JP2000038904A - Various kinds of steam gas turbine integrated engine - Google Patents

Various kinds of steam gas turbine integrated engine

Info

Publication number
JP2000038904A
JP2000038904A JP11117404A JP11740499A JP2000038904A JP 2000038904 A JP2000038904 A JP 2000038904A JP 11117404 A JP11117404 A JP 11117404A JP 11740499 A JP11740499 A JP 11740499A JP 2000038904 A JP2000038904 A JP 2000038904A
Authority
JP
Japan
Prior art keywords
turbine
combustor
heat exchanger
steam
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11117404A
Other languages
Japanese (ja)
Inventor
Hiroyasu Tanigawa
浩保 谷川
Kazunaga Tanigawa
和永 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP13472198A external-priority patent/JPH11107778A/en
Application filed by Individual filed Critical Individual
Priority to JP11117404A priority Critical patent/JP2000038904A/en
Priority to JP2000024552A priority patent/JP2001012209A/en
Publication of JP2000038904A publication Critical patent/JP2000038904A/en
Priority to JP2000043706A priority patent/JP2001012210A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve specific power as well as heat efficiency of a gas turbine by effectively utilizing air for combustion which is compressed by heat exchange by using a swage block shaped device which serves as both a combustor and a heat exchanger. SOLUTION: Compressed air 15 for combustion is supplied to receiving ports of a device 4 which serves as both a combustor and a heat exchanger. The receiving ports are arranged by pressurizing pressure in a high level, and are formed by forming their multiple small diameters in a swage block shape. Supplied high compression air 15 is supplied from a fuel supplying means of the most upstream side of the device 4, it is burnt in the device 4 where a heat exchange heating surface area is enlarged. As a result, heat exchange is carried out, and heat exchange cooling NOx is reduced and burnt by a water cooled outer wall of a water leading pipe and a steam pipe. Combustion gas 10 formed by carrying out heat exchange for setting a combustion gas temperature to a turbine heat resistance limit temperature or less, is injected in order toward a downstream side including a first stage of an outer turbine moving blade group and a second stage of an inner turbine moving blade group through a combustion gas sump by the device 4, and thereby, large rotating power is generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気ガスタービン
合体機関、詳しくは、ガスタービンの全多数燃焼器の外
壁を、略螺旋状の熔接構造水冷外壁熱交換器又は、螺旋
状の水冷外壁単位組立構造熱交換器又は、螺旋状の溶接
構造水冷外壁単位組立て構造熱交換器として、小径多数
蜂の巣状に短小化することで、合理的円筒形状を可能に
すると共に、大幅高圧化及び大幅に能率の良い熱交換を
可能にし、該燃焼器兼熱交換器を用途に合わせて小径多
数蜂の巣状に短小化することで、熱交換伝熱面積を増大
すると共に、短小高圧容器として燃料供給手段を従来技
術の3倍前後に最上流側に増設容易にし、該燃焼器兼熱
交換器内に蒸気過熱器を、略螺旋状に直線に近づけたも
のも含めて具備して、過熱蒸気溜より過熱蒸気を噴射す
るロケット等を含めて、該過熱蒸気により出力を得る蒸
気タービンと、該燃焼ガスにより出力を得るガスタービ
ンにより、各種航空機、各種船舶、各種車両、各種発電
設備等あらゆる用途に対応可能にして、磁気摩擦動力伝
達装置も適宜に含めた新技術の各種蒸気ガスタービン合
体機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined steam and gas turbine engine, and more particularly, to an outer wall of a multi-combustor of a gas turbine, wherein a substantially spiral welded water cooling outer wall heat exchanger or a spiral water cooling outer wall unit is used. As a heat exchanger with an assembled structure or a spirally welded water-cooled outer wall unit as a unitary structure heat exchanger, it is possible to make a reasonable cylindrical shape by shortening it into a large number of small diameter honeycombs, and it is possible to greatly increase the pressure and greatly improve efficiency. In addition to increasing the heat exchange heat transfer area by reducing the size of the combustor / heat exchanger into a large number of small-diameter honeycombs according to the application, the conventional fuel supply means is used as a short and high pressure vessel. Around three times the technology, it is easy to add to the uppermost stream side, and a steam superheater is provided in the combustor / heat exchanger, including one that is nearly linear in a spiral shape. Including rockets that spray By using a steam turbine that obtains output from the superheated steam and a gas turbine that obtains output from the combustion gas, it can be used in various applications such as various aircraft, various ships, various vehicles, and various types of power generation equipment. The present invention also relates to a new technology of various types of steam gas turbine united engines that include a suitable engine.

【0002】[0002]

【従来の技術】蒸気タービン・ガスタービン複合機関の
うち、ガスタービン燃焼器の内部に熱交換器を設けた先
行技術として特開昭50−89737号が開示されてい
る。この発明は、ガスタービン燃焼器の高温領域に、蒸
気タービンサイクルの過熱器乃至再熱器を設けることに
よって、特別の補助的な燃焼器を必要とすることなく、
蒸気タービンサイクルの過熱蒸気温度を高め、複合プラ
ント全体の効率向上を図るものである。又、特開昭52
−156248号は、ガスタービン間の燃焼ガスとの熱
交換によって蒸発を行なうことにより、廃熱回収ボイラ
出口廃ガス温度の低下を図り、ボイラ効率を向上させる
ことが開示されている。しかし、これらは、いずれも過
給ボイラサイクルの熱効率の向上を図るもので、ガスタ
ービンの圧力比と比出力の同時上昇を図るものでもガス
タービンの熱効率上昇を図るものでもない。
2. Description of the Related Art Japanese Patent Laid-Open Publication No. Sho 50-89737 discloses a prior art in which a heat exchanger is provided inside a gas turbine combustor in a steam turbine / gas turbine combined engine. The present invention provides a steam turbine cycle superheater or reheater in a high temperature region of a gas turbine combustor, thereby eliminating the need for a special auxiliary combustor.
The purpose is to increase the superheated steam temperature of the steam turbine cycle and improve the efficiency of the entire combined plant. Also, Japanese Patent Laid-Open No. 52
No. 156248 discloses that evaporation is performed by heat exchange with combustion gas between gas turbines, thereby reducing the temperature of waste gas at a waste heat recovery boiler outlet and improving boiler efficiency. However, none of these aims to improve the thermal efficiency of the supercharging boiler cycle, and does not aim to increase the pressure ratio and the specific output of the gas turbine at the same time, nor to increase the thermal efficiency of the gas turbine.

【0003】又、先の出願としてガスタービン燃焼器を
改良した、特願平6−330862号、特願平7−14
5074号、特願平7−335595号、特願平8−4
1998号、特願平8−80407号、特願平8−14
3391号、特願平8−204049号、特願平8−2
72806号、特願平9−106925号、特願平9−
181944号、特願平10−134720号、特願平
10−134721号、特願平11−69406号があ
ります。以上先の出願に基づく優先権主張出願は概略的
に、全動翼を含む及び/ガスタービンの全複数の燃焼器
を長大化して、該水冷外壁を螺旋状に具備して高圧容器
とした熱交換器としても兼用して、大部分の供給熱量を
過熱蒸気に変換可能にすることにより、タービン耐熱限
界温度を越えることなく圧力比及び比出力を極限まで同
時に上昇可能にする装置及び方法とするものです。
[0003] Further, as a prior application, a gas turbine combustor is improved.
No. 5074, Japanese Patent Application No. 7-335595, Japanese Patent Application No. 8-4
1998, Japanese Patent Application No. 8-80407, Japanese Patent Application No. 8-14
No. 3391, Japanese Patent Application No. 8-204049, Japanese Patent Application No. 8-2
No. 72806, Japanese Patent Application No. 9-106925, Japanese Patent Application No. 9-106
There are 181944, Japanese Patent Application No. 10-134720, Japanese Patent Application No. 10-134721, and Japanese Patent Application No. 11-69406. The priority application based on the above-mentioned prior application generally includes a heat exchanger in which a plurality of combustors including a whole rotor blade and / or a gas turbine are lengthened and a water-cooled outer wall is spirally provided to form a high-pressure vessel. An apparatus and method that can simultaneously increase the pressure ratio and the specific output to the maximum without exceeding the turbine heat-resistant limit temperature by being able to convert most of the supplied heat into superheated steam, also serving as an exchanger. Thing.

【0004】[0004]

【発明が解決しようとする課題】ガスタービンサイクル
の性能として重要なものに、熱効率及び比出力があり、
圧力比が大きい程高い熱効率が得られ、熱効率(圧力
比)が一定では、サイクルに供給する熱量が大きい程大
きな比出力が得られる。即ち、この圧力比及び比出力の
増大は、いずれもタービンの耐熱限界温度で大きな制約
を受ける。このため、タービンの耐熱限界温度を越える
ことなく圧力比及び供給熱量(燃料燃焼質量)を極限ま
で増大する方法は、供給熱量(燃料発熱量)の大部分を
過熱蒸気に変換して蒸気タービン及びガスタービンに使
用して、熱効率×比出力=圧力比×燃焼ガス質量=速度
×質量を大増大すると共に、燃焼ガス温度がタービン耐
熱限界温度以下となるように熱交換して得た超臨界を含
む過熱蒸気により、圧力比を10倍前後に大上昇して噴
射するロケットとすることも含めて、人や荷物を運輸す
る用途や熱や電気を供給する用途に使用することを目的
とする。
What is important as the performance of a gas turbine cycle is thermal efficiency and specific power.
The higher the pressure ratio, the higher the thermal efficiency is obtained. If the thermal efficiency (pressure ratio) is constant, the larger the amount of heat supplied to the cycle, the higher the specific output. That is, the increase in the pressure ratio and the specific output is greatly restricted by the heat-resistant limit temperature of the turbine. For this reason, the method of increasing the pressure ratio and the supplied heat (fuel combustion mass) to the maximum without exceeding the heat-resistant limit temperature of the turbine is to convert most of the supplied heat (fuel calorific value) into superheated steam, It is used for gas turbines, heat efficiency x specific power = pressure ratio x combustion gas mass = speed x mass and greatly increases, and the supercritical gas obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature is obtained. It is intended to be used for transporting people and luggage, and for supplying heat and electricity, including a rocket that injects a jet by increasing the pressure ratio to about 10 times by using superheated steam.

【0005】即ち、ガスタービンの圧力比及び比出力を
増大するための障害は、供給熱量のうち燃料発熱量であ
り、燃料発熱量の用途は過熱蒸気や蒸気に変換すると、
各種蒸気タービンを含めて限りなく多いため、先の出願
ではガスタービン燃焼器を長大化して対応しておりまし
たが、形状が複雑悪化するのに加えて、長大化困難な用
途も多いため、逆の小径多数蜂の巣状に設けて短小化・
高圧化し、燃焼ガスを過熱蒸気の内径側から供給して、
合理的円筒形状に構成すると共に、伝熱面積を大増大し
た熱交換器としても兼用して、最上流側多数の燃料供給
手段により燃料発熱量を過熱蒸気に大変換して、ガスタ
ービンの耐熱限界温度を越えることなく、圧力比及び比
出力を極限まで増大させることができる機関を提供し、
例えば燃料燃焼質量を最大で理論空燃比まで、従来技術
の4倍前後に増大可能にして、圧力比及び燃料燃焼質量
の増大により、供給熱量のうちガスタービンの使用熱量
を低減して、ガスタービンの熱効率及び比出力を上昇す
る装置を提供すると共に、燃焼ガスと燃焼ガス温度がタ
ービン耐熱限界温度以下となるように、熱交換して得た
過熱蒸気により蒸気タービン圧縮機又は蒸気タービン及
びガスタービンを駆動し、例えば各種車両を駆動し、又
は各種航空機を駆動し、又は各種船舶を駆動し、又は熱
や電気の供給設備に使用することを目的とする。
[0005] That is, the obstacle to increase the pressure ratio and the specific output of the gas turbine is the fuel calorific value of the supplied calorific value.
In the previous application, the length of the gas turbine combustor was increased to accommodate the infinite number of applications, including various steam turbines.However, in addition to the complicated shape, there are many applications where it is difficult to increase the length. Conversely, it is provided in the shape of a large number of small diameter honeycombs,
High pressure, supply combustion gas from the inner side of superheated steam,
In addition to having a rational cylindrical shape, it also doubles as a heat exchanger with a greatly increased heat transfer area. Provide an engine that can increase the pressure ratio and the specific output to the maximum without exceeding the limit temperature,
For example, it is possible to increase the fuel combustion mass up to a stoichiometric air-fuel ratio up to about four times that of the prior art, and to reduce the amount of heat used by the gas turbine in the supplied heat by increasing the pressure ratio and the fuel combustion mass. And a steam turbine compressor or steam turbine and a gas turbine using superheated steam obtained by heat exchange so that the combustion gas and the combustion gas temperature are equal to or lower than the turbine heat resistance limit temperature. For driving various vehicles, for example, driving various aircraft, driving various ships, or using it for heat and electricity supply equipment.

【0006】ガスタービンの作動ガスとしての燃焼ガス
は、一般に空気の割合が非常に多く、理論空燃比の4倍
前後の空気を含む(以下4倍前後の空気を含むものに統
一して説明するが数値に限定するものではない)、即
ち、従来技術では大量の熱エネルギを消費して圧縮した
空気の80%近くを無駄に排出し、加えて燃焼温度の低
減に使用して大損失となるため、熱交換により燃焼用と
して圧縮した空気を100%近くまで有効利用可能にす
ると共に、圧縮空気の必要な別用途にはバイパスを設け
て対応し、熱交換・温度低下による圧力比及び燃料燃焼
質量の大増大により、供給熱量のうちガスタービンの使
用熱量を大低減して、ガスタービンの熱効率を2倍乃至
3倍に大上昇すると共に比出力を大上昇し、又は燃焼ガ
スと燃焼ガス温度がタービンの耐熱限界温度以下になる
ように熱交換して得た過熱蒸気により蒸気タービン及び
ガスタービンを駆動して、圧力比を空気圧縮の10倍前
後に大上昇した超臨界の蒸気条件を含む過熱蒸気の使用
により、総熱効率を2乃至3倍前後に大上昇すると共に
比出力を大上昇することを目的とする。
[0006] Combustion gas as a working gas of a gas turbine generally has a very high air ratio, and includes air that is about four times the stoichiometric air-fuel ratio. Is not limited to a numerical value), that is, in the prior art, a large amount of heat energy is consumed and nearly 80% of the compressed air is wastefully exhausted, and in addition, it is used to reduce the combustion temperature, resulting in a large loss. For this reason, air compressed for combustion by heat exchange can be effectively used up to nearly 100%, and for other uses requiring compressed air, a bypass is provided to cope with the pressure ratio and fuel combustion due to heat exchange and temperature decrease. Due to the large increase in mass, the amount of heat used by the gas turbine among the supplied heat is greatly reduced, the thermal efficiency of the gas turbine is greatly increased two to three times, and the specific power is greatly increased. But Superheat including supercritical steam conditions in which the steam turbine and gas turbine are driven by superheated steam obtained by exchanging heat so as to be below the heat-resistant limit temperature of the bin, and the pressure ratio is greatly increased to about 10 times that of air compression The purpose of the present invention is to greatly increase the total thermal efficiency by a factor of about 2 to 3 and to greatly increase the specific output by using steam.

【0007】ガスタービン燃焼器を小径多数蜂の巣状に
短小化して、伝熱面積を大増大した熱交換器としても兼
用すると、圧力比が大きいほどガスタービンの熱効率が
高くなり、同じ発熱量の燃料燃焼では圧力比が大きい程
高温が得られるのに加えて、タービン入り口のガス温度
が700 C乃至1000 Cと高温程熱交換も容易と
なる。このため、熱交換器の伝熱面積の縮少短小化可能
により、最上流側のみ燃料供給手段が可能になり、冷却
によるNOx低減燃焼も可能にします。更に圧力比の上
昇及び熱交換排熱温度低下による排気損失の大幅な低減
を可能にした、発熱量を極限まで有効利用可能な超高性
能・超高熱効率の、蒸気ガスタービン合体機関を提供す
ると共に、磁気摩擦動力伝達装置を最大限に活用して、
動力伝達損失を極限まで低減することを目的とする。
When the gas turbine combustor is shortened in a honeycomb shape with a large number of small diameters and is also used as a heat exchanger having a large heat transfer area, the higher the pressure ratio, the higher the thermal efficiency of the gas turbine becomes. In combustion, the higher the pressure ratio, the higher the temperature can be obtained, and the higher the gas temperature at the turbine inlet is 700 C to 1000 C, the easier the heat exchange. For this reason, the heat transfer area of the heat exchanger can be reduced and shortened, so that the fuel supply means is possible only on the most upstream side, and NOx reduction combustion by cooling is also possible. Further, the present invention provides an ultra-high-performance and ultra-high-efficiency steam-gas-turbine combined engine capable of effectively utilizing the calorific value to the utmost, which enables a significant reduction in exhaust loss due to an increase in pressure ratio and a decrease in heat exchange exhaust heat temperature. At the same time, make the most of the magnetic friction power transmission device,
The purpose is to reduce power transmission loss to the limit.

【0008】[0008]

【課題を解決するための手段】従来技術ガスタービンの
作動ガスとしての燃焼ガスは、一般に空気の割合が非常
に多く、理論混合比の4倍前後の空気を含む。即ち、大
量の熱エネルギを消費して圧縮した空気の略80%を無
駄使いし、加えて燃焼温度の低減に使用して大損失とな
るため、熱交換による過熱蒸気変換により、燃焼用とし
て圧縮した空気の略100%を有効利用可能にするた
め、用途に合わせて燃焼器兼熱交換器を小径多数蜂の巣
状に短小化して、燃焼ガスをガスタービンの最上流側か
ら供給し、合理的な円筒形状を可能にすると共に、高圧
化及び燃料供給手段の最上流側のみ増設を容易にして、
該燃料供給量の最大を従来技術の4倍前後に増設可能に
すると共に、燃焼器兼熱交換器として該伝熱面積を大増
大し、該燃焼器外壁を導水管を含む螺旋状の溶接構造水
冷外壁又は、螺旋状の熔接構造水冷外壁単位組立構造又
は、螺旋状の水冷外壁単位組立構造として、比較的大き
な圧力比を設定し、熱交換して得た超臨界等の過熱蒸気
を噴射するロケット等を提供します。
SUMMARY OF THE INVENTION The combustion gas as the working gas of the prior art gas turbine generally has a very high proportion of air and contains about four times the theoretical mixing ratio. In other words, a large amount of heat energy is consumed, and about 80% of the compressed air is wasted, and in addition, it is used for lowering the combustion temperature, resulting in a large loss. In order to make it possible to effectively use approximately 100% of the generated air, the combustor / heat exchanger is shortened into a small number of honeycombs according to the application, and the combustion gas is supplied from the most upstream side of the gas turbine. Along with enabling a cylindrical shape, increasing the pressure and facilitating the addition of only the most upstream side of the fuel supply means,
Spiral welding structure that allows the maximum fuel supply amount to be increased to about four times that of the prior art, greatly increases the heat transfer area as a combustor / heat exchanger, and includes a combustor outer wall including a water pipe. As a water-cooled outer wall or a spiral welding structure, a water-cooled outer wall unit assembly structure or a spiral water-cooled outer wall unit assembly structure, a relatively large pressure ratio is set, and supercritical steam or the like obtained by heat exchange is injected. We provide rockets.

