JPH11107778A - Steam gas turbine combined engine, transportation and generating equipment - Google Patents

Steam gas turbine combined engine, transportation and generating equipment

Info

Publication number
JPH11107778A
JPH11107778A JP13472198A JP13472198A JPH11107778A JP H11107778 A JPH11107778 A JP H11107778A JP 13472198 A JP13472198 A JP 13472198A JP 13472198 A JP13472198 A JP 13472198A JP H11107778 A JPH11107778 A JP H11107778A
Authority
JP
Japan
Prior art keywords
steam
turbine
heat
gas
superheated steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13472198A
Other languages
Japanese (ja)
Inventor
Hiroyasu Tanigawa
浩保 谷川
Kazunaga Tanigawa
和永 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13472198A priority Critical patent/JPH11107778A/en
Priority to JP11069406A priority patent/JP2000038902A/en
Priority to JP11077189A priority patent/JP2000038903A/en
Priority to JP11106329A priority patent/JP2000038928A/en
Publication of JPH11107778A publication Critical patent/JPH11107778A/en
Priority to JP11117404A priority patent/JP2000038904A/en
Priority to JP11132083A priority patent/JP2000038927A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To generate great output by converting most of a supplied heat quantity into super heated steam so as to use it for the purpose including a steam turbine and sucking and injecting air/water by means of steam provided by heat exchange or the superheated steam so that a combustion gas temperature becomes a turbine heat resistant limit temperature or less. SOLUTION: A combustor-heat exchanger 4 is constructed by forming a water cooling outside wall 26 of a spiral water cooling wall pipe unit 52, which includes a plurality of conduits 1, and arranging a steam pipe 6 spirally substantially inside the water cooling outside wall 26. Intake air is compressed by means of operation of groups of internal and external compressor moving blades 17, 16 and fed to the combustor-heat exchanger 4 so as to be stirred and mixed with fuel fed from a fuel feeding means 27, so that high pressure high temperature combustion gas is generated. When combustion gas 10 generated in this process is led into groups of external and internal turbine moving blades 19, 20, power is generated to drive a generator-motor. Water inside the conduits 1 is evaporated by means of the heat exchanger 4 so as to be turned into super heated steam, which is jetted to a gas turbine from a group of jetting port group 24.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸気ガスタービン
合体機関、詳しくは、ガスタービンの全複数燃焼器の外
壁を、略螺旋状の熔接構造水冷外壁熱交換器又は、螺旋
状の水冷壁管単位組立構造熱交換器とすることで大幅高
圧化を可能にし、該燃焼器兼熱交換器を用途に合わせた
長大化手段例えば、発電機兼電動機を中間に設けて長大
化することで燃料供給手段を3倍以上に増設可能にし、
該燃焼器兼熱交換器内に蒸気過熱器を略螺旋状に具備し
て、該過熱蒸気と該燃焼ガスにより出力を得る蒸気ガス
タービン(以下蒸気ガスタービンと称す)及び、該過熱
蒸気により出力を得る各種噴流ポンプを含めて、熱と電
気の併給設備等あらゆる用途に対応可能にして、磁気摩
擦動力伝達装置を含めた新技術の各種蒸気ガスタービン
合体機関運輸発電機器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined steam and gas turbine engine, and more particularly, to an outer wall of a plurality of combustors of a gas turbine, a substantially spiral welded water-cooled outer wall heat exchanger or a spiral water-cooled wall pipe. By using a unit-assembly heat exchanger, it is possible to greatly increase the pressure, and to extend the length of the combustor / heat exchanger according to the application, for example, by providing a generator / motor in the middle to increase the fuel supply. The means can be expanded more than three times,
A steam superheater is provided in the combustor / heat exchanger in a substantially spiral shape to obtain an output from the superheated steam and the combustion gas (hereinafter referred to as a steam gas turbine); The present invention relates to a new technology of various types of steam gas turbine combined engine transport power generation equipment including a magnetic friction power transmission device, which can be used for various applications such as heat and electricity co-supply equipment, including various jet pumps for obtaining the above.

【0002】[0002]

【従来の技術】蒸気タービン・ガスタービン複合機関の
うち、ガスタービン燃焼器の内部に熱交換器を設けた先
行技術として特開昭50−89737号が開示されてい
る。この発明は、ガスタービン燃焼器の高温領域に、蒸
気タービンサイクルの過熱器乃至再熱器を設けることに
よって、特別の補助的な燃焼器を必要とすることなく、
蒸気タービンサイクルの過熱蒸気温度を高め、複合プラ
ント全体の効率向上を図るものである。又、特開昭52
−156248号は、ガスタービン間の燃焼ガスとの熱
交換によって蒸発を行なうことにより、廃熱回収ボイラ
出口廃ガス温度の低下を図り、ボイラ効率を向上させる
ことが開示されている。しかし、これらは、いずれも過
給ボイラサイクルの熱効率の向上を図るもので、ガスタ
ービンの圧力比と比出力の同時上昇を図るものでもガス
タービンの熱効率上昇を図るものでもない。
2. Description of the Related Art Japanese Patent Laid-Open Publication No. Sho 50-89737 discloses a prior art in which a heat exchanger is provided inside a gas turbine combustor in a steam turbine / gas turbine combined engine. The present invention provides a steam turbine cycle superheater or reheater in a high temperature region of a gas turbine combustor, thereby eliminating the need for a special auxiliary combustor.
The purpose is to increase the superheated steam temperature of the steam turbine cycle and improve the efficiency of the entire combined plant. Also, Japanese Patent Laid-Open No. 52
No. 156248 discloses that evaporation is performed by heat exchange with combustion gas between gas turbines, thereby reducing the temperature of waste gas at a waste heat recovery boiler outlet and improving boiler efficiency. However, none of these aims to improve the thermal efficiency of the supercharging boiler cycle, and does not aim to increase the pressure ratio and the specific output of the gas turbine at the same time, nor to increase the thermal efficiency of the gas turbine.

