ガスタービンを駆動し、例えば各種車両を駆
動し、又は各種航空機を駆動し、又は各種船舶を駆動す
ることを目的とする。[0005] That is, the obstacle to increase the pressure ratio and the specific output of the gas turbine is the fuel calorific value of the supplied calorific value. When the fuel calorific value is converted into superheated steam or steam, various steam turbines are used. In the previous application, the length of the gas turbine combustor was increased to accommodate the infinite number of applications, but in addition to the complicated shape, there were many applications where it was difficult to increase the length. It is provided in the form of a large number of small-diameter honeycombs to reduce the length and pressure, supply combustion gas from the inside of the inner diameter to the gas turbine, and form a rational cylindrical shape, and also serve as a heat exchanger with a greatly increased heat transfer area. By the large number of fuel supply means on the most upstream side, the calorific value of the fuel is greatly converted to superheated steam, and heat exchange is performed without exceeding the heat-resistant limit temperature of the gas turbine or as much as possible up to around 400 ° C. Specific output An engine capable of increasing the fuel combustion mass, for example, up to a stoichiometric air-fuel ratio, about four times that of the prior art, and increasing the pressure ratio and the fuel combustion mass to increase the amount of heat supplied. In addition to providing a device that reduces the amount of heat used by the gas turbine and raises the thermal efficiency and specific output of the gas turbine, it also converts outside air heat energy into superheated steam, so that the combustion gas and the combustion gas temperature become the turbine heat resistant limit temperature. As described below, the superheated steam obtained by heat exchange drives the steam turbine compressor, the steam turbine, and the gas turbine, for example, drives various vehicles, or drives various aircraft, or drives various ships. The purpose is to drive.
【0006】ガスタービンの作動ガスとしての燃焼ガス
は、一般に空気の割合が非常に多く、理論空燃比の4倍
前後の空気を含む(以下4倍前後の空気を含むものに統
一して説明するが数値に限定するものではない)。即
ち、従来技術では、大量の熱エネルギを消費して圧縮し
た空気の、80%近くを無駄に排出し、加えて燃焼温度
の低減に使用して大損失となるため、熱交換により燃焼
用として圧縮した空気を、100%近くまで有効利用可
能にすると共に、圧縮空気の必要な別用途にはバイパス
を設けて対応し、熱交換・温度低下による、圧力比及び
燃料燃焼質量の大増大により、外気温度を含む供給熱量
のうち、ガスタービンの使用熱量を大低減して、使用ガ
ス質量を大増大し、ガスタービンの熱効率を3倍前後
に、大上昇すると共に比出力を大上昇し、燃焼ガスと、
燃焼ガス温度がガスタービンの耐熱限界温度以下になる
ように、熱交換して得た過熱蒸気により、蒸気タービン
及びガスタービンを駆動して、圧力を空気圧縮の10倍
前後に大上昇した、超臨界の蒸気条件を含む過熱蒸気の
使用により、総熱効率を2乃至3倍前後に大上昇すると
共に、比出力を大上昇することを目的とする。[0006] Combustion gas as a working gas of a gas turbine generally has a very high air ratio, and includes air that is about four times the stoichiometric air-fuel ratio. Is not limited to numerical values). That is, in the conventional technology, nearly 80% of the compressed air that consumes a large amount of heat energy is wastefully discharged, and in addition, it is used to reduce the combustion temperature, resulting in a large loss. Compressed air can be effectively used up to nearly 100%, and other applications requiring compressed air can be provided with a bypass. By heat exchange and temperature reduction, the pressure ratio and fuel combustion mass can be greatly increased. Of the supplied heat including the outside air temperature, the amount of heat used by the gas turbine is greatly reduced, the amount of gas used is greatly increased, the thermal efficiency of the gas turbine is increased by about three times, and the specific output is greatly increased, and the combustion is increased. Gas and
The steam turbine and gas turbine were driven by superheated steam obtained by heat exchange so that the combustion gas temperature was lower than the heat-resistant limit temperature of the gas turbine, and the pressure was greatly increased to about 10 times that of air compression. The purpose of the present invention is to greatly increase the total thermal efficiency by about 2 to 3 times and greatly increase the specific power by using superheated steam including critical steam conditions.
【0007】ガスタービン燃焼器を、小径多数蜂の巣状
に短小化して、伝熱面積を大増大した、熱交換器として
も兼用すると、圧力比が大きい程、ガスタービンの熱効
率が高くなり、同じ発熱量の燃料燃焼では、圧力比が大
きい程高温が得られるのに加えて、ガスタービン入り口
のガス温度が、400 C乃至1000 Cと高温程熱
交換も容易となる。このため、燃料供給量の増大を含め
て、最先端蒸気ガスタービン複合サイクル発電設備の、
廃熱回収熱交換器で回収する場合の、10倍以上の熱エ
ネルギ回収を可能にします。更に熱交換器の伝熱面積の
縮少短小化可能により、最上流側のみ燃料供給手段が可
能になります。高温高圧の雰囲気での困難なNOx低減
燃焼には、熱交換タービン入口燃焼ガス400℃では、
燃焼ガス容積が従来技術の略1/2になるため、燃料燃
焼質量4倍増に加えて、超臨界を含む蒸気乃至水噴射撹
拌燃焼として、燃焼ガス容積質量の大増大を図り、蒸気
冷却によるNOx低減燃焼も可能にします。更に圧力比
の上昇及び、熱交換ガスタービン排気温度の低下によ
る、排気損失の大幅な低減を可能にした、発熱量を極限
まで有効利用可能な、超高性能・超高熱効率の、蒸気ガ
スタービン合体機関を提供すると共に、磁気摩擦動力伝
達装置を最大限に活用して、動力伝達損失を極限まで低
減することを目的とする。When the gas turbine combustor is shortened in a honeycomb shape with a large number of small diameters and has a large heat transfer area, and is also used as a heat exchanger, the higher the pressure ratio, the higher the thermal efficiency of the gas turbine and the same heat generation. In the fuel combustion of a large amount, the higher the pressure ratio, the higher the temperature can be obtained, and the higher the gas temperature at the gas turbine inlet is 400 C to 1000 C, the easier the heat exchange becomes. For this reason, including the increase in fuel supply, the advanced steam gas turbine combined cycle power generation facilities
Waste heat recovery More than 10 times more heat energy recovery than with a heat exchanger. Furthermore, since the heat transfer area of the heat exchanger can be reduced and shortened, fuel supply means can be provided only on the most upstream side. For difficult NOx reduction combustion in a high temperature and high pressure atmosphere, at 400 ° C. of combustion gas at the heat exchange turbine inlet,
Since the combustion gas volume is reduced to approximately one half of that of the prior art, in addition to increasing the fuel combustion mass by 4 times, supercritical steam or water injection agitation combustion is used to achieve a large increase in the combustion gas volume mass. It also enables reduced combustion. In addition, a steam gas turbine with ultra-high performance and ultra-high thermal efficiency that enables the exhaust heat to be used to the utmost, enabling a significant reduction in exhaust loss by increasing the pressure ratio and lowering the heat exchange gas turbine exhaust temperature. It is an object of the present invention to provide a combined engine and minimize the power transmission loss by maximizing the use of a magnetic friction power transmission device.
【0008】[0008]
【課題を解決するための手段】従来技術ガスタービンの
作動ガスとしての燃焼ガスは、一般に空気の割合が非常
に多く、理論混合比の4倍前後の空気を含む。即ち、大
量の熱エネルギを消費して圧縮した空気の略80%を無
駄使いし、加えて燃焼温度の低減に使用して大損失とな
るため、小径多数蜂の巣状に短小化・高圧化した、燃焼
器兼熱交換器の熱交換伝熱面積を増大して、熱交換によ
る過熱蒸気変換により、燃焼用として圧縮した空気の略
100%を、燃焼に関与させて有効利用可能にします。
用途に合わせて燃焼器兼熱交換器を小径多数蜂の巣状に
短小化配置して、燃焼ガスをガスタービンの最上流側か
ら供給し、合理的な円筒形状を可能にすると共に、高圧
化及び燃料供給手段の最上流側のみ増設を容易にして、
該燃料供給量の最大を従来技術の4倍前後にして、燃焼
ガス容積質量を増大します。燃焼器兼熱交換器伝熱面積
を大増大して、燃焼ガス温度を限りなく過熱蒸気に変換
して、タービン入口耐熱限界温度以下から、更に400
℃前後まで単位容積を従来技術の略1/2として、排気
温度0℃前後とすることも含めて、供給燃焼ガス単位容
積質量の増大を図ります。該燃焼器外壁を導水管を含む
螺旋状の溶接構造水冷外壁又は、螺旋状の熔接構造水冷
外壁単位組立構造又は、螺旋状の水冷外壁単位組立構造
として、大きな圧力比の設定を含めて、高圧高温のNO
x低減困難な雰囲気での燃焼を、超臨界の蒸気乃至水噴
射撹拌燃焼を含めて、過熱蒸気を含む燃焼ガス容積質量
増大・NOx低減を確実にします。熱交換して得た超臨
界等の過熱蒸気を噴射するロケット等を含めて、多種用
途に使用します。The combustion gas as the working gas of the prior art gas turbine generally has a very high proportion of air, and contains about four times the stoichiometric mixture. That is, since about 80% of the compressed air which consumes a large amount of heat energy is wasted, and in addition, it is used for lowering the combustion temperature, resulting in a large loss. By increasing the heat exchange heat transfer area of the combustor and heat exchanger, the superheated steam conversion by heat exchange enables approximately 100% of the compressed air for combustion to participate in combustion and make it available for use.
The combustor and heat exchanger are arranged in a short, large number of honeycombs according to the application, and the combustion gas is supplied from the most upstream side of the gas turbine, enabling a reasonable cylindrical shape, as well as high pressure and fuel. It is easy to add only the most upstream side of the supply means,
The maximum fuel supply is about four times that of the conventional technology to increase the volume of combustion gas. The heat transfer area of the combustor / heat exchanger is greatly increased, and the combustion gas temperature is converted into superheated steam without limit.
The unit volume of the supplied combustion gas will be increased up to around 0 ° C, including reducing the exhaust gas temperature to around 0 ° C, reducing the unit volume to approximately half that of the conventional technology. The combustor outer wall is formed as a spiral welded water cooling outer wall including a water pipe or a spiral welded structure water cooled outer wall unit assembly structure, or a spiral water cooled outer wall unit assembly structure, including setting of a large pressure ratio. High temperature NO
x Combustion in atmospheres that are difficult to reduce, including supercritical steam or water-jet agitated combustion, ensures an increase in the volume of combustion gas including superheated steam and a reduction in NOx. Used for a variety of applications, including rockets that inject superheated steam such as supercritical fluid obtained by heat exchange.
【0009】該燃焼器兼熱交換器の設計事項としては、
最も小径とする場合は、水冷外壁導水管の末端部分を蒸
気管として過熱蒸気兼用とし、水冷外壁内径に応じてそ
の中に蒸気管を略螺旋状に、又は直線に近い螺旋状に設
けて、大幅に高圧の超高性能熱交換器としても使用し、
熱交換量が少ない場合は、水冷外壁導水管外周一列の燃
焼器兼熱交換器を、蜂の巣状配置となります。また、蜂
の巣状に円筒型燃焼器兼熱交換器を設けるため空き間が
できますが、該空き間を図にない空き間型燃焼器兼熱交
換器としてもよく、その場合は、図13(d)の水冷外
壁燃焼器兼熱交換器を使用します。該熱交換により、ガ
スタービン入口温度を、タービン耐熱限界温度以下、用
途に合わせて限りなく低下させ、燃焼用に圧縮した全圧
縮空気を理論空燃比燃焼に近づけて、燃料燃焼質量を4
倍前後まで増大可能にして、燃料発熱量の大部分を過熱
蒸気に変換して、超臨界の蒸気条件等を含めて、空気圧
縮の10倍近い圧力の上昇と、圧力比の高い雰囲気で
の、外気熱エネルギ回収を含む熱交換により、ボイラで
熱交換する場合の、2倍前後の熱エネルギ回収を図り、
熱効率及び比出力を大上昇して、燃料を節減し、燃焼ガ
スと、燃焼ガス温度がタービン耐熱限界温度以下から、
400℃前後となるように、熱交換して得た過熱蒸気に
より、ガスタービンや蒸気タービンや蒸気タービン圧縮
機を駆動して、該回転動力や推力により、プロペラや車
輪や発電機や機械等を回転して、各種航空機や自動車や
船舶や機械等を駆動すると共に、用途により過熱蒸気排
気や燃焼ガス排気や圧縮空気の噴射推力により、各種航
空機や船舶等を浮揚推進する装置等を、夫夫を制御する
制御装置を含めて提供します。The design items of the combustor / heat exchanger include:
In the case of the smallest diameter, the end portion of the water-cooled outer wall water conduit is used as a superheated steam as a steam pipe, and the steam pipe is provided in a substantially spiral shape or a nearly linear spiral shape according to the inner diameter of the water-cooled outer wall, It is also used as an ultra-high-performance heat exchanger with significantly higher pressure,
When the heat exchange amount is small, the combustor and heat exchanger in the outer row of the water-cooled outer water conduit are arranged in a honeycomb structure. In addition, since a cylindrical combustor / heat exchanger is provided in a honeycomb shape, an empty space can be created. However, the empty space may be an unillustrated empty combustor / heat exchanger. In this case, FIG. d) Use a water-cooled external wall combustor / heat exchanger. By this heat exchange, the gas turbine inlet temperature is lowered below the turbine heat-resistant limit temperature as much as possible according to the application, and the total compressed air compressed for combustion is brought close to the stoichiometric air-fuel ratio combustion to reduce the fuel combustion mass by 4%.
And convert most of the fuel calorific value to superheated steam, including supercritical steam conditions, a pressure increase of nearly 10 times that of air compression, and in an atmosphere with a high pressure ratio. By using heat exchange including outside air heat energy recovery, the heat energy recovery in a boiler is about twice that of heat exchange,
By greatly increasing thermal efficiency and specific power, saving fuel, combustion gas and combustion gas temperature from below the turbine heat resistance limit temperature,
A superheated steam obtained by heat exchange drives a gas turbine, a steam turbine, or a steam turbine compressor so that the temperature becomes about 400 ° C., and propellers, wheels, a generator, a machine, and the like are driven by the rotational power and thrust. A variety of devices that rotate and drive various aircraft, automobiles, ships, machines, etc., and also levitate and propell various aircraft, ships, etc. by the thrust of superheated steam exhaust, combustion gas exhaust, or compressed air depending on the application. Provide a control unit that controls the
【0010】又、空気を圧縮する場合と水を圧縮する場
合を比較するとき水蒸気が略1700分の1に凝縮され
た水を圧縮するのが遥かに有利であり、超臨界の蒸気条
件まで保有熱量(保有熱エネルギ量)を増大可能なのに
加えて、空気圧縮の10倍前後の圧力の過熱蒸気として
放出すると、1700倍を遥かに越える大容積・大速度
として、熱効率大上昇が得られるため、圧縮した空気の
略全部を、燃焼に有効利用する最良の方法が、増大供給
燃料の略全部を含めて、最も効率良く過熱蒸気に変換し
て、使用することである。従って超高性能の燃焼器兼熱
交換器を得るため、できるだけ高温高圧の雰囲気で、燃
焼及び熱交換して限りなく低温にすることで、最も効率
良く熱交換すると共に、冷却によるNOx低減燃焼を可
能にして、同一発熱量の燃料から取り出す熱量(過熱蒸
気)を、外気熱エネルギも含めた最大にして、最も効率
良く膨大な過熱蒸気を得ると共に、ガスタービンを駆動
する燃焼ガス質量を最大に、該熱交換により駆動燃焼ガ
ス熱量を最小にして、最も熱効率良くガスタービンを駆
動すると共に、該排気温度0℃前後を含めて、排気熱量
を大幅に低温の排気熱量として、排気損失を大低減する
と共に、熱と電気と冷熱の供給設備としても使用し、圧
縮空気の必要な用途にはバイパスを設けて使用し、また
通常使用の歯車装置に換えて、先の出願の磁気摩擦動力
伝達装置を適宜に、又は全面的に使用することで、あら
ゆる補機を含めて、最も効率良く動力を伝達する駆動装
置として、全動翼を含む蒸気ガスタービンサイクルの最
高熱効率を、2倍乃至3倍前後に大上昇を図ります。Further, when comparing the case of compressing air with the case of compressing water, it is much more advantageous to compress water in which water vapor is condensed to about 1/700, In addition to being able to increase the amount of heat (the amount of retained heat energy), if it is released as superheated steam at a pressure about 10 times that of air compression, a large increase in thermal efficiency can be obtained as a large volume and a large speed far exceeding 1700 times. The best way to effectively utilize substantially all of the compressed air for combustion is to convert and use superheated steam with the highest efficiency, including substantially all of the increased fuel supply. Therefore, in order to obtain an ultra-high-performance combustor / heat exchanger, combustion and heat exchange are performed at as low a temperature as possible in a high-temperature and high-pressure atmosphere to achieve the most efficient heat exchange and reduce NOx combustion by cooling. It is possible to maximize the amount of heat (superheated steam) extracted from the fuel with the same calorific value, including external air heat energy, to obtain a huge amount of superheated steam most efficiently and to maximize the mass of combustion gas driving the gas turbine. The heat exchange minimizes the driving combustion gas calorific value, drives the gas turbine with the highest thermal efficiency, and significantly lowers the exhaust calorific value including exhaust gas temperature around 0 ° C, greatly reducing exhaust loss. It is also used as heat, electricity and cold heat supply equipment, and is provided with a bypass for applications requiring compressed air. By using the friction power transmission device appropriately or entirely, the maximum thermal efficiency of the steam gas turbine cycle including all the rotor blades as the drive device that transmits the power most efficiently, including all the auxiliary machines, is 2 We aim for a large rise around 2 to 3 times.
【0011】[0011]
【発明の実施の形態】発明の実施の形態や実施例を、図
面を参照して説明するが、実施形態や実施例と、既説明
と、その構成が略同じ部分には、同一の名称又は符号を
付してその重複説明は省略し、特徴的な部分や説明不足
部分は、順次追加説明する。又、発明の意図する所及び
予想を具体的に明快に説明するため、数字で説明する部
分がありますが、数字に限定するものではありません。
又、この発明に使用する燃焼器兼熱交換器4は、先の出
願で長大化していたものを、逆に小径多数蜂の巣状に短
小化配置して、熱交換器伝熱面積を拡大し、該燃焼ガス
を、タービン翼列最上流側に供給する構成として、合理
的な形状にします。図1乃至図4・図13・図14の如
く、水冷外壁26を複数の導水管1を含む螺旋状の熔接
構造又は、螺旋状の溶接構造を含む水冷外壁単位52組
立構造として、小径多数蜂の巣状に短小化配置した、燃
焼器兼熱交換器4として、比較的大きな圧力比を設定し
て、内部に蒸気管6を略螺旋状に、又は直線に近い螺旋
状に設けて、例えば図にない発電機兼電動機等を設け
て、熱と電気と冷熱の併給設備や、始動装置としても兼
用すると共に、小径多数蜂の巣状に短小化配置した、燃
焼器兼熱交換器4として、燃料供給手段27を、夫夫の
最上流側に設ける等、多数とすることで燃料供給手段2
7の増設を容易とし、熱交換速度の大上昇を図ります。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and embodiments of the present invention will be described with reference to the drawings. The reference numerals are used to omit duplicate explanations, and the characteristic parts and the parts that are not explained are added and explained sequentially. In addition, some parts are described with numbers in order to specifically and clearly explain the intended and expected aspects of the invention, but are not limited to numbers.