【0009】該燃焼器兼熱交換器の設計事項としては、
最も小径とする場合は、水冷外壁導水管の末端部分を蒸
気管として過熱蒸気兼用とし、水冷外壁内径に応じてそ
の中に蒸気管を略螺旋状に、又は直線に近い螺旋状に設
けて、大幅に高圧の超高性能熱交換器としても使用し、
熱交換量が少なく最も大径とする場合は、外周一列の蜂
の巣状となります。また、蜂の巣状に円筒型燃焼器兼熱
交換器を設けるため空き間ができますが、該空き間を図
にない空き間型燃焼器兼熱交換器としてもよく、その場
合は、図13(d)の水冷外壁燃焼器兼熱交換器を使用
します。該熱交換により、タービン入口温度をタービン
耐熱限界温度以下に低下させ、燃焼用に圧縮した全圧縮
空気を理論空燃比燃焼に近づけて、燃料燃焼質量を4倍
前後まで増大可能にして、燃料発熱量の使用を過熱蒸気
に変換して、超臨界の蒸気条件等を含めて、空気圧縮の
10倍近い圧力比の上昇により、熱効率及び比出力を大
上昇して燃料を節減し、燃焼ガスと燃焼ガス温度がター
ビン耐熱限界温度以下となるように熱交換して得た過熱
蒸気により、ガスタービンと蒸気タービンを駆動して、
該回転動力によりプロペラや車輪や発電機や機械等を回
転して、各種航空機や自動車や船舶や機械等を駆動する
と共に、用途により過熱蒸気排気や燃焼ガス排気の噴射
により、各種航空機や船舶等を浮揚排気噴射推進する装
置等を、夫夫を制御する制御装置を含めて提供します。
The design items of the combustor / heat exchanger include:
In the case of the smallest diameter, the end portion of the water-cooled outer wall water pipe is used as a superheated steam as a steam pipe, and the steam pipe is provided in a substantially spiral shape or a nearly linear spiral shape according to the inner diameter of the water-cooled outer wall, It is also used as an ultra-high-performance heat exchanger with a significantly higher pressure,
When the heat exchange amount is small and the diameter is the largest, it becomes a honeycomb shape with a single row on the outer circumference. In addition, since a cylindrical combustor / heat exchanger is provided in a honeycomb shape, a space can be formed. However, the space may be a space combustor / heat exchanger not shown in the figure. d) Use a water-cooled external wall combustor / heat exchanger. The heat exchange lowers the turbine inlet temperature to below the turbine heat-resistant limit temperature, brings the total compressed air compressed for combustion closer to the stoichiometric air-fuel ratio combustion, and increases the fuel combustion mass up to about four times, thereby generating fuel heat. By converting the use of superheated steam into superheated steam, including the supercritical steam conditions, the pressure ratio rises nearly 10 times that of air compression, greatly increasing thermal efficiency and specific power, saving fuel, and reducing combustion gas. The superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistant limit temperature drives the gas turbine and the steam turbine,
The rotating power rotates propellers, wheels, generators, machines, etc. to drive various aircraft, automobiles, ships, machines, etc., and, depending on the application, injects superheated steam exhaust or combustion gas exhaust to produce various aircraft, ships, etc. We will provide equipment that promotes levitation exhaust injection, including a control device that controls the husband and wife.

【0010】又、空気を圧縮する場合と水を圧縮する場
合を比較するとき水蒸気が略1700分の1に凝縮され
た水を圧縮するのが遥かに有利であり、超臨界の蒸気条
件まで保有熱量(保有熱エネルギ量)を増大可能なのに
加えて、空気圧縮の10倍前後の圧力比の過熱蒸気とし
て放出すると、1700倍を遥かに越える大容積とし
て、熱効率大上昇が得られるため、圧縮した空気の略全
部を燃焼に有効利用する最良の方法が、増大供給燃料の
略全部を含めて、最も効率良く過熱蒸気に変換して使用
することである。従って超高性能の燃焼器兼熱交換器を
得るため、できるだけ高温高圧の雰囲気で燃焼及び熱交
換することで、最も効率良く熱交換すると共に、冷却に
よるNOx低減燃焼を可能にして、同一発熱量の燃料か
ら取り出す熱量(過熱蒸気)を最大にして、最も効率良
く過熱蒸気を得ると共に、蒸気ガスタービンを駆動する
燃焼ガス質量を最大に、該熱交換により駆動燃焼ガス熱
量を最小にして、最も熱効率良く蒸気ガスタービンを駆
動すると共に、該排気熱量を大幅に低温の僅少排気熱量
として噴射して、大幅に低温の排気として排気損失を大
低減すると共に、圧縮空気の必要な用途にはバイパスを
設けて使用し、また通常使用の歯車装置に換えて、先の
出願の磁気摩擦動力伝達装置を適宜に、又は全面的に使
用することで、あらゆる補機を含めて、最も効率良く動
力を伝達する駆動装置として、全動翼を含む蒸気ガスタ
ービンサイクルの最高熱効率を、2倍乃至3倍前後に大
上昇を図ります。
Further, when comparing the case of compressing air with the case of compressing water, it is much more advantageous to compress water in which water vapor is condensed to about 1/700. In addition to being able to increase the amount of heat (the amount of retained heat energy), if it is released as superheated steam having a pressure ratio of about 10 times that of air compression, it is possible to obtain a large volume far exceeding 1700 times, and a large increase in thermal efficiency. The best way to effectively utilize substantially all of the air for combustion is to convert and use the most efficient superheated steam, including substantially all of the increased fuel supply. Therefore, in order to obtain an ultra-high performance combustor / heat exchanger, combustion and heat exchange are performed in an atmosphere of high temperature and high pressure as much as possible. The maximum amount of heat (superheated steam) extracted from the fuel is obtained to obtain superheated steam most efficiently, the mass of combustion gas driving the steam gas turbine is maximized, and the amount of heat of the driven combustion gas is minimized by the heat exchange. In addition to driving the steam gas turbine with high thermal efficiency, the heat of the exhaust gas is drastically injected as a small amount of low-temperature exhaust gas to significantly reduce the exhaust loss as a low-temperature exhaust gas. Including and using any auxiliary equipment by using or using the magnetic friction power transmission device of the previous application appropriately or entirely instead of the gear device used and used normally. , As a drive device for transmitting the most efficient power, the highest thermal efficiency of the steam gas turbine cycle comprising Zendotsubasa, we will a large increase in the 2-fold to 3-fold the front and rear.

【0011】[0011]

【発明の実施の形態】発明の実施の形態や実施例を、図
面を参照して説明するが、実施形態や実施例と、既説明
と、その構成が略同じ部分には、同一の名称又は符号を
付してその重複説明は省略し、特徴的な部分や説明不足
部分は順次追加説明する。又、発明の意図する所及び予
想を具体的に明快に説明するため、数字で説明する部分
がありますが、数字に限定するものではありません。
又、この発明に使用する燃焼器兼熱交換器4は、先の出
願で長大化していたものを、逆に小径多数蜂の巣状に短
小化して、熱交換器伝熱面積を拡大し、該燃焼ガスを、
タービン翼列最上流側に供給する構成として、合理的な
形状にしました。図1乃至図4・図13・図14の如
く、水冷外壁26を複数の導水管1を含む螺旋状の熔接
構造又は、螺旋状の溶接構造を含む水冷外壁単位52組
立構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器4として、比較的大きな圧力比を設定して、内
部に蒸気管6を略螺旋状に、又は直線に近い螺旋状に設
けて、例えば図にない発電機兼電動機を設けて熱と電気
の併給設備や、始動装置としても兼用すると共に、小径
多数蜂の巣状に短小化した燃焼器兼熱交換器4として、
燃料供給手段27を夫夫の最上流側に設ける等、多数と
することで燃料供給手段27の増設を容易とし、熱交換
速度の大上昇を図ります。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and examples of the present invention will be described with reference to the drawings. The reference numerals are given and the overlapping description is omitted, and the characteristic portions and the portions that are insufficiently described will be sequentially described. In addition, some parts are described with numbers in order to specifically and clearly explain the intended and expected aspects of the invention, but are not limited to numbers.
Further, the combustor / heat exchanger 4 used in the present invention, which has been enlarged in the previous application, is shortened into a large number of small-diameter honeycombs to increase the heat transfer area of the heat exchanger. Gas,
A rational shape was adopted for the configuration to supply to the most upstream side of the turbine cascade. As shown in FIGS. 1 to 4, 13, and 14, the water-cooled outer wall 26 is formed as a spiral welded structure including a plurality of water pipes 1 or a water-cooled outer wall unit 52 assembly structure including a spiral welded structure. A relatively large pressure ratio is set as the combustor / heat exchanger 4 which is shortened in a shape, and the steam pipe 6 is provided inside in a substantially spiral shape or a nearly straight spiral shape, for example, to generate power not shown in the figure. As a combustor / heat exchanger 4 which is provided with a machine and an electric motor and is also used as a heat and electricity co-supply facility and as a starting device, and is shortened into a large number of small diameter honeycombs,
Providing a large number of fuel supply means 27, such as providing them at the most upstream side of each husband, facilitates the expansion of the fuel supply means 27 and greatly increases the heat exchange rate.

【0012】図1・図2を参照して、全動翼・蒸気ガス
タービン合体機関中核部の実施例を説明すると、全動翼
の発想は、自動車を手で押して移動する場合、ブレーキ
を引いた状態で押すと非常に疲れますが、仕事量は0で
あり、ブレーキを解除して押すと容易に移動できます。
従って、圧縮機やタービンに静翼があると、エネルギの
大損失となるため、静翼を動翼に置換して全動翼とし
て、置換動翼を外側軸装置に結合し、従来動翼を内側軸
装置に結合して、互いに反対方向に回転する、内側軸装
置と外側軸装置を、導水管1などの冷却装置を有する磁
気摩擦動力伝達装置14により結合して、最も効率良く
2軸を2重反転駆動すると共に、周速を略半分づつ分担
して、外径を略2倍にして流体通路を略4倍として、比
出力を大増大すると共に、熱効率の大上昇を図る、又は
周速を従来技術と略同じにして、動翼間相対速度を略2
倍にして、比出力及び熱効率の大上昇を図る、又は周速
を従来技術の略半分づつにして、許容応力が略4分の1
の、安価で静粛等、多様な設計(業務用または家庭用の
熱と電気の併給設備等)を可能にしながら、熱効率の大
上昇を図るものです。
Referring to FIG. 1 and FIG. 2, an embodiment of a core portion of a combined blade / steam gas turbine engine will be described. The idea of a fixed blade is that when a vehicle is pushed by hand and the vehicle is moved, a brake is applied. Pushing it while it is very tired, but the workload is 0, and you can move easily by releasing the brake and pushing.
Therefore, if a compressor or a turbine has a stationary blade, a large loss of energy will occur.Therefore, the stationary blade is replaced with a moving blade as a whole moving blade, and the replaced moving blade is connected to an outer shaft device. The inner shaft device and the outer shaft device which are connected to the inner shaft device and rotate in opposite directions to each other are connected by a magnetic friction power transmission device 14 having a cooling device such as the water pipe 1 so that the two shafts are most efficiently connected. In addition to the double inversion driving, the peripheral speed is shared by approximately half, the outer diameter is approximately doubled and the fluid passage is approximately quadrupled, and the specific output is greatly increased, and the thermal efficiency is greatly increased. The relative speed between the moving blades is set to approximately 2
To increase the specific power and the thermal efficiency greatly, or to reduce the peripheral speed by approximately half of that of the prior art so that the allowable stress is reduced to approximately one-fourth.
It is intended to greatly increase the thermal efficiency while enabling various designs (commercial or household combined use of heat and electricity, etc.) such as low cost and quiet.

【0013】図1の蒸気ガスタービン合体機関中核部の
第1実施例及び、図5乃至図8の蒸気タービン圧縮機の
実施例及び、図9乃至図12の蒸気ガスタービン合体機
関の実施形態を参照して別の説明をすると、全動翼圧縮
機右端の置換した外側圧縮機動翼群1段16より通常の
如く空気を吸入して、偶数段の内側圧縮機動翼群17と
奇数段の外側圧縮機動翼群16が協力して、全動翼によ
り効率良く空気を圧縮して、該圧縮空気15を外側圧縮
機動翼群終段16より環状の出口21を介して、環状の
受け口22、環状の圧縮空気溜8より、小径多数蜂の巣
状に短小化して伝熱面積の増大した燃焼器兼熱交換器4
に供給し、供給された高圧縮空気15は、図にない公知
の制御装置からの指令により、該夫夫の上流側の燃料供
給手段27から供給される、最大で従来技術の4倍前後
の燃料と撹拌混合して、略理論空燃比燃焼も含めて燃焼
させて、燃焼ガス温度がタービン耐熱限界温度以下とな
るように、燃焼器兼熱交換器4内で燃焼制御しながら燃
焼及び熱交換して、導水管1の夫夫の水冷外壁26や蒸
気管6により燃焼ガス10を冷却し、NOx低減燃焼で
得た燃焼ガス10を、夫夫の燃焼器兼熱交換器4より環
状の燃焼ガス溜9及び環状の噴口群24を介して、環状
の受け口23を有する全動翼ガスタービンの外側タービ
ン動翼群1段19に供給して、順次下流側に回転動力を
発生させて排気します。
A first embodiment of the core portion of the combined steam gas turbine engine shown in FIG. 1, an embodiment of the steam turbine compressor shown in FIGS. 5 to 8, and an embodiment of the combined steam gas turbine engine shown in FIGS. Referring to another explanation, air is normally sucked in from the first stage 16 of the replaced outer compressor blade group at the right end of the whole rotor compressor, and the inner compressor blade group 17 of the even number stage and the outer side of the odd number stage are sucked. The compressor blade group 16 cooperates to efficiently compress the air by all the blades, and compresses the compressed air 15 from the outer compressor blade group final stage 16 through the annular outlet 21 through the annular receiving port 22, From the compressed air reservoir 8, the combustor / heat exchanger 4 which has been shortened into a large number of small diameter honeycombs to increase the heat transfer area.
The high-compressed air 15 supplied is supplied from a fuel supply means 27 on the upstream side of each of them according to a command from a known control device (not shown). Combustion and heat exchange are performed while controlling combustion in the combustor / heat exchanger 4 so that the fuel is mixed and stirred and burned, including substantially stoichiometric air-fuel ratio combustion, so that the combustion gas temperature becomes lower than the turbine heat resistant limit temperature. Then, the combustion gas 10 is cooled by the water cooling outer wall 26 and the steam pipe 6 of each of the water guide pipes 1 and the combustion gas 10 obtained by the NOx reduction combustion is annularly combusted by the respective combustor / heat exchanger 4. Through the gas reservoir 9 and the annular injection port group 24, it is supplied to the outer turbine blade group 1 stage 19 of the full blade gas turbine having the annular receiving port 23, and the rotary power is sequentially generated downstream and exhausted. You.

【0014】大部分の供給熱エネルギは過熱蒸気5に変
換して、夫夫の燃焼器兼熱交換器4の蒸気管6及び制御
装置を含む蒸気加減弁7を介して、過熱蒸気溜30又
は、全動翼を含む蒸気タービン圧縮機の蒸気タービンの
最上流側より、外側タービン動翼群1段19又は、内側
タービン静翼又は、従来技術静翼に噴射して、通常の如
く順次下流側を駆動して、順次大きな回転出力を発生さ
せて圧縮機を強力に駆動します。下流側に供給されて湿
り蒸気乃至水滴となった過熱蒸気は、従来技術静翼を使
用したものを除き、外側タービン動翼群19より遠心力
により外周側に噴射して、全動翼を含む圧縮機の噴射空
気流と共に噴射質量として推力増大に使用します。即
ち、ガスタービンと蒸気タービンを駆動して回転力を得
ると共に、該夫夫の排気を噴出して右前方の空気を左後
方に強力に噴射して、回転力や浮揚推進力を必要とする
各種用途、例えばヘリコプターやジェット機等の各種航
空機や各種船舶等の噴射推進に使用し、又は、航空機と
船舶の中間的なもの等を浮揚噴射推進する用途に使用
し、又は、過熱蒸気溜30及び噴口29を設けて真空中
に過熱蒸気を噴射するロケットとして使用し、又は、プ
ロペラや車輪や発電機や機械等を回転駆動する用途に使
用して、圧力比が従来空気圧縮機の10倍に近い過熱蒸
気により、熱効率及び推進効率及び浮揚推進効率を大上
昇する、公知の各種制御装置を有する全動翼・蒸気ガス
タービン合体機関中核部とします。
Most of the supplied heat energy is converted to superheated steam 5 and is passed through a steam control valve 7 including a steam pipe 6 of a combustor / heat exchanger 4 and a control device, or a superheated steam reservoir 30 or From the most upstream side of the steam turbine of the steam turbine compressor including all the moving blades to the outer turbine moving blade group 1 stage 19 or the inner turbine stationary blade or the prior art stationary blade, and sequentially downstream as usual. , Which in turn generates a large rotation output to drive the compressor strongly. The superheated steam that has been supplied to the downstream side and has become wet steam or water droplets is injected to the outer peripheral side by centrifugal force from the outer turbine blade group 19 except for those using the conventional stationary blade, and includes all the blades. Used to increase thrust as injection mass together with compressor injection air flow. In other words, the gas turbine and the steam turbine are driven to obtain a rotational force, and the respective exhausts are spouted to inject the right front air strongly to the left rear to require the rotational force and the levitation propulsion force. Various uses, for example, used for injection propulsion of various aircraft and ships such as helicopters and jet aircraft, or used for levitation injection propulsion of intermediate between aircraft and ships, or the superheated steam reservoir 30 and It is used as a rocket that injects superheated steam into a vacuum by providing an injection port 29, or is used to rotate a propeller, wheels, a generator, a machine, etc., and the pressure ratio is 10 times that of a conventional air compressor. The core of the combined rotor and steam gas turbine engine, which has various known control devices, will greatly increase the thermal efficiency, propulsion efficiency and levitation propulsion efficiency due to the near superheated steam.