【0003】又、先の出願としてガスタービン燃焼器を
改良した、特願平6−330862号、特願平7−14
5074号、特願平7−335595号、特願平8−4
1998号、特願平8−80407号、特願平8−14
3391号、特願平8−204049号、特願平8−2
72806号、特願平9−106925号、特願平9−
181944号、特願平9−212373号がありま
す。以上先の出願に基づく優先権主張出願は概略的に、
全動翼を含及び/ガスタービンの全複数の燃焼器を長大
化して、該水冷外壁を螺旋状に具備して高圧容器とした
熱交換器としても兼用して、大部分の供給熱量を過熱蒸
気に変換可能にすることにより、タービン耐熱限界温度
を越えることなく圧力比及び比出力を極限まで同時に上
昇可能にする装置及び方法とするものです。
[0003] Further, as a prior application, a gas turbine combustor is improved.
No. 5074, Japanese Patent Application No. 7-335595, Japanese Patent Application No. 8-4
1998, Japanese Patent Application No. 8-80407, Japanese Patent Application No. 8-14
No. 3391, Japanese Patent Application No. 8-204049, Japanese Patent Application No. 8-2
No. 72806, Japanese Patent Application No. 9-106925, Japanese Patent Application No. 9-106
181944 and Japanese Patent Application No. 9-212373. The priority claim application based on the earlier application is schematically
Increasing the length of all combustors, including all rotor blades, and / or the gas turbine, and using the water-cooled outer wall in a spiral shape to serve as a heat exchanger that is also used as a high-pressure vessel, and superheat most of the supplied heat By making it possible to convert to steam, it is a device and method that can simultaneously raise the pressure ratio and specific output to the maximum without exceeding the turbine heat resistance limit temperature.

【0004】[0004]

【発明が解決しようとする課題】プレイトンサイクル等
のガスタービンサイクルの性能として重要なものに、熱
効率及び比出力があり、圧力比が大きい程高い熱効率が
得られ、熱効率(圧力比)が一定では、サイクルに供給
する熱量が大きい程大きな比出力が得られる。即ち、こ
の圧力比及び比出力の増大は、いずれもタービンの耐熱
限界温度で大きな制約を受ける。このため、タービンの
耐熱限界温度を越えることなく圧力比及び供給熱量(燃
料燃焼質量)を極限まで増大する方法は、供給熱量(燃
料発熱量)の大部分を過熱蒸気に変換して蒸気ガスター
ビンを含む他の用途に使用して、熱効率×比出力=圧力
比×燃焼ガス質量(速度×質量)を大増大すると共に、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た蒸気又は過熱蒸気により空気又は水を吸
引噴射して、人や荷物を運輸する用途に使用することを
目的とする。
The important things as the performance of the gas turbine cycle such as the Preyton cycle are thermal efficiency and specific output. The higher the pressure ratio, the higher the thermal efficiency is obtained, and the thermal efficiency (pressure ratio) is constant. In, a larger specific output is obtained as the amount of heat supplied to the cycle increases. That is, the increase in the pressure ratio and the specific output is greatly restricted by the heat-resistant limit temperature of the turbine. For this reason, the method of increasing the pressure ratio and the supply heat quantity (fuel combustion mass) to the maximum without exceeding the heat-resistant limit temperature of the turbine is to convert most of the supply heat quantity (fuel heat generation quantity) into superheated steam, The thermal efficiency x specific output = pressure ratio x combustion gas mass (velocity x mass) is greatly increased,
It is an object of the present invention to use it for transporting people or luggage by sucking and injecting air or water with steam or superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than a turbine heat-resistant limit temperature.

【0005】即ち、ガスタービンの圧力比及び比出力を
増大するための障害は、供給熱量のうち燃料発熱量であ
り、燃料発熱量の用途は過熱蒸気や蒸気に変換すると、
各種蒸気ガスタービン及び各種噴流ポンブ及び各種蒸気
タービンを含めて限りなく多いため、ガスタービン燃焼
器を長大化・高圧化して伝熱面積を大増大した熱交換器
としても兼用して、燃料発熱量を過熱蒸気に大変換して
他の用途に使用することによりタービンの耐熱限界温度
を越えることなく、圧力比及び比出力を極限まで増大さ
せることができる機関を提供し、例えば燃料燃焼質量を
理論空燃比まで一般機関の4倍前後に増大可能にして、
圧力比及び燃料燃焼質量の増大により供給熱量のうちガ
スタービンの使用熱量を低減して、ガスタービンの熱効
率及び比出力を上昇する装置を提供すると共に、燃焼ガ
スと燃焼ガス温度がタービン耐熱限界温度以下となるよ
うに熱交換して得た過熱蒸気により蒸気ガスタービンを
駆動し、過熱蒸気により空気又は水を吸引噴射する用
途、例えば各種車両を駆動し、又は各種航空機を駆動
し、又は各種船舶を駆動し、又は熱と電気の併給設備に
使用することを目的とする。
That is, the obstacle to increase the pressure ratio and the specific output of the gas turbine is the fuel calorific value of the supplied calorific value. The fuel calorific value is converted into superheated steam or steam.
Since there are infinite numbers including various steam gas turbines, various jet pumps, and various steam turbines, the gas turbine combustor is also used as a heat exchanger with a large and large heat transfer area by increasing the length and pressure of the fuel. To provide an engine that can increase the pressure ratio and the specific output to the maximum without exceeding the heat-resistant limit temperature of the turbine by converting large to superheated steam and using it for other applications. By increasing the air-fuel ratio to about four times that of a general engine,
A device that increases the heat efficiency and specific output of the gas turbine by reducing the amount of heat used by the gas turbine out of the supplied heat by increasing the pressure ratio and the fuel combustion mass is provided. Use to drive a steam gas turbine with superheated steam obtained by heat exchange as follows, and to suction and inject air or water with the superheated steam, such as driving various vehicles, driving various aircraft, or various ships It is intended to drive or to be used for combined heat and electricity facilities.