Further, the combustor / heat exchanger 4 used in the present invention, which has been enlarged in the previous application, is conversely shortened and arranged in a small-diameter multiple-honeycomb shape to increase the heat exchanger heat transfer area, The combustion gas is supplied to the uppermost stream side of the turbine cascade, and has a reasonable shape. As shown in FIGS. 1 to 4, 13, and 14, the water-cooled outer wall 26 is formed as a spiral welded structure including a plurality of water pipes 1 or a water-cooled outer wall unit 52 assembly structure including a spiral welded structure, and a small-diameter multiple honeycomb. A relatively large pressure ratio is set as the combustor / heat exchanger 4 arranged in a short shape, and the steam pipe 6 is provided inside in a substantially spiral shape or in a nearly linear spiral shape. As a combustor / heat exchanger 4, which is provided with no generator / motor, etc., is also used as a heat / electricity / cold heat supply facility or a starting device, and is arranged in a short shape in a honeycomb structure with many small diameters. 27 is provided on the most upstream side of each husband and the like, and the number of fuel supply means 2 is increased.
7 can be easily added and the heat exchange rate can be greatly increased.
【0012】図1・図2を参照して、全動翼・蒸気ガス
タービン合体機関中核部の実施例を説明すると、全動翼
の発想は、自動車を手で押して移動する場合、ブレーキ
を引いた状態で押すと非常に疲れますが、仕事量は0で
あり、ブレーキを解除して押すと容易に移動できます。
従って、圧縮機やタービンに静翼があると、エネルギの
大損失となるため、静翼を動翼に置換して全動翼とし
て、置換動翼を外側軸装置に結合し、従来動翼を内側軸
装置に結合して、互いに反対方向に回転する、内側軸装
置と外側軸装置を、導水管1などの冷却装置を有する磁
気摩擦動力伝達装置14により結合して、最も効率良く
2軸を2重反転駆動すると共に、周速を略半分づつ分担
して、外径を略2倍にして流体通路を略4倍として、比
出力を大増大すると共に、熱効率の大上昇を図る、又は
周速を従来技術と略同じにして、動翼間相対速度を略2
倍にして、比出力及び熱効率の大上昇を図る、又は周速
を従来技術の略半分づつにして、許容応力が略4分の1
の、安価で静粛等、多様な設計(業務用または家庭用の
熱と電気と冷熱の併給設備等)を可能にしながら、熱効
率の大上昇を図るものです。Referring to FIG. 1 and FIG. 2, an embodiment of a core portion of a combined blade / steam gas turbine engine will be described. The idea of a fixed blade is that when a vehicle is pushed by hand and the vehicle is moved, a brake is applied. Pushing it in a state of being very tired, but the workload is 0, and you can move easily by releasing the brake and pushing.
Therefore, if a compressor or a turbine has a stationary blade, a large loss of energy will occur.Therefore, the stationary blade is replaced with a moving blade as a whole moving blade, and the replaced moving blade is connected to an outer shaft device. The inner shaft device and the outer shaft device which are connected to the inner shaft device and rotate in opposite directions to each other are connected by a magnetic friction power transmission device 14 having a cooling device such as the water pipe 1 so that the two shafts are most efficiently connected. In addition to the double inversion driving, the peripheral speed is shared by approximately half, the outer diameter is approximately doubled and the fluid passage is approximately quadrupled, and the specific output is greatly increased, and the thermal efficiency is greatly increased. The relative speed between the moving blades is approximately 2
Doubling the specific power and thermal efficiency, or reducing the peripheral speed by approximately half of that of the prior art to reduce the allowable stress to approximately one-fourth.
It allows for a variety of designs (combined use of heat, electricity and cold for business or home use), such as low-cost, quiet, etc., while greatly increasing thermal efficiency.
【0013】図1の蒸気ガスタービン合体機関中核部の
第1実施例及び、図5乃至図8の蒸気タービン圧縮機の
実施例及び、図9乃至図12の蒸気ガスタービン合体機
関の実施形態を参照して説明します。図1全動翼圧縮機
右端の置換した外側圧縮機動翼群1段16より、通常の
如く空気を吸入して、偶数段の内側圧縮機動翼群17
と、奇数段の外側圧縮機動翼群16が協力して、図にな
い公知の空気冷却を含めて、全動翼により効率良く空気
を圧縮して、該圧縮空気15を、外側圧縮機動翼群終段
16より、環状の出口21を介して、環状の受け口2
2、環状の圧縮空気溜8より、小径多数蜂の巣状に短小
化配置して、伝熱面積の増大した、燃焼器兼熱交換器4
に供給し、供給された高圧縮空気15は、図にない公知
の制御装置からの指令により、該夫夫の上流側の、蒸気
を含む燃料供給手段27から供給される、最大で従来技
術の4倍前後の燃料と、撹拌混合燃焼・超臨界を含む蒸
気噴射撹拌NOx低減燃焼して、略理論空燃比燃焼も含
めて燃焼させて、燃焼ガス温度がタービン耐熱限界温度
以下から、400℃前後となるように、燃焼器兼熱交換
器4内で燃焼制御しながら、用途に合わせた燃焼及び熱
交換して、導水管1の夫夫の水冷外壁26や、蒸気管6
により、燃焼ガス10を冷却熱交換し、NOx低減燃焼
で得た燃焼ガス10を、夫夫の燃焼器兼熱交換器4よ
り、環状の燃焼ガス溜9及び環状の噴口群24を介し
て、環状の受け口23を有する、全動翼ガスタービンの
外側タービン動翼群1段19に供給して、順次下流側に
回転動力を発生させて、用途により排気温度0℃前後を
含めて排気します。A first embodiment of the core portion of the combined steam gas turbine engine shown in FIG. 1, an embodiment of the steam turbine compressor shown in FIGS. 5 to 8, and an embodiment of the combined steam gas turbine engine shown in FIGS. See and explain. As shown in FIG. 1, air is sucked in as usual from the first stage 16 of the replaced outer compressor blade group at the right end of the full blade compressor, and the inner compressor blade group 17 of the even-numbered stage is sucked.
And the odd-numbered stages of outer compressor blade groups 16 cooperate to efficiently compress air by all the blades, including known air cooling (not shown), and convert the compressed air 15 to the outer compressor blade group. From the final stage 16, through the annular outlet 21, the annular receptacle 2
2. A combustor / heat exchanger 4 having a small diameter and a large number of honeycombs arranged in a short shape from the annular compressed air reservoir 8 to increase the heat transfer area.
The high-compressed air 15 supplied is supplied from a fuel supply means 27 containing steam at the upstream side of each of them according to a command from a known control device (not shown). Around four times as much fuel and agitated mixed combustion / supercritical steam injection agitation NOx reduction combustion and combustion including near stoichiometric air-fuel ratio combustion, from combustion gas temperature below the turbine heat resistant limit temperature to around 400 ° C While performing combustion control in the combustor / heat exchanger 4, combustion and heat exchange according to the application are performed so that the water cooling outer wall 26 and the steam
As a result, the combustion gas 10 is cooled and heat-exchanged, and the combustion gas 10 obtained by the NOx reduction combustion is supplied from the respective combustor / heat exchanger 4 through the annular combustion gas reservoir 9 and the annular nozzle group 24, It is supplied to the outer turbine blade group 1 stage 19 of the all-blade gas turbine having an annular receiving port 23, and generates rotational power sequentially downstream, and exhausts the exhaust gas including the exhaust temperature around 0 ° C depending on the application. .
【0014】大部分の供給熱エネルギは過熱蒸気5に変
換して、夫夫の燃焼器兼熱交換器4の、蒸気管6及び制
御装置を含む蒸気加減弁7を介して、図9過熱蒸気溜3
0又は、図5乃至図8の全動翼を含む蒸気タービン圧縮
機の、蒸気タービンの最上流側より、外側タービン動翼
群1段19又は、内側タービン静翼又は、従来技術静翼
に噴射して、通常の如く順次下流側を駆動して、順次大
きな回転出力を発生させて、図の各種圧縮機を強力に駆
動します。下流側に供給されて湿り蒸気乃至水滴となっ
た過熱蒸気は、従来技術静翼を使用したものを除き、外
側タービン動翼群19より、遠心力により外周側に噴射
します。即ち、ガスタービンと蒸気タービンを駆動して
回転力を得ると共に、該夫夫の排気を噴出して、右前方
の空気を左後方に強力に噴射して、回転力や浮揚推進力
を必要とする各種用途、例えばヘリコプターやジェット
機等の各種航空機や、各種船舶等の噴射推進に使用し、
又は、航空機と船舶の中間的なもの等を、浮揚噴射推進
する用途に使用し、又は、図9過熱蒸気溜30及び噴口
29を設けて、過熱蒸気を噴射するロケットとしても使
用し、又は、プロペラや車輪や発電機や機械等を回転駆
動する用途に使用して、圧力が従来空気圧縮機の10倍
に近い過熱蒸気により、熱効率及び推進効率及び浮揚推
進効率を大上昇する、公知の各種制御装置を有する、全
動翼・蒸気ガスタービン合体機関中核部とします。Most of the supplied heat energy is converted into superheated steam 5 and is passed through a steam control valve 7 including a steam pipe 6 and a control device of each of the combustor / heat exchanger 4, as shown in FIG. Pool 3
Injection from the most upstream side of the steam turbine of the steam turbine compressor including all the moving blades of FIGS. 5 to 8 to the outer turbine moving blade group one stage 19, the inner turbine stationary blade, or the prior art stationary blade. Then, by sequentially driving the downstream side as usual, a large rotation output is sequentially generated, and the various compressors in the figure are strongly driven. The superheated steam which has been supplied to the downstream side and turned into wet steam or water droplets is injected from the outer turbine blade group 19 to the outer peripheral side by centrifugal force except for those using the conventional stationary blade. That is, the gas turbine and the steam turbine are driven to obtain a rotational force, and the respective exhausts are ejected, and the right front air is strongly ejected to the left rear to require the rotational force and the levitation propulsion force. Various applications, such as helicopters and jet aircraft, and various types of ships used for propulsion,
Or, an intermediate between an aircraft and a ship, or the like, is used for levitation injection propulsion, or is used as a rocket that injects superheated steam by providing a superheated steam reservoir 30 and an injection port 29 in FIG. 9, or A variety of well-known types that are used for rotating driving propellers, wheels, generators, machines, etc., and greatly increase thermal efficiency, propulsion efficiency and levitation propulsion efficiency by superheated steam whose pressure is nearly 10 times that of conventional air compressors. It is the core of an all-blade / steam gas turbine combined engine that has a control unit.
【0015】図1を参照して別の説明をすると、燃焼器
兼熱交換器4の伝熱面積増大容易に小径多数蜂の巣状に
短小化配置して、軽量高圧容器を容易に、燃料供給手段
27を最大で従来技術の4倍前後にして、最上流側に設
ける等、増設容易に熱交換増大容易に設けます。中央左
右に夫夫磁気摩擦動力伝達装置14を設けて、夫夫内側
軸装置に固着して、該外周に環状に設けた、外側圧縮機
動翼群終段16及び、外側タービン動翼群1段19を固
着した、外側軸装置を夫夫回転自在に外嵌して、夫夫互
いに反対方向に回転する2軸を、磁気摩擦動力伝達装置
14により、夫夫最適回転比で結合して、内側軸装置に
内側圧縮機動翼群終段17及び、内側タービン動翼群2
段20を固着して、以後外側軸装置の外側圧縮機動翼群
奇数終段16に、外側圧縮機動翼群奇数段16を固着
し、内側圧縮機動翼群終段17に、内側圧縮機動翼群偶
数段17を固着する、というように交互に固着します。
最も効率良く動力を伝達するため、磁気摩擦動力伝達装
置を含む駆動装置により、全動翼・圧縮機を構成させま
す。そして前記外側軸装置の外側タービン動翼群1段1
9に、外側タービン動翼群奇数段19を固着し、内側タ
ービン動翼群2段20に、内側タービン動翼群偶数段2
0を固着するというように、交互に固着して、内側ター
ビン動翼群偶数終段20を、内側軸装置に固着して、外
側タービン動翼群奇数終段19を、外側軸装置に固着し
て、内側軸装置に回転自在に外嵌枢支して、全動翼・蒸
気ガスタービン合体機関の、中核部を構成させます。Referring to FIG. 1, another description will be given. The heat transfer area of the combustor / heat exchanger 4 can be easily increased and the small-diameter multi-honeycomb arrangement can be easily shortened, so that the lightweight high-pressure vessel can be easily provided with fuel supply means. 27 is about 4 times as large as the conventional technology, and is installed on the most upstream side. A magnetic friction power transmission device 14 is provided on each of the left and right sides of the center, and each is fixed to the inner shaft device and is provided annularly on the outer periphery. The outer shaft device to which the fixing shaft 19 is fixed is externally rotatably fitted to each other, and the two shafts rotating in opposite directions to each other are connected to each other by the magnetic friction power transmission device 14 at an optimum rotation ratio. The inner compressor rotor blade group final stage 17 and the inner turbine rotor blade group 2
The stage 20 is fixed, and the outer compressor blade group odd-numbered stage 16 is fixed to the outer compressor blade group odd-numbered final stage 16 of the outer shaft device. The even stages 17 are fixed alternately.
In order to transmit power most efficiently, a drive unit including a magnetic friction power transmission unit is used to configure the entire moving blade and compressor. And an outer turbine rotor blade group 1 stage 1 of the outer shaft device.
9, the outer turbine blade group odd-numbered stage 19 is fixed, and the inner turbine blade group second stage 20 is fixed to the inner turbine blade group even-numbered stage 2.
0, the inner turbine blade group even-numbered final stage 20 is fixed to the inner shaft device, and the outer turbine blade group odd-numbered final stage 19 is fixed to the outer shaft device. And rotatably fitted on the inner shaft device to form the core of the combined blade and steam gas turbine engine.
【0016】図2を参照して、バイパス付加全動翼・蒸
気ガスタービン合体機関中核部の、第2実施例を説明す
る。従来技術では、大量の熱エネルギを消費して燃焼用
として圧縮した空気の、80%近くを利用することな
く、無駄に(燃焼温度を逆に低下させて)排出して大損
失となるため、燃焼用として圧縮した空気を、燃焼に1
00%有効利用可能にすると共に、燃焼用以外に使用す
る圧縮空気15は、バイパス28を設けて、別途使用す
ることで、比出力を極限まで増大して、熱効率の大上昇
を図るものです。即ち、従来技術ガスタービンの、作動
ガスとしての燃焼ガスは、一般に空気の割合が非常に多
く、理論空燃比の4倍前後の空気を含むため、タービン
の耐熱限界温度を越えることなく、燃焼用圧縮空気を1
00%燃焼に利用するためには、供給した熱量の大部分
を、過熱蒸気に変換利用することを必須とします。そこ
でこの発明は、燃焼器兼熱交換器4を、小径多数蜂の巣
状に短小化配置して、伝熱熱交換面積を増大し、高圧化
容易・燃料供給増大容易として、供給熱量の大部分を過
熱蒸気に変換可能にすると共に、該水冷外壁26を、少
なくとも1本以上複数の導水管1を含む、螺旋状の熔接
構造又は、溶接構造を含む、螺旋状導水管1の水冷外壁
単位52の組立て構造とし、圧力比の大上昇及び、超臨
界を含む過熱蒸気の噴射を可能にして、比出力を大増大
すると共に、燃焼用に圧縮した空気の略全部を、燃焼に
有効使用可能にし、圧縮空気の必要な別用途には、バイ
パスを設けて別使用とし、回転力を必要とする用途に
は、出力軸12を設けて回転動力を取り出し、空気圧縮
の無駄を全廃して熱効率の大幅上昇を図ります。Referring to FIG. 2, a description will be given of a second embodiment of the core portion of the combined engine with all the blades and the steam gas turbine combined with the bypass. In the prior art, a large amount of heat energy is consumed and wasteful (reversely lowering the combustion temperature) is discharged without using nearly 80% of the compressed air for combustion, resulting in a large loss. Air compressed for combustion is used for combustion.
The compressed air 15 used for purposes other than combustion is provided with a bypass 28 and used separately to increase the specific output to the utmost limit and greatly increase the thermal efficiency. That is, since the combustion gas as the working gas of the prior art gas turbine generally has a very high air ratio and contains air at about four times the stoichiometric air-fuel ratio, the combustion gas does not exceed the heat-resistant limit temperature of the turbine. 1 compressed air
In order to use it for 00% combustion, it is essential to convert most of the supplied heat to superheated steam. In view of this, the present invention arranges the combustor / heat exchanger 4 in the form of a honeycomb having a small diameter and a large number of honeycombs, thereby increasing the heat transfer heat exchange area, making it easy to increase the pressure and increasing the fuel supply. The water-cooling outer wall unit 52 of the helical water pipe 1 includes a helical welded structure or a welded structure including at least one or more water pipes 1 and a water-cooled outer wall 26 of the water-cooled outer wall unit 52. With an assembled structure, enabling a large increase in pressure ratio and injection of superheated steam including supercritical, greatly increasing the specific output, and making almost all of the air compressed for combustion available for combustion, For applications requiring compressed air, a bypass is provided for separate use. For applications requiring rotational force, an output shaft 12 is provided to extract rotational power, eliminating waste of air compression and greatly increasing thermal efficiency. Try to rise.