【0015】図1を参照して更に別の説明をすると、燃
焼器兼熱交換器4の伝熱面積増大容易に小径多数蜂の巣
状に短小化して、軽量高圧容器を容易に、燃料供給手段
27を最大で従来技術の4倍前後に最上流側に設ける
等、増設容易に熱交換増大容易に設けます。中央左右に
夫夫磁気摩擦動力伝達装置14を設けて、夫夫内側軸装
置を固着して該外周に、環状に設けた外側圧縮機動翼群
終段16及び外側タービン動翼群1段19を固着した、
外側軸装置を夫夫回転自在に外嵌して、夫夫互いに反対
方向に回転する2軸を、磁気摩擦動力伝達装置14によ
り夫夫最適回転比で結合して、内側軸装置に内側圧縮機
動翼群終段17及び内側タービン動翼群2段20を固着
して、以後外側軸装置の外側圧縮機動翼群奇数終段16
に外側圧縮機動翼群奇数段16を固着し、内側圧縮機動
翼群終段17に内側圧縮機動翼群偶数段17を固着す
る、というように交互に固着して、最も効率良く動力を
伝達する、磁気摩擦動力伝達装置を含む駆動装置によ
り、全動翼・圧縮機を構成させます。そして前記外側軸
装置の外側タービン動翼群1段19に外側タービン動翼
群奇数段19を固着し、内側タービン動翼群2段20に
内側タービン動翼群偶数段20を固着するというよう
に、交互に固着して内側タービン動翼群偶数終段20を
内側軸装置に固着して、外側タービン動翼群奇数終段1
9を外側軸装置に固着して内側軸装置に回転自在に外嵌
枢支して、全動翼・蒸気ガスタービン合体機関の中核部
を構成させます。
Referring to FIG. 1, the heat transfer area of the combustor / heat exchanger 4 can be easily increased and the small-diameter multi-honey structure can be easily shortened. Is installed on the most upstream side about four times as much as the conventional technology. A magnetic friction power transmission device 14 is provided on each of the left and right sides of the center, and an outer compressor rotor group final stage 16 and an outer turbine rotor blade group 1 stage 19 provided in an annular shape are provided on the outer periphery with the inner shaft device fixed thereto. Stuck,
The outer shaft device is rotatably fitted to the outer shaft device, and the two shafts rotating in the opposite directions are respectively connected by the magnetic friction power transmission device 14 at an optimum rotation ratio. The final stage 17 of the blade group and the second stage 20 of the inner turbine blade group are fixed to each other, and the odd-numbered final stage 16 of the outer compressor blade group of the outer shaft device is thereafter mounted.
The odd-numbered stage 16 of the outer compressor blade group is fixed to the outer compressor blade group, and the even-numbered stage 17 of the inner compressor blade group is fixed to the inner compressor blade group final stage 17 to transmit power most efficiently. The drive unit including the magnetic friction power transmission device makes up the entire moving blade and compressor. Then, the outer turbine blade group odd-numbered stage 19 is fixed to the outer turbine blade group first stage 19 of the outer shaft device, and the inner turbine blade group even-numbered stage 20 is fixed to the inner turbine blade group second stage 20. The inner turbine blade group even-numbered final stage 20 is alternately secured to the inner shaft device, and the outer turbine rotor group odd-numbered final stage 1 is secured.
9 is fixed to the outer shaft device, and is rotatably fitted to the inner shaft device so as to form a core part of the combined rotor and steam gas turbine engine.

【0016】図2を参照して、バイパス付加全動翼・蒸
気ガスタービン合体機関中核部の第2実施例で別の説明
をすると、従来技術では、大量の熱エネルギを消費して
燃焼用として圧縮した空気の、80%近くを利用するこ
となく、無駄に(燃焼温度を逆に低下させて)排出して
大損失となるため、燃焼用として圧縮した空気を燃焼に
100%有効利用可能にすると共に、燃焼用以外に使用
する圧縮空気15はバイパス28を設けて別途使用する
ことで、比出力を極限まで増大して熱効率の大上昇を図
るものです。即ち、従来技術ガスタービンの作動ガスと
しての燃焼ガスは、一般に空気の割合が非常に多く、理
論空燃比の4倍前後の空気を含むため、タービンの耐熱
限界温度を越えることなく燃焼用圧縮空気を100%燃
焼に利用するためには、供給した熱量の大部分を、過熱
蒸気に変換利用することを必須とします。そこでこの発
明は、燃焼器兼熱交換器4を小径多数蜂の巣状に短小化
して伝熱熱交換面積を増大し、高圧化容易・燃料供給増
大容易として、供給熱量の大部分を過熱蒸気に変換可能
にすると共に、該水冷外壁26を少なくとも1本以上複
数の導水管1を含む螺旋状の熔接構造又は、溶接構造を
含む螺旋状導水管1の水冷外壁単位52の組立て構造と
し、圧力比の大上昇及び超臨界を含む過熱蒸気の噴射を
可能にして、比出力を大増大すると共に、燃焼用に圧縮
した空気の略全部を燃焼に有効使用可能にし、圧縮空気
の必要な別用途にはバイパスを設けて別使用とし、回転
力を必要とする用途には出力軸12を設けて回転動力を
取り出し、空気圧縮の無駄を全廃して熱効率の大幅上昇
を図ります。
Referring to FIG. 2, another description will be given of a second embodiment of the core portion of the combined engine with all the moving blades and the steam gas turbine combined with the bypass. In the prior art, a large amount of heat energy is consumed for combustion. Without using nearly 80% of the compressed air, it wastes (reversely lowers the combustion temperature) and emits large amounts of waste, so the compressed air for combustion can be used 100% effectively for combustion. At the same time, the compressed air 15 used for purposes other than combustion is provided with a bypass 28 and used separately to increase the specific output to the utmost and achieve a large increase in thermal efficiency. That is, since the combustion gas as the working gas of the prior art gas turbine generally has a very high air ratio and includes air that is about four times the stoichiometric air-fuel ratio, the compressed air for combustion does not exceed the heat-resistant limit temperature of the turbine. In order to use 100% for combustion, it is essential to convert most of the supplied heat to superheated steam. Therefore, according to the present invention, the heat exchanger 4 is converted into superheated steam by reducing the size of the combustor / heat exchanger 4 into a large number of small-diameter honeycombs to increase the heat transfer heat exchange area. At the same time, the water-cooled outer wall 26 has a spiral welded structure including at least one or more plurality of water guide tubes 1 or an assembled structure of the water-cooled outer wall unit 52 of the spiral water guide tube 1 including a welded structure. It enables the injection of superheated steam including large rise and supercritical, greatly increases the specific power, and enables almost all of the air compressed for combustion to be effectively used for combustion. A bypass is provided for separate use, and for applications that require rotational force, an output shaft 12 is provided to extract rotational power, eliminating waste of air compression and greatly increasing thermal efficiency.

【0017】図2・図5乃至図12を参照して別の説明
をすると、バイパス28を含む右端の全動翼圧縮機の置
換した外側圧縮機動翼群1段16より、通常の如く空気
を吸入して、偶数段の内側圧縮機動翼群17と奇数段の
外側圧縮機動翼群16が協力して、全動翼により効率良
く空気を圧縮して、圧縮空気の必要な別用途には、用途
に応じて適宜に設けたバイパス28通路より最適供給
し、燃焼用の圧縮空気15は、全動翼圧縮機の環状の出
口21から、小径多数蜂の巣状に高圧化・配置された、
夫夫の燃焼器兼熱交換器4の環状の受け口22に供給し
ます。供給された高圧縮空気15は、環状の圧縮空気溜
8に貯蔵され、夫夫燃焼器兼熱交換器4の最上流側の燃
料供給手段27から供給される、最大で従来技術の4倍
前後の供給燃料と撹拌混合燃焼を略理論空燃比燃焼も含
めて、熱交換伝熱面積の拡大した、燃焼器兼熱交換器4
内で燃焼制御燃焼して熱交換すると共に、導水管1の夫
夫の水冷外壁26や蒸気管6により、熱交換冷却NOx
低減燃焼とします。燃焼ガス温度がタービン耐熱限界温
度以下となるように熱交換して得た燃焼ガス10は、夫
夫の燃焼器兼熱交換器4より環状の燃焼ガス溜9を介し
て、環状の受け口23に回転自在に挿入れ気密保持され
た環状の噴口群24より、置換した外側タービン動翼群
1段19及び内側タービン動翼群2段20を含む下流側
に順次噴射して、通常の如く大きな回転動力を発生させ
ます。
Another explanation will be given with reference to FIGS. 2 and 5 to 12. As shown in FIG. 2, the air is normally discharged from the first stage 16 of the replaced outer compressor blade group of the rightmost full blade compressor including the bypass 28. Intake, the even-numbered inner compressor blade group 17 and the odd-numbered outer compressor blade group 16 cooperate to compress the air more efficiently by all the blades. Compressed air 15 for combustion is optimally supplied from a bypass 28 passage provided as appropriate according to the application, and is pressurized and arranged in a small-diameter multiple honeycomb form from an annular outlet 21 of the full-blade compressor.
It is supplied to the annular receiving port 22 of the husband's combustor / heat exchanger 4. The supplied high compressed air 15 is stored in the annular compressed air reservoir 8, and is supplied from the fuel supply means 27 at the most upstream side of the combustor / heat exchanger 4, respectively, at most about four times the conventional technology. Combustor / heat exchanger 4 with an expanded heat exchange heat transfer area, including the mixed fuel and agitated mixed combustion, including approximately stoichiometric air-fuel ratio combustion
The heat exchange cooling NOx is performed by the water-cooled outer wall 26 and the steam pipe 6 of each of the water guide tubes 1 while performing combustion control and combustion in the inside.
Reduce combustion. The combustion gas 10 obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature is transferred from the respective combustor / heat exchanger 4 to the annular receiving port 23 through the annular combustion gas reservoir 9. From the annular nozzle group 24 rotatably inserted and hermetically sealed, the fuel is sequentially injected to the downstream side including the replaced outer turbine blade group 1 stage 19 and the inner turbine blade group 2 stage 20, and a large rotation as usual. Generate power.

【0018】タービンの耐熱限界温度以下となるように
熱交換して得た過熱蒸気5は、夫夫の燃焼器兼熱交換器
4の蒸気加減弁7を介して、図5乃至図8の蒸気管6に
より図10・図11の如く、全動翼を含む蒸気タービン
圧縮機の蒸気タービン最上流側に供給し、順次下流側を
駆動して大きな回転力を発生し、該全動翼を含む蒸気タ
ービンにより全動翼を含む圧縮機を駆動して、推力乃至
回転力を発生し、ターボシャフトエンジン及びターボプ
ロップエンジン及びターボジェットエンジン及びターボ
ファンエンジン及び船舶浮揚推進装置等として、各種中
核部と共に各種航空機及び各種船舶に使用します。同様
に図9では、全動翼を含む蒸気ガスタービン合体機関中
核部と、導水管1を螺旋状円筒状に密集して設けた過熱
蒸気溜30及び噴口29を、止め弁13・13間で切離
し可能にすることでロケットを構成します。同様に図1
2では、全動翼を含む蒸気タービンを駆動して該回転力
により、主としてプロペラや車輪や発電機や機械等を駆
動する用途に使用し、推力・浮揚力を同時利用してもよ
く、排気の熱利用等を図る熱と電気の併給設備としても
使用し、公知の各種制御装置を有する全動翼・蒸気ガス
タービン合体機関とし、第1実施例と同様に多数用途に
使用します。
The superheated steam 5 obtained by exchanging heat so as to be lower than the heat-resistant limit temperature of the turbine is passed through the steam control valve 7 of the respective combustor / heat exchanger 4 and the steam shown in FIGS. As shown in FIGS. 10 and 11, the pipe 6 supplies the steam to the uppermost stream side of the steam turbine of the steam turbine compressor including all the moving blades, and sequentially drives the downstream side to generate a large rotational force. A compressor including all blades is driven by a steam turbine to generate thrust or rotational force, and together with various core parts as a turboshaft engine, a turboprop engine, a turbojet engine, a turbofan engine, a ship levitation propulsion device, and the like. Used for various aircraft and various ships. Similarly, in FIG. 9, the core portion of the combined engine of the steam gas turbine including all the moving blades, the superheated steam reservoir 30 and the injection port 29 in which the water pipes 1 are densely arranged in a spiral cylindrical shape, are connected between the stop valves 13 and 13. The rocket is configured by making it detachable. FIG. 1
In No. 2, the steam turbine including all the moving blades is driven to be used mainly for driving a propeller, a wheel, a generator, a machine, or the like by the rotational force, and the thrust and the levitation force may be simultaneously used. It is also used as a combined heat and electricity facility to utilize the heat of the turbine, and is a combined rotor / steam gas turbine engine with known various control devices. It is used for many applications like the first embodiment.

【0019】図2を参照して別の説明をすると、小径多
数蜂の巣状に短小化配置した燃焼器兼熱交換器4を設け
て、その内側の内側軸装置中央左右の磁気摩擦動力伝達
装置14に、夫夫の内側軸装置を連結して、該左右夫夫
の内側軸装置に、環状に設けた外側圧縮機動翼群終段1
6及び外側タービン動翼群1段19を固着した外側軸装
置を回転自在に外嵌枢支して、夫夫互いに反対方向に回
転する2軸を、前記磁気摩擦動力伝達装置14により最
適回転比で夫夫結合して、夫夫の内側軸装置に内側圧縮
機動翼群終段17、及び内側タービン動翼群2段20を
固着して、以後外側圧縮機動翼群奇数段16及び内側圧
縮機動翼群偶数段17を交互に固着しますが、燃焼用以
外に使用する圧縮空気用バイパスとして、外径を拡大し
たものを含めて交互に固着し、外側圧縮機動翼群1段1
6に外側軸装置を固着し、内側軸装置に回転自在に外嵌
枢支して、磁気摩擦動力伝達装置14により最適の回転
比で結合されて、最も効率良く2軸を駆動する全動翼圧
縮機を構成させます。また外側タービン動翼群1段19
には外側タービン動翼群奇数段19を固着し、内側ター
ビン動翼群2段20に内側タービン動翼群偶数段20を
固着するというように、交互に固着して内側タービン動
翼群偶数終段20を内側軸装置に固着して、外側タービ
ン動翼群奇数終段19を外側軸装置に固着して内側軸装
置に回転自在に外嵌枢支して、バイパス付加全動翼・蒸
気ガスタービン合体機関中核部を構成します。
Referring to FIG. 2, another explanation will be given. A combustor / heat exchanger 4 which is shortened and arranged in the shape of a large number of small diameter honeycombs is provided, and a magnetic friction power transmission device 14 on the inner left and right sides of the center of the inner shaft device is provided. And the inner shaft devices of the respective compressors, the left and right inner shaft devices are connected to the outer compressor rotor blade group final stage 1 provided annularly.
6 and the outer shaft device to which the outer turbine blade group 1 stage 19 is fixed are rotatably fitted on the outer shaft device, and the two shafts rotating in opposite directions to each other are optimally rotated by the magnetic friction power transmission device 14. And the final stage 17 of the inner compressor blade group and the second stage 20 of the inner turbine blade group are fixed to the respective inner shaft devices. Thereafter, the odd-numbered stage 16 of the outer compressor blade group and the inner compressor The even-numbered stages 17 of the blade groups are alternately fixed, but alternately fixed, including the one with an enlarged outer diameter, as the compressed air bypass used for purposes other than combustion, and the outer compressor rotor blade group 1 stage 1
6, an outer shaft device is fixedly attached to the inner shaft device, and is rotatably fitted to the inner shaft device so as to be rotatably fitted to the outer shaft device. Configure the compressor. The outer turbine blade group 1 stage 19
The outer turbine blade group odd-numbered stage 19 is fixed to the inner turbine blade group even stage 20 and the inner turbine blade group even-number stage 20 is fixed to the inner turbine blade group second stage 20. The stage 20 is fixed to the inner shaft device, the outer turbine blade group odd-numbered final stage 19 is fixed to the outer shaft device, and is rotatably fitted to the inner shaft device so as to be rotatably fitted to the inner shaft device. Constructs the core of the Turbine Combined Engine.

【0020】図3を参照して、蒸気ガスタービン合体機
関中核部の第3実施例を説明すると、図1の第1実施例
との相違点は、全動翼・蒸気ガスタービン合体機関中核
部を蒸気ガスタービン合体機関中核部として、置換動翼
を従来技術の静翼に還元して、従来技術の圧縮機とガス
タービンを駆動可能としたものです。従って図1の第1
実施例から第3実施例までの要素を夫夫適宜に置換し
て、第1実施例と同様に多種用途の、例えば車両の移動
及び船舶や航空機の推進用に使用します。
Referring to FIG. 3, a description will be given of a third embodiment of the core portion of the combined steam and gas turbine engine. The difference from the first embodiment of FIG. Is used as the core of a steam and gas turbine combined engine, and the replacement rotor blades are reduced to conventional stator vanes, enabling the compressor and gas turbine of the conventional technology to be driven. Therefore, the first of FIG.
The elements from the third embodiment to the third embodiment are appropriately replaced, and are used for various purposes, for example, for moving a vehicle and propelling a ship or an aircraft, as in the first embodiment.

【0021】又、蒸気・ガスタービン複合サイクル火力
発電設備に近い図3・図12を参照して、最先端火力発
電設備として使用する場合を、従来技術と比較説明をす
る。図3の従来ガスタービンを利用した第3実施例で発
電機を駆動すると、燃焼器を熱交換器として兼用する燃
焼器兼熱交換器4を、小径多数蜂の巣状に短小化して設
けて、先の出願の長大化手段に追加したため、用途に合
せた多様な熱交換を可能にし、同一燃焼用圧縮空気量で
従来技術の最大で4倍前後の燃料燃焼と、大幅に増大し
た燃焼ガス質量として、大幅な出力増大及び大幅に低温
の排気を可能にします。圧力比の比較についても熱交換
により燃焼ガス温度の低下が可能なため、極限まで圧力
比を上昇して熱効率を上昇できます。また圧力比を極限
まで上昇した状態での熱交換とするため、燃焼ガスから
取り出す超臨界の蒸気条件を含む過熱蒸気エネルギ量
も、従来技術排熱回収熱交換での熱エネルギ量とは比較
にならない程多くなります。更に、圧力比を極限まで上
昇した状態で熱交換した燃焼ガスでガスタービンを駆動
するため、排気熱量を最少にできます。即ち、圧力比が
大きい程ガスタービンの熱効率が高くなり、燃焼ガス質
量が大きい程ガスタービンの出力が大きくなり、排気熱
量が少ない程ガスタービンの熱効率が高くなり、同一燃
料量から取り出す熱エネルギ量が多い程、蒸気タービン
の出力が大きくなって総合熱効率が上昇します。
Referring to FIG. 3 and FIG. 12 which are close to the steam / gas turbine combined cycle thermal power generation facility, a case where it is used as a state-of-the-art thermal power generation facility will be described in comparison with the prior art. When the generator is driven in the third embodiment using the conventional gas turbine shown in FIG. 3, the combustor / heat exchanger 4 which also uses the combustor as a heat exchanger is provided in a short honeycomb shape with a small diameter and a large number of honeycombs. In addition, it enables various heat exchanges according to the application, achieves up to four times the fuel combustion of the conventional technology with the same amount of compressed air for combustion, and significantly increases the combustion gas mass. , Greatly increase output and allow for significantly lower temperature exhaust. As for the comparison of pressure ratios, the combustion gas temperature can be reduced by heat exchange, so the pressure ratio can be increased to the utmost and the thermal efficiency can be increased. In addition, in order to perform heat exchange with the pressure ratio raised to the limit, the amount of superheated steam energy including supercritical steam conditions extracted from the combustion gas is also compared with the amount of heat energy in the conventional heat recovery heat exchange. It will be too much. Furthermore, since the gas turbine is driven by the combustion gas that has undergone heat exchange with the pressure ratio raised to the limit, the amount of exhaust heat can be minimized. That is, the higher the pressure ratio, the higher the thermal efficiency of the gas turbine, the greater the mass of the combustion gas, the greater the output of the gas turbine, and the lower the calorific value of the exhaust gas, the higher the thermal efficiency of the gas turbine, and the amount of thermal energy extracted from the same fuel amount The more, the higher the steam turbine output and the higher the overall thermal efficiency.

【0022】図4を参照して、蒸気ガスタービン合体機
関中核部の第4実施例を説明すると、図2の第2実施例
との相違点は、全動翼・蒸気ガスタービン合体機関中核
部を蒸気ガスタービン合体機関中核部として、置換動翼
を従来技術の静翼に還元して、従来技術の圧縮機とガス
タービンを駆動可能としたものです。従って図1の第1
実施例から第4実施例までの要素を夫夫適宜に置換し
て、第1実施例と同様に多種用途の、例えば車両の移動
及び船舶や航空機の推進用に使用します。
Referring to FIG. 4, a fourth embodiment of the core portion of the combined steam and gas turbine engine will be described. The difference from the second embodiment of FIG. Is used as the core of a steam and gas turbine combined engine, and the replacement rotor blades are reduced to conventional stator vanes, enabling the compressor and gas turbine of the conventional technology to be driven. Therefore, the first of FIG.
The elements from the fourth embodiment to the fourth embodiment are appropriately replaced with each other, and are used for various purposes like the first embodiment, for example, for moving a vehicle and propelling a ship or an aircraft.