【0006】ガスタービンの作動ガスとしての燃焼ガス
は、一般に空気の割合が非常に多く、理論空燃比の4倍
前後の空気を含む(以下4倍前後の空気を含むものに統
一して説明するが数値に限定するものではない)、即
ち、従来技術では大量の熱エネルギを消費して圧縮した
空気の80%近くを無駄に排出し、加えて燃焼温度の低
減に使用して大損失となるため、熱交換により圧縮した
空気を燃焼用として略100%有効利用可能にすると共
に、熱交換・温度低下による圧力比及び燃料燃焼質量の
大増大により、供給熱量のうちガスタービンの使用熱量
を大低減して、ガスタービンの熱効率を2倍乃至3倍に
大上昇すると共に比出力を大上昇し、又は燃焼ガスと燃
焼ガス温度がタービンの耐熱限界温度以下になるように
熱交換して得た過熱蒸気により蒸気ガスタービンを駆動
して、圧力比を空気圧縮の10倍前後に大上昇した超臨
界の蒸気条件を含む過熱蒸気の使用により、熱効率を3
倍前後に大上昇すると共に比出力を大上昇し、又は過熱
蒸気を噴射して空気又は水を効率良く吸引噴射する用途
に使用することを目的とする。
[0006] Combustion gas as a working gas of a gas turbine generally has a very high air ratio, and includes air that is about four times the stoichiometric air-fuel ratio. Is not limited to a numerical value), that is, in the prior art, a large amount of heat energy is consumed and nearly 80% of the compressed air is wastefully exhausted, and in addition, it is used to reduce the combustion temperature, resulting in a large loss. As a result, the air compressed by heat exchange can be used almost 100% effectively for combustion, and the pressure ratio and the fuel combustion mass greatly increase due to heat exchange and temperature decrease, thereby increasing the amount of heat used by the gas turbine among the supplied heat. It is obtained by increasing the thermal efficiency of the gas turbine by a factor of 2 to 3 and greatly increasing the specific output, or by exchanging heat so that the temperature of the combustion gas and the combustion gas is lower than the heat-resistant limit temperature of the turbine. Overheating Drives the steam gas turbine by a gas, the use of superheated steam containing a large elevated supercritical steam conditions the pressure ratio 10 times before and after the air compressor, the heat efficiency 3
An object of the present invention is to greatly increase the specific output as well as about twice as much as possible, or to use it for the purpose of injecting superheated steam to efficiently suction and inject air or water.

【0007】ガスタービン燃焼器を長大化・高圧化して
伝熱面積を大増大した熱交換器としても兼用すると、圧
力比が大きいほどガスタービンの熱効率が高くなり、同
じ発熱量の燃料燃焼では圧力比が大きい程高温が得られ
るのに加えて、タービン入り口のガス温度が700 C
乃至1000 Cと高温程熱交換も容易となる。このた
め、熱交換器の伝熱面積の縮少及び冷却によるNOx低
減燃焼が可能になり、圧力比の上昇及び熱交換排熱温度
低下による排気損失の大幅な低減が可能になり、発熱量
を極限まで有効利用可能な超高性能・超高熱効率のガス
タービン乃至蒸気ガスタービン合体機関を提供すると共
に、燃焼ガス温度がタービン耐熱限界温度以下となるよ
うに熱交換して得た過熱蒸気により空気又は水を最も効
率良く吸引噴射する各種噴流ポンプを提供すると共に、
磁気摩擦動力伝達装置を最大限に活用して、動力伝達損
失を極限まで低減することを目的とする。
If the gas turbine combustor is also used as a heat exchanger having a large heat transfer area by increasing its length and pressure, the greater the pressure ratio, the higher the thermal efficiency of the gas turbine. The higher the ratio, the higher the temperature is obtained, and the gas temperature at the turbine inlet is 700 C
Heat exchange becomes easier as the temperature increases to about 1000 C or higher. For this reason, NOx reduction combustion by reducing the heat transfer area of the heat exchanger and cooling is possible, and it is possible to greatly reduce exhaust loss by increasing the pressure ratio and lowering the heat exchange exhaust heat temperature, thereby reducing the amount of heat generated. It provides an ultra-high performance / ultra-high heat efficiency gas turbine or steam gas turbine combined engine that can be effectively used to the extremes, and uses superheated steam obtained by heat exchange so that the combustion gas temperature becomes lower than the turbine heat-resistant limit temperature. Or, while providing various jet pumps that suction and jet water most efficiently,
An object of the present invention is to minimize the power transmission loss by making the most of a magnetic friction power transmission device.

【0008】[0008]