【0017】図2・図5乃至図12を参照して別の説明
をする。バイパス28を含む右端の全動翼圧縮機の、置
換した外側圧縮機動翼群1段16より、通常の如く空気
を吸入して、偶数段の内側圧縮機動翼群17と、奇数段
の外側圧縮機動翼群16が協力して、全動翼により効率
良く空気を圧縮して、圧縮空気の必要な別用途には、用
途に応じて適宜に設けた、バイパス28通路より最適供
給し、燃焼用の圧縮空気15は、全動翼圧縮機の環状の
出口21から、小径多数蜂の巣状に高圧化配置された、
夫夫の燃焼器兼熱交換器4の、環状の受け口22に供給
します。供給された高圧縮空気15は、環状の圧縮空気
溜8に貯蔵され、夫夫燃焼器兼熱交換器4の最上流側
の、燃料供給手段27から供給される、最大で従来技術
の4倍前後の供給燃料と、撹拌混合燃焼を略理論空燃比
燃焼も含めて行い、熱交換伝熱面積の拡大した燃焼器兼
熱交換器4内で、燃焼制御燃焼して熱交換すると共に、
導水管1の夫夫の水冷外壁26や、蒸気管6により、熱
交換冷却してNOx低減燃焼とします。燃焼ガス温度
が、タービン耐熱限界温度以下又は、400℃前後とな
るように、熱交換して得た燃焼ガス10は、夫夫の燃焼
器兼熱交換器4より、環状の燃焼ガス溜9を介して、環
状の受け口23に、回転自在に挿入れ気密保持された、
環状の噴口群24より、置換した外側タービン動翼群1
段19及び、内側タービン動翼群2段20を含む、下流
側に順次噴射して、通常の如く大きな回転動力を発生さ
せます。Another explanation will be given with reference to FIGS. 2 and 5 to 12. Air is sucked in as usual from the replaced outer compressor blade group 1 stage 16 of the rightmost full blade compressor including the bypass 28, and the even-numbered inner compressor blade group 17 and the odd-numbered outer compressor The moving blade group 16 cooperates to efficiently compress the air by all the moving blades, and for other applications requiring compressed air, optimally supplies compressed air from a bypass 28 passage provided appropriately according to the application. Compressed air 15 is arranged in a high pressure manner in the form of a large number of small-diameter honeycombs from an annular outlet 21 of the full-blade compressor.
It is supplied to the annular receiving port 22 of both the combustor and heat exchanger 4. The supplied high compressed air 15 is stored in the annular compressed air reservoir 8, and is supplied from the fuel supply means 27 at the most upstream side of the combustor / heat exchanger 4. The fuel mixture before and after and the agitated mixed combustion including the substantially stoichiometric air-fuel ratio combustion are performed, and in the combustor / heat exchanger 4 having an enlarged heat exchange heat transfer area, combustion controlled combustion is performed to exchange heat.
Heat exchange cooling is performed by the water cooling outer wall 26 and the steam pipe 6 of each of the water guide pipes 1 to achieve NOx reduction combustion. The combustion gas 10 obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature or around 400 ° C. is supplied from the respective combustor / heat exchanger 4 to the annular combustion gas reservoir 9. Through the ring-shaped receiving port 23, rotatably inserted and airtightly held,
Outer turbine blade group 1 replaced from annular nozzle group 24
Injects sequentially to the downstream side, including stage 19 and the second stage 20 of the inner turbine blade group, to generate large rotating power as usual.
【0018】タービンの耐熱限界温度以下又は400℃
前後となるように、熱交換して得た過熱蒸気5は、夫夫
の燃焼器兼熱交換器4の、蒸気加減弁7を介して、図5
乃至図8の蒸気管6より、図10・図11の如く、全動
翼を含む蒸気タービン圧縮機の、蒸気タービン最上流側
に供給し、順次下流側を駆動して、大きな回転力を発生
し、該全動翼を含む蒸気タービンにより、全動翼を含む
圧縮機を駆動して、推力乃至回転力を発生し、ターボシ
ャフトエンジン及び、ターボプロップエンジン及び、タ
ーボジェットエンジン及び、ターボファンエンジン及
び、船舶浮揚推進装置等として、各種中核部と共に、各
種航空機及び各種船舶等に使用します。同様に図9で
は、全動翼を含む蒸気ガスタービン合体機関中核部と、
導水管1を螺旋状円筒状に密集して設けた、過熱蒸気溜
30及び噴口29を、止め弁13・13間で切離し可能
にすることで、ロケットを構成します。同様に図12で
は、全動翼を含む蒸気タービンを駆動して、該回転力及
び中核部回転力により、主としてプロペラや車輪や発電
機や機械等を、駆動する用途に使用し、推力・浮揚力を
同時利用してもよく、排気の熱利用等を図る、熱と電気
と冷熱の併給設備としても使用し、公知の各種制御装置
を有する、全動翼・蒸気ガスタービン合体機関とし、第
1実施例と同様に多数用途に使用します。Below the heat-resistant limit temperature of the turbine or 400 ° C.
The superheated steam 5 obtained by heat exchange so as to be before and after is passed through the steam control valve 7 of each of the combustor / heat exchanger 4 as shown in FIG.
As shown in FIGS. 10 and 11, the steam is supplied from the steam pipe 6 of FIG. 8 to the most upstream side of the steam turbine of the steam turbine compressor including all the moving blades, and sequentially drives the downstream side to generate a large torque. The steam turbine including all the moving blades drives a compressor including all the moving blades to generate a thrust or a rotating force, thereby generating a turboshaft engine, a turboprop engine, a turbojet engine, and a turbofan engine. And as a levitation propulsion device for ships, it is used for various aircraft, various ships, etc. together with various core parts. Similarly, in FIG. 9, the core portion of the combined engine of the steam gas turbine including all the rotor blades,
The rocket is constructed by allowing the superheated steam reservoir 30 and the injection port 29, in which the water pipes 1 are densely arranged in a spiral cylindrical shape, to be separable between the stop valves 13 and 13. Similarly, in FIG. 12, the steam turbine including all the moving blades is driven, and the propeller, the wheel, the generator, the machine, and the like are mainly used for driving the propeller, the wheel, the generator, the machine, and the like by the torque and the core section torque. The power may be used at the same time, the heat of the exhaust gas is used, etc., it is also used as a combined supply of heat, electricity and cold, and it has a well-known various control device. Used for many applications as in the first embodiment.
【0019】図2を参照して別の説明をする。小径多数
蜂の巣状に短小化配置した、燃焼器兼熱交換器4を設け
て、その内側の内側軸装置中央左右の、磁気摩擦動力伝
達装置14に、夫夫の内側軸装置を連結して、該左右夫
夫の内側軸装置に、環状に設けた外側圧縮機動翼群終段
16及び、外側タービン動翼群1段19を固着した、外
側軸装置を回転自在に外嵌枢支して、夫夫互いに反対方
向に回転する2軸を、前記磁気摩擦動力伝達装置14に
より、最適回転比で夫夫結合して、夫夫の内側軸装置
に、内側圧縮機動翼群終段17及び、内側タービン動翼
群2段20を固着して、以後外側圧縮機動翼群奇数段1
6及び、内側圧縮機動翼群偶数段17を交互に固着しま
すが、燃焼用以外に使用する圧縮空気用バイパスとし
て、外径を拡大したものを含めて交互に固着し、外側圧
縮機動翼群1段16に、外側軸装置を固着し、内側軸装
置に回転自在に外嵌枢支して、磁気摩擦動力伝達装置1
4により、最適の回転比で結合されて、最も効率良く2
軸を駆動する、全動翼圧縮機を構成させます。また外側
タービン動翼群1段19には、外側タービン動翼群奇数
段19を固着し、内側タービン動翼群2段20に、内側
タービン動翼群偶数段20を固着するというように、交
互に固着して、内側タービン動翼群偶数終段20を、内
側軸装置に固着して、外側タービン動翼群奇数終段19
を、外側軸装置に固着して、内側軸装置に回転自在に外
嵌枢支して、バイパス付加全動翼・蒸気ガスタービン合
体機関の、中核部を構成します。Another explanation will be given with reference to FIG. A combustor / heat exchanger 4 is provided, which is shortened and arranged in the shape of a large number of small-diameter honeycombs, and the respective inner shaft devices are connected to a magnetic friction power transmission device 14 on the inner left and right sides of the inner shaft device at the inside thereof. The outer shaft device, in which the outer compressor blade group final stage 16 and the outer turbine blade group 1 stage 19 provided annularly are fixed to the left and right inner shaft devices, is rotatably fitted to the outer shaft device. The two shafts rotating in mutually opposite directions are respectively connected by the magnetic friction power transmission device 14 at an optimum rotation ratio, and the inner compressor rotor blade group final stage 17 and the inner shaft are connected to the respective inner shaft devices. The turbine rotor blade group 2 stage 20 is fixed, and the outer compressor rotor blade group odd stage 1
6, and even-numbered stages 17 of the inner compressor rotor group are alternately fixed, but alternately fixed, including the one with an enlarged outer diameter, as a bypass for compressed air used for purposes other than combustion. The outer shaft device is fixed to the first stage 16 and is rotatably fitted to the inner shaft device so as to be rotatably fitted to the outer shaft device.
4, it is coupled at the optimal rotation ratio, and the most efficient
The whole blade compressor that drives the shaft is configured. Also, the outer turbine bucket group 1 stage 19 has an outer turbine bucket group odd number stage 19 fixed thereto, and the inner turbine bucket group 2 even stage 20 has an inner turbine bucket group even number stage 20 fixed thereto. And the inner turbine blade group even-numbered final stage 20 is fixed to the inner shaft device, and the outer turbine blade group odd-numbered final stage 19 is fixed to the inner shaft device.
Is fixed to the outer shaft device, and is rotatably fitted to the inner shaft device so as to form a core part of the combined engine with all blades and steam gas turbine with bypass.
【0020】図3を参照して、蒸気ガスタービン合体機
関の中核部の、第3実施例を説明する。図1の第1実施
例との相違点は、全動翼・蒸気ガスタービン合体機関の
中核部を、蒸気ガスタービン合体機関の中核部として、
置換動翼を、従来技術の静翼に還元して、従来技術の圧
縮機とガスタービンに、小径多数蜂の巣状に短小化配置
した、燃焼器兼熱交換器を具備して、駆動可能としたも
のです。従って図1の第1実施例から第3実施例までの
要素を、夫夫適宜に置換して、第1実施例と同様に多種
用途の、例えば車両の移動及び船舶や航空機の推進用に
使用します。Referring to FIG. 3, a description will be given of a third embodiment of the core portion of the combined steam and gas turbine engine. The difference from the first embodiment of FIG. 1 is that the core of the combined rotor / steam gas turbine engine is the core of the steam gas turbine combined engine.
The replacement rotor blades are reduced to conventional stator vanes, and the conventional compressor and gas turbine are provided with a combustor / heat exchanger, which is arranged in a short shape in a small-diameter multi-honeycomb configuration, and is drivable. Thing. Therefore, the elements from the first embodiment to the third embodiment in FIG. 1 are appropriately replaced with each other to be used for various purposes like the first embodiment, for example, for moving a vehicle and propelling a ship or an aircraft. To do.
【0021】従来技術、蒸気・ガスタービン複合サイク
ル火力発電設備に近い、図3・図12を参照して、最先
端火力発電設備として使用する場合を、従来技術と比較
説明する。図3の従来ガスタービンを利用した第3実施
例で、発電機を駆動の場合、燃焼器兼熱交換器4を、小
径多数蜂の巣状に短小化配置して、用途に合せた多様な
熱交換を可能にし、圧力比60圧縮比18前後・外気温
度0℃で、600℃の空気温度が得られるため、タービ
ン入口温度を400℃前後にすれば、外気温度から回収
出来る熱エネルギも非常に大きくなります。更に同一燃
焼用圧縮空気量で、従来技術の最大で4倍前後の燃料燃
焼となり、圧力比を極限まで上昇した状態での、高温高
圧の雰囲気で熱交換するため、熱エネルギ回収効率も、
従来技術最先端蒸気・ガスタービン複合サイクル火力発
電設備の、廃熱回収熱交換器の10倍以上となり、比較
にならない程、大量の熱エネルギ回収になります。更
に、過熱蒸気を含む大幅に増大した燃焼ガス質量とし
て、小型大出力のガスタービンが得られるのに加えて、
排気温度0℃前後の排気により、冷熱の供給を可能にし
ます。圧力比の比較についても、大量水使用により圧縮
空気温度の低下が容易なため、極限まで圧力比を上昇し
て、熱効率を上昇できます。即ち、圧力比が大きい雰囲
気で熱交換するほど、蒸気ガスタービン合体サイクルの
熱効率が高くなり、燃焼ガス質量が大きい程、ガスター
ビンが小型大出力になり、排気熱量が少ない程、ガスタ
ービンの熱効率が高くなり、同一燃料量から取り出す熱
エネルギ量が多い程、蒸気タービンの出力が大きくなっ
て、総合熱効率が80%前後に上昇します。Referring to FIGS. 3 and 12, which are close to the prior art steam / gas turbine combined cycle thermal power plant, the case of using it as a state-of-the-art thermal power plant will be described in comparison with the prior art. In the third embodiment using the conventional gas turbine shown in FIG. 3, when the generator is driven, the combustor / heat exchanger 4 is arranged in a short shape in the form of a large number of small-diameter honeycombs, and various heat exchanges according to the application are performed. It is possible to obtain an air temperature of 600 ° C at a pressure ratio of 60, a compression ratio of around 18, and an outside air temperature of 0 ° C. Therefore, if the turbine inlet temperature is set at around 400 ° C, the heat energy that can be recovered from the outside air temperature is very large. Become. Furthermore, with the same amount of compressed air for combustion, fuel combustion becomes up to about four times that of the conventional technology, and heat exchange is performed in a high-temperature, high-pressure atmosphere with the pressure ratio increased to the limit, so that the heat energy recovery efficiency is also high.
Compared to the waste heat recovery heat exchanger of the advanced steam / gas turbine combined cycle thermal power generation equipment of the prior art, the heat energy recovery is more than 10 times. Furthermore, as a greatly increased combustion gas mass including superheated steam, in addition to obtaining a small and large-output gas turbine,
Exhaust gas at an exhaust temperature of around 0 ° C enables the supply of cold heat. As for the comparison of pressure ratios, the use of large amounts of water makes it easier to lower the compressed air temperature, so the pressure ratio can be raised to the limit and thermal efficiency can be increased. That is, the more heat exchanged in an atmosphere with a large pressure ratio, the higher the thermal efficiency of the steam gas turbine united cycle, the larger the combustion gas mass, the smaller and larger the output of the gas turbine, and the smaller the exhaust heat, the smaller the thermal efficiency of the gas turbine. As the amount of thermal energy extracted from the same amount of fuel increases, the output of the steam turbine increases and the overall thermal efficiency increases to around 80%.
【0022】図4を参照して、蒸気ガスタービン合体機
関の中核部の、第4実施例を説明する。図2の第2実施
例との相違点は、全動翼・蒸気ガスタービン合体機関の
中核部を、蒸気ガスタービン合体機関の中核部として、
置換動翼を、従来技術の静翼に還元して、従来技術の圧
縮機とガスタービンの、燃焼器兼熱交換器を、小径多数
蜂の巣状に短小化配置して、駆動可能としたものです。
従って、図1の第1実施例から第4実施例までの要素
を、夫夫適宜に置換して、第1実施例と同様に多種用途
の、例えば車両の移動及び、船舶や航空機の推進用に使
用します。Referring to FIG. 4, a fourth embodiment of the core portion of the combined steam and gas turbine engine will be described. The difference from the second embodiment of FIG. 2 is that the core part of the combined rotor / steam gas turbine engine is the core part of the combined steam gas turbine engine.
The replacement rotor blade is reduced to a conventional stator blade, and the combustor and heat exchanger of the compressor and gas turbine of the conventional technology are reduced in size and arranged in a honeycomb with small diameters to enable driving. .
Accordingly, the elements from the first embodiment to the fourth embodiment in FIG. 1 are appropriately replaced with each other, and are used for various purposes like the first embodiment, for example, for moving a vehicle and propelling a ship or an aircraft. Used for
【0023】図5を参照して、全動翼・蒸気タービン圧
縮機の第1実施例を説明する。各種蒸気ガスタービン合
体機関の中核部で、熱交換して得た過熱蒸気5により、
全動翼蒸気タービンを駆動して回転力を発生させて、左
端の出力軸12により回転動力として利用し、全動翼・
蒸気タービンとしても使用します。又、該回転力によ
り、図5の全動翼圧縮機を具備して回転させ、高圧縮空
気乃至高速気流を得るもので、回転力及び推力及び浮揚
力等を得るものです。従って、中核部で熱交換して得た
過熱蒸気5を、蒸気加減弁7より蒸気管6により、全動
翼蒸気タービンの最上流側に運搬して、該最上流側を駆
動すると共に順次下流側を駆動して、大きな回転動力を
発生させると共に、左端の磁気摩擦動力伝達装置14に
より、互いに反対方向に回転する、外側タービン動翼群
19及び外側軸装置と、内側タービン動翼群20及び内
側軸装置を、最適回転比で結合します。更に、右端の圧
縮機側磁気摩擦動力伝達装置14により、内側圧縮機動
翼群17及びタービン外側軸装置と兼用の内側軸装置
と、外側圧縮機動翼群16及び外側軸装置を最適二重反
転回転比で結合して、全動翼圧縮機を構成させて、全動
翼蒸気タービン圧縮機の第1実施例とします。Referring to FIG. 5, a first embodiment of a full blade / steam turbine compressor will be described. Superheated steam 5 obtained by heat exchange at the core of various steam gas turbine combined engines
The rotor blade steam turbine is driven to generate rotational force, which is used as rotational power by the output shaft 12 at the left end.
Also used as a steam turbine. In addition, the rotating blade is equipped with the full-blade compressor shown in FIG. 5 and rotated to obtain a high compressed air or a high-speed airflow. The rotating force, the thrust and the levitation force are obtained. Therefore, the superheated steam 5 obtained by heat exchange in the core portion is conveyed to the most upstream side of all the rotor blade steam turbines by the steam control valve 7 and the steam pipe 6 to drive the most upstream side and sequentially downstream. The outer turbine blade group 19 and the outer shaft device, and the inner turbine blade group 20 and the outer turbine device, which drive the sides to generate large rotational power and rotate in opposite directions by the magnetic friction power transmission device 14 at the left end. Combines the inner shaft device with the optimal rotation ratio. Further, the right end compressor-side magnetic friction power transmission device 14 optimally reverses the inner compressor blade group 17 and the inner shaft device also serving as the turbine outer shaft device, and the outer compressor blade group 16 and the outer shaft device. The first embodiment of the all-blade steam turbine compressor is constructed by combining the all-blade compressors by ratio.