【0023】図5を参照して、全動翼・蒸気タービン圧
縮機の第1実施例を説明すると、各種蒸気ガスタービン
合体機関中核部で熱交換して得た過熱蒸気5により、全
動翼蒸気タービンを駆動して回転力を発生させて、左端
の出力軸12により回転動力として利用します。又は、
該回転力により図5の全動翼圧縮機を回転させて、高圧
縮空気乃至高速気流を得るもので、回転力及び推力及び
浮揚力等を得るものです。従って、熱交換して得た過熱
蒸気5を蒸気加減弁7より蒸気管6により、全動翼蒸気
タービンの最上流側に運搬して、該最上流側を駆動する
と共に順次下流側を駆動して、大きな回転動力を発生さ
せると共に、左端の磁気摩擦動力伝達装置14により、
互いに反対方向に回転する外側タービン動翼群19及び
外側軸装置と、内側タービン動翼群20及び内側軸装置
を最適回転比で結合します。更に、右端の圧縮機側磁気
摩擦動力伝達装置14により、内側圧縮機動翼群17及
びタービン外側軸装置と兼用の内側軸装置と、外側圧縮
機動翼群16及び外側軸装置を最適二重反転回転比で結
合して、全動翼圧縮機を構成させて全動翼蒸気タービン
圧縮機の第1実施例とします。
Referring to FIG. 5, a first embodiment of the all-blade / steam turbine compressor will be described. The all-blade is obtained by using superheated steam 5 obtained by exchanging heat at the core of various steam gas turbine combined engines. The steam turbine is driven to generate torque, which is used by the output shaft 12 at the left end as torque. Or
By rotating the full-blade compressor shown in Fig. 5 by the rotational force, high compressed air or high-speed airflow is obtained, and rotational force, thrust, levitation, etc. are obtained. Therefore, the superheated steam 5 obtained by heat exchange is conveyed from the steam control valve 7 to the most upstream side of the all-blade steam turbine by the steam pipe 6 to drive the most upstream side and sequentially drive the downstream side. To generate a large rotational power, and by the magnetic friction power transmission device 14 at the left end,
The outer turbine blade group 19 and the outer shaft device rotating in opposite directions to the inner turbine blade group 20 and the inner shaft device are connected at an optimum rotation ratio. Further, the right-most compressor-side magnetic friction power transmission device 14 optimally reverses the inner compressor blade group 17 and the inner shaft device also serving as the turbine outer shaft device, and the outer compressor rotor blade group 16 and the outer shaft device. The first embodiment of the all-blade steam turbine compressor is constructed by combining the all-blade compressors.

【0024】図6を参照して、全動翼・蒸気タービン圧
縮機の第2実施例を説明すると、各種蒸気ガスタービン
合体機関中核部で熱交換して得た過熱蒸気5により、全
動翼蒸気タービンを駆動して回転力を発生させて、左端
の出力軸12により回転動力として利用します。又は、
該回転力により図6の全動翼圧縮機を回転させて、高圧
縮空気乃至高速気流を得るもので、回転力及び推力及び
浮揚力等を得るものです。従って、熱交換して得た過熱
蒸気5を蒸気加減弁7より蒸気管6により、全動翼蒸気
タービンの最上流側に運搬して、該最上流側を駆動する
と共に順次下流側を駆動して、大きな回転動力を発生さ
せると共に、左端の磁気摩擦動力伝達装置14により、
互いに反対方向に回転する外側タービン動翼群19及び
外側軸装置と、内側タービン動翼群20及び内側軸装置
を最適回転比で結合して、全動翼蒸気タービンを構成さ
せます。更に、右端の圧縮機側磁気摩擦動力伝達装置1
4により、内側圧縮機動翼群17及び内側軸装置と、外
側圧縮機動翼群16及び外側軸装置を最適二重反転回転
比で結合して、全動翼圧縮機を構成させて全動翼蒸気タ
ービン圧縮機の第2実施例とします。
Referring to FIG. 6, a description will be given of a second embodiment of the all-blade / steam turbine compressor. The all-blades are obtained by using superheated steam 5 obtained by exchanging heat at the core of various steam gas turbine combined engines. The steam turbine is driven to generate torque, which is used by the output shaft 12 at the left end as torque. Or
The rotating blade compressor shown in Fig. 6 is rotated by the rotational force to obtain high compressed air or high-speed airflow, and obtains rotational force, thrust, levitation, and the like. Therefore, the superheated steam 5 obtained by heat exchange is conveyed from the steam control valve 7 to the most upstream side of the all-blade steam turbine by the steam pipe 6 to drive the most upstream side and sequentially drive the downstream side. To generate a large rotational power, and by the magnetic friction power transmission device 14 at the left end,
The outer turbine blade group 19 and the outer shaft device rotating in opposite directions and the inner turbine blade group 20 and the inner shaft device are coupled at an optimum rotation ratio to form a full blade steam turbine. Furthermore, the rightmost compressor-side magnetic friction power transmission device 1
4, the inner compressor blade group 17 and the inner shaft device are connected to the outer compressor blade group 16 and the outer shaft device at an optimum counter-rotating rotation ratio to form a full blade compressor, and This is the second embodiment of the turbine compressor.

【0025】図7を参照して、蒸気タービン圧縮機の第
3実施例を説明すると、各種蒸気ガスタービン合体機関
中核部で熱交換して得た過熱蒸気5により、蒸気タービ
ンを駆動して回転力を発生させて出力軸12により利用
します。又は、該回転力により図7の圧縮機を回転させ
て、高圧縮空気乃至高速気流を得るもので、回転力及び
推力及び浮揚力等を得るものです。従って、熱交換して
得た過熱蒸気5を蒸気加減弁7より蒸気管6により、蒸
気タービンの最上流側に運搬して、該最上流側を駆動す
ると共に順次下流側を駆動して、大きな回転動力を発生
させると共に、通常とは逆の外側タービン動翼群19及
び外側軸装置を回転させることにより、湿り蒸気乃至水
滴となった過熱蒸気5を遠心力により外方に噴射して、
圧縮空気流の質量増大として推進力を増大し、左端の内
側固定軸装置に外嵌枢支して、該外側軸装置の左端を出
力軸12として蒸気タービンを構成します。内側タービ
ン静翼及び内側固定軸装置の右端は、ケーシングの水平
継ぎ手により固定して、該ケーシングを、内側圧縮機動
翼群17及びタービン外側軸装置と兼用の内側軸装置に
外嵌枢支して、圧縮機を構成させて、蒸気タービン圧縮
機の第3実施例とします。
Referring to FIG. 7, a third embodiment of the steam turbine compressor will be described. The superheated steam 5 obtained by exchanging heat at the core of various steam gas turbine combined engines drives the steam turbine to rotate. A force is generated and used by the output shaft 12. Alternatively, the compressor shown in FIG. 7 is rotated by the rotational force to obtain high compressed air or high-speed airflow, and obtains rotational force, thrust, levitation, and the like. Therefore, the superheated steam 5 obtained by the heat exchange is conveyed to the most upstream side of the steam turbine by the steam control valve 7 and the steam pipe 6 to drive the most upstream side and sequentially drive the downstream side, so that By generating the rotational power and rotating the outer turbine blade group 19 and the outer shaft device, which are opposite to the normal, the superheated steam 5 that has become wet steam or water droplets is ejected outward by centrifugal force,
The propulsion force is increased as the mass of the compressed air flow is increased, and the propulsion force is externally fitted to the inner fixed shaft device at the left end, and the steam turbine is configured with the left end of the outer shaft device as the output shaft 12. The right ends of the inner turbine stator blades and the inner fixed shaft device are fixed by a horizontal joint of a casing, and the casing is externally fitted to and supported by the inner shaft device that is also used as the inner compressor blade group 17 and the turbine outer shaft device. The third embodiment of the steam turbine compressor will be described.

【0026】図8を参照して、蒸気タービン圧縮機の第
4実施例を説明すると、各種蒸気ガスタービン合体機関
中核部で熱交換して得た過熱蒸気5により、蒸気タービ
ンを駆動して回転力を発生させて、出力軸12により利
用します。又は、該回転力により図8の圧縮機を回転さ
せて、高圧縮空気乃至高速気流を得るもので、回転力及
び推力及び浮揚力等を得るものです。従って、熱交換し
て得た過熱蒸気5を蒸気加減弁7より蒸気管6により、
公知技術の蒸気タービンの最上流側に運搬して、通常ど
おりに該最上流側を駆動すると共に順次下流側を駆動し
て、大きな回転動力を発生させて、内側軸装置の左端を
出力軸12として、回転力を取り出す蒸気タービンを構
成します。即ち、内側タービン動翼群20及び内側軸装
置の外側に、水平継ぎ手で分解組立て可能なケーシング
に、夫夫静翼を固定して外嵌枢支して蒸気タービンを構
成します。同様に内側圧縮機動翼群17及び内側軸装置
の外側に、夫夫静翼を固定したケーシングを外嵌枢支し
て圧縮機を構成させて、蒸気タービン圧縮機の第4実施
例とします。
Referring to FIG. 8, a fourth embodiment of the steam turbine compressor will be described. The superheated steam 5 obtained by exchanging heat in the core of the combined steam gas turbine engine drives the steam turbine to rotate it. A force is generated and used by the output shaft 12. Alternatively, the compressor shown in FIG. 8 is rotated by the rotational force to obtain high compressed air or high-speed airflow, and obtains rotational force, thrust, levitation, and the like. Therefore, the superheated steam 5 obtained by heat exchange is supplied from the steam control valve 7 to the steam pipe 6 through the steam pipe 6.
It is conveyed to the most upstream side of a known steam turbine, drives the most upstream side as usual, and sequentially drives the downstream side to generate a large rotational power, and the left end of the inner shaft device is connected to the output shaft 12. As a steam turbine that extracts rotational power. That is, the stationary blade is fixed to a casing that can be disassembled and assembled with a horizontal joint on the outer side of the inner turbine rotor blade group 20 and the inner shaft device, and a steam turbine is configured by externally fitting and pivoting. Similarly, a compressor in which a casing to which a stationary vane is fixed is externally pivotally supported on the outer side of the inner compressor rotor blade group 17 and the inner shaft device to constitute a compressor is referred to as a fourth embodiment of the steam turbine compressor.

【0027】図13を参照して、燃焼器兼熱交換器4を
小径多数蜂の巣状に配置して短小化した、熱交換伝熱面
積の増大手段の熔接構造を説明すると、(a)(b)
(c)(d)に示すように、少なくとも1本以上の螺旋
状導水管1を含む水冷外壁26を、螺旋状の熔接構造と
して小径多数化することで、大きな圧力比の設定と、伝
熱面積の増大による熱交換速度の加速と、燃料供給手段
27の最上流側増設を容易にすると共に、蒸気ガスター
ビン全体を合理的な円筒形状とします。即ち(a)
(b)に示す実施例の如く、螺旋状に設けた導水管1の
半径方向外方に少し離して燃焼器外箱部25を設けて、
1本以上の導水管1を軸方向T字型等螺旋状に熔接し
て、大幅に高圧容器の燃焼器兼熱交換器4を可能にする
と共に、燃焼器兼熱交換器4の伝熱面積大増大も可能に
します。又、(c)に示す実施例の如く、螺旋状に設け
た導水管1の半径方向外方に燃焼器外箱部25乃至水冷
外壁26を設けて、一本以上の導水管1を軸方向螺旋状
に熔接して、超臨界の蒸気条件以下の大幅に高圧の燃焼
器兼熱交換器4の伝熱面積大増大を可能にします。又、
(d)に示す実施例の如く、螺旋状に設けた導水管1の
半径方向略中央に燃焼器外箱部25を設けて、一本以上
の導水管1を軸方向螺旋状に熔接して、超臨界の蒸気条
件以下の及び比較的高圧の圧力比の、燃焼器兼熱交換器
4の熱交換伝熱面積大増大を可能にします。
Referring to FIG. 13, a description will be given of the welding structure of the means for increasing the heat exchange heat transfer area in which the combustor / heat exchanger 4 is arranged in a plurality of small-diameter honeycombs and shortened. )
(C) As shown in (d), the water cooling outer wall 26 including at least one or more spiral water pipes 1 is formed into a spiral welding structure with a small number of diameters, thereby setting a large pressure ratio and increasing heat transfer. In addition to accelerating the heat exchange rate due to the increase in area and increasing the most upstream side of the fuel supply means 27, the entire steam gas turbine has a reasonable cylindrical shape. That is, (a)
As in the embodiment shown in (b), a combustor outer box part 25 is provided slightly away from the spirally provided water pipe 1 in the radial direction,
One or more water pipes 1 are spirally welded such as in a T-shape in the axial direction to greatly enable the combustor / heat exchanger 4 of the high-pressure vessel and the heat transfer area of the combustor / heat exchanger 4. It also allows for a huge increase. Further, as in the embodiment shown in (c), a combustor outer box 25 to a water-cooled outer wall 26 are provided radially outward of the spirally provided water pipe 1 so that one or more water pipes 1 can be axially connected. Spiral welding makes it possible to greatly increase the heat transfer area of the combustor / heat exchanger 4 with a significantly higher pressure than supercritical steam conditions. or,
As in the embodiment shown in (d), a combustor outer box part 25 is provided substantially at the center in the radial direction of the spirally provided water guide tube 1, and one or more water guide tubes 1 are welded in an axial spiral manner. It enables a large increase in the heat exchange heat transfer area of the combustor / heat exchanger 4 under supercritical steam conditions and at a relatively high pressure ratio.

【0028】図13・図14を参照して、燃焼器兼熱交
換器4を小径多数として、蜂の巣状に配置して短小化し
た、伝熱面積の増大手段の水冷外壁単位52を説明する
と、図14(a)(b)(c)に示すように、少なくと
も一本以上の螺旋状導水管1を含む水冷外壁単位52
を、両端に鍔53を設けて組立て可能な一単位として、
複数の水冷外壁単位52を連結して大幅に高圧化・短小
化可能な、燃焼器兼熱交換器4の主要部とします。即ち
図13・図14の(a)(b)に示す実施例の如く、螺
旋状に設けた少なくとも1本以上の導水管1の半径方向
外方に少し離して、溶接構造を含む燃焼器外箱部25を
設けて、該両端に鍔53を夫夫具備して、該鍔53に導
水管1を夫夫開口して、該導水管1を含む水冷外壁単位
52を連結可能にします。又、(c)(d)(c)に示
す実施例の如く、螺旋状に設けた少なくとも1本以上の
導水管1の半径方向外方又は、半径方向略中央に溶接構
造を含む燃焼器外箱部25を設けて、該両端に鍔53を
夫夫具備して、該鍔53に導水管1を夫夫開口して、導
水管1を含む水冷外壁単位52を連結可能に構成し、超
臨界の蒸気条件以下の及び、比較的高圧の圧力比の、燃
焼器兼熱交換器4の熱交換伝熱面積大増大を可能にしま
す。
Referring to FIG. 13 and FIG. 14, the water-cooled outer wall unit 52 of the means for increasing the heat transfer area, which has a large number of small diameter combustor / heat exchangers 4 and is arranged in a honeycomb shape and shortened, will be described. As shown in FIGS. 14A, 14B and 14C, a water-cooled outer wall unit 52 including at least one or more spiral water pipes 1
As a unit that can be assembled by providing flanges 53 at both ends,
It is the main part of the combustor / heat exchanger 4 that can be connected to multiple water-cooled outer wall units 52 to greatly increase the pressure and reduce the size. That is, as in the embodiments shown in FIGS. 13A and 14B, the at least one or more spirally provided water pipes 1 are slightly separated radially outward from the combustor including the welding structure. A box portion 25 is provided, and flanges 53 are provided at both ends of the box portion 25. The water pipe 1 is opened at the flange 53 so that the water-cooled outer wall unit 52 including the water pipe 1 can be connected. Further, as in the embodiments shown in (c), (d), and (c), at least one or more spirally provided water pipes 1 outside the combustor including a welding structure radially outward or substantially at the center in the radial direction. A box portion 25 is provided, and flanges 53 are provided at both ends thereof. The water pipe 1 is opened at the flange 53 so that the water-cooled outer wall unit 52 including the water pipe 1 can be connected. It enables a large increase in the heat exchange heat transfer area of the combustor / heat exchanger 4 below the critical steam conditions and at a relatively high pressure ratio.

【0029】図15・図16を参照して、磁気摩擦動力
伝達装置14を説明すると、通常の変速や逆転を含む各
種動力伝達装置は、主として歯車装置を使用している。
このため、歯面に大きな荷重を含む滑り歯面を必須とす
るため、潤滑油を必要とするのに加えて摩擦熱損失も非
常に大きく、高速回転を含む大動力の伝達装置には、使
用不可という問題がある。このため、全動翼・蒸気ガス
タービン合体機関を実用化するには、ころがり接触によ
る超高速大動力伝達装置が必須となり、超高速大動力伝
達装置を可能にすると共に、潤滑油も不用にするために
は、歯車装置の滑り歯面を皆無に近づけた、ころがり接
触による動力伝達装置が必要となる。このため、歯車の
かみ合い高さを限りなく縮小した低凹凸40とし、回転
方向35上流側及び下流側又は上流側又は下流側に、図
15のように棒磁石33又は電磁石34を設けて、該磁
石の強い吸引力を利用した、例えば図15・図16の各
種着磁摩擦車37・37及び、各種磁着摩擦車39・3
9等と、多様な組み合わせを含む各種磁気摩擦動力伝達
装置14として、全面的に使用するのが好ましい。即
ち、転がり接触に近づけることにより、摩擦熱損失を皆
無に近づけて、超高速大動力伝達装置や、潤滑油に換え
て無公害の水冷却を可能にするものです。
Referring to FIGS. 15 and 16, the magnetic friction power transmission device 14 will be described. Various power transmission devices including normal speed change and reverse rotation mainly use gears.
For this reason, since a sliding tooth surface including a large load is essential for the tooth surface, in addition to requiring lubricating oil, friction heat loss is extremely large, and it is used for transmission of large power including high speed rotation. There is a problem of impossibility. For this reason, in order to commercialize an all-blade / steam gas turbine combined engine, an ultra-high-speed large power transmission device by rolling contact is indispensable, enabling an ultra-high-speed large power transmission device and eliminating the need for lubricating oil. For this purpose, it is necessary to provide a power transmission device by rolling contact, in which the sliding tooth surfaces of the gear device are almost zero. For this reason, the meshing height of the gears is reduced to an infinitesimally low irregularity 40, and a bar magnet 33 or an electromagnet 34 is provided on the upstream and downstream sides or on the upstream or downstream side in the rotation direction 35 as shown in FIG. For example, various magnetized friction wheels 37, 37 and 39.3 shown in FIGS. 15 and 16 utilizing the strong attraction force of the magnet.
It is preferable to use the magnetic friction power transmission device 14 in its entirety including various combinations such as 9 and the like. In other words, by bringing rolling contact closer, friction heat loss can be reduced to almost zero, and ultra-high-speed large-power transmission equipment and water-free cooling can be achieved in place of lubricating oil.