【課題を解決するための手段】ガスタービンの作動ガス
としての燃焼ガスは、一般に空気の割合が非常に多く、
理論混合比の4倍前後の空気を含む。即ち、大量の熱エ
ネルギを消費して圧縮した空気の略80%を無駄使い
し、加えて燃焼温度の低減に使用して大損失となるた
め、熱交換による過熱蒸気変換により圧縮した空気の略
100%を燃焼用として有効利用するため、ガスタービ
ンの略中央中間に発電機兼電動機を設ける等して燃焼器
兼熱交換器を長大化することにより燃料供給手段を4倍
前後に増設可能にすると共に、燃焼器兼熱交換器として
該伝熱面積を大増大し、該外壁を導水管を含む螺旋状の
溶接構造水冷外壁又は、螺旋状の熔接構造を含む水冷壁
管単位52組立構造として高圧化し、比較的大きな圧力
比を設定する。又、該過熱過程に於いて燃焼器兼熱交換
器の中に蒸気管を略螺旋状に設けて、大幅に高圧の超高
性能熱交換器としても兼用することで、該熱交換により
タービン入口温度をタービン耐熱限界温度以下に低下さ
せ、圧縮した全圧縮空気を理論空燃比燃焼に近づけて燃
料燃焼質量を4倍前後まで増大可能にして、燃料発熱量
の使用を過熱蒸気に変換して空気圧縮の10倍近い圧力
比の上昇により節減して、燃焼ガスと燃焼ガス温度がタ
ービン耐熱限界温度以下となるように熱交換して得た過
熱蒸気により蒸気ガスタービンを駆動し、過熱蒸気によ
り空気等の気体又は水等の液体を噴流ポンプにより最も
効率良く吸引噴射する各種噴流ポンプ、例えばジェット
エンジン及び船舶浮揚水噴射推進装置等を提供します。
The combustion gas as the working gas of the gas turbine generally has a very high air ratio,
The air contains about 4 times the theoretical mixing ratio. That is, since about 80% of the compressed air which consumes a large amount of heat energy is wasted, and is used to reduce the combustion temperature, which results in a large loss. In order to effectively use 100% for combustion, the length of the combustor / heat exchanger is increased by providing a generator / motor at approximately the center of the gas turbine, so that the fuel supply means can be increased about four times. At the same time, the heat transfer area is greatly increased as a combustor / heat exchanger, and the outer wall is formed as a spirally welded water-cooled outer wall including a water pipe or a water-cooled wall pipe unit 52 including a spirally welded structure. Increase the pressure and set a relatively large pressure ratio. In addition, in the superheating process, a steam pipe is provided in a substantially spiral shape in the combustor / heat exchanger to serve also as a significantly high-pressure ultra-high-performance heat exchanger. The temperature is reduced below the turbine heat-resistance limit temperature, the compressed whole compressed air approaches the stoichiometric air-fuel ratio combustion, and the fuel combustion mass can be increased up to about four times. The steam gas turbine is driven by superheated steam obtained by exchanging heat so that the combustion gas and the combustion gas temperature are lower than the turbine allowable temperature limit by reducing the pressure ratio by nearly 10 times the compression, and the air is heated by the superheated steam. We provide a variety of jet pumps, such as jet engines and marine floating water jet propulsion devices, which suction and jet gas or liquid such as water with a jet pump most efficiently.

【0009】又、空気を圧縮する場合と水を圧縮する場
合を比較するとき水蒸気が略1700分の1に凝縮され
た水を圧縮するのが遥かに有利であり、超臨界の蒸気条
件まで保有熱量(保有熱エネルギ量)を増大可能なのに
加えて、空気圧縮の10倍近い圧力比の過熱蒸気として
放出すると、1700倍を遥かに越える大容積が得られ
るため、圧縮した空気の略全部を燃焼に有効利用する最
良の方法が、増大供給燃料の略全部を含めて最も効率良
く過熱蒸気に変換して使用することである。従って超高
性能の燃焼器兼熱交換器を得るため、できるだけ高温高
圧の雰囲気で燃焼及び熱交換することで、最も効率良く
熱交換すると共に冷却によるNOx低減燃焼を可能にし
て、同一発熱量の燃料から取り出す熱量(過熱蒸気)を
最大にして、最も効率良く過熱蒸気を得ると共に、ガス
タービン又は蒸気ガスタービンを駆動する燃焼ガス質量
を最大に熱量を最小にして、最も効率良くガスタービン
又は蒸気ガスタービンを駆動すると共に、該排気熱量を
大幅に低温の僅少排気熱量として噴射して、大幅に低温
の排気として排気損失を大低減すると共に、歯車装置に
換えて先の出願の磁気摩擦動力伝達装置を全面的に使用
することで、あらゆる補機を含めて最も効率良く動力を
伝達する駆動装置として、全動翼を含むガスタービンサ
イクルの最高熱効率を2倍乃至3倍前後に大上昇を図り
ます。
Further, when comparing the case where air is compressed and the case where water is compressed, it is much more advantageous to compress water in which water vapor is condensed to approximately 1/700, In addition to being able to increase the amount of heat (the amount of retained heat energy), if it is released as superheated steam with a pressure ratio close to 10 times that of air compression, a large volume far exceeding 1700 times can be obtained, so that almost all compressed air is burned. The best way to effectively utilize is to convert and use superheated steam most efficiently, including substantially all of the increased supply fuel. Therefore, in order to obtain an ultra-high-performance combustor / heat exchanger, combustion and heat exchange are performed in an atmosphere of high temperature and pressure as high as possible to achieve the most efficient heat exchange and NOx reduction combustion by cooling, and achieve the same heating value. The amount of heat (superheated steam) extracted from the fuel is maximized to obtain the most efficient superheated steam, and the mass of the combustion gas that drives the gas turbine or steam gas turbine is maximized to minimize the amount of heat, and the most efficient gas turbine or steam is obtained. In addition to driving the gas turbine, the exhaust heat is injected as a very low temperature low amount of exhaust heat to significantly reduce the exhaust loss as the low temperature exhaust. A gas turbine cycle that includes all rotor blades as a drive that transmits power most efficiently, including all auxiliary equipment, by fully using the equipment The highest thermal efficiency will strive to large increases to twice or three times before and after.