【0024】図6を参照して、全動翼・蒸気タービン圧
縮機の第2実施例を説明する。各種蒸気ガスタービン合
体機関の中核部で、熱交換して得た過熱蒸気5を蒸気管
6により、内側軸装置右端中央より、全動翼蒸気タービ
ンの上流側に供給して、全動翼蒸気タービンを駆動し
て、回転力を発生させて、左端の出力軸12により、回
転動力として利用し、全動翼・蒸気タービンとしても使
用します。又、該回転力により、図6の全動翼圧縮機を
設けて回転させ、高圧縮空気乃至高速気流を得るもの
で、回転力及び推力及び浮揚力等を得るものです。従っ
て、熱交換して得た過熱蒸気5を蒸気加減弁7より蒸気
管6により、全動翼蒸気タービンの最上流側に運搬し
て、該最上流側を駆動すると共に順次下流側を駆動し
て、大きな回転動力を発生させると共に、左端の磁気摩
擦動力伝達装置14により、互いに反対方向に回転す
る、外側タービン動翼群19及び外側軸装置と、内側タ
ービン動翼群20及び内側軸装置を、最適回転比で結合
して、全動翼蒸気タービンを構成させます。更に、右端
の圧縮機側磁気摩擦動力伝達装置14により、内側圧縮
機動翼群17及び内側軸装置と、外側圧縮機動翼群16
及び外側軸装置を、最適二重反転回転比で結合して、全
動翼圧縮機を構成させて、全動翼蒸気タービン圧縮機の
第2実施例とします。Referring to FIG. 6, a description will be given of a second embodiment of the all blade / steam turbine compressor. Superheated steam 5 obtained by heat exchange in the core portion of various steam gas turbine combined engines is supplied from a center of the right end of the inner shaft device to an upstream side of all the blade steam turbines by a steam pipe 6, and the entire blade steam The turbine is driven to generate rotational force, and is used as rotational power by the output shaft 12 at the left end, and is also used as a full-rotor blade / steam turbine. Also, by using the rotational force, the full-blade compressor shown in FIG. 6 is provided and rotated to obtain high compressed air or high-speed airflow, and obtain rotational force, thrust, levitation, and the like. Therefore, the superheated steam 5 obtained by the heat exchange is conveyed from the steam control valve 7 to the most upstream side of the all blade steam turbine by the steam pipe 6 to drive the most upstream side and sequentially drive the downstream side. The outer turbine blade group 19 and the outer shaft device, and the inner turbine blade group 20 and the inner shaft device, which generate large rotational power and rotate in the opposite directions by the magnetic frictional power transmission device 14 at the left end. , Combined with the optimal rotation ratio to form an all-blade steam turbine. Further, the right side compressor-side magnetic friction power transmission device 14 allows the inner compressor rotor blade group 17 and the inner shaft device, and the outer compressor rotor blade group 16
By combining the outer shaft device and the optimum contra-rotating rotation ratio to form a full blade compressor, a second embodiment of the full blade steam turbine compressor is provided.
【0025】図7を参照して、蒸気タービン圧縮機の第
3実施例を説明する。各種蒸気ガスタービン合体機関の
中核部で、熱交換して得た過熱蒸気5により、蒸気ター
ビンを駆動して回転力を発生させて、出力軸12により
利用し、蒸気タービンとしても使用します。又、該回転
力により、図7の圧縮機を具備して回転させ、高圧縮空
気乃至高速気流を得るもので、回転力及び推力及び浮揚
力等を得るものです。従って、熱交換して得た過熱蒸気
5を、蒸気加減弁7より蒸気管6により、内側固定軸装
置の右端中央より、蒸気タービンの最上流側に運搬し
て、該最上流側を駆動すると共に順次下流側を駆動し
て、大きな回転動力を発生させると共に、通常とは逆
の、外側タービン動翼群19及び外側軸装置を回転させ
ることにより、湿り蒸気乃至水滴となった過熱蒸気5
を、遠心力により外方に噴射可能として、圧縮空気流の
質量増大として推進力を増大し、左端の内側固定軸装置
に外嵌枢支して、該外側軸装置の左端を出力軸12とし
て、蒸気タービンを構成します。内側タービン静翼軸兼
内側固定軸装置の右端は、ケーシングの水平継ぎ手によ
り固定して、該ケーシングを、タービン外側軸装置と兼
用の内側軸装置及び、内側圧縮機動翼群17に外嵌枢支
して、圧縮機を構成させて、蒸気タービン圧縮機の第3
実施例とします。A third embodiment of the steam turbine compressor will be described with reference to FIG. At the core of various steam gas turbine combined engines, the superheated steam 5 obtained by heat exchange drives the steam turbine to generate torque, which is used by the output shaft 12 and used as a steam turbine. In addition, the compressor shown in Fig. 7 is rotated by the rotational force to obtain high compressed air or high-speed airflow, and to obtain rotational force, thrust, levitation, and the like. Therefore, the superheated steam 5 obtained by heat exchange is conveyed from the center of the right end of the inner fixed shaft device to the most upstream side of the steam turbine by the steam pipe 6 through the steam control valve 7 to drive the most upstream side. And the downstream side is sequentially driven to generate a large rotating power, and by rotating the outer turbine blade group 19 and the outer shaft device, which are opposite to the usual, the superheated steam 5 which has become wet steam or water droplets
Can be ejected outward by centrifugal force, the propulsion force is increased as the mass of the compressed air flow is increased, and the outer shaft device is pivotally fitted to the left inner fixed shaft device, and the left end of the outer shaft device is used as the output shaft 12. Make up, steam turbine. The right end of the inner turbine stationary blade shaft and inner fixed shaft device is fixed by a horizontal joint of a casing, and the casing is externally fitted to the inner shaft device also serving as the turbine outer shaft device and the inner compressor blade group 17. Then, the compressor is constituted, and the third of the steam turbine compressor is
An example.
【0026】図8を参照して、蒸気タービン圧縮機の第
4実施例を説明する。各種蒸気ガスタービン合体機関の
中核部で、熱交換して得た過熱蒸気5により、蒸気ター
ビンを駆動して、回転力を発生させて、出力軸12によ
り利用し、蒸気タービンとしても使用します。又、該回
転力により、右側に圧縮機を具備して回転させ、高圧縮
空気乃至高速気流を得るもので、回転力及び推力及び浮
揚力等を得るものです。従って、熱交換して得た過熱蒸
気5を、蒸気加減弁7より蒸気管6により、公知技術蒸
気タービンの、最上流側に運搬して、通常どおりに該最
上流側を駆動すると共に、順次下流側を駆動して、大き
な回転動力を発生させて、内側軸装置の左端を出力軸1
2として、回転力を取り出す蒸気タービンを構成しま
す。即ち、内側タービン動翼群20及び内側軸装置の外
側に、水平継ぎ手で分解組立て可能なケーシングに、夫
夫静翼を固定して外嵌枢支し、蒸気タービンを構成しま
す。同様に内側圧縮機動翼群17及び内側軸装置の外側
に、夫夫静翼を固定したケーシングを外嵌枢支して、圧
縮機を構成させて、蒸気タービン圧縮機の第4実施例と
します。Referring to FIG. 8, a fourth embodiment of the steam turbine compressor will be described. The steam turbine is driven by superheated steam 5 obtained by heat exchange in the core part of various steam gas turbine combined engines to generate torque, and it is used by the output shaft 12 and used as a steam turbine. . In addition, a compressor is provided on the right side and rotated by the rotational force to obtain high compressed air or high-speed airflow, and to obtain rotational force, thrust and levitation force. Therefore, the superheated steam 5 obtained by the heat exchange is conveyed to the most upstream side of the known steam turbine by the steam pipe 6 from the steam control valve 7 to drive the most upstream side as usual, and sequentially. By driving the downstream side, a large rotational power is generated, and the left end of the inner shaft device is connected to the output shaft 1.
As 2, configure a steam turbine that extracts rotational power. That is, a stationary turbine is fixed to a casing that can be disassembled and assembled with a horizontal joint on the outer side of the inner turbine moving blade group 20 and the inner shaft device, and is externally fitted and pivoted to constitute a steam turbine. Similarly, outside the inner compressor rotor blade group 17 and the inner shaft device, a casing to which the stationary vane is fixed is externally fitted and pivoted to form a compressor, which is a fourth embodiment of the steam turbine compressor. .
【0027】図13を参照して、燃焼器兼熱交換器4を
小径多数蜂の巣状に配置して短小化した、熱交換伝熱面
積の増大手段の熔接構造を説明すると、(a)(b)
(c)(d)に示すように、少なくとも1本以上の螺旋
状導水管1を含む水冷外壁26を、螺旋状の熔接構造と
して小径多数化することで、大きな圧力比の設定と、伝
熱面積の増大による熱交換速度の加速と、燃料供給手段
27の最上流側増設を容易にすると共に、蒸気ガスター
ビン全体機関中核部を、合理的な円筒形状とします。即
ち(a)(b)に示す実施例の如く、螺旋状に設けた導
水管1の半径方向外方に少し離して燃焼器外箱部25を
設けて、1本以上の導水管1を軸方向T字型等、螺旋状
に熔接して、大幅に高圧容器の、燃焼器兼熱交換器4を
可能にすると共に、燃焼器兼熱交換器4の、伝熱面積増
大も可能にします。又、(c)に示す実施例の如く、螺
旋状に設けた導水管1の半径方向外方に、燃焼器外箱部
25乃至水冷外壁26を設けて、一本以上の導水管1
を、軸方向螺旋状に熔接して、超臨界の蒸気条件以下の
大幅に高圧の、燃焼器兼熱交換器4の、伝熱面積増大を
可能にします。又、(d)に示す実施例の如く、螺旋状
に設けた導水管1の、半径方向略中央に、燃焼器外箱部
25を設けて、一本以上の導水管1を、軸方向螺旋状に
熔接して、超臨界の蒸気条件以下の及び比較的高圧の圧
力比の、燃焼器兼熱交換器4の、熱交換伝熱面積増大を
可能にします。Referring to FIG. 13, a description will be given of the welding structure of the means for increasing the heat exchange heat transfer area in which the combustor / heat exchanger 4 is arranged in a plurality of small-diameter honeycombs and shortened. )
(C) As shown in (d), the water cooling outer wall 26 including at least one or more spiral water pipes 1 is formed into a spiral welding structure with a small number of diameters, thereby setting a large pressure ratio and increasing heat transfer. Acceleration of the heat exchange rate due to the increase in the area and easy addition of the fuel supply means 27 on the most upstream side are facilitated, and the core of the entire steam gas turbine engine has a reasonable cylindrical shape. That is, as in the embodiments shown in (a) and (b), a combustor outer box part 25 is provided slightly outward in the radial direction of the spirally provided water guide pipe 1, and one or more water guide pipes 1 are axially connected. Spiral welding, such as a T-shape, enables the combustor and heat exchanger 4 of the high-pressure vessel to be greatly increased, and also allows the heat transfer area of the combustor and heat exchanger 4 to be increased. Further, as in the embodiment shown in (c), a combustor outer box part 25 to a water-cooled outer wall 26 are provided radially outward of the spirally-provided water guide tube 1 so that one or more water guide tubes 1 are provided.
Is axially spirally welded, enabling the heat transfer area of the combustor / heat exchanger 4 to be increased at a significantly higher pressure than the supercritical steam condition. Further, as in the embodiment shown in (d), a combustor outer box part 25 is provided substantially at the center in the radial direction of the water guide pipe 1 provided in a spiral shape, and one or more water guide pipes 1 are axially spiraled. It enables the heat exchange heat transfer area of the combustor / heat exchanger 4 to be increased below the supercritical steam condition and at a relatively high pressure ratio.
【0028】図13・図14を参照して、燃焼器兼熱交
換器4を小径多数として、蜂の巣状に配置して短小化し
た、伝熱面積の増大手段の、水冷外壁単位52を説明す
る。図14(a)(b)(c)に示すように、少なくと
も一本以上の螺旋状導水管1を含む、水冷外壁単位52
を、両端に鍔53を設けて、組立て可能な一単位とし
て、複数の水冷外壁単位52を連結して、大幅に高圧化
・短小化可能な、燃焼器兼熱交換器4の主要部としま
す。即ち図13・図14の(a)(b)(a)(b)に
示す実施例の如く、螺旋状に設けた少なくとも1本以上
の導水管1の、半径方向外方に少し離して、溶接構造を
含む燃焼器外箱部25を設けて、該両端に鍔53を夫夫
具備して、該鍔53に導水管1を夫夫開口して、該導水
管1を含む水冷外壁単位52を、連結可能にします。
又、(c)(d)(c)に示す実施例の如く、螺旋状に
設けた少なくとも1本以上の導水管1の、半径方向外方
又は、半径方向略中央に、溶接構造を含む燃焼器外箱部
25を設けて、該両端に鍔53を夫夫具備して、該鍔5
3に導水管1を夫夫開口して、導水管1を含む水冷外壁
単位52を、連結可能に構成し、超臨界の蒸気条件以下
の及び、比較的高圧の圧力比の、燃焼器兼熱交換器4
の、熱交換伝熱面積増大を可能にします。Referring to FIGS. 13 and 14, the water-cooled outer wall unit 52 of the means for increasing the heat transfer area, which has a plurality of small diameter combustor / heat exchangers 4 and is arranged in a honeycomb shape to reduce the size, will be described. . As shown in FIGS. 14A, 14B and 14C, a water-cooled outer wall unit 52 including at least one or more spiral water pipes 1
Is provided with flanges 53 at both ends, and as a unit that can be assembled, a plurality of water-cooled outer wall units 52 are connected to form a main part of the combustor / heat exchanger 4 that can be significantly increased in pressure and shortened. . That is, as in the embodiments shown in FIGS. 13 and 14 (a), (b), (a), and (b), at least one or more spirally provided water pipes 1 are slightly separated radially outward, A combustor outer box part 25 including a welding structure is provided, and flanges 53 are provided at both ends of the combustor outer box part 25. The water pipe 1 is opened in the flange 53, and a water-cooled outer wall unit 52 including the water pipe 1 is provided. To be connectable.
Further, as in the embodiments shown in (c), (d), and (c), at least one or more spirally provided water pipes 1 includes a welding structure at a position radially outward or substantially at the center in the radial direction. An outer box part 25 is provided, and flanges 53 are provided at both ends thereof.
3 and a water-cooled outer wall unit 52 including the water pipe 1 is configured to be connectable, and a combustor / heat unit having a supercritical steam condition or lower and a relatively high pressure ratio is used. Exchanger 4
The heat exchange heat transfer area can be increased.
【0029】図15・図16を参照して、磁気摩擦動力
伝達装置14を説明する。通常の変速や逆転を含む各種
動力伝達装置は、主として歯車装置を使用している。こ
のため、歯面に大きな荷重を含む、滑り歯面を必須とす
るため、潤滑油を必要とするのに加えて、摩擦熱損失も
非常に大きく、高速回転を含む大動力の伝達装置には、
使用不可という問題がある。このため、全動翼・蒸気ガ
スタービン合体機関を実用化するには、ころがり接触に
よる、超高速大動力伝達装置が必須となり、超高速大動
力伝達装置を可能にすると共に、潤滑油も不用にするた
めには、歯車装置の滑り歯面を皆無に近づけた、ころが
り接触による、動力伝達装置が必要となる。このため、
歯車のかみ合い高さを限りなく縮小した、低凹凸40と
し、回転方向35上流側及び下流側、又は上流側又は下
流側に、図15のように、棒磁石33又は電磁石34を
設けて、該磁石の強い吸引力を利用した、例えば図15
・図16の、各種着磁摩擦車37・37及び、各種磁着
摩擦車39・39等と、多様な組み合わせを含む、各種
磁気摩擦動力伝達装置14として、全面的に使用するの
が好ましい。即ち、転がり接触に近づけることにより、
摩擦熱損失を皆無に近づけて、超高速大動力伝達装置
や、潤滑油に換えて無公害の水冷却を可能にするもので
す。The magnetic friction power transmission device 14 will be described with reference to FIGS. Various power transmission devices including normal speed change and reverse rotation mainly use a gear device. For this reason, in order to require a sliding tooth surface including a large load on the tooth surface, in addition to requiring lubricating oil, friction heat loss is also very large, and transmission equipment for large power including high speed rotation is required. ,
There is a problem that it cannot be used. For this reason, in order to commercialize an all-blade / steam gas turbine combined engine, an ultra-high-speed and large-power transmission device by rolling contact is indispensable. In order to do so, a power transmission device by rolling contact is required, in which the sliding tooth surfaces of the gear device are almost zero. For this reason,
As shown in FIG. 15, a bar magnet 33 or an electromagnet 34 is provided on the upstream and downstream sides, or on the upstream or downstream side, in the rotation direction 35, as shown in FIG. Using the strong attractive force of the magnet, for example, FIG.
It is preferable to use the entire magnetic friction power transmission device 14 including various combinations of the magnetized friction wheels 37, 37 and the magnetic friction wheels 39, 39 shown in FIG. That is, by approaching rolling contact,
This is an ultra-high-speed large-power transmission device that reduces frictional heat loss to almost zero, and enables pollution-free water cooling in place of lubricating oil.
【0030】図16を参照して、磁気摩擦動力伝達装置
14を説明すると、各種歯車に換えて、各種着磁摩擦車
37・37や各種磁着摩擦車39・39等を使用して、
動力伝達面31には低凹凸40として、例えば平歯車に
換えて平凹凸41車を、ハスバ歯車に換えてハスバ凹凸
42車を、ヤマバ歯車に換えてヤマバ凹凸43車を設け
る。これにより磁気摩擦動力伝達装置14として、公知
の各種歯車式動力伝達装置と同様に、各種磁気摩擦動力
伝達装置14を構成して、使用します。Referring to FIG. 16, the magnetic friction power transmission device 14 will be described. In place of various gears, various types of magnetic friction wheels 37, 37 and various magnetic friction wheels 39, 39 are used.
The power transmission surface 31 is provided with low unevenness 40 as, for example, 41 flat unevennesses instead of spur gears, 42 helical unevennesses instead of helical gears, and 43 Yamaha unevennesses instead of yamaba gears. As a result, various types of magnetic friction power transmission devices 14 are configured and used as the magnetic friction power transmission device 14 in the same manner as known various gear type power transmission devices.
【0031】[0031]
【発明の効果】本発明は、全動翼を含む、各種蒸気ガス
タービン合体機関の中核部として、燃焼器兼熱交換器の
外壁を、導水管を含む螺旋状の熔接構造又は、溶接構造
を含む螺旋状の水冷外壁単位組立構造として、小径多数
蜂の巣状に短小化配置したため、蒸気ガスタービン合体
機関の中核部の外形を、理想的円筒型として拡大容易
に、しかもコンパクトにできる大きな効果があります。
更に伝熱面積を増大した高圧容器の、燃焼器兼熱交換器
として、燃料供給手段も、最上流側に最大で従来技術の
4倍増容易に加えて、供給熱量の大部分を、過熱蒸気に
変換できる効果があります。熱交換によりガスタービン
の入口温度を、タービンの耐熱限界温度以下から400
℃前後として、排気温度を0℃前後として、排気損失を
0%前後とする効果があります。熱交換して得た、燃焼
ガス及び過熱蒸気により、回転動力を得ると共に、燃焼
用圧縮空気量を従来技術と同一にした場合、最大で従来
ガスタービンの4倍前後の燃料による、理論空燃比燃焼
まで供給熱量を大増大して、熱交換により燃焼ガス質量
も大増大して、比出力が大増大できる効果があります。
燃焼用に圧縮した空気量を100%燃焼に利用して、通
常圧力比の10倍近い圧力の、超臨界圧以下の過熱蒸気
を噴射できるため、最も熱効率の良い各種蒸気ガスター
ビン合体サイクルとして、熱効率の大上昇に大きな効果
があります。According to the present invention, the outer wall of a combustor / heat exchanger is provided with a spiral welding structure or a welding structure including a water pipe as a core part of various steam gas turbine combined engines including all blades. The spiral water-cooled outer wall unit assembly structure includes a small number of small-diameter, honeycomb-like arrangements, so the outer shape of the core of the steam-gas-turbine combined engine can be easily expanded as an ideal cylindrical type, and it has a great effect of being compact. .