【0030】図16を参照して、磁気摩擦動力伝達装置
14を説明すると、各種歯車に換えて、各種着磁摩擦車
37・37や各種磁着摩擦車39・39等を使用して、
動力伝達面31には低凹凸40として、例えば平歯車に
換えて平凹凸41車を、ハスバ歯車に換えてハスバ凹凸
42車を、ヤマバ歯車に換えてヤマバ凹凸43車を設け
る。これにより磁気摩擦動力伝達装置14として、公知
の各種歯車式動力伝達装置と同様に、各種磁気摩擦動力
伝達装置14を構成して使用します。
Referring to FIG. 16, the magnetic friction power transmission device 14 will be described. In place of various gears, various types of magnetic friction wheels 37, 37 and various magnetic friction wheels 39, 39 are used.
The power transmission surface 31 is provided with low irregularities 40, for example, 41 flat irregularities instead of spur gears, 42 helical irregularities instead of helical gears, and 43 Yama irregularities instead of Yamaba gears. As a result, various magnetic friction power transmission devices 14 are configured and used as the magnetic friction power transmission device 14 in the same manner as known various gear type power transmission devices.

【0031】[0031]

【発明の効果】本発明は、全動翼を含む各種蒸気ガスタ
ービン合体機関中核部として、燃焼器兼熱交換器の外壁
を、導水管を含む螺旋状の熔接構造又は、溶接構造を含
む螺旋状の水冷外壁単位組立構造として、小径多数蜂の
巣状に短小化配置したため、蒸気ガスタービン合体機関
中核部の外形を理想的円筒型として拡大容易に、しかも
コンパクトにできる大きな効果があります。更に伝熱面
積を大増大した高圧容器の燃焼器兼熱交換器として、燃
料供給手段も最上流側に最大で従来技術の4倍増容易に
加えて、供給熱量の大部分を過熱蒸気に変換できる効果
があります。タービンの耐熱限界温度を越えることなく
熱交換して得た、燃焼ガス及び過熱蒸気により、回転動
力を得ると共に、燃焼用圧縮空気量を従来技術と同一に
した場合、最大で従来ガスタービンの4倍前後の燃料に
よる理論空燃比燃焼まで、供給熱量を大増大して比出力
が大増大できる効果があります。燃焼用に圧縮した空気
量を100%燃焼に利用して、通常圧力比の10倍近い
圧力比の、超臨界圧以下の過熱蒸気を噴射できるため、
最も熱効率の良い各種蒸気ガスタービン合体サイクルと
して、熱効率の大上昇に大きな効果があります。
According to the present invention, the outer wall of a combustor / heat exchanger is provided as a core part of a combined steam and gas turbine engine including all the moving blades, and a spiral welding structure including a water pipe or a spiral structure including a welding structure. The water-cooled outer wall unit assembly structure has a small diameter and a large number of honeycombs, so it is easy to expand the core of the combined engine of the steam and gas turbine into an ideal cylindrical shape. In addition, as a combustor / heat exchanger for a high-pressure vessel with a greatly increased heat transfer area, the fuel supply means can be easily added to the most upstream side up to four times that of the conventional technology, and the majority of the supplied heat can be converted to superheated steam. It has an effect. When the rotating power is obtained by the combustion gas and the superheated steam obtained by exchanging heat without exceeding the heat-resistant limit temperature of the turbine, and the amount of compressed air for combustion is the same as that of the conventional technology, the maximum of the conventional gas turbine is 4%. It has the effect that the heat output can be greatly increased and the specific output greatly increased up to stoichiometric air-fuel ratio combustion with about twice the fuel. Since the amount of air compressed for combustion is used for 100% combustion, superheated steam having a pressure ratio close to 10 times the normal pressure ratio and less than the supercritical pressure can be injected,
As a steam gas turbine combined cycle with the highest thermal efficiency, it has a great effect on a large increase in thermal efficiency.

【0032】本発明の最大の特徴は、ガスタービンと蒸
気タービンを分離したため、最も一般的に世界に普及し
ている、最先端火力発電設備の熱効率を最大にできると
ころです。即ち、蒸気・ガスタービン複合サイクルのガ
スタービン圧力比を熱交換燃焼ガス冷却により、極限ま
で上昇してガスタービンの熱効率を極限まで上昇できる
効果があります。更に圧力比を極限まで上昇した状態で
熱交換するため、超臨界の蒸気条件を含む過熱蒸気エネ
ルギの取り出し量を増大して、総合比出力及び熱効率を
極限まで上昇できる効果があります。更に、圧力比を極
限まで上昇した状態で熱交換するため、ガスタービンの
消費熱量を最少にして燃焼ガス質量を最大にして熱効率
を極限まで上昇できる効果があります。更に、圧力比を
極限まで上昇した状態で熱交換した燃焼ガスを使用する
ため、ガスタービンの排気熱量を最少にして、熱エネル
ギを極限まで有効利用できる効果があります。又、各種
磁気摩擦動力伝達装置を全面的に開発使用することで、
従来技術の各種動力伝達装置による摩擦熱損失を大幅に
低減して、熱効率を更に上昇する効果があります。従っ
て、各種運輸機器や熱と電気の併給機器等として多種多
様使用することで、CO2を地球規模で低減するため
に、大きな効果があります。
The most important feature of the present invention is that the thermal efficiency of the most advanced thermal power generation equipment, which is most commonly spread around the world, can be maximized by separating the gas turbine and the steam turbine. In other words, the gas turbine pressure ratio of the steam / gas turbine combined cycle can be raised to the limit by heat exchange combustion gas cooling, and the thermal efficiency of the gas turbine can be raised to the limit. In addition, since heat is exchanged with the pressure ratio raised to the limit, the amount of superheated steam energy including supercritical steam conditions can be increased to increase the total specific output and thermal efficiency to the limit. Furthermore, since heat is exchanged with the pressure ratio raised to the limit, the heat consumption of the gas turbine is minimized, the combustion gas mass is maximized, and the thermal efficiency can be increased to the limit. Furthermore, the use of combustion gas that has undergone heat exchange while the pressure ratio has been raised to the maximum has the effect of minimizing the exhaust heat of the gas turbine and making the most of thermal energy. In addition, by fully developing and using various magnetic friction power transmission devices,
It has the effect of greatly reducing frictional heat loss due to various power transmission devices of the prior art, and further increasing thermal efficiency. Therefore, it is very effective to reduce CO2 on a global scale by using it variously as various transportation equipment and co-supply equipment of heat and electricity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】蒸気ガスタービン合体機関中核部の第1実施例
を示す一部断面図。
FIG. 1 is a partial cross-sectional view showing a first embodiment of a core portion of a combined steam gas turbine engine.

【図2】蒸気ガスタービン合体機関中核部の第2実施例
を示す一部断面図。
FIG. 2 is a partial cross-sectional view showing a second embodiment of the core part of the steam gas turbine combined engine.

【図3】蒸気ガスタービン合体機関中核部の第3実施例
を示す一部断面図。
FIG. 3 is a partial cross-sectional view showing a third embodiment of a core portion of a combined steam gas turbine engine.

【図4】蒸気ガスタービン合体機関中核部の第4実施例
を示す一部断面図。
FIG. 4 is a partial cross-sectional view showing a fourth embodiment of the core portion of the combined steam gas turbine engine.

【図5】蒸気タービン圧縮機の第1実施例を示す一部断
面図。
FIG. 5 is a partial sectional view showing a first embodiment of the steam turbine compressor.

【図6】蒸気タービン圧縮機の第2実施例を示す一部断
面図。
FIG. 6 is a partial sectional view showing a second embodiment of the steam turbine compressor.

【図7】蒸気タービン圧縮機の第3実施例を示す一部断
面図。
FIG. 7 is a partial sectional view showing a third embodiment of the steam turbine compressor.

【図8】蒸気タービン圧縮機の第4実施例を示す一部断
面図。
FIG. 8 is a partial sectional view showing a fourth embodiment of the steam turbine compressor.

【図9】蒸気ガスタービン合体機関の第1実施形態を示
す全体構成図。
FIG. 9 is an overall configuration diagram showing a first embodiment of the steam gas turbine combined engine.

【図10】蒸気ガスタービン合体機関の第2実施形態を
示す全体構成図。
FIG. 10 is an overall configuration diagram showing a second embodiment of the steam gas turbine combined engine.

【図11】蒸気ガスタービン合体機関の第3実施形態を
示す全体構成図。
FIG. 11 is an overall configuration diagram showing a third embodiment of the combined steam gas turbine engine.

【図12】蒸気ガスタービン合体機関の第4実施形態を
示す全体構成図。
FIG. 12 is an overall configuration diagram showing a fourth embodiment of the steam gas turbine combined engine.

【図13】燃焼器兼熱交換器の水冷外壁の螺旋状溶接構
造を示す断面図。
FIG. 13 is a sectional view showing a spiral welding structure of a water-cooled outer wall of the combustor / heat exchanger.

【図14】燃焼器兼熱交換器の螺旋状の水冷壁管単位を
説明するための断面図。
FIG. 14 is a cross-sectional view for explaining a spiral water cooling wall tube unit of the combustor / heat exchanger.

【図15】蒸気ガスタービン合体機関用磁気摩擦動力伝
達装置の概念図。
FIG. 15 is a conceptual diagram of a magnetic friction power transmission device for a combined steam gas turbine engine.

【図16】着磁摩擦車及び磁着摩擦車等の摩擦増大手段
を説明するための図。
FIG. 16 is a diagram for explaining friction increasing means such as a magnetic friction wheel and a magnetic friction wheel.

【符号の説明】[Explanation of symbols]

1:導水管 2:給水ポンプ 3:給水 4:燃
焼器兼熱交換器 5:過熱蒸気 6:蒸気管
7:蒸気加減弁 8:環状の圧縮空気溜 9:環状
の燃焼ガス溜 10燃焼ガス 12:出力軸 1
3:止め弁 14:磁気摩擦動力伝達装置 15:
圧縮空気 16:外側圧縮機動翼群 17:内側圧縮機動翼群 19:外側タービン動翼群
20:内側タービン動翼群 21:環状の出口
22:環状の受け口 23:環状の受け口 24:環状の噴口群 25:燃焼器外箱部 26:
水冷外壁 27:燃料供給手段 28:バイパス
29:噴口 30:過熱蒸気溜 31:動力伝達
面 33:棒磁石 34:電磁石 35:回転方
向 36:磁極 37:着磁摩擦車 38:内着
磁摩擦車 39:磁着摩擦車 40:低凹凸 4
1:平凹凸 42:ハスバ凹凸 43:ヤマバ凹凸
44:内磁着摩擦車 45:摩擦増大耐久手段
46:磁石部 47:ヨーク(着磁摩擦車用)
48:絶縁材料 52:水冷外壁単位 53:鍔
1: water pipe 2: water supply pump 3: water supply 4: combustor and heat exchanger 5: superheated steam 6: steam pipe
7: Steam control valve 8: Annular compressed air reservoir 9: Annular combustion gas reservoir 10 Combustion gas 12: Output shaft 1
3: Stop valve 14: Magnetic friction power transmission device 15:
Compressed air 16: Outer compressor blade group 17: Inner compressor blade group 19: Outer turbine blade group 20: Inner turbine blade group 21: Annular outlet
22: annular socket 23: annular socket 24: annular nozzle group 25: combustor outer box 26:
Water cooling outer wall 27: Fuel supply means 28: Bypass
29: Injector 30: Superheated steam reservoir 31: Power transmission surface 33: Bar magnet 34: Electromagnet 35: Rotation direction 36: Magnetic pole 37: Magnetized friction wheel 38: Inner magnetized friction wheel 39: Magnetically bonded friction wheel 40: Low unevenness 4
1: flat unevenness 42: boss unevenness 43: yamaba unevenness 44: inner magnetized friction wheel 45: friction increasing durability means
46: Magnet part 47: Yoke (for magnetized friction wheel)
48: Insulating material 52: Water-cooled outer wall unit 53: Tsuba

Claims (107)