【0010】[0010]

【発明の実施の形態】発明の実施の形態や実施例を図面
を参照して説明するが、実施形態や実施例と既説明とそ
の構成が略同じ部分には、同一の名称又は符号を付して
その重複説明は省略し、特徴的な部分や説明不足部分は
順次追加説明する。又、発明の意図する所及び予想を具
体的に明快に説明するため、数字で説明する部分があり
ますが、数字に限定するものではありません。又、この
発明に使用する燃焼器兼熱交換器4は、先の出願と同様
又は近い構成として、図1・図9・図11・図12の如
く水冷外壁26を複数の導水管1を含む螺旋状の熔接構
造又は水冷壁管単位52組立構造として高圧化して、比
較的大きな圧力比を設定して内部に蒸気管6を略螺旋状
に設けて、略中央中間に発電機兼電動機を設けて熱と電
気の併給設備や始動装置としても兼用すると共に、長大
化した燃焼器兼熱交換器4として伝熱面積を大増大する
と共に燃料供給手段27を増設したものを使用します。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and embodiments of the present invention will be described with reference to the drawings. The overlapping description will be omitted, and the characteristic portions and the lack of description will be sequentially described. In addition, some parts are described with numbers in order to specifically and clearly explain the intended and expected aspects of the invention, but are not limited to numbers. The combustor / heat exchanger 4 used in the present invention has a water-cooled outer wall 26 and a plurality of water pipes 1 as shown in FIGS. As a spiral welding structure or water cooling wall tube unit 52 assembling structure, the pressure is increased, a relatively large pressure ratio is set, the steam pipe 6 is provided in a substantially spiral shape, and a generator / motor is provided substantially in the middle of the center. In addition to using both as a heat and electricity co-supply facility and a starter, a long combustor / heat exchanger 4 with a large heat transfer area and additional fuel supply means 27 is used.

【0011】図1・図2・図5・図6・図9を参照して
全動翼・蒸気ガスタービン合体機関の実施例を説明する
と、全動翼の発想は、自動車を手で押して移動する場
合、ブレーキを引いた状態で押すと非常に疲れますが仕
事量は0であり、ブレーキを解除して押すと容易に移動
できます。従って、圧縮機やタービンに静翼があるとエ
ネルギの大損失となるため、静翼を動翼に置換して全動
翼として、置換動翼を外側軸装置に結合し従来動翼を内
側軸装置に結合して、互いに反対方向に回転する内側軸
装置と外側軸装置を磁気摩擦動力伝達装置により結合し
て、最も効率良く2軸を2重反転駆動すると共に、周速
を略半分づつ分担して、外径を略2倍にして流体通路を
略4倍として、比出力を大増大すると共に熱効率の大上
昇を図る、又は周速を略同じにして動翼間相対速度を略
2倍にして、比出力及び熱効率の大上昇を図る、又は周
速を略半分づつにして、許容応力が略4分の1の安価で
静粛等多様な設計(家庭用熱と電気の併給設備等)を可
能にしながら熱効率の大上昇を図るものです。
An embodiment of a combined rotor / steam gas turbine engine will be described with reference to FIGS. 1, 2, 5, 6 and 9. The idea of the combined rotor and blade is that the vehicle is pushed by hand and moved. If you do, you will be very tired if you push with the brake applied, but the workload is 0, and you can easily move by releasing the brake and pushing. Therefore, if there is a stationary blade in a compressor or a turbine, a large loss of energy will result in a large loss of energy. Therefore, the stationary blade is replaced with a moving blade as a whole moving blade. The inner shaft device and the outer shaft device, which rotate in opposite directions, are connected to each other by a magnetic friction power transmission device, so that the two shafts are most efficiently driven in double reversal and the peripheral speed is shared by approximately half. Then, the outer diameter is approximately doubled and the fluid passage is approximately quadrupled to increase the specific output greatly and to greatly increase the thermal efficiency, or to substantially double the relative speed between the moving blades at substantially the same peripheral speed. In order to greatly increase the specific output and the thermal efficiency, or to reduce the peripheral speed by about half, the allowable stress is about 1/4, and it is inexpensive and quiet, and various designs (such as household heat and electricity supply equipment) And greatly increase thermal efficiency.

【0012】図1を参照して別の説明をすると、右端の
置換した外側圧縮機動翼群1段16より通常の如く空気
を吸入して、偶数段の内側圧縮機動翼群17と奇数段の
外側圧縮機動翼群16が協力して、全動翼により効率良
く空気を圧縮して燃焼器兼熱交換器4に供給し、夫夫複
数箇所を含む燃料供給手段27から供給される通常の4
倍前後を含む燃料と攪拌混合して、略理論空燃比燃焼も
含めて燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た燃焼ガスを全動翼・蒸気ガスター
ビンの適宜の動翼段に供給して回転動力を発生させ、大
部分の熱エネルギは過熱蒸気に変換して、蒸気管6及び
蒸気加減弁7を介して全動翼・蒸気ガスタービンの上流
側環状の噴口群24より下流側に噴射して、大きな出力
を発生させたのち、下流側に供給されて圧力低減手段3
0(霧吹きの原理)からを含む燃焼ガスと合流すること
により直接再熱して、タービンの耐熱限界温度を越える
ことなく全動翼・蒸気ガスタービンを駆動して排気する
噴流ポンプ28aを構成し、/及び過熱蒸気を蒸気加減
弁7を介して噴流ポンプ28bより直接下流側に噴射し
て、該噴流と噴流ポンプ28aの噴流により、前方の空
気を中心と外筒29の内周より左後方に強力に噴射し
て、圧力気体を得る/又は推進力を必要とする各種航空
機等の用途に使用して、圧力比が従来空気圧縮機の10
倍に近い過熱蒸気により推進効率を大上昇します。
Another explanation will be given with reference to FIG. 1. In other words, air is normally sucked in from the right-stage replaced outer compressor blade group 1 stage 16 and the even-numbered inner compressor blade group 17 and the odd-numbered stage. The outer compressor rotor blade group 16 cooperates to efficiently compress the air by all the rotor blades and supplies the compressed air to the combustor / heat exchanger 4.
Agitated and mixed with the fuel containing approximately double the amount, and heat exchanged so that the combustion gas temperature including the stoichiometric air-fuel ratio combustion was lower than the turbine heat resistance limit temperature. To generate rotating power, most of the heat energy is converted into superheated steam, and is transmitted through a steam pipe 6 and a steam control valve 7 to the upstream annular portion of the entire moving blade / steam gas turbine. Injection is performed downstream from the nozzle group 24 to generate a large output.
A jet pump 28a that directly reheats by joining with the combustion gas containing the gas from 0 (mist spraying principle) and drives and exhausts all blades / steam gas turbine without exceeding the heat-resistant limit temperature of the turbine; And / or the superheated steam is injected directly downstream from the jet pump 28b via the steam control valve 7, and the jet and the jet from the jet pump 28a cause the front air to be centered and to the rear left from the inner circumference of the outer cylinder 29. It is used for various aircrafts and the like that require strong injection to obtain a pressurized gas and / or require propulsion.
Propelling efficiency is greatly increased by nearly double superheated steam.