In addition, as a combustor and heat exchanger for the high-pressure vessel with an increased heat transfer area, the fuel supply means is also easily added to the most upstream side up to four times that of the conventional technology, and the majority of the supplied heat is converted to superheated steam. There is an effect that can be converted. The heat exchange raises the inlet temperature of the gas turbine from below the heat-resistant limit temperature of the turbine to 400
The effect is that the exhaust temperature is around 0 ° C and the exhaust loss is around 0%. When rotational power is obtained by the combustion gas and superheated steam obtained by heat exchange, and the amount of compressed air for combustion is the same as that of the conventional technology, the stoichiometric air-fuel ratio is at most about four times that of the conventional gas turbine. It has the effect of greatly increasing the amount of heat to be supplied to the combustion and the mass of the combustion gas due to the heat exchange, thereby greatly increasing the specific output.
By utilizing the amount of air compressed for combustion for 100% combustion, superheated steam at a pressure close to 10 times the normal pressure ratio and below the supercritical pressure can be injected, and as a steam gas turbine united cycle with the highest thermal efficiency, It has a great effect on a large increase in thermal efficiency.
【0032】ガスタービン圧力比を、熱交換燃焼ガス限
りなき冷却により、極限まで上昇してガスタービンの熱
効率を、極限まで上昇できる効果があります。更に圧力
比を極限まで上昇した状態で熱交換するため、超臨界の
蒸気条件を含む、過熱蒸気エネルギの取り出し量を最大
して、総合比出力及び熱効率を極限まで上昇できる効果
があります。更に、圧力比を極限まで上昇した状態で熱
交換するため、ガスタービンの入口温度を400℃前後
として、消費熱量を最少に、燃焼ガス質量を最大にし
て、熱効率を極限まで上昇できる効果があります。更
に、圧力比を極限まで上昇した状態で、限りなく熱交換
した燃焼ガスを使用するため、ガスタービンの排気温度
を0℃前後として、熱エネルギを極限まで有効利用でき
る効果があります。又、各種磁気摩擦動力伝達装置を全
面的に開発使用することで、従来技術の各種動力伝達装
置による、摩擦損失を大幅に低減して、熱効率を更に上
昇する効果があります。従って、各種運輸機器や熱と電
気と冷熱の併給機器等として、多種多様に使用すること
で、CO2を地球規模で低減するために、大きな効果が
あります。The gas turbine pressure ratio can be increased to the limit by the infinite cooling of the heat exchange combustion gas, and the heat efficiency of the gas turbine can be increased to the limit. In addition, since heat is exchanged with the pressure ratio raised to the limit, the amount of superheated steam energy, including supercritical steam conditions, is maximized, and the overall specific output and thermal efficiency can be increased to the limit. Furthermore, since heat is exchanged with the pressure ratio raised to the limit, the gas turbine inlet temperature is set to around 400 ° C, which has the effect of minimizing the amount of heat consumed, maximizing the combustion gas mass, and increasing the thermal efficiency to the limit. . Furthermore, since the combustion gas that has undergone infinite heat exchange is used with the pressure ratio raised to the limit, the exhaust temperature of the gas turbine can be reduced to around 0 ° C, and the heat energy can be effectively used to the limit. Also, by developing and using various magnetic friction power transmission devices, friction loss by various power transmission devices of the prior art is greatly reduced, and there is an effect of further increasing thermal efficiency. Therefore, it can be used as a variety of transportation equipment and co-supply equipment of heat, electricity and cold, etc., and has a great effect to reduce CO2 on a global scale.
【0033】本発明の最大の特徴は、ガスタービンと蒸
気タービンを分離したため、最も一般的に世界に普及し
ている、最先端火力発電設備の熱効率を最大にできると
ころです。即ち、最先端蒸気・ガスタービン複合サイク
ル発電設備では、ガスタービンの廃熱を回収して、蒸気
タービンサイクルを駆動するため、蒸気タービンサイク
ルに供給する熱量が僅少となります。そこで本発明は、
燃焼器兼熱交換器として、例えば外気温度0℃圧力比6
0で空気温度600℃と、略廃熱回収温度と同温度とな
り、外気熱エネルギが大量に回収できるのに加えて、燃
料燃焼による供給熱エネルギも、同様に大幅アップする
ため、蒸気タービンサイクルに供給する熱エネルギを、
10倍前後にアップして、総合熱効率を80%前後に大
幅アップする効果があります。The most significant feature of the present invention is that the gas turbine and the steam turbine are separated, so that the thermal efficiency of the most advanced thermal power generation equipment, which is most commonly spread around the world, can be maximized. In other words, in a state-of-the-art steam and gas turbine combined cycle power generation facility, the amount of heat supplied to the steam turbine cycle is small because the waste heat of the gas turbine is recovered and the steam turbine cycle is driven. Therefore, the present invention
As a combustor / heat exchanger, for example, an outside air temperature of 0 ° C. and a pressure ratio of 6
At 0, the air temperature is 600 ° C, which is almost the same as the waste heat recovery temperature. In addition to being able to recover a large amount of outside air heat energy, the heat energy supplied by fuel combustion is also greatly increased. Heat energy to be supplied,
It has the effect of increasing the overall thermal efficiency to about 80% by increasing it by about 10 times.
【図1】蒸気ガスタービン合体機関中核部の第1実施例
を示す一部断面図。FIG. 1 is a partial cross-sectional view showing a first embodiment of a core portion of a combined steam gas turbine engine.
【図2】蒸気ガスタービン合体機関中核部の第2実施例
を示す一部断面図。FIG. 2 is a partial cross-sectional view showing a second embodiment of the core part of the steam gas turbine combined engine.
【図3】蒸気ガスタービン合体機関中核部の第3実施例
を示す一部断面図。FIG. 3 is a partial cross-sectional view showing a third embodiment of a core portion of a combined steam gas turbine engine.
【図4】蒸気ガスタービン合体機関中核部の第4実施例
を示す一部断面図。FIG. 4 is a partial cross-sectional view showing a fourth embodiment of a core portion of a combined steam gas turbine engine.
【図5】蒸気タービン圧縮機の第1実施例を示す一部断
面図。FIG. 5 is a partial sectional view showing a first embodiment of the steam turbine compressor.
【図6】蒸気タービン圧縮機の第2実施例を示す一部断
面図。FIG. 6 is a partial sectional view showing a second embodiment of the steam turbine compressor.
【図7】蒸気タービン圧縮機の第3実施例を示す一部断
面図。FIG. 7 is a partial sectional view showing a third embodiment of the steam turbine compressor.
【図8】蒸気タービン圧縮機の第4実施例を示す一部断
面図。FIG. 8 is a partial sectional view showing a fourth embodiment of the steam turbine compressor.
【図9】蒸気ガスタービン合体機関の第1実施形態を示
す全体構成図。FIG. 9 is an overall configuration diagram showing a first embodiment of the combined steam gas turbine engine.
【図10】蒸気ガスタービン合体機関の第2実施形態を
示す全体構成図。FIG. 10 is an overall configuration diagram showing a second embodiment of the combined steam gas turbine engine.
【図11】蒸気ガスタービン合体機関の第3実施形態を
示す全体構成図。FIG. 11 is an overall configuration diagram showing a third embodiment of the steam gas turbine combined engine.
【図12】蒸気ガスタービン合体機関の第4実施形態を
示す全体構成図。FIG. 12 is an overall configuration diagram showing a fourth embodiment of the steam gas turbine combined engine.
【図13】燃焼器兼熱交換器の水冷外壁の螺旋状溶接構
造を示す断面図。FIG. 13 is a sectional view showing a spiral welding structure of a water-cooled outer wall of the combustor / heat exchanger.
【図14】燃焼器兼熱交換器の螺旋状の水冷壁管単位を
説明するための断面図。FIG. 14 is a cross-sectional view for explaining a spiral water cooling wall tube unit of the combustor / heat exchanger.
【図15】蒸気ガスタービン合体機関用磁気摩擦動力伝
達装置の概念図。FIG. 15 is a conceptual diagram of a magnetic friction power transmission device for a steam gas turbine combined engine.
【図16】着磁摩擦車及び磁着摩擦車等の摩擦増大手段
を説明するための図。FIG. 16 is a view for explaining friction increasing means such as a magnetic friction wheel and a magnetic friction wheel.
1:導水管 2:給水ポンプ 3:給水 4:燃
焼器兼熱交換器 5:過熱蒸気 6:蒸気管
7:蒸気加減弁 8:環状の圧縮空気溜 9:環状
の燃焼ガス溜 10燃焼ガス 12:出力軸 1
3:止め弁 14:磁気摩擦動力伝達装置 15:
圧縮空気 16:外側圧縮機動翼群 17:内側圧縮機動翼群 19:外側タービン動翼群
20:内側タービン動翼群 21:環状の出口
22:環状の受け口 23:環状の受け口 24:環状の噴口群 25:燃焼器外箱部 26:
水冷外壁 27:燃料供給手段 28:バイパス
29:噴口 30:過熱蒸気溜 31:動力伝達
面 33:棒磁石 34:電磁石 35:回転方
向 36:磁極 37:着磁摩擦車 38:内着
磁摩擦車 39:磁着摩擦車 40:低凹凸 4
1:平凹凸 42:ハスバ凹凸 43:ヤマバ凹凸
44:内磁着摩擦車 45:摩擦増大耐久手段
46:磁石部 47:ヨーク(着磁摩擦車用)
48:絶縁材料 52:水冷外壁単位 53:鍔1: water pipe 2: water supply pump 3: water supply 4: combustor and heat exchanger 5: superheated steam 6: steam pipe
7: Steam control valve 8: Annular compressed air reservoir 9: Annular combustion gas reservoir 10 Combustion gas 12: Output shaft 1
3: Stop valve 14: Magnetic friction power transmission device 15:
Compressed air 16: Outer compressor blade group 17: Inner compressor blade group 19: Outer turbine blade group 20: Inner turbine blade group 21: Annular outlet
22: Annular receptacle 23: Annular receptacle 24: Annular nozzle group 25: Combustor outer box 26:
Water cooling outer wall 27: Fuel supply means 28: Bypass
29: Injector 30: Superheated steam reservoir 31: Power transmission surface 33: Bar magnet 34: Electromagnet 35: Rotation direction 36: Magnetic pole 37: Magnetized friction wheel 38: Inner magnetized friction wheel 39: Magnetically bonded friction wheel 40: Low unevenness 4
1: flat unevenness 42: boss unevenness 43: yamaba unevenness 44: inner magnetized friction wheel 45: friction increasing durability means
46: Magnet part 47: Yoke (for magnetized friction wheel)
48: Insulating material 52: Water-cooled outer wall unit 53: Tsuba
Claims (119)
径多数蜂の巣状に短小化配置した燃焼器兼熱交換器と、
圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧縮機
と、燃焼ガスで出力を得る全動翼ガスタービンと、燃焼
ガス温度がタービン耐熱限界温度以下となるように熱交
換して得た過熱蒸気で出力を得る噴口(29)と、該噴
口に過熱蒸気を供給する過熱蒸気溜(30)とを有する
蒸気ガスタービン合体機関。1. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welding structure, and is arranged in a short shape with a large number of small diameter honeycombs.
An all-blade compressor that supplies compressed air to the combustor / heat exchanger, an all-blade gas turbine that obtains output with combustion gas, and heat-exchanges so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. A combined steam gas turbine engine having a nozzle (29) for obtaining an output with the obtained superheated steam and a superheated steam reservoir (30) for supplying superheated steam to the nozzle.
構造として、小径多数蜂の巣状に短小化配置した燃焼器
兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給す
る全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガスタ
ービンと、燃焼ガス温度がタービン耐熱限界温度以下と
なるように熱交換して得た過熱蒸気で出力を得る噴口
(29)と、該噴口に過熱蒸気を供給する過熱蒸気溜
(30)とを有する蒸気ガスタービン合体機関。2. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welding structure unit assembling structure with a small diameter and a large number of honeycombs, and a full-movement supplying compressed air to the combustor / heat exchanger. A blade compressor, an all-blade gas turbine that obtains output with combustion gas, and an injection port (29) that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. A combined steam gas turbine engine having a superheated steam reservoir (30) for supplying superheated steam to an injection port.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る噴口(29)と、
該噴口に過熱蒸気を供給する過熱蒸気溜(30)とを有
する蒸気ガスタービン合体機関。3. A spiral water-cooled outer wall unit assembling structure,
A combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs, a full blade compressor for supplying compressed air to the combustor / heat exchanger, a full blade gas turbine which obtains output with combustion gas,
An orifice (29) for obtaining an output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature;
A superheated steam reservoir (30) for supplying superheated steam to the injection port.
径多数蜂の巣状に短小化配置した燃焼器兼熱交換器と、
圧縮空気を該燃焼器兼熱交換器に供給する圧縮機と、燃
焼ガスで出力を得るガスタービンと、燃焼ガス温度がタ
ービン耐熱限界温度以下となるように熱交換して得た過
熱蒸気で出力を得る噴口(29)と、該噴口に過熱蒸気
を供給する過熱蒸気溜(30)とを有する蒸気ガスター
ビン合体機関。4. A combustor / heat exchanger in which a water-cooled outer wall is formed in a spiral welding structure, and is arranged in a short shape in the form of a large number of small diameter honeycombs.
A compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains output using combustion gas, and an output that uses superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistant limit temperature. And a superheated steam reservoir (30) for supplying superheated steam to the nozzle.
構造として、小径多数蜂の巣状に短小化配置した燃焼器
兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給す
る圧縮機と、燃焼ガスで出力を得るガスタービンと、燃
焼ガス温度がタービン耐熱限界温度以下となるように熱
交換して得た過熱蒸気で出力を得る噴口(29)と、該
噴口に過熱蒸気を供給する過熱蒸気溜(30)とを有す
る蒸気ガスタービン合体機関。5. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure unit assembly structure and has a small diameter and many honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. A gas turbine that obtains output with combustion gas, an injection port (29) that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature, and supplies superheated steam to the injection port. A combined steam and gas turbine having a superheated steam reservoir (30).
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る噴口(29)と、該噴口に過
熱蒸気を供給する過熱蒸気溜(30)とを有する蒸気ガ
スタービン合体機関。6. A spiral water-cooled outer wall unit assembly structure,
A combustor / heat exchanger that is arranged in a short shape in a honeycomb shape with a large number of small diameters, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains an output from combustion gas, A combined steam and gas turbine engine having an injection port (29) for obtaining an output with superheated steam obtained by heat exchange so as to be below the limit temperature, and a superheated steam reservoir (30) for supplying superheated steam to the injection port.
縮機、ガスタービンのいずれかが全動翼である蒸気ガス
タービン合体機関。7. The combined steam and gas turbine engine according to claim 4, wherein one of the compressor and the gas turbine is a full moving blade.
縮機・ガスタービン・燃焼器兼熱交換器と、過熱蒸気溜
(30)が、止め弁(13)間で分離することを特徴と
する蒸気ガスタービン合体機関。8. The method according to claim 1, wherein the compressor, gas turbine, combustor and heat exchanger and the superheated steam reservoir (30) are separated between the stop valve (13). A combined steam gas turbine engine.
(1)を円筒型螺旋状の、断面蜂の巣状に密集させたこ
とを特徴とする蒸気ガスタービン合体機関。9. A steam gas turbine combined engine, wherein the superheated steam reservoir (30) has a water pipe (1) densely packed in a cylindrical spiral shape with a honeycomb shape in cross section.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る全動翼蒸気タービ
ンとを有する蒸気ガスタービン合体機関。10. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs, a full blade compressor for supplying compressed air to the combustor / heat exchanger, a full blade gas turbine which obtains output with combustion gas,
A combined steam gas turbine engine comprising: a full-rotor blade steam turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than a turbine heat-resistant limit temperature.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガス
タービンと、燃焼ガス温度がタービン耐熱限界温度以下
となるように熱交換して得た過熱蒸気で出力を得る全動
翼蒸気タービンとを有する蒸気ガスタービン合体機関。11. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welding unit unit assembling structure, and is compactly arranged in a small-diameter multi-honey structure. A blade compressor, an all-blade gas turbine that obtains output with combustion gas, and a full-blade steam turbine that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. Steam gas turbine combined engine having.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
圧縮機と、燃焼ガスで出力を得る全動翼ガスタービン
と、燃焼ガス温度がタービン耐熱限界温度以下となるよ
うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気タ
ービンとを有する蒸気ガスタービン合体機関。12. A combustor / heat exchanger which is arranged in a spiral shape in a water-cooled outer wall unit assembling structure and has a small diameter and a large number of honeycombs, and an all-blade compressor which supplies compressed air to the combustor / heat exchanger. And a full-blade steam turbine that obtains output with combustion gas, and a full-blade steam turbine that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. Turbine united engine.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンとを有する蒸気
ガスタービン合体機関。13. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger that is arranged in a short shape in a honeycomb shape with a large number of small diameters, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains an output with combustion gas, and a combustion gas temperature that is turbine heat resistant. A combined steam gas turbine engine having a steam turbine that obtains output with superheated steam obtained by heat exchange so as to be lower than a limit temperature.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する圧縮機と、燃焼ガスで出力を得るガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る蒸気タービンとを
有する蒸気ガスタービン合体機関。14. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure unit assembling structure in which the outer wall is shortened and arranged in a plurality of small diameter honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. And a gas turbine that obtains output with combustion gas,
A steam gas turbine combined engine comprising: a steam turbine that obtains an output using superheated steam obtained by performing heat exchange so that a combustion gas temperature is equal to or lower than a turbine heat resistance limit temperature.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンとを有する蒸気
ガスタービン合体機関。15. A helical water-cooled outer wall unit assembling structure, comprising a combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and A combined steam gas turbine engine having a gas turbine that obtains output with gas, and a steam turbine that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature.