【特許請求の範囲】[Claims] 【請求項1】 水冷外壁を螺旋状の熔接構造として、小
径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧縮
空気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、
燃焼ガスで出力を得る全動翼ガスタービンと、燃焼ガス
温度がタービン耐熱限界温度以下となるように熱交換し
て得た過熱蒸気で出力を得る噴口(29)と、該噴口に
過熱蒸気を供給する過熱蒸気溜(30)とを有する蒸気
ガスタービン合体機関。
1. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welding structure with a small diameter and a plurality of honeycombs, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. ,
An all-blade gas turbine that obtains output with combustion gas, an injection port (29) that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, and superheated steam is supplied to the injection port. A combined steam gas turbine engine having a superheated steam reservoir (30) to supply.
【請求項2】 水冷外壁を螺旋状の熔接構造単位組立て
構造として、小径多数蜂の巣状に短小化した燃焼器兼熱
交換器と、圧縮空気を該燃焼器兼熱交換器に供給する全
動翼圧縮機と、燃焼ガスで出力を得る全動翼ガスタービ
ンと、燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る噴口(2
9)と、該噴口に過熱蒸気を供給する過熱蒸気溜(3
0)とを有する蒸気ガスタービン合体機関。
2. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welded unit assembling structure, and a combustor / heat exchanger shortened into a small-diameter multi-honeycomb shape, and a whole rotor blade for supplying compressed air to the combustor / heat exchanger. A compressor, an all-blade gas turbine that obtains output with combustion gas, and an injection port (2) that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature.
9) and a superheated steam reservoir (3) for supplying superheated steam to the nozzle.
0).
【請求項3】 螺旋状の水冷外壁単位組立構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する全動翼圧縮機
と、燃焼ガスで出力を得る全動翼ガスタービンと、燃焼
ガス温度がタービン耐熱限界温度以下となるように熱交
換して得た過熱蒸気で出力を得る噴口(29)と、該噴
口に過熱蒸気を供給する過熱蒸気溜(30)とを有する
蒸気ガスタービン合体機関。
3. As a spiral water-cooled outer wall unit assembly structure,
A combustor / heat exchanger that is shortened in a small-diameter multi-honeycomb shape, a full-blade compressor that supplies compressed air to the combustor / heat exchanger, a full-blade gas turbine that obtains output using combustion gas, and combustion. A steam gas turbine having an orifice (29) for obtaining an output with superheated steam obtained by heat exchange so that the gas temperature becomes equal to or lower than the turbine heat resistant limit temperature, and a superheated steam reservoir (30) for supplying the superheated steam to the orifice. Coalition organization.
【請求項4】 水冷外壁を螺旋状の熔接構造として、小
径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧縮
空気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガ
スで出力を得るガスタービンと、燃焼ガス温度がタービ
ン耐熱限界温度以下となるように熱交換して得た過熱蒸
気で出力を得る噴口(29)と、該噴口に過熱蒸気を供
給する過熱蒸気溜(30)とを有する蒸気ガスタービン
合体機関。
4. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welding structure with a small diameter and a plurality of honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A gas turbine that obtains an output by a superheater, an injection hole (29) that obtains an output by using superheated steam obtained by exchanging heat so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature, and a superheated steam reservoir that supplies the superheated steam to the injection hole (30).
【請求項5】 水冷外壁を螺旋状の熔接構造単位組立て
構造として、小径多数蜂の巣状に短小化した燃焼器兼熱
交換器と、圧縮空気を該燃焼器兼熱交換器に供給する圧
縮機と、燃焼ガスで出力を得るガスタービンと、燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る噴口(29)と、該噴口
に過熱蒸気を供給する過熱蒸気溜(30)とを有する蒸
気ガスタービン合体機関。
5. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welding structure unit assembling structure, and a combustor / heat exchanger shortened into a large number of small diameter honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. A gas turbine that obtains output with combustion gas, an injection port (29) that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature becomes equal to or lower than the turbine heat resistant limit temperature, and supplies superheated steam to the injection port. A combined steam gas turbine engine having a superheated steam reservoir (30).
【請求項6】 螺旋状の水冷外壁単位組立構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼
ガスで出力を得るガスタービンと、燃焼ガス温度がター
ビン耐熱限界温度以下となるように熱交換して得た過熱
蒸気で出力を得る噴口(29)と、該噴口に過熱蒸気を
供給する過熱蒸気溜(30)とを有する蒸気ガスタービ
ン合体機関。
6. A spiral water-cooled outer wall unit assembly structure,
A combustor / heat exchanger that has been shortened into a large number of small-diameter honeycombs, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains output with combustion gas, and a combustion gas temperature that is at the turbine heat resistance limit. A combined steam gas turbine engine having an injection port (29) for obtaining an output with superheated steam obtained by heat exchange so as to have a temperature lower than or equal to a temperature, and a superheated steam reservoir (30) for supplying superheated steam to the injection port.
【請求項7】 前記請求項4乃至請求項6に於いて、圧
縮機、ガスタービンのいずれかが全動翼である蒸気ガス
タービン合体機関。
7. The combined steam and gas turbine engine according to claim 4, wherein one of the compressor and the gas turbine is a full moving blade.
【請求項8】 前記請求項1乃至請求項7に於いて、圧
縮機・ガスタービン・燃焼器兼熱交換器と、過熱蒸気溜
(30)が、止め弁(13)間で分離することを特徴と
する蒸気ガスタービン合体機関。
8. The method according to claim 1, wherein the compressor, the gas turbine, the combustor and heat exchanger, and the superheated steam reservoir (30) are separated between the stop valve (13). A combined steam gas turbine engine.
【請求項9】 前記過熱蒸気溜(30)を、導水管
(1)を円筒型螺旋状の、断面蜂の巣状に密集させたこ
とを特徴とする蒸気ガスタービン合体機関。
9. A combined steam gas turbine engine wherein the superheated steam reservoir (30) is formed by densely packing a water guide pipe (1) in a cylindrical spiral shape with a honeycomb structure.
【請求項10】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する全動翼圧縮機
と、燃焼ガスで出力を得る全動翼ガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る全動翼蒸気タービン圧縮
機の推力により航空機体を浮揚移動させるための装置と
を有する蒸気ガスタービン合体機関。
10. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger shortened into a small-diameter multiple-honeycomb shape, a full-blade compressor for supplying compressed air to the combustor / heat exchanger, a full-blade gas turbine that obtains output with combustion gas, and a combustion gas Apparatus for lifting and moving an aircraft body by the thrust of a full-blade steam turbine compressor that obtains output with superheated steam obtained by heat exchange so that the temperature is equal to or lower than the turbine heat-resistant limit temperature .
【請求項11】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガスター
ビンと燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
タービン圧縮機の推力により航空機体を浮揚移動させる
ための装置とを有する蒸気ガスタービン合体機関。
11. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welding structure unit assembling structure, and a combustor / heat exchanger shortened into a small-diameter multi-honeycomb shape, and a whole rotor blade for supplying compressed air to the combustor / heat exchanger. Thrust of a compressor, a full-blade gas turbine that obtains output with combustion gas, and a full-blade steam turbine compressor that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine allowable temperature limit And a device for levitating and moving the aircraft body according to the invention.
【請求項12】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと燃
焼ガス温度がタービン耐熱限界温度以下となるように熱
交換して得た過熱蒸気で出力を得る全動翼蒸気タービン
圧縮機の推力により航空機体を浮揚移動させるための装
置とを有する蒸気ガスタービン合体機関。
12. A helical water-cooled outer wall unit assembling structure, comprising a combustor / heat exchanger shortened into a large number of small diameter honeycombs, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. The aircraft body is driven by the thrust of a full-blade gas turbine, which obtains output with combustion gas, and a full-blade steam turbine compressor, which obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature. And a device for levitating and moving the steam turbine.
【請求項13】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼
ガスで出力を得るガスタービンと燃焼ガス温度がタービ
ン耐熱限界温度以下となるように熱交換して得た過熱蒸
気で出力を得る蒸気タービン圧縮機の推力により航空機
体を浮揚移動させるための装置とを有する蒸気ガスター
ビン合体機関。
13. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger that has been shortened into a large number of small-diameter honeycombs, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains output with combustion gas, and the combustion gas temperature is the turbine heat-resistant limit temperature. A combined steam and gas turbine engine having a device for levitating and moving an aircraft body by the thrust of a steam turbine compressor that obtains output with superheated steam obtained by heat exchange as follows.
【請求項14】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
圧縮機と、燃焼ガスで出力を得るガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る蒸気タービン圧縮機の推
力により航空機体を浮揚移動させるための装置とを有す
る蒸気ガスタービン合体機関。
14. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welded unit assembling structure, the combustor / heat exchanger being shortened into a large number of small diameter honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. To lift the aircraft body by the thrust of a gas turbine that obtains output with combustion gas and a steam turbine compressor that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat-resistant limit temperature. A combined steam and gas turbine engine having a device.
【請求項15】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと燃焼ガス温度
がタービン耐熱限界温度以下となるように熱交換して得
た過熱蒸気で出力を得る蒸気タービン圧縮機の推力によ
り航空機体を浮揚移動させるための装置とを有する蒸気
ガスタービン合体機関。
15. A helical water-cooled outer wall unit assembling structure, a combustor / heat exchanger shortened into a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. And a device for levitating and moving the aircraft body by the thrust of a steam turbine compressor that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. Steam gas turbine combined engine having.
【請求項16】 前記請求項13乃至請求項15に於い
て、圧縮機、蒸気タービン圧縮機、ガスタービンのいず
れか2以下が全動翼である蒸気ガスタービン合体機関。
16. The combined steam and gas turbine engine according to claim 13, wherein at least two of the compressor, the steam turbine compressor, and the gas turbine are all blades.
【請求項17】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する全動翼圧縮機
と、燃焼ガスで出力を得る全動翼ガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る全動翼蒸気タービン圧縮
機の力により船舶を浮揚移動させるための装置とを有す
る蒸気ガスタービン合体機関。
17. The water-cooled outer wall has a spiral welding structure,
A combustor / heat exchanger shortened into a small-diameter multiple-honeycomb shape, a full-blade compressor for supplying compressed air to the combustor / heat exchanger, a full-blade gas turbine that obtains output with combustion gas, and a combustion gas A steam turbine combined engine having a device for levitating and moving a ship by the power of a full-blade steam turbine compressor that obtains an output with superheated steam obtained by heat exchange so that the temperature becomes equal to or lower than a turbine heat-resistant limit temperature.
【請求項18】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガスター
ビンと燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
タービン圧縮機の力により船舶を浮揚移動させるための
装置とを有する蒸気ガスタービン合体機関。
18. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure unit assembly structure and a combustor / heat exchanger shortened into a small-diameter multi-honeycomb shape, and all blades for supplying compressed air to the combustor / heat exchanger. Compressor, full-blade gas turbine that obtains output with combustion gas, and power of full-blade steam turbine compressor that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine allowable temperature limit And a device for levitating and moving a ship.
【請求項19】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと燃
焼ガス温度がタービン耐熱限界温度以下となるように熱
交換して得た過熱蒸気で出力を得る全動翼蒸気タービン
圧縮機の力により船舶を浮揚移動させるための装置とを
有する蒸気ガスタービン合体機関。
19. A helical water-cooled outer wall unit assembling structure, comprising a combustor / heat exchanger shortened into a large number of small diameter honeycombs, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. The ship is powered by a full-blade gas turbine compressor that obtains output with combustion gas and a full-blade steam turbine compressor that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat-resistant limit temperature. And a device for levitation movement.
【請求項20】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼
ガスで出力を得るガスタービンと燃焼ガス温度がタービ
ン耐熱限界温度以下となるように熱交換して得た過熱蒸
気で出力を得る蒸気タービン圧縮機の力により船舶を浮
揚移動させるための装置とを有する蒸気ガスタービン合
体機関。
20. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger that has been shortened into a large number of small-diameter honeycombs, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains output with combustion gas, and the combustion gas temperature is the turbine heat-resistant limit temperature. A combined steam gas turbine engine having a device for levitating and moving a ship by the power of a steam turbine compressor that obtains output with superheated steam obtained by heat exchange as follows.
【請求項21】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
圧縮機と、燃焼ガスで出力を得るガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る蒸気タービン圧縮機の力
により船舶を浮揚移動させるための装置とを有する蒸気
ガスタービン合体機関。
21. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welding structure unit assembling structure having a small diameter and a plurality of honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. A device for lifting and moving a ship by the power of a gas turbine that obtains output with combustion gas and a steam turbine compressor that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat-resistant limit temperature And a combined steam and gas turbine engine.
【請求項22】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと燃焼ガス温度
がタービン耐熱限界温度以下となるように熱交換して得
た過熱蒸気で出力を得る蒸気タービン圧縮機の力により
船舶を浮揚移動させるための装置とを有する蒸気ガスタ
ービン合体機関。
22. A helical water-cooled outer wall unit assembling structure, a combustor / heat exchanger shortened into a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. And a device for levitating and moving the ship by the power of a steam turbine compressor that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. Steam gas turbine combined engine.
【請求項23】 前記請求項20乃至請求項22に於い
て、圧縮機、蒸気タービン圧縮機、ガスタービンのいず
れか2以下が全動翼である蒸気ガスタービン合体機関。
23. The combined steam / gas turbine engine according to claim 20, wherein at least two of the compressor, the steam turbine compressor, and the gas turbine are all blades.
【請求項24】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する全動翼圧縮機
と、燃焼ガスで出力を得る全動翼ガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る全動翼蒸気タービンとの
出力と推力によりプロペラを回転させて機体を浮揚移動
させるための装置とを有する蒸気ガスタービン合体機
関。
24. The water-cooled outer wall has a spiral welding structure,
A combustor / heat exchanger shortened into a small-diameter multiple-honeycomb shape, a full-blade compressor for supplying compressed air to the combustor / heat exchanger, a full-blade gas turbine that obtains output with combustion gas, and a combustion gas A device for floating the airframe by rotating a propeller with the output and thrust of a full-blade steam turbine that obtains output with superheated steam obtained by heat exchange so that the temperature is equal to or lower than the turbine heat-resistant limit temperature Steam gas turbine combined engine.
【請求項25】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガスター
ビンと燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
タービンとの出力と推力によりプロペラを回転させて機
体を浮揚移動させるための装置とを有する蒸気ガスター
ビン合体機関。
25. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welding structure unit assembling structure, and a combustor / heat exchanger shortened into a large number of small diameter honeycombs, and a full blade for supplying compressed air to the combustor / heat exchanger. The output of the compressor, the output of a full-blade gas turbine that obtains output with combustion gas, and the output of a full-blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine allowable temperature limit. A combined device for rotating a propeller by thrust to levitate and move the airframe.
【請求項26】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと燃
焼ガス温度がタービン耐熱限界温度以下となるように熱
交換して得た過熱蒸気で出力を得る全動翼蒸気タービン
との出力と推力によりプロペラを回転させて機体を浮揚
移動させるための装置とを有する蒸気ガスタービン合体
機関。
26. A helical water-cooled outer wall unit assembling structure, comprising a combustor / heat exchanger shortened into a large number of small diameter honeycombs, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. The propeller is driven by the power and thrust of the full-blade gas turbine, which obtains output with combustion gas, and the full-blade steam turbine, which obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine allowable temperature limit. And a device for rotating the airframe to levitate and move the airframe.
【請求項27】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼
ガスで出力を得るガスタービンと燃焼ガス温度がタービ
ン耐熱限界温度以下となるように熱交換して得た過熱蒸
気で出力を得る蒸気タービンとの出力と推力によりプロ
ペラを回転させて機体を浮揚移動させるための装置とを
有する蒸気ガスタービン合体機関。
27. The water-cooled outer wall has a spiral welding structure,
A combustor / heat exchanger that has been shortened into a large number of small-diameter honeycombs, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains output with combustion gas, and the combustion gas temperature is the turbine heat-resistant limit temperature. A combined steam and gas turbine engine comprising: a steam turbine that obtains an output with superheated steam obtained by heat exchange as described below; and a device for causing a propeller to rotate by a power and a thrust to levitate and move an airframe.
【請求項28】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
圧縮機と、燃焼ガスで出力を得るガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る蒸気タービンとの出力と
推力によりプロペラを回転させて機体を浮揚移動させる
ための装置とを有する蒸気ガスタービン合体機関。
28. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welding structure unit assembling structure, and a compressor for supplying compressed air to the combustor / heat exchanger. The propeller is rotated by the output and thrust of the gas turbine that obtains the output with the combustion gas and the steam turbine that obtains the output with the superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. And a device for levitation movement.
【請求項29】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと燃焼ガス温度
がタービン耐熱限界温度以下となるように熱交換して得
た過熱蒸気で出力を得る蒸気タービンとの出力と推力に
よりプロペラを回転させて機体を浮揚移動させるための
装置とを有する蒸気ガスタービン合体機関。
29. A helical water-cooled outer wall unit assembling structure, comprising a combustor / heat exchanger shortened into a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. The propeller is rotated by the power and thrust of the gas turbine that obtains the output and the steam turbine that obtains the output with the superheated steam obtained by exchanging heat so that the combustion gas temperature is lower than the turbine heat resistance limit temperature, and the airframe is lifted and moved. And a combined apparatus for a steam gas turbine.
【請求項30】 前記請求項27乃至請求項29に於い
て、圧縮機、蒸気タービン、ガスタービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。
30. The method according to claim 27, wherein the compressor, the steam turbine, or the gas turbine is selected from the group consisting of:
The following is a combined steam gas turbine engine with all blades.
【請求項31】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する全動翼圧縮機
と、燃焼ガスで出力を得る全動翼ガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る全動翼蒸気タービンとの
出力と推力によりプロペラを回転させて船体を浮揚移動
させるための装置とを有する蒸気ガスタービン合体機
関。
31. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger shortened into a small-diameter multiple-honeycomb shape, a full-blade compressor for supplying compressed air to the combustor / heat exchanger, a full-blade gas turbine that obtains output with combustion gas, and a combustion gas And a device for floating the hull by rotating the propeller with the output and thrust of an all-blade steam turbine that obtains output with superheated steam obtained by heat exchange so that the temperature is equal to or lower than the turbine heat-resistant limit temperature Steam gas turbine combined engine.
【請求項32】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガスター
ビンと燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
タービンとの出力と推力によりプロペラを回転させて船
体を浮揚移動させるための装置とを有する蒸気ガスター
ビン合体機関。
32. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure unit assembly structure and a combustor / heat exchanger shortened into a large number of small diameter honeycombs, and a whole rotor blade for supplying compressed air to the combustor / heat exchanger. The output of the compressor, the output of a full-blade gas turbine that obtains output with combustion gas, and the output of a full-blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine allowable temperature limit. An apparatus for rotating a propeller by thrust to lift and move a hull.
【請求項33】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと燃
焼ガス温度がタービン耐熱限界温度以下となるように熱
交換して得た過熱蒸気で出力を得る全動翼蒸気タービン
との出力と推力によりプロペラを回転させて船体を浮揚
移動させるための装置とを有する蒸気ガスタービン合体
機関。
33. A helical water-cooled outer wall unit assembling structure, comprising: a combustor / heat exchanger shortened into a large number of small diameter honeycombs; and a full blade compressor for supplying compressed air to the combustor / heat exchanger. The propeller is driven by the power and thrust of the full-blade gas turbine, which obtains output with combustion gas, and the full-blade steam turbine, which obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine allowable temperature limit. And a device for rotating the boat to levitate and move the hull.
【請求項34】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼
ガスで出力を得るガスタービンと燃焼ガス温度がタービ
ン耐熱限界温度以下となるように熱交換して得た過熱蒸
気で出力を得る蒸気タービンとの出力と推力によりプロ
ペラを回転させて船体を浮揚移動させるための装置とを
有する蒸気ガスタービン合体機関。
34. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger that has been shortened into a large number of small-diameter honeycombs, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains output with combustion gas, and the combustion gas temperature is the turbine heat-resistant limit temperature. An integrated steam gas turbine engine comprising: a steam turbine that obtains an output with superheated steam obtained by heat exchange as described below; and a device for rotating a propeller by means of output and thrust to lift and move the hull.
【請求項35】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
圧縮機と、燃焼ガスで出力を得るガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る蒸気タービンとの出力と
推力によりプロペラを回転させて船体を浮揚移動させる
ための装置とを有する蒸気ガスタービン合体機関。
35. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure unit assembly structure having a small diameter and a large number of honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. The propeller is rotated by the power and thrust of the gas turbine that obtains output with combustion gas and the steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. And a device for levitation movement.
【請求項36】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと燃焼ガス温度
がタービン耐熱限界温度以下となるように熱交換して得
た過熱蒸気で出力を得る蒸気タービンとの出力と推力に
よりプロペラを回転させて船体を浮揚移動させるための
装置とを有する蒸気ガスタービン合体機関。
36. A helical water-cooled outer wall unit assembling structure, comprising a combustor / heat exchanger shortened into a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. The propeller is rotated and the hull is levitated by the output and the thrust of the gas turbine that obtains the output and the steam turbine that obtains the output by the superheated steam obtained by exchanging heat so that the combustion gas temperature becomes lower than the turbine heat-resistant limit temperature. And a combined apparatus for a steam gas turbine.
【請求項37】 前記請求項34乃至請求項36に於い
て、圧縮機、蒸気タービン、ガスタービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。
37. The method according to claim 34, wherein any one of a compressor, a steam turbine, and a gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
【請求項38】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状にに短小化した燃焼器兼熱交換器と、
圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧縮機
と、燃焼ガスで出力を得る全動翼ガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る全動翼蒸気タービンとの
出力により車輪を回転させて移動するための動力伝達装
置とを有する蒸気ガスタービン合体機関。
38. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger that has been shortened into a honeycomb shape with many small diameters,
An all-blade compressor that supplies compressed air to the combustor / heat exchanger, and an all-blade gas turbine that obtains output with combustion gas, are heat-exchanged so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. And a power transmission device for rotating and moving wheels based on the output from the full-blade steam turbine that obtains output using superheated steam.
【請求項39】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する全動翼圧縮機
と、燃焼ガスで出力を得る全動翼ガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る全動翼蒸気タービンとの
出力により車輪を回転させて移動可能にすると共に、該
出力により発電・充電して電動機により車輪を回転させ
て移動可能にするための動力伝達装置とを有する蒸気ガ
スタービン合体機関。
39. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger shortened into a small-diameter multiple-honeycomb shape, a full-blade compressor for supplying compressed air to the combustor / heat exchanger, a full-blade gas turbine that obtains output with combustion gas, and a combustion gas The output is output from superheated steam obtained by heat exchange so that the temperature becomes equal to or lower than the turbine heat-resistant limit temperature. And a power transmission device for rotating wheels by an electric motor so as to be movable.
【請求項40】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガスター
ビンと燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
タービンとの出力により車輪を回転させて移動するため
の動力伝達装置とを有する蒸気ガスタービン合体機関。
40. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welded unit assembling structure and the combustor / heat exchanger is shortened into a small-diameter multi-honey structure, and an all-rotor for supplying compressed air to the combustor / heat exchanger. The output of the compressor, the full-blade gas turbine that obtains output with combustion gas, and the full-blade steam turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine allowable temperature limit A power transmission device for rotating wheels to move the steam turbine.
【請求項41】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガスター
ビンと燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
タービンとの出力により車輪を回転させて移動可能にす
ると共に、該出力により発電・充電して電動機により車
輪を回転させて移動可能にするための動力伝達装置とを
有する蒸気ガスタービン合体機関。
41. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welding structure unit assembling structure and the combustor / heat exchanger is shortened into a small-diameter multi-honeycomb shape, and all blades supplying compressed air to the combustor / heat exchanger. The output of the compressor, the full-blade gas turbine that obtains output with combustion gas, and the full-blade steam turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine allowable temperature limit A combined steam gas turbine engine having a power transmission device for rotating wheels to enable movement, and for generating and charging the output and rotating the wheels by an electric motor to enable movement.
【請求項42】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと燃
焼ガス温度がタービン耐熱限界温度以下となるように熱
交換して得た過熱蒸気で出力を得る全動翼蒸気タービン
との出力により車輪を回転させて移動するための動力伝
達装置とを有する蒸気ガスタービン合体機関。
42. As a spiral water-cooled outer wall unit assembly structure, a combustor / heat exchanger shortened into a large number of small-diameter honeycombs, and a full-blade compressor for supplying compressed air to the combustor / heat exchanger. The wheels are rotated by the output of a full-blade gas turbine that obtains output with combustion gas and the full-blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. And a power transmission device for moving by moving.
【請求項43】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと燃
焼ガス温度がタービン耐熱限界温度以下となるように熱
交換して得た過熱蒸気で出力を得る全動翼蒸気タービン
との出力により車輪を回転させて移動可能にすると共
に、該出力により発電・充電して電動機により車輪を回
転させて移動可能にするための動力伝達装置とを有する
蒸気ガスタービン合体機関。
43. A helical water-cooled outer wall unit assembling structure, comprising a combustor / heat exchanger shortened into a large number of small diameter honeycombs, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. The wheels are rotated by the output of a full-blade gas turbine that obtains output with combustion gas and the full-blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. And a power transmission device for generating and charging with the output and rotating the wheels with an electric motor to enable movement.
【請求項44】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼
ガスで出力を得るガスタービンと燃焼ガス温度がタービ
ン耐熱限界温度以下となるように熱交換して得た過熱蒸
気で出力を得る蒸気タービンとの出力により車輪を回転
させて移動するための動力伝達装置とを有する蒸気ガス
タービン合体機関。
44. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger that has been shortened into a large number of small-diameter honeycombs, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains output with combustion gas, and the combustion gas temperature is the turbine heat-resistant limit temperature. A combined steam and gas turbine engine having a power transmission device for rotating and moving wheels based on output from a steam turbine that obtains output using superheated steam obtained by heat exchange as described below.
【請求項45】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼
ガスで出力を得るガスタービンと燃焼ガス温度がタービ
ン耐熱限界温度以下となるように熱交換して得た過熱蒸
気で出力を得る蒸気タービンとの出力により車輪を回転
させて移動可能にすると共に、該出力により発電・充電
して電動機により車輪を回転させて移動可能にするため
の動力伝達装置とを有する蒸気ガスタービン合体機関。
45. The water-cooled outer wall has a spiral welding structure,
A combustor / heat exchanger that has been shortened into a large number of small-diameter honeycombs, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains output with combustion gas, and the combustion gas temperature is the turbine heat-resistant limit temperature. The wheels are rotated by the output from the steam turbine that obtains an output from the superheated steam obtained by heat exchange as follows, and the wheels are movable, and the power is generated and charged by the output, and the wheels are rotated by the electric motor to move the wheels. And a power transmission for enabling.
【請求項46】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
圧縮機と、燃焼ガスで出力を得るガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る蒸気タービンとの出力に
より車輪を回転させて移動するための動力伝達装置とを
有する蒸気ガスタービン合体機関。
46. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welding structure unit assembling structure having a small diameter and a plurality of honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. For rotating and moving wheels by the output of a gas turbine that obtains output with combustion gas and a steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine allowable temperature limit. A combined steam gas turbine engine having a power transmission device.
【請求項47】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
圧縮機と、燃焼ガスで出力を得るガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る蒸気タービンとの出力に
より車輪を回転させて移動可能にすると共に、該出力に
より発電・充電して電動機により車輪を回転させて移動
可能にするための動力伝達装置とを有する蒸気ガスター
ビン合体機関。
47. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welded unit assembling structure, the combustor / heat exchanger being shortened into a large number of small diameter honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. The wheels are rotated and movable by the output of a gas turbine that obtains output from combustion gas and a steam turbine that obtains output from superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. And a power transmission device for generating and charging the output and rotating the wheels by an electric motor so as to be movable.
【請求項48】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと燃焼ガス温度
がタービン耐熱限界温度以下となるように熱交換して得
た過熱蒸気で出力を得る蒸気タービンとの出力により車
輪を回転させて移動するための動力伝達装置とを有する
蒸気ガスタービン合体機関。
48. A helical water-cooled outer wall unit assembling structure, comprising a combustor / heat exchanger shortened into a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A power transmission device for rotating and moving wheels by using the output of a gas turbine that obtains output from a steam turbine that obtains output from superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature And a combined steam and gas turbine engine.
【請求項49】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと燃焼ガス温度
がタービン耐熱限界温度以下となるように熱交換して得
た過熱蒸気で出力を得る蒸気タービンとの出力により車
輪を回転させて移動可能にすると共に、該出力により発
電・充電して電動機により車輪を回転させて移動可能に
するための動力伝達装置とを有する蒸気ガスタービン合
体機関。
49. As a spiral water-cooled outer wall unit assembly structure, a combustor / heat exchanger shortened in the form of a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas The wheel is rotated by the output of the gas turbine that obtains the output and the steam turbine that obtains the output with the superheated steam obtained by performing heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat resistant limit temperature, and the wheel is movable. A power transmission device for generating and charging the output and rotating the wheels by an electric motor so as to be movable.
【請求項50】 前記請求項44乃至請求項49に於い
て、圧縮機、蒸気タービン、ガスタービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。
50. The method according to claim 44, wherein any one of the compressor, the steam turbine, and the gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
【請求項51】 前記請求項38乃至請求項50に於い
て、鉄道レール(54)及び車輪(55)の動力伝達面
(31)に低凹凸(40)を夫夫具備して、該車輪の進
行方向前後のレール(54)との間に棒磁石(33)又
は電磁石(34)を設けて、吸引する力を作用させたこ
とを特徴とする蒸気ガスタービン合体機関。
51. The power transmission device according to claim 38, wherein the power transmission surface (31) of the rail (54) and the wheel (55) is provided with a low unevenness (40), respectively. A combined steam gas turbine engine wherein a bar magnet (33) or an electromagnet (34) is provided between the front and rear rails (54) in the traveling direction to apply a suction force.
【請求項52】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する全動翼圧縮機
と、燃焼ガスで出力を得る全動翼ガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る全動翼蒸気タービンとの
出力によりプロペラを回転させて船体を移動させるため
の装置とを有する蒸気ガスタービン合体機関。
52. The water-cooled outer wall has a spiral welding structure,
A combustor / heat exchanger shortened into a small-diameter multiple-honeycomb shape, a full-blade compressor for supplying compressed air to the combustor / heat exchanger, a full-blade gas turbine that obtains output with combustion gas, and a combustion gas And a device for moving a hull by rotating a propeller based on output from a full-blade steam turbine that obtains output using superheated steam obtained by heat exchange so that the temperature is equal to or lower than the turbine heat-resistant limit temperature. Coalition organization.