【0013】図1を参照して更に別の説明をすると、略
中央付近に発電機兼電動機の回転子を設けて発電機兼電
動機を構成して燃焼器兼熱交換器の長大化を図り、回転
子の左右に夫夫内側軸装置を固着して、環状に設けた外
側圧縮機動翼群終段16及び外側タービン動翼群1段1
9を固着した外側軸装置を夫夫回転自在に外嵌して、夫
夫互いに反対方向に回転する2軸を磁気摩擦動力伝達装
置14により夫夫最適回転比で結合して、内側軸装置に
内側圧縮機動翼群終段17及び内側タービン動翼群2段
20を固着して、以後奇数段外側圧縮機動翼群16及び
偶数段内側圧縮機動翼群17を交互に固着して、最も効
率良く動力を伝達する駆動装置により全動翼圧縮機を構
成させて、外側タービン動翼群1段19に奇数段外側タ
ービン動翼群19を固着し、2段内側タービン動翼群2
0に偶数段内側タービン動翼群20を固着するというよ
うに、交互に固着して偶数終段内側タービン動翼群20
を内側軸装置に固着して、奇数終段外側タービン動翼群
19を外側軸装置に固着して内側軸装置に回転自在に外
嵌枢支します。
Referring to FIG. 1, a further explanation will be given. A generator / motor is provided substantially near the center to constitute a generator / motor so that the length of the combustor / heat exchanger is increased. The inner shaft device is fixed to the left and right sides of the rotor, and the outer compressor rotor blade group final stage 16 and the outer turbine rotor blade group one stage 1 provided in an annular shape are provided.
The outer shaft device to which the fixing shaft 9 is fixed is rotatably fitted to the outer shaft device, and the two shafts rotating in the opposite directions are respectively coupled by the magnetic friction power transmission device 14 at an optimum rotation ratio, and are connected to the inner shaft device. The final stage 17 of the inner compressor blade group and the second stage 20 of the inner turbine blade group are fixed, and thereafter, the odd-numbered outer compressor blade group 16 and the even-numbered inner compressor blade group 17 are alternately fixed. A drive unit for transmitting power constitutes a full-blade compressor, and an odd-numbered outer turbine blade group 19 is fixed to the outer turbine blade group 1 stage 19, and a two-stage inner turbine blade group 2
0, the even-numbered inner turbine blade groups 20 are alternately fixed to each other.
Is fixed to the inner shaft device, and the odd-numbered final stage outer turbine blade group 19 is fixed to the outer shaft device, and is rotatably fitted to the inner shaft device.

【0014】環状の出口21から環状の受け口22に供
給された高圧縮空気は、夫夫複数箇所を含む燃料供給手
段27から供給される燃料と攪拌混合して適宜に燃焼さ
せますが、燃焼ガス温度や過熱蒸気温度を複数の燃焼器
兼熱交換器4内で制御しながら燃焼させると共に、導水
管1の夫夫の水冷壁管26や蒸気管6により燃焼ガスを
冷却することによりNOx低減燃焼を可能にし、燃焼ガ
ス温度がタービンの耐熱限界温度を越えることなく燃料
供給手段27の追加を可能にし、熱交換により理論空燃
比まで通常の4倍前後まで燃料供給量の増大が可能に燃
料供給手段27を追加可能にして、供給熱量の大部分を
過熱蒸気5に変換して夫夫の蒸気加減弁7を介して環状
の受け口23に供給し、この部分に集められた過熱蒸気
5を環状の噴口群24より1段外側タービン動翼群19
に噴射して、通常の如く順次下流側を駆動して燃焼ガス
10と合流しますが、燃焼ガスは、燃焼器兼熱交換器4
より全動翼蒸気ガスタービンの最適段に燃焼ガス圧力に
応じて供給し、以後燃焼ガス10により過熱蒸気を直接
再熱しながら、過熱蒸気と燃焼ガスの共同で全動翼・蒸
気ガスタービンを駆動して、終段外側タービン動翼群1
9より噴出して噴流ポンプ28aを構成して、該中央側
及び外側外筒29内の空気を左後方に吸引噴射し、過熱
蒸気5の別動隊は夫夫複数の蒸気加減弁7を介して複数
の噴流ポンプ28bより噴出させて、該周辺の外筒29
内空気を左後方に吸引噴射して、噴流ポンプ28a・2
8bを含めて右前方の空気を左後方に強力に噴射する、
全動翼・蒸気ガスタービン合体機関とします。
The high-compressed air supplied from the annular outlet 21 to the annular receiving port 22 is stirred and mixed with fuel supplied from the fuel supply means 27 including a plurality of portions, and is appropriately burned. The combustion is performed while controlling the temperature and the superheated steam temperature in the plurality of combustors and heat exchangers 4, and the combustion gas is cooled by the water cooling wall pipe 26 and the steam pipe 6 of the water guide pipe 1, thereby reducing the NOx combustion. And the fuel supply means 27 can be added without causing the combustion gas temperature to exceed the heat-resistant limit temperature of the turbine, and the fuel supply amount can be increased up to about four times the normal air-fuel ratio by heat exchange to the stoichiometric air-fuel ratio. Means 27 can be added to convert the majority of the supplied heat into superheated steam 5 and supply it to the annular receiving port 23 through the respective steam control valve 7, and the superheated steam 5 collected in this portion is Group of spouts 4 than 1 stage outer turbine Dotsubasagun 19
And the downstream side is sequentially driven to merge with the combustion gas 10 as usual, but the combustion gas is supplied to the combustor / heat exchanger 4.
According to the combustion gas pressure, it is supplied to the optimal stage of the all-blade steam gas turbine in accordance with the combustion gas pressure. Thereafter, the superheated steam is directly reheated by the combustion gas 10 while the superheated steam and the combustion gas jointly drive the all-blade steam gas turbine. And the final stage outer turbine blade group 1
9 to form a jet pump 28a, which sucks and injects air in the center side and the outer cylinder 29 to the rear left, and separate mobilization of the superheated steam 5 through a plurality of steam control valves 7 respectively. From the jet pump 28b of the outer cylinder 29
The inner air is suctioned and jetted to the rear left, and the jet pumps 28a and 2
8b, including the air in the right front, is strongly jetted to the rear left.
All blades and steam gas turbine combined engine.