て、圧縮機、蒸気タービン、ガスタービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。16. The method according to claim 13, wherein any one of a compressor, a steam turbine, and a gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る全動翼蒸気タービ
ン圧縮機の推力により、航空機体を浮揚移動させるため
の装置とを有する蒸気ガスタービン合体機関。17. The water-cooled outer wall has a spiral welding structure,
A combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs, a full blade compressor for supplying compressed air to the combustor / heat exchanger, a full blade gas turbine which obtains output with combustion gas,
A device for levitating and moving an aircraft body by the thrust of a full-blade steam turbine compressor that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. Turbine united engine.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガス
タービンと、燃焼ガス温度がタービン耐熱限界温度以下
となるように熱交換して得た過熱蒸気で出力を得る全動
翼蒸気タービン圧縮機の推力により、航空機体を浮揚移
動させるための装置とを有する蒸気ガスタービン合体機
関。18. A combustor / heat exchanger in which a water-cooled outer wall is formed as a helical welding unit as a unitary structure, and a combustor / heat exchanger which is arranged in a short shape in the form of a large number of small-diameter honeycombs. A blade compressor, an all-blade gas turbine that obtains output with combustion gas, and an all-blade steam turbine compressor that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature And a device for levitating and moving the aircraft body by the thrust force.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
圧縮機と、燃焼ガスで出力を得る全動翼ガスタービン
と、燃焼ガス温度がタービン耐熱限界温度以下となるよ
うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気タ
ービン圧縮機の推力により、航空機体を浮揚移動させる
ための装置とを有する蒸気ガスタービン合体機関。19. A combustor / heat exchanger which is arranged as a spiral-shaped water-cooled outer wall unit assembling structure in the form of a plurality of small diameter honeycombs, and an all-blade compressor which supplies compressed air to the combustor / heat exchanger. And the thrust of a full-blade steam turbine compressor that obtains output with combustion gas and a full-blade steam turbine compressor that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat-resistant limit temperature And a device for levitating and moving the aircraft body.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービン圧縮機の推力に
より、航空機体を浮揚移動させるための装置とを有する
蒸気ガスタービン合体機関。20. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger that is arranged in a short shape in a honeycomb shape with a large number of small diameters, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains an output from combustion gas, A combined steam gas turbine engine having a device for levitating and moving an aircraft body by a thrust of a steam turbine compressor that obtains an output with superheated steam obtained by heat exchange so as to be equal to or lower than a limit temperature.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する圧縮機と、燃焼ガスで出力を得るガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る蒸気タービン圧縮
機の推力により、航空機体を浮揚移動させるための装置
とを有する蒸気ガスタービン合体機関。21. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure unit assembling structure and has a small diameter and a large number of honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. And a gas turbine that obtains output with combustion gas,
An apparatus for lifting and moving an aircraft body by means of a thrust of a steam turbine compressor that obtains an output with superheated steam obtained by heat exchange so that a combustion gas temperature becomes equal to or lower than a turbine heat-resistant limit temperature. .
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービン圧縮機の推力に
より、航空機体を浮揚移動させるための装置とを有する
蒸気ガスタービン合体機関。22. A helical water-cooled outer wall unit assembling structure, comprising a combustor / heat exchanger which is arranged in a short shape in the form of a plurality of small-diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and A gas turbine that obtains output with gas and a steam turbine compressor that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature are used to lift and move the aircraft body. A combined steam and gas turbine engine having a device.
て、圧縮機、蒸気タービン圧縮機、ガスタービンのいず
れか2以下が全動翼である蒸気ガスタービン合体機関。23. The combined steam and gas turbine engine according to claim 20, wherein at least two of the compressor, the steam turbine compressor, and the gas turbine are all blades.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る全動翼蒸気タービ
ン圧縮機の力により、船舶を浮揚移動させるための装置
とを有する蒸気ガスタービン合体機関。24. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs, a full blade compressor for supplying compressed air to the combustor / heat exchanger, a full blade gas turbine which obtains output with combustion gas,
A device for levitating and moving a ship by the power of a full-blade steam turbine compressor that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature. Coalition organization.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガス
タービンと、燃焼ガス温度がタービン耐熱限界温度以下
となるように熱交換して得た過熱蒸気で出力を得る全動
翼蒸気タービン圧縮機の力により、船舶を浮揚移動させ
るための装置とを有する蒸気ガスタービン合体機関。25. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welding structure unit assembling structure in a small-diameter multi-honey structure, and a full-movement supplying compressed air to the combustor / heat exchanger. A blade compressor, an all-blade gas turbine that obtains output with combustion gas, and an all-blade steam turbine compressor that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature And a device for levitating and moving a ship by the force of (1).
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
圧縮機と、燃焼ガスで出力を得る全動翼ガスタービン
と、燃焼ガス温度がタービン耐熱限界温度以下となるよ
うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気タ
ービン圧縮機の力により、船舶を浮揚移動させるための
装置とを有する蒸気ガスタービン合体機関。26. A combustor / heat exchanger which is arranged as a spiral water-cooled outer wall unit assembling structure in the form of a plurality of small diameter honeycombs, and a full blade compressor which supplies compressed air to the combustor / heat exchanger. With the power of the full-blade gas turbine, which obtains output with combustion gas, and the full-blade steam turbine compressor, which obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine allowable temperature limit. And a device for levitating and moving a ship.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービン圧縮機の力によ
り、船舶を浮揚移動させるための装置とを有する蒸気ガ
スタービン合体機関。27. The water-cooled outer wall has a spiral welding structure,
A combustor / heat exchanger that is arranged in a short shape in a honeycomb shape with a large number of small diameters, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains an output with combustion gas, and a combustion gas temperature that is turbine heat resistant. A combined steam gas turbine engine having a device for levitating and moving a ship by the power of a steam turbine compressor that obtains output with superheated steam obtained by exchanging heat so that the temperature becomes equal to or lower than a limit temperature.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する圧縮機と、燃焼ガスで出力を得るガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る蒸気タービン圧縮
機の力により、船舶を浮揚移動させるための装置とを有
する蒸気ガスタービン合体機関。28. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure unit assembly structure and has a small diameter and a large number of honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. And a gas turbine that obtains output with combustion gas,
A steam turbine combined engine having a device for levitating and moving a ship by the power of a steam turbine compressor that obtains an output with superheated steam obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than a turbine heat-resistant limit temperature.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービン圧縮機の力によ
り、船舶を浮揚移動させるための装置とを有する蒸気ガ
スタービン合体機関。29. A helical water-cooled outer wall unit assembling structure, comprising a combustor / heat exchanger which is arranged in a short shape in the form of a small number of honeycombs; a compressor for supplying compressed air to the combustor / heat exchanger; A device that lifts and moves a ship by the power of a gas turbine that obtains output with gas and a steam turbine compressor that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature. And a combined steam and gas turbine engine.
て、圧縮機、蒸気タービン圧縮機、ガスタービンのいず
れか2以下が全動翼である蒸気ガスタービン合体機関。30. The combined steam / gas turbine engine according to claim 27, wherein at least two of the compressor, the steam turbine compressor, and the gas turbine are all blades.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る全動翼蒸気タービ
ンとの出力と推力により、プロペラを回転させて機体を
浮揚移動させるための装置とを有する蒸気ガスタービン
合体機関。31. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs, a full blade compressor for supplying compressed air to the combustor / heat exchanger, a full blade gas turbine which obtains output with combustion gas,
A device for lifting the airframe by rotating the propeller and rotating the propeller using the output and thrust of a full-blade steam turbine that obtains output using superheated steam obtained by heat exchange so that the combustion gas temperature is below the turbine heat-resistant limit temperature And a combined steam and gas turbine engine.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガス
タービンと、燃焼ガス温度がタービン耐熱限界温度以下
となるように熱交換して得た過熱蒸気で出力を得る全動
翼蒸気タービンとの出力と推力により、プロペラを回転
させて機体を浮揚移動させるための装置とを有する蒸気
ガスタービン合体機関。32. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure unit assembly structure and is arranged in a short shape in the form of a large number of small diameter honeycombs, and a full motion for supplying compressed air to the combustor / heat exchanger. A blade compressor, a full-blade gas turbine that obtains output with combustion gas, and a full-blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. A combined steam gas turbine engine having a device for lifting and moving an airframe by rotating a propeller using output and thrust.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
圧縮機と、燃焼ガスで出力を得る全動翼ガスタービン
と、燃焼ガス温度がタービン耐熱限界温度以下となるよ
うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気タ
ービンとの出力と推力により、プロペラを回転させて機
体を浮揚移動させるための装置とを有する蒸気ガスター
ビン合体機関。33. A combustor / heat exchanger which is arranged as a spiral-shaped water-cooled outer wall unit assembling structure in the form of a plurality of small diameter honeycombs, and a full blade compressor which supplies compressed air to the combustor / heat exchanger. Power and thrust of a full-rotor blade gas turbine that obtains output with combustion gas, and a full-rotor blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat-resistant limit temperature And a device for rotating the propeller to levitate and move the airframe.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンとの出力と推力
により、プロペラを回転させて機体を浮揚移動させるた
めの装置とを有する蒸気ガスタービン合体機関。34. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger that is arranged in a short shape in a honeycomb shape with a large number of small diameters, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains an output with combustion gas, and a combustion gas temperature that is turbine heat resistant. A combined steam and gas turbine engine having a device for rotating a propeller to levitate and move an airframe by using an output and a thrust of a steam turbine that obtains an output with superheated steam obtained by heat exchange so as to be equal to or lower than a limit temperature.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する圧縮機と、燃焼ガスで出力を得るガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る蒸気タービンとの
出力と推力により、プロペラを回転させて機体を浮揚移
動させるための装置とを有する蒸気ガスタービン合体機
関。35. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure unit assembly structure and is arranged in a short shape with a large number of small diameter honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. And a gas turbine that obtains output with combustion gas,
A device for rotating the propeller to levitate the airframe by using the output and thrust of a steam turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. Steam gas turbine combined engine.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンとの出力と推力
により、プロペラを回転させて機体を浮揚移動させるた
めの装置とを有する蒸気ガスタービン合体機関。36. As a spiral water-cooled outer wall unit assembling structure, a combustor / heat exchanger which is arranged in a short form in a small number of honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and The propeller is rotated by the output and thrust of the gas turbine that obtains output with gas and the steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. And a device for levitation movement.
て、圧縮機、蒸気タービン、ガスタービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。37. The method according to claim 34, wherein any one of a compressor, a steam turbine, and a gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る全動翼蒸気タービ
ンとの出力と推力により、プロペラを回転させて船体を
浮揚移動させるための装置とを有する蒸気ガスタービン
合体機関。38. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs, a full blade compressor for supplying compressed air to the combustor / heat exchanger, a full blade gas turbine which obtains output with combustion gas,
A device for floating the hull by rotating a propeller by using the output and thrust of an all-blade steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature. And a combined steam and gas turbine engine.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガス
タービンと、燃焼ガス温度がタービン耐熱限界温度以下
となるように熱交換して得た過熱蒸気で出力を得る全動
翼蒸気タービンとの出力と推力により、プロペラを回転
させて船体を浮揚移動させるための装置とを有する蒸気
ガスタービン合体機関。39. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure unit assembling structure and is arranged in a short shape in a plurality of small diameter honeycombs; A blade compressor, a full-blade gas turbine that obtains output with combustion gas, and a full-blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. A combined steam and gas turbine engine having a device for lifting and moving a hull by rotating a propeller with output and thrust.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
圧縮機と、燃焼ガスで出力を得る全動翼ガスタービン
と、燃焼ガス温度がタービン耐熱限界温度以下となるよ
うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気タ
ービンとの出力と推力により、プロペラを回転させて船
体を浮揚移動させるための装置とを有する蒸気ガスター
ビン合体機関。40. A combustor / heat exchanger which is arranged in a spiral shape in a water-cooled outer wall unit assembling structure and has a small diameter and a large number of honeycombs, and an all-blade compressor for supplying compressed air to the combustor / heat exchanger. Power and thrust of a full-rotor blade gas turbine that obtains output with combustion gas, and a full-rotor blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat-resistant limit temperature And a device for rotating the propeller to levitate and move the hull.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンとの出力と推力
により、プロペラを回転させて船体を浮揚移動させるた
めの装置とを有する蒸気ガスタービン合体機関。41. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger that is arranged in a short shape in a honeycomb shape with a large number of small diameters, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains an output with combustion gas, and a combustion gas temperature that is turbine heat resistant. An integrated steam gas turbine engine comprising: a device for rotating a propeller to levitate and move a hull by an output and a thrust of a steam turbine that obtains an output with superheated steam obtained by heat exchange so as to be below a limit temperature.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する圧縮機と、燃焼ガスで出力を得るガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る蒸気タービンとの
出力と推力により、プロペラを回転させて船体を浮揚移
動させるための装置とを有する蒸気ガスタービン合体機
関。42. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welded unit assembling structure so as to be shortened in a plurality of small diameter honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. And a gas turbine that obtains output with combustion gas,
A device for rotating a propeller to lift and move the hull by using the output and thrust of a steam turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. Steam gas turbine combined engine.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンとの出力と推力
により、プロペラを回転させて船体を浮揚移動させるた
めの装置とを有する蒸気ガスタービン合体機関。43. As a spiral water-cooled outer wall unit assembling structure, a combustor / heat exchanger which is arranged in a short shape in a small-diameter multiple honeycomb structure, a compressor for supplying compressed air to the combustor / heat exchanger, The propeller is rotated and the hull is rotated by the output and thrust of the gas turbine that obtains output with gas and the steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature becomes lower than the turbine heat-resistant limit temperature. And a device for levitation movement.
て、圧縮機、蒸気タービン、ガスタービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。44. The method according to claim 41, wherein any one of a compressor, a steam turbine, and a gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
小径多数蜂の巣状にに短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る全動翼蒸気タービ
ンとの出力により、車輪を回転させて移動するための動
力伝達装置とを有する蒸気ガスタービン合体機関。45. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger that is arranged in a short shape in a honeycomb shape with a small diameter, a full blade compressor that supplies compressed air to the combustor / heat exchanger, and a full blade gas turbine that obtains output with combustion gas. ,
A power transmission device for rotating and moving wheels by means of output from a full-blade steam turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. Steam gas turbine combined engine.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る全動翼蒸気タービ
ンとの出力により、車輪を回転させて移動可能にすると
共に、該出力により発電・充電して電動機により車輪を
回転させて移動可能にするための動力伝達装置とを有す
る蒸気ガスタービン合体機関。46. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs, a full blade compressor for supplying compressed air to the combustor / heat exchanger, a full blade gas turbine which obtains output with combustion gas,
The output from superheated steam obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature is output from the full-rotor blade steam turbine, so that the wheels can be rotated and moved, and the power is generated by the output. A steam gas turbine united engine having a power transmission device for charging and rotating wheels by an electric motor to be movable.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガス
タービンと、燃焼ガス温度がタービン耐熱限界温度以下
となるように熱交換して得た過熱蒸気で出力を得る全動
翼蒸気タービンとの出力により、車輪を回転させて移動
するための動力伝達装置とを有する蒸気ガスタービン合
体機関。47. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welded unit assembling unit, and is compactly arranged in a small-diameter multi-honeycomb shape, and a full-movement supplying compressed air to the combustor / heat exchanger. A blade compressor, a full-blade gas turbine that obtains output with combustion gas, and a full-blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. A power transmission device for rotating and moving wheels according to output;
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガス
タービンと、燃焼ガス温度がタービン耐熱限界温度以下
となるように熱交換して得た過熱蒸気で出力を得る全動
翼蒸気タービンとの出力により、車輪を回転させて移動
可能にすると共に、該出力により発電・充電して電動機
により車輪を回転させて移動可能にするための動力伝達
装置とを有する蒸気ガスタービン合体機関。48. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welding structure unit assembling structure, and is compactly arranged in a small-diameter multi-honey structure. A blade compressor, a full-blade gas turbine that obtains output with combustion gas, and a full-blade steam turbine that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. A combined steam / gas turbine engine having a power transmission device for rotating wheels to enable movement by an output, and for generating and charging by the output and rotating the wheels by an electric motor to enable movement.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
圧縮機と、燃焼ガスで出力を得る全動翼ガスタービン
と、燃焼ガス温度がタービン耐熱限界温度以下となるよ
うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気タ
ービンとの出力により、車輪を回転させて移動するため
の動力伝達装置とを有する蒸気ガスタービン合体機関。49. A combustor / heat exchanger, which is arranged as a spiral-shaped water-cooled outer wall unit assembling structure in a small-diameter multi-honey structure, and an all-blade compressor for supplying compressed air to the combustor / heat exchanger. With the output of the all-blade gas turbine that obtains output with combustion gas, and the output of the all-blade steam turbine that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, A power transmission device for rotating wheels to move the steam turbine.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
圧縮機と、燃焼ガスで出力を得る全動翼ガスタービン
と、燃焼ガス温度がタービン耐熱限界温度以下となるよ
うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気タ
ービンとの出力により、車輪を回転させて移動可能にす
ると共に、該出力により発電・充電して電動機により車
輪を回転させて移動可能にするための動力伝達装置とを
有する蒸気ガスタービン合体機関。50. A combustor / heat exchanger which is arranged in a spiral shape in a water-cooled outer wall unit assembling structure and has a small diameter and a large number of honeycombs, and an all-blade compressor which supplies compressed air to the combustor / heat exchanger. With the output of the all-blade gas turbine that obtains output with combustion gas, and the output of the all-blade steam turbine that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, A combined steam gas turbine engine having a power transmission device for rotating wheels to enable movement, and for generating and charging the output and rotating the wheels by an electric motor to enable movement.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンとの出力によ
り、車輪を回転させて移動するための動力伝達装置とを
有する蒸気ガスタービン合体機関。51. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger that is arranged in a short shape in a honeycomb shape with a large number of small diameters, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains an output with combustion gas, and a combustion gas temperature that is turbine heat resistant. A combined steam gas turbine engine having a power transmission device for rotating and moving wheels by using an output from a steam turbine that obtains an output using superheated steam obtained by performing heat exchange so as to be equal to or lower than a limit temperature.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンとの出力によ
り、車輪を回転させて移動可能にすると共に、該出力に
より発電・充電して電動機により車輪を回転させて移動
可能にするための動力伝達装置とを有する蒸気ガスター
ビン合体機関。52. The water-cooled outer wall has a spiral welding structure,
A combustor / heat exchanger that is arranged in a short shape in a honeycomb shape with a large number of small diameters, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains an output with combustion gas, and a combustion gas temperature that is turbine heat resistant. With the output from the superheated steam obtained by heat exchange so as to be below the limit temperature, the output from the steam turbine is used to rotate the wheels to enable movement, and the output is used to generate and charge and rotate the wheels using the electric motor. And a power transmission device for making it movable.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する圧縮機と、燃焼ガスで出力を得るガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る蒸気タービンとの
出力により、車輪を回転させて移動するための動力伝達
装置とを有する蒸気ガスタービン合体機関。53. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure unit assembly structure and has a small diameter and a large number of honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. And a gas turbine that obtains output with combustion gas,
A power transmission device for rotating and moving wheels by using an output from a steam turbine that obtains an output from superheated steam obtained by performing heat exchange so that a combustion gas temperature is equal to or lower than a turbine heat-resistant limit temperature. Coalition organization.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する圧縮機と、燃焼ガスで出力を得るガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る蒸気タービンとの
出力により、車輪を回転させて移動可能にすると共に、
該出力により発電・充電して電動機により車輪を回転さ
せて移動可能にするための動力伝達装置とを有する蒸気
ガスタービン合体機関。54. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welded unit assembling structure so as to be short and arranged in a small-diameter multi-honey structure, and a compressor for supplying compressed air to the combustor / heat exchanger. And a gas turbine that obtains output with combustion gas,
With the output from the steam turbine that obtains the output from the superheated steam obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature, the wheels are rotated to enable movement,
A power transmission device for generating and charging the output and rotating the wheels by an electric motor so as to be movable.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンとの出力によ
り、車輪を回転させて移動するための動力伝達装置とを
有する蒸気ガスタービン合体機関。55. A helical water-cooled outer wall unit assembling structure, comprising a combustor / heat exchanger which is arranged in a short shape in the form of a plurality of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and The output of a gas turbine that obtains output with gas and the output of a steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature, for rotating and moving wheels. A combined steam gas turbine engine having a power transmission device.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンとの出力によ
り、車輪を回転させて移動可能にすると共に、該出力に
より発電・充電して電動機により車輪を回転させて移動
可能にするための動力伝達装置とを有する蒸気ガスター
ビン合体機関。56. A helical water-cooled outer wall unit assembling structure comprising a combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and The wheels are rotated to enable movement by the output of a gas turbine that obtains output with gas and a steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. And a power transmission device for generating and charging the output and rotating the wheels by an electric motor so as to be movable.