【請求項53】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガスター
ビンと燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
タービンとの出力によりプロペラを回転させて船体を移
動させるための装置とを有する蒸気ガスタービン合体機
関。
53. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welding unit assembly structure with a spiral shape, and a whole rotor blade for supplying compressed air to the combustor / heat exchanger. The output of the compressor, the full-blade gas turbine that obtains output with combustion gas, and the full-blade steam turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine allowable temperature limit And a device for moving the hull by rotating the propeller.
【請求項54】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと燃
焼ガス温度がタービン耐熱限界温度以下となるように熱
交換して得た過熱蒸気で出力を得る全動翼蒸気タービン
との出力によりプロペラを回転させて船体を移動させる
ための装置とを有する蒸気ガスタービン合体機関。
54. A helical water-cooled outer wall unit assembling structure, comprising a combustor / heat exchanger shortened into a large number of small diameter honeycombs, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. The propeller is rotated by the output of a full-blade steam turbine that obtains output with combustion gas and the output of a full-blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine allowable temperature limit. And a device for moving the hull.
【請求項55】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼
ガスで出力を得るガスタービンと燃焼ガス温度がタービ
ン耐熱限界温度以下となるように熱交換して得た過熱蒸
気で出力を得る蒸気タービンとの出力によりプロペラを
回転させて船体を移動させるための装置とを有する蒸気
ガスタービン合体機関。
55. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger that has been shortened into a large number of small-diameter honeycombs, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains output with combustion gas, and the combustion gas temperature is the turbine heat-resistant limit temperature. An apparatus for rotating a propeller to move a hull by an output from a steam turbine that obtains an output from superheated steam obtained by heat exchange as described below.
【請求項56】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
圧縮機と、燃焼ガスで出力を得るガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る蒸気タービンとの出力に
よりプロペラを回転させて船体を移動させるための装置
とを有する蒸気ガスタービン合体機関。
56. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welding structure unit assembling structure, and a compressor for supplying compressed air to the combustor / heat exchanger, wherein the combustor / heat exchanger has a small diameter and a large number of honeycombs. The propeller is rotated by the output of a gas turbine that obtains output with combustion gas and the steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature, and the hull is moved. And a combined apparatus for a steam gas turbine.
【請求項57】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと燃焼ガス温度
がタービン耐熱限界温度以下となるように熱交換して得
た過熱蒸気で出力を得る蒸気タービンとの出力によりプ
ロペラを回転させて船体を移動させるための装置とを有
する蒸気ガスタービン合体機関。
57. A helical water-cooled outer wall unit assembling structure, a combustor / heat exchanger shortened in a honeycomb shape with a small diameter, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A device for moving a hull by rotating a propeller by the output of a gas turbine that obtains output from a steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature And a combined steam and gas turbine engine.
【請求項58】 前記請求項55乃至請求項57に於い
て、圧縮機、蒸気タービン、ガスタービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。
58. The method according to claim 55, wherein any one of a compressor, a steam turbine, and a gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
【請求項59】 前記請求項52乃至請求項58に於い
て、前記過熱蒸気を含む排気噴口を船底に開口した蒸気
ガスタービン合体機関。
59. The combined steam and gas turbine engine according to claim 52, wherein an exhaust orifice containing the superheated steam is opened in a ship bottom.
【請求項60】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する全動翼圧縮機
と、燃焼ガスで出力を得る全動翼ガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る全動翼蒸気タービンとの
出力により機械を回転させて仕事をさせるための装置と
を有する蒸気ガスタービン合体機関。
60. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger shortened into a small-diameter multiple-honeycomb shape, a full-blade compressor for supplying compressed air to the combustor / heat exchanger, a full-blade gas turbine that obtains output with combustion gas, and a combustion gas And a device for rotating the machine with the output from the all-blade steam turbine to obtain an output with superheated steam obtained by heat exchange so that the temperature is equal to or lower than the turbine heat-resistant limit temperature, and performing work by rotating the machine. organ.
【請求項61】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガスター
ビンと燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
タービンとの出力により機械を回転させて仕事をさせる
ための装置とを有する蒸気ガスタービン合体機関。
61. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welding unit assembly structure and has a small diameter and a large number of honeycombs, and a whole rotor blade for supplying compressed air to the combustor / heat exchanger. The output of the compressor, the full-blade gas turbine that obtains output with combustion gas, and the full-blade steam turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine allowable temperature limit An apparatus for rotating a machine to perform work.
【請求項62】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと燃
焼ガス温度がタービン耐熱限界温度以下となるように熱
交換して得た過熱蒸気で出力を得る全動翼蒸気タービン
との出力により機械を回転させて仕事をさせるための装
置とを有する蒸気ガスタービン合体機関。
62. As a spiral water-cooled outer wall unit assembly structure, a combustor / heat exchanger shortened into a large number of small diameter honeycombs, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. The machine is rotated by the output of a full-blade gas turbine that obtains output with combustion gas and the full-blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. And a device for causing the work to be performed.
【請求項63】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼
ガスで出力を得るガスタービンと燃焼ガス温度がタービ
ン耐熱限界温度以下となるように熱交換して得た過熱蒸
気で出力を得る蒸気タービンとの出力により機械を回転
させて仕事をさせるための装置とを有する蒸気ガスター
ビン合体機関。
63. The water-cooled outer wall has a spiral welding structure,
A combustor / heat exchanger that has been shortened into a large number of small-diameter honeycombs, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains output with combustion gas, and the combustion gas temperature is the turbine heat-resistant limit temperature. A combined steam gas turbine engine comprising: a steam turbine that obtains an output with superheated steam obtained by heat exchange as described below;
【請求項64】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
圧縮機と、燃焼ガスで出力を得るガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る蒸気タービンとの出力に
より機械を回転させて仕事をさせるための装置とを有す
る蒸気ガスタービン合体機関。
64. A combustor / heat exchanger in which the water-cooled outer wall has a spiral welding structure unit assembly structure having a small diameter and a large number of honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. In order to make the machine work by rotating the machine with the output of the gas turbine that obtains the output with the combustion gas and the steam turbine that obtains the output with the superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat-resistant limit temperature And a combined steam gas turbine engine having the apparatus.
【請求項65】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと燃焼ガス温度
がタービン耐熱限界温度以下となるように熱交換して得
た過熱蒸気で出力を得る蒸気タービンとの出力により機
械を回転させて仕事をさせるための装置とを有する蒸気
ガスタービン合体機関。
65. A helical water-cooled outer wall unit assembling structure, a combustor / heat exchanger shortened into a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A device for rotating a machine by the output of a gas turbine that obtains an output and a steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, and performing work. A steam gas turbine combined engine having
【請求項66】 前記請求項63乃至請求項65に於い
て、圧縮機、蒸気タービン、ガスタービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。
66. The method according to claim 63, wherein any one of a compressor, a steam turbine, and a gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
【請求項67】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する全動翼圧縮機
と、燃焼ガスで出力を得る全動翼ガスタービンと発電機
と燃焼ガス温度がタービン耐熱限界温度以下となるよう
に熱交換して得た過熱蒸気で出力を得る全動翼蒸気ター
ビンとの夫夫の排気による熱と該夫夫の出力による発電
機からの電気を供給するための装置とを有する蒸気ガス
タービン合体機関。
67. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger shortened into a small-diameter multi-honeycomb, a full-blade compressor for supplying compressed air to the combustor / heat exchanger, a full-blade gas turbine and a generator for obtaining output from combustion gas The heat from the exhaust of each of the rotor blade steam turbines and the output from the superheated steam obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat resistance limit temperature and the output from the generator by the respective outputs And a device for supplying electricity.
【請求項68】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する全動翼圧縮機
と、燃焼ガスで出力を得る全動翼ガスタービンと発電機
と燃焼ガス温度がタービン耐熱限界温度以下となるよう
に熱交換して得た過熱蒸気で出力を得る全動翼蒸気ター
ビンの出力による発電機からの電気を供給するための装
置とを有する蒸気ガスタービン合体機関。
68. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger shortened into a small-diameter multi-honeycomb shape, a full-blade compressor for supplying compressed air to the combustor / heat exchanger, a full-blade gas turbine and a generator for obtaining output from combustion gas And a device for supplying electricity from a generator based on the output of a full-blade steam turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature Turbine united engine.
【請求項69】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガスター
ビンと発電機と燃焼ガス温度がタービン耐熱限界温度以
下となるように熱交換して得た過熱蒸気で出力を得る全
動翼蒸気タービンとの夫夫の排気による熱と該夫夫の出
力による発電機からの電気を供給するための装置とを有
する蒸気ガスタービン合体機関。
69. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welded unit assembling structure and the combustor / heat exchanger is shortened into a small-diameter multi-honeycomb shape, and all blades supplying compressed air to the combustor / heat exchanger. A compressor, a full-rotor blade gas turbine that obtains output with combustion gas, a generator, and a full-rotor blade steam turbine that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. A combined steam and gas turbine engine having a device for supplying heat from the exhaust of each of the couples and electricity from a generator based on the outputs of the couples.
【請求項70】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガスター
ビンと発電機と燃焼ガス温度がタービン耐熱限界温度以
下となるように熱交換して得た過熱蒸気で出力を得る全
動翼蒸気タービンの出力による発電機からの電気を供給
するための装置とを有する蒸気ガスタービン合体機関。
70. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welded unit assembling structure and the combustor / heat exchanger is shortened into a small-diameter multi-honeycomb shape, and all blades supplying compressed air to the combustor / heat exchanger. A compressor, a full-blade gas turbine that obtains output with combustion gas, a generator and a full-blade steam turbine that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature A device for supplying electricity from a generator by output.
【請求項71】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと発
電機と燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
タービンとの夫夫の排気による熱と該夫夫の出力による
発電機からの電気を供給するための装置とを有する蒸気
ガスタービン合体機関。
71. A combustor / heat exchanger shortened into a large number of small diameter honeycombs as a spiral water cooling outer wall unit assembly structure, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. , A combination of a full-blade gas turbine that obtains output with combustion gas, a generator, and a full-blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine allowable temperature limit A combined steam gas turbine engine having a device for supplying heat from the exhaust of the vehicle and electricity from a generator based on the output of each of them.
【請求項72】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと発
電機と燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
タービンの出力による発電機からの電気を供給するため
の装置とを有する蒸気ガスタービン合体機関。
72. A helical water-cooled outer wall unit assembling structure, comprising a combustor / heat exchanger shortened into a large number of small diameter honeycombs, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. , Power generation using superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine allowable temperature limit. And a device for supplying electricity from the machine.
【請求項73】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼
ガスで出力を得るガスタービンと発電機と燃焼ガス温度
がタービン耐熱限界温度以下となるように熱交換して得
た過熱蒸気で出力を得る蒸気タービンとの夫夫の排気に
よる熱と該夫夫の出力による発電機からの電気を供給す
るための装置とを有する蒸気ガスタービン合体機関。
73. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger shortened into a small-diameter multi-honeycomb, a compressor for supplying compressed air to the combustor / heat exchanger, a gas turbine for obtaining output with combustion gas, a generator, and a combustion gas temperature turbine A device for supplying heat from a generator based on the output of each of the steam turbine and a steam turbine that obtains output with superheated steam obtained by heat exchange so as to be below the heat-resistant limit temperature. Steam gas turbine combined engine having.
【請求項74】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼
ガスで出力を得るガスタービンと発電機と燃焼ガス温度
がタービン耐熱限界温度以下となるように熱交換して得
た過熱蒸気で出力を得る蒸気タービンの出力による発電
機からの電気を供給するための装置とを有する蒸気ガス
タービン合体機関。
74. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger shortened into a small-diameter multi-honeycomb, a compressor for supplying compressed air to the combustor / heat exchanger, a gas turbine for obtaining output with combustion gas, a generator, and a combustion gas temperature turbine An apparatus for supplying electricity from a generator based on the output of a steam turbine that obtains an output with superheated steam obtained by exchanging heat so that the temperature becomes equal to or lower than a heat-resistant limit temperature.
【請求項75】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
圧縮機と、燃焼ガスで出力を得るガスタービンと発電機
と燃焼ガス温度がタービン耐熱限界温度以下となるよう
に熱交換して得た過熱蒸気で出力を得る蒸気タービンと
の夫夫の排気による熱と該夫夫の出力による発電機から
の電気を供給するための装置とを有する蒸気ガスタービ
ン合体機関。
75. A combustor / heat exchanger in which the water-cooled outer wall is formed as a spiral welded unit assembling structure, the combustor / heat exchanger shortened into a small-diameter multi-honey structure, and a compressor for supplying compressed air to the combustor / heat exchanger. The heat generated by the exhaust gas of a gas turbine that obtains output from combustion gas, the power generator, and the heat generated by the exhaust gas of a steam turbine that obtains output by using superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. And a device for supplying electricity from the generator with the output of the husband and the wife.
【請求項76】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
圧縮機と、燃焼ガスで出力を得るガスタービンと発電機
と燃焼ガス温度がタービン耐熱限界温度以下となるよう
に熱交換して得た過熱蒸気で出力を得る蒸気タービンの
出力による発電機からの電気を供給するための装置とを
有する蒸気ガスタービン合体機関。
76. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welded unit assembling structure, the combustor / heat exchanger being shortened into a large number of small diameter honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. Supplying electricity from a generator using the output of a steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat-resistant limit temperature Steam gas turbine combined engine having a device for performing
【請求項77】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと発電機と燃焼
ガス温度がタービン耐熱限界温度以下となるように熱交
換して得た過熱蒸気で出力を得る蒸気タービンとの夫夫
の排気による熱と該夫夫の出力による発電機からの電気
を供給するための装置とを有する蒸気ガスタービン合体
機関。
77. A helical water-cooled outer wall unit assembling structure, a combustor / heat exchanger shortened into a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. The heat generated by the exhaust gas of each of the gas turbine, the generator, and the steam turbine that obtains the output with the superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, and A device for supplying electricity from a generator by output.
【請求項78】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと発電機と燃焼
ガス温度がタービン耐熱限界温度以下となるように熱交
換して得た過熱蒸気で出力を得る蒸気タービンの出力に
よる発電機からの電気を供給するための装置とを有する
蒸気ガスタービン合体機関。
78. A helical water-cooled outer wall unit assembling structure, comprising a combustor / heat exchanger shortened into a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. To provide electricity from the generator by the output of the superheated steam obtained by exchanging heat so that the temperature of the combustion gas is below the turbine heat resistant temperature. A combined steam and gas turbine engine having a device.
【請求項79】 前記請求項73乃至請求項78に於い
て、圧縮機、蒸気タービン、ガスタービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。
79. The method according to claim 73, wherein any one of a compressor, a steam turbine, and a gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
【請求項80】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する全動翼圧縮機
と、燃焼ガスで出力を得る全動翼ガスタービン及び発電
機と燃焼ガス温度がタービン耐熱限界温度以下となるよ
うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気タ
ービン及び復水器及び発電機と該夫夫の出力による発電
機からの電気を供給するための装置とを有する蒸気ガス
タービン合体機関。
80. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger shortened into a small-diameter multi-honeycomb, a full-blade compressor for supplying compressed air to the combustor / heat exchanger, a full-blade gas turbine and a generator for obtaining output with combustion gas And all the turbine blades, condensers, and generators that produce output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, and the electricity from the generator by the output of each of them. And a device for supplying steam.
【請求項81】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガスター
ビン及び発電機と燃焼ガス温度がタービン耐熱限界温度
以下となるように熱交換して得た過熱蒸気で出力を得る
全動翼蒸気タービン及び復水器及び発電機と該夫夫の出
力による発電機からの電気を供給するための装置とを有
する蒸気ガスタービン合体機関。
81. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welding structure unit assembling structure and the combustor / heat exchanger is shortened into a large number of small diameter honeycombs. A compressor, an all-blade gas turbine that obtains output with combustion gas, and a generator and an all-blade steam turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature; and A combined steam and gas turbine engine having a condenser, a generator, and a device for supplying electricity from the generator based on the output of each of the condenser and the generator.
【請求項82】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービン及び
発電機と燃焼ガス温度がタービン耐熱限界温度以下とな
るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
気タービンと及び復水器及び発電機と該夫夫の出力によ
る発電機からの電気を供給するための装置とを有する蒸
気ガスタービン合体機関。
82. As a spiral water-cooled outer wall unit assembling structure, a combustor / heat exchanger shortened into a large number of small diameter honeycombs, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. Rotor blade gas turbine and generator that obtains output with combustion gas, all rotor blade steam turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is below the turbine heat-resistant limit temperature, and condensate A combined steam and gas turbine engine comprising a steam generator, a generator, and a device for supplying electricity from the generator with the outputs of the respective generators.
【請求項83】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼
ガスで出力を得るガスタービン及び発電機と燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービン及び復水器及び
発電機と該夫夫の出力による発電機からの電気を供給す
るための装置とを有する蒸気ガスタービン合体機関。
83. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger shortened into a small-diameter multi-honeycomb, a compressor for supplying compressed air to the combustor / heat exchanger, a gas turbine and a generator for obtaining output from combustion gas, and a combustion gas temperature turbine. It has a steam turbine, a condenser, and a generator for obtaining an output with superheated steam obtained by heat exchange so as to be below the heat-resistant limit temperature, and a device for supplying electricity from the generator with the output of each of them. Steam gas turbine combined engine.
【請求項84】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
圧縮機と、燃焼ガスで出力を得るガスタービン及び発電
機と燃焼ガス温度がタービン耐熱限界温度以下となるよ
うに熱交換して得た過熱蒸気で出力を得る蒸気タービン
及び復水器及び発電機と該夫夫の出力による発電機から
の電気を供給するための装置とを有する蒸気ガスタービ
ン合体機関。
84. A combustor / heat exchanger in which the water-cooled outer wall is formed as a spiral welded unit assembling structure, the combustor / heat exchanger being shortened into a small-diameter multi-honey structure, and a compressor supplying compressed air to the combustor / heat exchanger. A steam turbine, a condenser, and a generator, each of which obtains an output with superheated steam obtained by performing heat exchange so that a combustion gas temperature is equal to or lower than a turbine heat-resistant limit temperature, and a gas turbine and a generator that obtain an output with a combustion gas. And a device for supplying electricity from the generator with the output of the husband.
【請求項85】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービン及び発電機と燃
焼ガス温度がタービン耐熱限界温度以下となるように熱
交換して得た過熱蒸気で出力を得る蒸気タービン及び復
水器及び発電機と該夫夫の出力による発電機からの電気
を供給するための装置とを有する蒸気ガスタービン合体
機関。
85. A helical water-cooled outer wall unit assembling structure, a combustor / heat exchanger shortened into a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A turbine and a condenser, and a generator, and a steam turbine, a condenser, and a generator, each of which outputs heat with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than a turbine heat-resistant limit temperature. And a device for supplying electricity from a generator according to the invention.
【請求項86】 前記請求項83乃至請求項85に於い
て、圧縮機、蒸気タービン、ガスタービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。
86. The method according to claim 83, wherein the compressor, the steam turbine, or the gas turbine is selected from the group consisting of:
The following is a combined steam gas turbine engine with all blades.
【請求項87】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する全動翼圧縮機
と、燃焼ガスで出力を得る全動翼ガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る全動翼蒸気タービンとを
有する蒸気ガスタービン合体機関。
87. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger shortened into a small-diameter multiple-honeycomb shape, a full-blade compressor for supplying compressed air to the combustor / heat exchanger, a full-blade gas turbine that obtains output with combustion gas, and a combustion gas A combined steam and gas turbine engine comprising: a full-blade steam turbine that obtains output with superheated steam obtained by heat exchange so that the temperature is equal to or lower than a turbine heat-resistant limit temperature.
【請求項88】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
全動翼圧縮機と、燃焼ガスで出力を得る全動翼ガスター
ビンと燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
タービンとを有する蒸気ガスタービン合体機関。
88. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welding unit assembly structure having a small diameter and a plurality of honeycombs, and a whole blade for supplying compressed air to the combustor / heat exchanger. A steam having a compressor, a full-blade gas turbine that obtains output with combustion gas, and a full-blade steam turbine that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine allowable temperature limit. Gas turbine combined engine.
【請求項89】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと燃
焼ガス温度がタービン耐熱限界温度以下となるように熱
交換して得た過熱蒸気で出力を得る全動翼蒸気タービン
とを有する蒸気ガスタービン合体機関。
89. As a spiral water-cooled outer wall unit assembling structure, a combustor / heat exchanger shortened into a large number of small diameter honeycombs, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. Combined steam gas turbine having a full-blade gas turbine that obtains output with combustion gas and a full-blade steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature organ.
【請求項90】 水冷外壁を螺旋状の熔接構造として、
小径多数蜂の巣状に短小化した燃焼器兼熱交換器と、圧
縮空気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼
ガスで出力を得るガスタービンと燃焼ガス温度がタービ
ン耐熱限界温度以下となるように熱交換して得た過熱蒸
気で出力を得る蒸気タービンとを有する蒸気ガスタービ
ン合体機関。
90. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger that has been shortened into a large number of small-diameter honeycombs, a compressor that supplies compressed air to the combustor / heat exchanger, a gas turbine that obtains output with combustion gas, and the combustion gas temperature is the turbine heat-resistant limit temperature. A combined steam gas turbine engine having a steam turbine that obtains output with superheated steam obtained by heat exchange as follows.
【請求項91】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、小径多数蜂の巣状に短小化した燃焼器兼
熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給する
圧縮機と、燃焼ガスで出力を得るガスタービンと燃焼ガ
ス温度がタービン耐熱限界温度以下となるように熱交換
して得た過熱蒸気で出力を得る蒸気タービンとを有する
蒸気ガスタービン合体機関。
91. A combustor / heat exchanger in which a water-cooled outer wall is formed into a spiral welding unit unit assembling structure having a small diameter and a plurality of honeycombs, and a compressor for supplying compressed air to the combustor / heat exchanger. A combined steam and gas turbine engine comprising: a gas turbine that obtains output with combustion gas; and a steam turbine that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature.
【請求項92】 螺旋状の水冷外壁単位組立構造とし
て、小径多数蜂の巣状に短小化した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと燃焼ガス温度
がタービン耐熱限界温度以下となるように熱交換して得
た過熱蒸気で出力を得る蒸気タービンとを有する蒸気ガ
スタービン合体機関。
92. A helical water-cooled outer wall unit assembling structure, a combustor / heat exchanger shortened into a large number of small-diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A combined steam and gas turbine engine comprising: a gas turbine that obtains an output with a steam turbine; and a steam turbine that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than a turbine heat-resistant limit temperature.
【請求項93】 前記請求項90乃至請求項92に於い
て、圧縮機、蒸気タービン、ガスタービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。
93. The method according to claim 90, wherein the compressor, the steam turbine, or the gas turbine is selected from the group consisting of:
The following is a combined steam gas turbine engine with all blades.
【請求項94】 前記蒸気タービンは、超臨界の蒸気条
件以下の過熱蒸気を使用する請求項1乃至請求項93の
いずれかに記載の蒸気ガスタービン合体機関。
94. The steam gas turbine combined engine according to claim 1, wherein the steam turbine uses superheated steam having a supercritical steam condition or less.
【請求項95】 前記全動翼ガスタービンの内側軸装置
と外側軸装置を最適回転比で結合した磁気摩擦動力伝達
装置(14)を具備したことを特徴とする蒸気ガスター
ビン合体機関。
95. A combined steam gas turbine engine comprising: a magnetic friction power transmission device (14) in which an inner shaft device and an outer shaft device of the full blade gas turbine are connected at an optimum rotation ratio.
【請求項96】 前記全動翼圧縮機の内側軸装置と外側
軸装置を最適回転比で結合した磁気摩擦動力伝達装置
(14)を具備したことを特徴とする蒸気ガスタービン
合体機関。
96. A combined steam gas turbine engine comprising: a magnetic friction power transmission device (14) in which an inner shaft device and an outer shaft device of the full blade compressor are connected at an optimum rotation ratio.
【請求項97】 前記磁気摩擦動力伝達装置(14)は
冷却装置を有することを特徴とする蒸気ガスタービン合
体機関。
97. A combined steam gas turbine engine, wherein the magnetic friction power transmission device (14) has a cooling device.
【請求項98】 前記圧縮空気を燃焼器兼熱交換器に供
給する全動翼圧縮機に、バイパスを設けたことを特徴と
する蒸気ガスタービン合体機関。
98. A combined steam gas turbine engine, wherein a bypass is provided in a full blade compressor that supplies the compressed air to a combustor / heat exchanger.
【請求項99】 前記圧縮空気を燃焼器兼熱交換器に供
給する圧縮機に、バイパスを設けたことを特徴とする蒸
気ガスタービン合体機関。
99. A combined steam gas turbine engine, wherein a bypass is provided in a compressor for supplying the compressed air to a combustor / heat exchanger.
【請求項100】 前記全動翼ガスタービンの内側軸装
置と外側軸装置を2重反転させる磁気摩擦動力伝達装置
14に冷却装置を設けたことを特徴とする蒸気ガスター
ビン合体機関。
100. A combined steam gas turbine engine, wherein a cooling device is provided in a magnetic friction power transmission device 14 for reversing an inner shaft device and an outer shaft device of the full blade gas turbine.
【請求項101】 前記全動翼圧縮機の内側軸装置と外
側軸装置を2重反転させる磁気摩擦動力伝達装置14に
冷却装置を設けたことを特徴とする蒸気ガスタービン合
体機関。
101. A combined steam gas turbine engine, wherein a cooling device is provided in a magnetic friction power transmission device 14 for reversing an inner shaft device and an outer shaft device of the full blade compressor in double.
【請求項102】 前記全動翼蒸気タービン圧縮機を、
内側軸装置に内側タービン動翼群(20)を設け、外側
軸装置に外側タービン動翼群(19)及び内側圧縮機動
翼群(17)を設けて内側軸装置と兼用して、互いに反
転する2軸を磁気摩擦動力伝達装置により結合して全動
翼蒸気タービンを構成し、内側圧縮機動翼群(17)の
外側に外側軸装置及び外側圧縮機動翼群(16)を設け
て、互いに反転する該外側軸装置と内側軸装置を磁気摩
擦動力伝達装置により結合して全動翼圧縮機を構成させ
て、内側軸装置の中心より過熱蒸気(5)を供給して、
該全動翼蒸気タービン圧縮機を駆動する装置を設けたこ
とを特徴とする蒸気ガスタービン合体機関。
102. The all-blade steam turbine compressor,
The inner shaft device is provided with an inner turbine blade group (20), and the outer shaft device is provided with an outer turbine blade group (19) and an inner compressor blade group (17). The two shafts are connected by a magnetic friction power transmission device to form a full-blade steam turbine, and an outer shaft device and an outer compressor blade group (16) are provided outside the inner compressor blade group (17), and are mutually inverted. The outer shaft device and the inner shaft device are combined by a magnetic friction power transmission device to form a full blade compressor, and superheated steam (5) is supplied from the center of the inner shaft device,
A combined steam gas turbine engine comprising a device for driving the all-blade steam turbine compressor.
【請求項103】 前記全動翼蒸気タービン圧縮機を、
内側軸装置に内側タービン動翼群(20)を設け、外側
軸装置に外側タービン動翼群(19)を設けて互いに反
転する2軸を磁気摩擦動力伝達装置により結合して全動
翼蒸気タービンを構成し、該前方内側軸装置に内側圧縮
機動翼群(17)を設け、該外側に外側軸装置及び外側
圧縮機動翼群(16)を設けて、互いに反転する該外側
軸装置と内側軸装置を磁気摩擦動力伝達装置により結合
して全動翼圧縮機を構成させて、内側軸装置の中心より
過熱蒸気(5)を供給して、該全動翼蒸気タービン圧縮
機として駆動する装置を設けたことを特徴とする蒸気ガ
スタービン合体機関。
103. The all-blade steam turbine compressor,
An inner shaft unit is provided with an inner turbine blade group (20), and an outer shaft unit is provided with an outer turbine blade group (19). The front inner shaft device is provided with an inner compressor blade group (17), and the outer shaft device and the outer compressor blade group (16) are provided on the outer side, so that the outer shaft device and the inner shaft which are mutually inverted are provided. A device that is combined with a magnetic friction power transmission device to form a full blade compressor, supplies superheated steam (5) from the center of the inner shaft device, and drives the device as the full blade steam turbine compressor. A combined steam gas turbine engine, comprising:
【請求項104】 前記蒸気タービン圧縮機を、内側固
定軸装置に内側タービン静翼を設け、外側軸装置に外側
タービン動翼群(19)を設けて内側軸装置の中心より
過熱蒸気(5)を供給して駆動可能に蒸気タービンを構
成し、該外側軸装置に内側圧縮機動翼群(17)を設け
て内側軸装置と兼用して、該内側圧縮機動翼群(17)
の外側にケーシング及び静翼を設けて圧縮機を構成させ
て、蒸気タービン圧縮機として設けたことを特徴とする
蒸気ガスタービン合体機関。
104. The steam turbine compressor, wherein an inner turbine stationary blade is provided on an inner fixed shaft device, and an outer turbine rotor blade group (19) is provided on an outer shaft device. The steam turbine is configured to be drivable by supplying the inner compressor rotor blade group (17) to the outer shaft device, and the inner compressor device blade group (17) is also used as the inner shaft device.
A combined steam and gas turbine engine comprising a compressor and a compressor provided by providing a casing and a stator vane outside of the steam turbine.
【請求項105】 前記蒸気タービン圧縮機を、内側軸
装置に内側タービン動翼群(20)を設け、外側軸装置
に静翼を設けて、該上流側より過熱蒸気(5)を噴射供
給して駆動可能に蒸気タービンを構成し、前方内側軸装
置に内側圧縮機動翼群(17)を設けて、該内側圧縮機
動翼群(17)の外側にケーシング及び静翼を設けて圧
縮機を構成させて、蒸気タービン圧縮機として設けたこ
とを特徴とする蒸気ガスタービン合体機関。
105. In the steam turbine compressor, an inner turbine blade group (20) is provided on an inner shaft device, and a stationary blade is provided on an outer shaft device, and superheated steam (5) is injected and supplied from the upstream side. A steam turbine is configured so as to be drivable, a compressor is provided by providing an inner compressor moving blade group (17) in a front inner shaft device, and a casing and a stator blade provided outside the inner compressor moving blade group (17). A combined steam gas turbine engine provided as a steam turbine compressor.
【請求項106】 前記全動翼蒸気タービンを、内側軸
装置に内側タービン動翼群(20)を設け、外側軸装置
に外側タービン動翼群(19)を設けて、互いに反転す
る2軸を磁気摩擦動力伝達装置により結合して全動翼蒸
気タービンを構成し、内側軸装置の中心より過熱蒸気
(5)を供給して、該全動翼蒸気タービンを駆動する装
置を設けたことを特徴とする蒸気ガスタービン合体機
関。
106. The full-blade steam turbine comprises an inner shaft device provided with an inner turbine blade group (20), and an outer shaft device provided with an outer turbine blade group (19). An all-blade steam turbine is constituted by coupling with a magnetic friction power transmission device, and a device for supplying superheated steam (5) from the center of the inner shaft device to drive the all-blade steam turbine is provided. Steam gas turbine combined engine.
【請求項107】 前記蒸気タービンを、内側固定軸装
置に内側タービン静翼を設け、外側軸装置に外側タービ
ン動翼群(19)を設けて、内側固定軸装置の中心より
過熱蒸気(5)を供給して駆動可能に蒸気タービンを構
成して設けたことを特徴とする蒸気ガスタービン合体機
関。
107. The steam turbine, wherein an inner turbine stationary blade is provided on an inner fixed shaft device, and an outer turbine blade group (19) is provided on an outer shaft device, and superheated steam (5) is provided from a center of the inner fixed shaft device. A steam gas turbine combined engine, wherein a steam turbine is constructed and provided so as to be drivable and supplied.
JP11117404A 1998-05-18 1999-04-26 Various kinds of steam gas turbine integrated engine Pending JP2000038904A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11117404A JP2000038904A (en) 1998-05-18 1999-04-26 Various kinds of steam gas turbine integrated engine
JP2000024552A JP2001012209A (en) 1999-04-26 2000-02-02 Steam gas turbine united engine device
JP2000043706A JP2001012210A (en) 1999-04-26 2000-02-22 Various steam gas turbines combined engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-134721 1998-05-18
JP13472198A JPH11107778A (en) 1997-08-07 1998-05-18 Steam gas turbine combined engine, transportation and generating equipment
JP11117404A JP2000038904A (en) 1998-05-18 1999-04-26 Various kinds of steam gas turbine integrated engine