【0015】図2を参照して全動翼蒸気噴射ガスタービ
ン合体機関の第2実施例で別の説明をすると、従来技術
では大量の熱エネルギを消費して圧縮した空気の80%
近くを利用することなく無駄に(燃焼温度を低下させ
て)排出して大損失となるため、圧縮した空気を燃焼に
100%有効利用可能にすることで、比出力を極限まで
増大して熱効率の大上昇を図るものです。即ち、ガスタ
ービンの作動ガスとしての燃焼ガスは、一般に空気の割
合が非常に多く、理論空燃比の4倍前後の空気を含むた
め、タービンの耐熱限界温度を越えることなく圧縮した
空気を100%燃焼に利用するためには、供給した熱量
の大部分を過熱蒸気に変換利用することを必須としま
す。 そこでこの発明は略中央付近に発電機兼電動機を
設けて複数の燃焼器兼熱交換器4の伝熱面積を増大長大
化して、供給熱量の大部分を過熱蒸気に変換可能にする
と共に、該水冷外壁を水冷壁管26を少なくとも1本以
上を含む螺旋状の熔接構造又は、螺旋状の水冷壁管単位
52の組立て構造として圧力比の大上昇を可能にして、
比出力を大増大すると共に無駄を全廃して熱効率の大幅
上昇を図ります。
Referring to FIG. 2, another description of the second embodiment of the all-blade steam-injected gas turbine combined engine is as follows. In the prior art, 80% of the compressed air consumes a large amount of heat energy.
Since the waste is discharged wastefully (by lowering the combustion temperature) without using a nearby area, a large loss is caused. By making the compressed air available for combustion 100% effectively, the specific output is increased to the limit and the thermal efficiency is increased. It is intended to make a great rise. That is, since the combustion gas as the working gas of the gas turbine generally has a very high air ratio and includes air that is about four times the stoichiometric air-fuel ratio, the compressed air without exceeding the heat-resistant limit temperature of the turbine is 100%. In order to use it for combustion, it is necessary to convert most of the supplied heat into superheated steam. Therefore, the present invention provides a generator / motor in the vicinity of the center to increase and lengthen the heat transfer area of the plurality of combustors / heat exchangers 4 so that most of the supplied heat can be converted to superheated steam. The water-cooled outer wall has a spiral welding structure including at least one water-cooled wall tube 26 or an assembled structure of the spiral water-cooled wall tube unit 52 to enable a large increase in the pressure ratio.
The specific output is greatly increased, and waste is completely eliminated to achieve a significant increase in thermal efficiency.

【0016】図2を参照して別の説明をすると、右端の
置換した外側圧縮機動翼群1段16より通常の如く空気
を吸入して、偶数段の内側圧縮機動翼群17と奇数段の
外側圧縮機動翼群16が協力して、全動翼により効率良
く空気を圧縮して複数の燃焼器兼熱交換器4に供給し、
夫夫の複数箇所を含む燃料供給手段27から供給される
通常の4倍前後を含めた供給燃料と攪拌混合燃焼を可能
として、略理論空燃比燃焼も含めて、燃焼ガス温度がタ
ービン耐熱限界温度以下となるように熱交換して得た燃
焼ガスを、全動翼ガスタービンの環状の受け口23に回
転自在に挿入れ気密保持された環状の噴口群24より、
置換した外側動翼群1段19を含む下流側に噴射して回
転動力を得ると共に、燃焼ガスを左後方に噴射して噴流
ポンプ28aを構成して該中央側及び外側外筒29内の
空気を左後方に吸引噴射し、熱交換して得た過熱蒸気は
蒸気加減弁7を介して直接噴流ポンプ28bより左後方
に噴射して外筒29内の空気を左後方に吸引噴射して、
右前方の空気を左後方に強力に噴射移動させる全動翼蒸
気ガスタービン合体機関とします。
Another explanation will be given with reference to FIG. 2. In other words, air is normally sucked from the first stage 16 of the replaced outer compressor blade group at the right end, and the inner compressor group 17 of the even-numbered stage and the odd-numbered stage. The outer compressor blade group 16 cooperates to efficiently compress air by all the blades and supply the compressed air to the plurality of combustor / heat exchangers 4,
The agitated mixed combustion with the supplied fuel including about four times the normal amount supplied from the fuel supply means 27 including a plurality of the respective parts can be performed, and the combustion gas temperature including the substantially stoichiometric air-fuel ratio combustion becomes the turbine heat resistant limit temperature. The combustion gas obtained by heat exchange as described below is rotatably inserted into the annular receiving port 23 of the all-blade blade gas turbine, and is provided from the hermetically sealed annular injection port group 24.
Injection is performed on the downstream side including the replaced outer rotor blade group 1 stage 19 to obtain rotational power, and combustion gas is injected to the rear left to form a jet pump 28a to form air in the center side and the outer cylinder 29. To the left rear, the superheated steam obtained by heat exchange is directly injected to the left rear from the jet pump 28b through the steam control valve 7, and the air in the outer cylinder 29 is sucked and injected to the left rear,
It is an all-blade steam gas turbine combined engine that injects the air in the front right strongly to the rear left.