て、圧縮機、蒸気タービン、ガスタービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。57. The method according to claim 51, wherein the compressor, the steam turbine, or the gas turbine is selected from the group consisting of:
The following is a combined steam gas turbine engine with all blades.
て、鉄道レール(54)及び車輪(55)の動力伝達面
(31)に低凹凸(40)を夫夫具備して、該車輪の進
行方向前後のレール(54)との間に棒磁石(33)又
は電磁石(34)を設けて、吸引する力を作用させたこ
とを特徴とする蒸気ガスタービン合体機関。58. The power transmission surface (31) of the railway rail (54) and the wheel (55) is provided with low irregularities (40), respectively, so that the wheel A combined steam gas turbine engine wherein a bar magnet (33) or an electromagnet (34) is provided between the front and rear rails (54) in the traveling direction to apply a suction force.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る全動翼蒸気タービ
ンとの出力により、プロペラを回転させて船体を移動さ
せるための装置とを有する蒸気ガスタービン合体機関。59. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs, a full blade compressor for supplying compressed air to the combustor / heat exchanger, a full blade gas turbine which obtains output with combustion gas,
A device for rotating a propeller and moving a hull by using an output from a full-blade steam turbine that obtains an output using superheated steam obtained by performing heat exchange so that a combustion gas temperature is equal to or lower than a turbine heat-resistant limit temperature. Steam gas turbine combined engine.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガス
タービンと、燃焼ガス温度がタービン耐熱限界温度以下
となるように熱交換して得た過熱蒸気で出力を得る全動
翼蒸気タービンとの出力により、プロペラを回転させて
船体を移動させるための装置とを有する蒸気ガスタービ
ン合体機関。60. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welded unit assembling structure and is shortened and arranged in a small-diameter multiple-honeycomb shape, and a full-motion supplying compressed air to the combustor / heat exchanger. A blade compressor, a full-blade gas turbine that obtains output with combustion gas, and a full-blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. And a device for rotating a propeller according to an output to move a hull.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
圧縮機と、燃焼ガスで出力を得る全動翼ガスタービン
と、燃焼ガス温度がタービン耐熱限界温度以下となるよ
うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気タ
ービンとの出力により、プロペラを回転させて船体を移
動させるための装置とを有する蒸気ガスタービン合体機
関。61. A combustor / heat exchanger which is arranged in a spiral shape in a water-cooled outer wall unit assembly structure in the form of a plurality of small diameter honeycombs, and an all-blade compressor which supplies compressed air to the combustor / heat exchanger. With the output of the full blade gas turbine that obtains output with combustion gas, and the output of the full blade steam turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, And a device for moving the hull by rotating the propeller.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンとの出力によ
り、プロペラを回転させて船体を移動させるための装置
とを有する蒸気ガスタービン合体機関。62. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger that is arranged in a short shape in a honeycomb shape with a large number of small diameters, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains an output with combustion gas, and a combustion gas temperature that is turbine heat resistant. A combined steam / gas turbine engine having a device for rotating a propeller to move a hull by using an output from a steam turbine that obtains an output using superheated steam obtained by exchanging heat so that the temperature becomes equal to or lower than a limit temperature.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する圧縮機と、燃焼ガスで出力を得るガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る蒸気タービンとの
出力により、プロペラを回転させて船体を移動させるた
めの装置とを有する蒸気ガスタービン合体機関。63. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welded unit assembling structure so as to be shortened in a plurality of small diameter honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. And a gas turbine that obtains output with combustion gas,
A device for rotating a propeller to move a hull by using an output from a steam turbine that obtains an output from superheated steam obtained by performing heat exchange so that a combustion gas temperature is equal to or lower than a turbine heat-resistant limit temperature. Coalition organization.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンとの出力によ
り、プロペラを回転させて船体を移動させるための装置
とを有する蒸気ガスタービン合体機関。64. A helical water-cooled outer wall unit assembling structure, a combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and The propeller is rotated and the hull is moved by the output of the gas turbine that obtains output with gas and the steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature becomes equal to or lower than the turbine heat resistant limit temperature. And a combined apparatus for a steam gas turbine.
て、圧縮機、蒸気タービン、ガスタービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。65. The method according to claim 62, wherein any one of a compressor, a steam turbine, and a gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
て、前記過熱蒸気を含む排気噴口を船底に開口した蒸気
ガスタービン合体機関。66. The combined steam and gas turbine engine according to claim 59, wherein an exhaust orifice containing the superheated steam is opened at the bottom of the ship.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る全動翼蒸気タービ
ンとの出力により、機械を回転させて仕事をさせるため
の装置とを有する蒸気ガスタービン合体機関。67. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs, a full blade compressor for supplying compressed air to the combustor / heat exchanger, a full blade gas turbine which obtains output with combustion gas,
A device for rotating a machine to perform work by using an output from an all-blade steam turbine that obtains an output from superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. Gas turbine combined engine.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガス
タービンと、燃焼ガス温度がタービン耐熱限界温度以下
となるように熱交換して得た過熱蒸気で出力を得る全動
翼蒸気タービンとの出力により、機械を回転させて仕事
をさせるための装置とを有する蒸気ガスタービン合体機
関。68. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welded unit assembling structure and is shortened and arranged in a small-diameter multi-honey structure, and a full-movement supplying compressed air to the combustor / heat exchanger. A blade compressor, a full-blade gas turbine that obtains output with combustion gas, and a full-blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. An apparatus for rotating a machine to perform work according to output.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
圧縮機と、燃焼ガスで出力を得る全動翼ガスタービン
と、燃焼ガス温度がタービン耐熱限界温度以下となるよ
うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気タ
ービンとの出力により、機械を回転させて仕事をさせる
ための装置とを有する蒸気ガスタービン合体機関。69. A combustor / heat exchanger which is arranged in a spiral shape in a water-cooled outer wall unit assembly structure and has a small diameter and a large number of honeycombs, and an all-blade compressor which supplies compressed air to the combustor / heat exchanger. With the output of the full blade gas turbine that obtains output with combustion gas, and the output of the full blade steam turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, An apparatus for rotating a machine to perform work.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンとの出力によ
り、機械を回転させて仕事をさせるための装置とを有す
る蒸気ガスタービン合体機関。70. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger that is arranged in a short shape in the form of a large number of small-diameter honeycombs; a compressor that supplies compressed air to the combustor / heat exchanger; a gas turbine that obtains output using combustion gas; A combined steam gas turbine engine comprising: a device for rotating a machine to perform work by using an output from a steam turbine that obtains an output using superheated steam obtained by performing heat exchange so as to be equal to or lower than a limit temperature.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する圧縮機と、燃焼ガスで出力を得るガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る蒸気タービンとの
出力により、機械を回転させて仕事をさせるための装置
とを有する蒸気ガスタービン合体機関。71. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welded unit assembling structure and is shortened and arranged in a small number of honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. And a gas turbine that obtains output with combustion gas,
A device for rotating a machine to perform work by an output from a steam turbine that obtains an output from superheated steam obtained by performing heat exchange so that a combustion gas temperature is equal to or lower than a turbine heat-resistant limit temperature. organ.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンとの出力によ
り、機械を回転させて仕事をさせるための装置とを有す
る蒸気ガスタービン合体機関。72. A helical water-cooled outer wall unit assembling structure, comprising a combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs; a compressor for supplying compressed air to the combustor / heat exchanger; To rotate a machine to work by the output of a gas turbine that obtains output with gas and a steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat-resistant limit temperature And a combined steam gas turbine engine having the apparatus.
て、圧縮機、蒸気タービン、ガスタービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。73. The method according to claim 70, wherein any one of a compressor, a steam turbine, and a gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービン発電
機と、燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
タービン発電機と、夫夫のいずれかからの熱供給と、該
夫夫の発電機からの電気を供給するための装置とを有す
る蒸気ガスタービン合体機関。74. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger having a small diameter and arranged in a honeycomb shape, a full-blade compressor for supplying compressed air to the combustor / heat exchanger, and a full-blade gas turbine generator for obtaining output from combustion gas An all-blade steam turbine generator that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, heat supply from either of them, And a device for supplying electricity from the generator.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービン発電
機と、該熱及び排気による冷熱の供給と、燃焼ガス温度
がタービン耐熱限界温度以下となるように熱交換して得
た過熱蒸気で出力を得る全動翼蒸気タービン発電機と、
該夫夫からの電気を供給するための装置とを有する蒸気
ガスタービン合体機関。75. The water-cooled outer wall has a spiral welding structure,
A combustor / heat exchanger having a small diameter and arranged in a honeycomb shape, a full-blade compressor for supplying compressed air to the combustor / heat exchanger, and a full-blade gas turbine generator for obtaining output from combustion gas Supply of cold heat by the heat and exhaust gas, and an all-blade steam turbine generator that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistant limit temperature,
And a device for supplying electricity from the couple.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービン発電
機と、燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
タービン発電機と、夫夫からの電気を供給するための装
置とを有する蒸気ガスタービン合体機関。76. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger having a small diameter and arranged in a honeycomb shape, a full-blade compressor for supplying compressed air to the combustor / heat exchanger, and a full-blade gas turbine generator for obtaining output from combustion gas And a full-blade steam turbine generator that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature, and a device for supplying electricity from each of them. Steam gas turbine combined engine.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガス
タービン発電機と、燃焼ガス温度がタービン耐熱限界温
度以下となるように熱交換して得た過熱蒸気で出力を得
る全動翼蒸気タービン発電機と、夫夫のいずれかからの
熱供給と、該夫夫の発電機からの電気を供給するための
装置とを有する蒸気ガスタービン合体機関。77. A combustor / heat exchanger in which the water-cooled outer wall is formed as a spiral welding unit assembly structure with a small diameter and a large number of honeycombs, and a full-movement supplying compressed air to the combustor / heat exchanger. Blade compressor, all-blade gas turbine generator that obtains output with combustion gas, and all-blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature A combined steam and gas turbine engine having a generator, heat supply from either of the couple, and a device for supplying electricity from the couple's generator.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガス
タービン発電機と、該熱及び排気による冷熱の供給と、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る全動翼蒸気タービ
ン発電機と、該夫夫からの電気を供給するための装置と
を有する蒸気ガスタービン合体機関。78. A combustor / heat exchanger in which the water-cooled outer wall is formed as a spiral welding unit unit assembling structure and is shortened and arranged in a small-diameter multi-honeycomb shape, and a full-movement supplying compressed air to the combustor / heat exchanger. A blade compressor, an all-blade gas turbine generator that obtains output with combustion gas, supply of cold heat by the heat and exhaust gas,
Steam having an all-blade steam turbine generator that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature, and a device for supplying electricity from the respective turbines Gas turbine combined engine.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガス
タービン発電機と、燃焼ガス温度がタービン耐熱限界温
度以下となるように熱交換して得た過熱蒸気で出力を得
る全動翼蒸気タービン発電機と、該夫夫からの電気を供
給するための装置とを有する蒸気ガスタービン合体機
関。79. A combustor / heat exchanger in which the water-cooled outer wall is formed as a spiral welded unit assembling structure and is shortened and arranged in a small-diameter multi-honeycomb shape, and a full-movement supplying compressed air to the combustor / heat exchanger. A blade compressor, an all-blade gas turbine generator that obtains output with combustion gas, and an all-blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature A combined steam gas turbine engine having a generator and a device for supplying electricity from the couple.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
圧縮機と、燃焼ガスで出力を得る全動翼ガスタービン発
電機と、燃焼ガス温度がタービン耐熱限界温度以下とな
るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
気タービン発電機と、夫夫のいずれかからの熱供給と、
該夫夫からの電気を供給するための装置とを有する蒸気
ガスタービン合体機関。80. A combustor / heat exchanger, which is arranged in a spiral shape in a water-cooled outer wall unit assembly structure and has a small diameter and a large number of honeycombs, and a full blade compressor that supplies compressed air to the combustor / heat exchanger. And a full-blade steam turbine generator that obtains output with combustion gas, and a full-blade steam turbine generator that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. , Heat supply from either husband or husband,
And a device for supplying electricity from the couple.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
圧縮機と、燃焼ガスで出力を得る全動翼ガスタービン発
電機と、該熱及び冷熱の供給と、燃焼ガス温度がタービ
ン耐熱限界温度以下となるように熱交換して得た過熱蒸
気で出力を得る全動翼蒸気タービン発電機と、該夫夫か
らの電気を供給するための装置とを有する蒸気ガスター
ビン合体機関。81. A combustor / heat exchanger, which is arranged as a spiral-shaped water-cooled outer wall unit assembling structure in a small-diameter multi-honey structure, and an all-blade compressor for supplying compressed air to the combustor / heat exchanger. And an all-blade gas turbine generator that obtains output with combustion gas, supply of the heat and cold heat, and obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistant limit temperature. A combined steam and gas turbine engine having an all-blade steam turbine generator and a device for supplying electricity from the couple.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
圧縮機と、燃焼ガスで出力を得る全動翼ガスタービン発
電機と、燃焼ガス温度がタービン耐熱限界温度以下とな
るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
気タービン発電機と、該夫夫からの電気を供給するため
の装置とを有する蒸気ガスタービン合体機関。82. A combustor / heat exchanger, which is arranged as a spiral-shaped water-cooled outer wall unit assembling structure and has a small diameter and a large number of honeycombs, and an all-blade compressor for supplying compressed air to the combustor / heat exchanger. And a full-blade steam turbine generator that obtains output with combustion gas, and a full-blade steam turbine generator that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. And a device for supplying electricity from the couple.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービン発電機と、燃焼
ガス温度がタービン耐熱限界温度以下となるように熱交
換して得た過熱蒸気で出力を得る蒸気タービン発電機
と、夫夫のいずれかからの熱供給と、該夫夫からの電気
を供給するための装置とを有する蒸気ガスタービン合体
機関。83. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger, which is arranged in a short shape in the form of a large number of small diameter honeycombs, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine generator that obtains output using combustion gas, and A steam turbine generator that obtains output with superheated steam obtained by exchanging heat so as to be equal to or lower than the turbine heat resistant limit temperature, a device for supplying heat from any one of the two, and a device for supplying electricity from the couple And a combined steam and gas turbine engine.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービン発電機と、該熱
及び冷熱供給と、燃焼ガス温度がタービン耐熱限界温度
以下となるように熱交換して得た過熱蒸気で出力を得る
蒸気タービン発電機と、該夫夫からの電気を供給するた
めの装置とを有する蒸気ガスタービン合体機関。84. The water-cooled outer wall has a spiral welding structure,
A combustor / heat exchanger which is arranged in a short shape in the form of a large number of small-diameter honeycombs; a compressor for supplying compressed air to the combustor / heat exchanger; a gas turbine generator for obtaining an output from combustion gas; A steam having a supply, a steam turbine generator for obtaining an output with superheated steam obtained by heat exchange so that a combustion gas temperature is equal to or lower than a turbine heat-resistant limit temperature, and a device for supplying electricity from the steam turbine generator Gas turbine combined engine.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービン発電機と、燃焼
ガス温度がタービン耐熱限界温度以下となるように熱交
換して得た過熱蒸気で出力を得る蒸気タービン発電機
と、該夫夫からの電気を供給するための装置とを有する
蒸気ガスタービン合体機関。85. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger, which is arranged in a short shape in the form of a large number of small diameter honeycombs, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine generator that obtains output using combustion gas, and A combined steam gas turbine engine comprising: a steam turbine generator for obtaining an output with superheated steam obtained by heat exchange so as to be equal to or lower than a turbine heat resistance limit temperature; and a device for supplying electricity from the steam turbine generator.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する圧縮機と、燃焼ガスで出力を得るガスタービン発電
機と、燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る蒸気タービ
ン発電機と、夫夫のいずれかからの熱供給と、該夫夫か
らの電気を供給するための装置とを有する蒸気ガスター
ビン合体機関。86. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure unit assembly structure and is arranged in a short shape in a small number of honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. A gas turbine generator that obtains output with combustion gas, and a steam turbine generator that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A combined steam and gas turbine engine having heat supply from the steam generator and a device for supplying electricity from the couple.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する圧縮機と、燃焼ガスで出力を得るガスタービン発電
機と、該熱及び冷熱の供給と、燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る蒸気タービン発電機と、該夫夫からの電気
を供給するための装置とを有する蒸気ガスタービン合体
機関。87. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure unit assembling structure and is arranged in a short shape in a small number of honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. A gas turbine generator that obtains output with combustion gas, and a steam turbine generator that obtains output with superheated steam obtained by supplying heat and cold heat and exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. A combined steam and gas turbine engine having a power plant and a device for supplying electricity from the couple.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する圧縮機と、燃焼ガスで出力を得るガスタービン発電
機と、燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る蒸気タービ
ン発電機と、該夫夫からの電気を供給するための装置と
を有する蒸気ガスタービン合体機関。88. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure unit assembly structure and is arranged in a short shape in a small number of honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. A gas turbine generator that obtains output with combustion gas, a steam turbine generator that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, And a device for supplying electricity.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービン発電機と、燃焼
ガス温度がタービン耐熱限界温度以下となるように熱交
換して得た過熱蒸気で出力を得る蒸気タービン発電機
と、夫夫のいずれかからの熱供給と、該夫夫からの電気
を供給するための装置とを有する蒸気ガスタービン合体
機関。89. As a spiral water-cooled outer wall unit assembling structure, a combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, A gas turbine generator that obtains output with gas, a steam turbine generator that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, and heat from either of them A combined steam gas turbine engine having a supply and a device for supplying electricity from the couple.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービン発電機と、該熱
及び冷熱の供給と、燃焼ガス温度がタービン耐熱限界温
度以下となるように熱交換して得た過熱蒸気で出力を得
る蒸気タービン発電機と、該夫夫からの電気を供給する
ための装置とを有する蒸気ガスタービン合体機関。90. A helical water-cooled outer wall unit assembling structure, a combustor / heat exchanger which is arranged in a short shape in a small-diameter multi-honey structure, a compressor for supplying compressed air to the combustor / heat exchanger, and A gas turbine generator that obtains output with gas, a supply of the heat and cold heat, and a steam turbine generator that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature, And a device for supplying electricity from the couple.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービン発電機と、燃焼
ガス温度がタービン耐熱限界温度以下となるように熱交
換して得た過熱蒸気で出力を得る蒸気タービン発電機
と、該夫夫からの電気を供給するための装置とを有する
蒸気ガスタービン合体機関。91. A helical water-cooled outer wall unit assembling structure, comprising a combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and A gas turbine generator that obtains output with gas, a steam turbine generator that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature, and supplies electricity from each of them. Steam gas turbine combined engine having a device for performing
て、圧縮機、蒸気タービン、ガスタービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。92. The method according to claim 83, wherein any one of a compressor, a steam turbine, and a gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る排気温度0℃前後の全動
翼ガスタービン発電機と、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る復水器付全動翼蒸気タービン発電機と、該夫夫
からの電気を供給するための装置とを有する蒸気ガスタ
ービン合体機関。93. The water-cooled outer wall has a spiral welding structure,
A combustor / heat exchanger, which is arranged in a short shape in a small number of honeycombs, an all-blade compressor for supplying compressed air to the combustor / heat exchanger, and a total exhaust gas temperature of about 0 ° C. which obtains an output with combustion gas. A rotor blade gas turbine generator, a full rotor blade steam turbine generator with a condenser that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, And a device for supplying electricity to the steam gas turbine.