Publications (1)

Publication Number Publication Date
JP2000038904A true JP2000038904A (en) 2000-02-08

Family

ID=26455522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11117404A Pending JP2000038904A (en) 1998-05-18 1999-04-26 Various kinds of steam gas turbine integrated engine

Country Status (1)

Country Link
JP (1) JP2000038904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268139A (en) * 2016-11-25 2019-09-20 涡轮技术公司 Turbogenerator especially turbogenerator and the exchanger for turbogenerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268139A (en) * 2016-11-25 2019-09-20 涡轮技术公司 Turbogenerator especially turbogenerator and the exchanger for turbogenerator

Similar Documents

Publication Publication Date Title
US6446425B1 (en) Ramjet engine for power generation
WO1998000628A1 (en) Combined steam and gas turbine engine
AU696828B2 (en) Improved method and apparatus for power generation
CA2898464C (en) Engine architecture with reverse rotation integral drive and vaneless turbine
US20130111923A1 (en) Gas turbine engine component axis configurations
KR20000057608A (en) Ramjet engine for power generation
US20130074516A1 (en) Gas turbines
EP4095369A2 (en) Dual cycle intercooled hydrogen engine architecture
US11231236B2 (en) Rotary regenerator
CN113756900A (en) Internal and external mixed combustion engine
US6751940B1 (en) High efficiency gas turbine power generator
EP4279722A1 (en) Hydrogen fueled turbine engine pinch point water separator
CN215979531U (en) Internal and external mixed combustion engine
JP2001012209A (en) Steam gas turbine united engine device
JP2000038904A (en) Various kinds of steam gas turbine integrated engine
JP2000038927A (en) Various kinds of steam gas turbine integrated engine
JP2001295611A (en) Steam/gas combined turbine engine
JP2000038903A (en) Steam gas turbine integrated engine having controller
JP2000038902A (en) Steam gas turbine integrated engine apparatus
JP2000038928A (en) Steam gas turbine integrated engine
JP2001295612A (en) Various steam/gas combined turbine engines
JPH11107778A (en) Steam gas turbine combined engine, transportation and generating equipment
JP2001012210A (en) Various steam gas turbines combined engine
RU2363604C1 (en) Gas turbine locomotive and its power plant
JPH08232680A (en) Combustor, turbine, axial compressor and gas turbine