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する全動翼圧縮機と、燃焼ガスで出力を得る排気温度0
℃前後の全動翼ガスタービン発電機と、燃焼ガス温度が
タービン耐熱限界温度以下となるように熱交換して得た
過熱蒸気で出力を得る復水器付全動翼蒸気タービン発電
機と、該夫夫からの電気を供給するための装置とを有す
る蒸気ガスタービン合体機関。94. A combustor / heat exchanger in which the water-cooled outer wall is formed as a helical welded structural unit as a unitary structure in a small-diameter multiple-honeycomb arrangement, and a full-movement supplying compressed air to the combustor / heat exchanger. Wing compressor and exhaust temperature 0 to obtain output from combustion gas
All rotor blade gas turbine generator with a condenser that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, And a device for supplying electricity from the couple.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼
圧縮機と、燃焼ガスで出力を得る排気温度0℃前後の全
動翼ガスタービン発電機と、燃焼ガス温度がタービン耐
熱限界温度以下となるように熱交換して得た過熱蒸気で
出力を得る復水器付全動翼蒸気タービン発電機と、該夫
夫からの電気を供給するための装置とを有する蒸気ガス
タービン合体機関。95. A combustor / heat exchanger, which is arranged in a spiral shape with a water-cooled outer wall unit and has a small diameter and a large number of honeycombs, and an all-blade compressor that supplies compressed air to the combustor / heat exchanger. And an all-blade gas turbine generator with an exhaust temperature of around 0 ° C, which obtains output from combustion gas, and a condensate, which obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature. A combined steam and gas turbine engine having an all-bladed steam turbine generator and a device for supplying electricity from each of them.
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得る排気温度0℃前後のガスター
ビン発電機と、燃焼ガス温度がタービン耐熱限界温度以
下となるように熱交換して得た過熱蒸気で出力を得る復
水器付蒸気タービン発電機と、該夫夫からの電気を供給
するための装置とを有する蒸気ガスタービン合体機関。96. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger which is arranged in a short form in a small-diameter multiple honeycomb structure, a compressor for supplying compressed air to the combustor / heat exchanger, and a gas turbine generator having an exhaust temperature of about 0 ° C. for obtaining an output from combustion gas And a steam turbine generator with a condenser that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, and a device for supplying electricity from each of them. A steam gas turbine combined engine having
て構造として、小径多数蜂の巣状に短小化配置した燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する圧縮機と、燃焼ガスで出力を得る排気温度0℃前後
のガスタービン発電機と、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る復水器付蒸気タービン発電機と、該夫夫からの
電気を供給するための装置とを有する蒸気ガスタービン
合体機関。97. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welded unit assembling structure and shortened in a small-diameter multi-honey structure, and a compressor for supplying compressed air to the combustor / heat exchanger. And a gas turbine generator with an exhaust temperature of around 0 ° C. that obtains output using combustion gas, and steam with a condenser that obtains output using superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. A combined steam gas turbine engine having a turbine generator and a device for supplying electricity from the couple.
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得る排気温度0℃前後のガスター
ビン発電機と、燃焼ガス温度がタービン耐熱限界温度以
下となるように熱交換して得た過熱蒸気で出力を得る復
水器付蒸気タービン発電機と、該夫夫からの電気を供給
するための装置とを有する蒸気ガスタービン合体機関。98. A helical water-cooled outer wall unit assembling structure, a combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and A gas turbine generator with an exhaust temperature of around 0 ° C that obtains output with gas, and a steam turbine generator with a condenser that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature And a device for supplying electricity from the couple.
て、圧縮機、蒸気タービン、ガスタービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。99. The method according to claim 96, wherein any one of a compressor, a steam turbine, and a gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
熱交換器は、超臨界以下の過熱蒸気を噴射して、撹拌燃
焼によりNOxを低減することを特徴とする蒸気ガスタ
ービン合体機関。100. A combined steam gas turbine engine, wherein the combustor / heat exchanger of the all-blade gas turbine injects supercritical steam that is supercritical or lower to reduce NOx by agitated combustion.
器は、超臨界以下の過熱蒸気を噴射して、撹拌燃焼によ
りNOxを低減することを特徴とする蒸気ガスタービン
合体機関。101. A steam gas turbine combined engine, wherein a combustor / heat exchanger of the gas turbine injects superheated supercritical steam or less to reduce NOx by agitated combustion.
度を0℃に近づけることを特徴とする蒸気ガスタービン
合体機関。102. A combined steam gas turbine engine as set forth in claim 102, wherein the exhaust gas temperature of the all-blade gas turbine approaches 0 ° C.
℃に近づけることを特徴とする蒸気ガスタービン合体機
関。103. The gas turbine, wherein the exhaust gas temperature is set to 0.
A steam gas turbine combined engine characterized by approaching the temperature of ℃.
条件以下の過熱蒸気を使用する請求項1乃至請求項10
3のいずれかに記載の蒸気ガスタービン合体機関。104. The steam turbine uses superheated steam under supercritical steam conditions.
3. The steam gas turbine combined engine according to any one of 3.
置と外側軸装置を最適回転比で結合した磁気摩擦動力伝
達装置(14)を具備したことを特徴とする蒸気ガスタ
ービン合体機関。105. A combined steam gas turbine engine comprising: a magnetic friction power transmission device (14) in which an inner shaft device and an outer shaft device of the full blade gas turbine are connected at an optimum rotation ratio.
側軸装置を最適回転比で結合した磁気摩擦動力伝達装置
(14)を具備したことを特徴とする蒸気ガスタービン
合体機関。106. A combined steam gas turbine engine comprising: a magnetic friction power transmission device (14) in which an inner shaft device and an outer shaft device of the full blade compressor are connected at an optimum rotation ratio.
は冷却装置を有することを特徴とする蒸気ガスタービン
合体機関。107. The magnetic friction power transmission device (14)
Is a steam gas turbine combined engine having a cooling device.
供給する全動翼圧縮機に、バイパスを設けたことを特徴
とする蒸気ガスタービン合体機関。108. A combined steam gas turbine engine, wherein a bypass is provided in an all-blade compressor that supplies the compressed air to a combustor / heat exchanger.
供給する圧縮機に、バイパスを設けたことを特徴とする
蒸気ガスタービン合体機関。109. A combined steam gas turbine engine, wherein a bypass is provided in a compressor for supplying the compressed air to a combustor / heat exchanger.
置と外側軸装置を2重反転させる磁気摩擦動力伝達装置
14に冷却装置を設けたことを特徴とする蒸気ガスター
ビン合体機関。110. A combined steam gas turbine engine, wherein a cooling device is provided in a magnetic friction power transmission device 14 for reversing an inner shaft device and an outer shaft device of the full blade gas turbine.
側軸装置を2重反転させる磁気摩擦動力伝達装置14に
冷却装置を設けたことを特徴とする蒸気ガスタービン合
体機関。111. A combined steam gas turbine engine, wherein a cooling device is provided in a magnetic friction power transmission device 14 for reversing an inner shaft device and an outer shaft device of the all-blade compressor.
内側軸装置に内側タービン動翼群(20)を設け、外側
軸装置に外側タービン動翼群(19)及び内側圧縮機動
翼群(17)を設けて内側軸装置と兼用して、互いに反
転する2軸を磁気摩擦動力伝達装置により結合して全動
翼蒸気タービンを構成し、内側圧縮機動翼群(17)の
外側に外側軸装置及び外側圧縮機動翼群(16)を設け
て、互いに反転する該外側軸装置と内側軸装置を磁気摩
擦動力伝達装置により結合して全動翼圧縮機を構成させ
て、内側軸装置の中心より過熱蒸気(5)を供給して、
該全動翼蒸気タービン圧縮機を駆動する装置を設けたこ
とを特徴とする蒸気ガスタービン合体機関。112. The all-blade steam turbine compressor comprises:
The inner shaft device is provided with an inner turbine blade group (20), and the outer shaft device is provided with an outer turbine blade group (19) and an inner compressor blade group (17). The two shafts are connected by a magnetic friction power transmission device to form a full-blade steam turbine, and an outer shaft device and an outer compressor blade group (16) are provided outside the inner compressor blade group (17), and are mutually inverted. The outer shaft device and the inner shaft device are combined by a magnetic friction power transmission device to form a full blade compressor, and superheated steam (5) is supplied from the center of the inner shaft device.
A combined steam gas turbine engine comprising a device for driving the all-blade steam turbine compressor.
内側軸装置に内側タービン動翼群(20)を設け、外側
軸装置に外側タービン動翼群(19)を設けて互いに反
転する2軸を磁気摩擦動力伝達装置により結合して全動
翼蒸気タービンを構成し、該前方内側軸装置に内側圧縮
機動翼群(17)を設け、該外側に外側軸装置及び外側
圧縮機動翼群(16)を設けて、互いに反転する該外側
軸装置と内側軸装置を磁気摩擦動力伝達装置により結合
して全動翼圧縮機を構成させて、内側軸装置の中心より
過熱蒸気(5)を供給して、該全動翼蒸気タービン圧縮
機として駆動する装置を設けたことを特徴とする蒸気ガ
スタービン合体機関。113. The all-blade steam turbine compressor,
An inner shaft unit is provided with an inner turbine blade group (20), and an outer shaft unit is provided with an outer turbine blade group (19). The front inner shaft device is provided with an inner compressor blade group (17), and the outer shaft device and the outer compressor blade group (16) are provided on the outer side, so that the outer shaft device and the inner shaft which are mutually inverted are provided. A device that is combined with a magnetic friction power transmission device to form a full blade compressor, supplies superheated steam (5) from the center of the inner shaft device, and drives the device as the full blade steam turbine compressor. A combined steam gas turbine engine, comprising:
定軸装置に内側タービン静翼を設け、外側軸装置に外側
タービン動翼群(19)を設けて内側軸装置の中心より
過熱蒸気(5)を供給して駆動可能に蒸気タービンを構
成し、該外側軸装置に内側圧縮機動翼群(17)を設け
て内側軸装置と兼用して、該内側圧縮機動翼群(17)
の外側にケーシング及び静翼を設けて圧縮機を構成させ
て、蒸気タービン圧縮機として設けたことを特徴とする
蒸気ガスタービン合体機関。114. The steam turbine compressor, wherein an inner turbine stationary blade is provided on an inner fixed shaft device, and an outer turbine rotor blade group (19) is provided on an outer shaft device, and superheated steam (5) is provided from the center of the inner shaft device. The steam turbine is configured to be drivable by supplying the inner compressor rotor blade group (17) to the outer shaft device, and the inner compressor device blade group (17) is also used as the inner shaft device.
A combined steam and gas turbine engine comprising a compressor and a compressor provided by providing a casing and a stationary vane outside of the steam turbine.
装置に内側タービン動翼群(20)を設け、外側軸装置
に静翼を設けて、該上流側より過熱蒸気(5)を噴射供
給して駆動可能に蒸気タービンを構成し、前方内側軸装
置に内側圧縮機動翼群(17)を設けて、該内側圧縮機
動翼群(17)の外側にケーシング及び静翼を設けて圧
縮機を構成させて、蒸気タービン圧縮機として設けたこ
とを特徴とする蒸気ガスタービン合体機関。115. In the steam turbine compressor, an inner turbine rotor group (20) is provided in an inner shaft device, and a stationary blade is provided in an outer shaft device, and superheated steam (5) is injected and supplied from the upstream side. A steam turbine is configured so as to be drivable, a compressor is provided by providing an inner compressor moving blade group (17) in a front inner shaft device, and a casing and a stator blade provided outside the inner compressor moving blade group (17). A combined steam gas turbine engine provided as a steam turbine compressor.
全動翼圧縮機を除去することで、全動翼蒸気タービンと
して設けたことを特徴とする蒸気ガスタービン合体機
関。116. The all-blade steam turbine compressor comprises:
A combined steam and gas turbine engine, wherein an all-blade compressor is removed to provide a full-blade steam turbine.
を除去することで、蒸気タービンとして設けたことを特
徴とする蒸気ガスタービン合体機関。117. A combined steam gas turbine engine, wherein the steam turbine compressor is provided as a steam turbine by removing the compressor.
装置に内側タービン動翼群(20)を設け、外側軸装置
に外側タービン動翼群(19)を設けて、互いに反転す
る2軸を磁気摩擦動力伝達装置により結合して全動翼蒸
気タービンを構成し、内側軸装置の中心より過熱蒸気
(5)を供給して、該全動翼蒸気タービンを駆動する装
置を設けたことを特徴とする蒸気ガスタービン合体機
関。118. The all-blade steam turbine is provided with an inner turbine blade group (20) provided on an inner shaft device and an outer turbine blade group (19) provided on an outer shaft device, so that two shafts which are inverted with respect to each other are provided. An all-blade steam turbine is constituted by coupling with a magnetic friction power transmission device, and a device for supplying superheated steam (5) from the center of the inner shaft device to drive the all-blade steam turbine is provided. Steam gas turbine combined engine.
置に内側タービン静翼を設け、外側軸装置に外側タービ
ン動翼群(19)を設けて、内側固定軸装置の中心より
過熱蒸気(5)を供給して駆動可能に蒸気タービンを構
成して設けたことを特徴とする蒸気ガスタービン合体機
関。119. The steam turbine, wherein an inner turbine stationary blade is provided on an inner fixed shaft device, and an outer turbine blade group (19) is provided on an outer shaft device, and superheated steam (5) is provided from a center of the inner fixed shaft device. A steam gas turbine combined engine, wherein a steam turbine is constructed and provided so as to be drivable and supplied.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000024552A JP2001012209A (en) | 1999-04-26 | 2000-02-02 | Steam gas turbine united engine device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11-117404 | 1999-04-26 | ||
JP11117404A JP2000038904A (en) | 1998-05-18 | 1999-04-26 | Various kinds of steam gas turbine integrated engine |
JP2000024552A JP2001012209A (en) | 1999-04-26 | 2000-02-02 | Steam gas turbine united engine device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001012209A true JP2001012209A (en) | 2001-01-16 |
Family
ID=26455523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000024552A Pending JP2001012209A (en) | 1999-04-26 | 2000-02-02 | Steam gas turbine united engine device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001012209A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102900538A (en) * | 2012-11-06 | 2013-01-30 | 通化师范学院 | Double-working-medium combined cycle turbine annular combustion phase change chamber |
CN102900528A (en) * | 2012-11-06 | 2013-01-30 | 通化师范学院 | Self power consumption reduction method of double-working-medium combined cycle turbine |
US10731555B2 (en) | 2015-06-01 | 2020-08-04 | Samad Power Limited | Micro-CHP gas fired boiler with gas turbine assembly |
-
2000
- 2000-02-02 JP JP2000024552A patent/JP2001012209A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102900538A (en) * | 2012-11-06 | 2013-01-30 | 通化师范学院 | Double-working-medium combined cycle turbine annular combustion phase change chamber |
CN102900528A (en) * | 2012-11-06 | 2013-01-30 | 通化师范学院 | Self power consumption reduction method of double-working-medium combined cycle turbine |
US10731555B2 (en) | 2015-06-01 | 2020-08-04 | Samad Power Limited | Micro-CHP gas fired boiler with gas turbine assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU696828B2 (en) | Improved method and apparatus for power generation | |
US6446425B1 (en) | Ramjet engine for power generation | |
US6047540A (en) | Small gas turbine engine having enhanced fuel economy | |
US20130111923A1 (en) | Gas turbine engine component axis configurations | |
US6263664B1 (en) | Combined steam and gas turbine engine with magnetic transmission | |
US20130074516A1 (en) | Gas turbines | |
US8171732B2 (en) | Turbocharger for a vehicle with a coanda device | |
CN113756900A (en) | Internal and external mixed combustion engine | |
US6751940B1 (en) | High efficiency gas turbine power generator | |
GB2574065A (en) | Rotary regenerator | |
JP2001012209A (en) | Steam gas turbine united engine device | |
WO2000019082A9 (en) | Ramjet engine with axial air supply fan | |
CN215979531U (en) | Internal and external mixed combustion engine | |
JP2001295611A (en) | Steam/gas combined turbine engine | |
JP2000038904A (en) | Various kinds of steam gas turbine integrated engine | |
JP2000038927A (en) | Various kinds of steam gas turbine integrated engine | |
JP2000038902A (en) | Steam gas turbine integrated engine apparatus | |
JP2000038903A (en) | Steam gas turbine integrated engine having controller | |
JP2001295612A (en) | Various steam/gas combined turbine engines | |
JP2001012210A (en) | Various steam gas turbines combined engine | |
JPH11107778A (en) | Steam gas turbine combined engine, transportation and generating equipment | |
JP2000038928A (en) | Steam gas turbine integrated engine | |
RU2363604C1 (en) | Gas turbine locomotive and its power plant | |
US12092054B1 (en) | Combined Brayton and Stirling cycle power generator | |
EP4148243B1 (en) | Micro-turbine generator multi-stage turbine with interstage catalytic converter |