【0017】図2を参照して別の説明をすると、略中央
付近に燃焼器兼熱交換器の長大化を図る発電機兼電動機
を設けて、該左右夫夫を磁気摩擦動力伝達装置14に連
結して、該左右夫夫の内側軸装置に、環状に設けた外側
圧縮機動翼群終段16及び外側タービン動翼群1段19
を固着した外側軸装置を回転自在に外嵌枢支して、夫夫
互いに反対方向に回転する2軸を前記磁気摩擦動力伝達
装置14により最適回転比で夫夫結合して、内側軸装置
に内側圧縮機動翼群終段17及び内側タービン動翼群2
段20を固着して、以後奇数段外側圧縮機動翼群16及
び偶数段内側圧縮機動翼群17を交互に固着して、磁気
摩擦動力伝達装置により最適の回転比で最も効率良く2
軸を駆動する全動翼圧縮機を構成させて、外側タービン
動翼群1段19に奇数段外側タービン動翼群19を固着
し、2段内側タービン動翼群20に偶数段内側タービン
動翼群20を固着するというように、交互に固着して偶
数終段タービン動翼群20を内側軸装置に固着して、奇
数終段外側タービン動翼群19を外側軸装置に固着して
内側軸装置に回転自在に外嵌枢支します。
Referring to FIG. 2, another description will be given. A generator / motor for increasing the length of the combustor / heat exchanger is provided substantially in the vicinity of the center. In connection with the left and right inner shaft devices, an outer compressor rotor blade group final stage 16 and an outer turbine rotor blade group first stage 19 provided annularly are provided.
The outer shaft device to which the shaft is fixed is rotatably fitted on the outer shaft, and the two shafts rotating in the opposite directions are coupled to each other at the optimum rotation ratio by the magnetic friction power transmission device 14 to be connected to the inner shaft device. Inner compressor blade group final stage 17 and inner turbine blade group 2
The stage 20 is fixed, and then the odd-numbered outer compressor blade groups 16 and the even-numbered inner compressor blade groups 17 are alternately fixed.
An all-stage moving blade compressor for driving the shaft is constituted, an odd-numbered outer turbine moving blade group 19 is fixed to the outer turbine moving blade group first stage 19, and an even-numbered inner turbine moving blade group is fixed to the second-stage inner turbine moving blade group 20. The even-numbered last stage turbine blade group 20 is fixed to the inner shaft device by alternately fixing the group 20, and the odd-numbered last stage outer turbine blade group 19 is fixed to the outer shaft device so as to fix the inner shaft. Externally pivoted to the device so that it can rotate freely.

【0018】環状の出口21から環状の受け口22に供
給された高圧縮空気は、夫夫の複数箇所を含む燃料供給
手段27から供給される燃料と攪拌混合して適宜に燃焼
させますが、燃焼ガス温度や過熱蒸気温度を複数の燃焼
器兼熱交換器4内で制御しながら燃焼させると共に、導
水管1の夫夫の水冷壁管26や蒸気管6により燃焼ガス
を冷却することによりNOx低減燃焼を可能にし、燃焼
ガス温度がタービンの耐熱限界温度を越えることなく燃
料供給手段27の増設を可能にし、熱交換により理論空
燃比まで通常の略4倍前後まで燃料供給量の増大が可能
に燃料供給手段27を追加可能にして、タービンの耐熱
限界温度を越えることなく熱交換して得られた過熱蒸気
を夫夫の蒸気加減弁7を介して噴流ポンプ28bより噴
出させて、該周辺の外筒29内空気を左後方に吸引噴射
し、タービンの耐熱限界温度を越えることなく熱交換し
て得られた燃焼ガスにより全動翼・ガスタービンを駆動
すると共に、燃焼ガスを左後方に噴射して噴流ポンプ2
8aを構成させて、該中央側及び外側の外筒29内の空
気を左後方に吸引噴射して、燃焼ガスと過熱蒸気により
右前方の空気を左後方に噴射移動させる、全動翼蒸気ガ
スタービン合体機関として例えばジェットエンジンとし
て使用します。
The highly compressed air supplied from the annular outlet 21 to the annular receiving port 22 is mixed with the fuel supplied from the fuel supply means 27 including a plurality of the respective portions, and is appropriately burned. Combustion while controlling the gas temperature and the superheated steam temperature in the plurality of combustors / heat exchangers 4 and the reduction of the NOx by cooling the combustion gas by the water cooling wall pipe 26 and the steam pipe 6 of the water pipe 1 respectively. Combustion is enabled, the fuel supply means 27 can be added without the combustion gas temperature exceeding the heat-resistant limit temperature of the turbine, and the fuel supply amount can be increased to approximately four times the stoichiometric air-fuel ratio by heat exchange. The fuel supply means 27 can be added, and the superheated steam obtained by heat exchange without exceeding the heat-resistant limit temperature of the turbine is jetted from the jet pump 28b through the steam control valve 7 and the surroundings. The air inside the outer cylinder 29 is suction-injected to the left rear, and all the blades / gas turbines are driven by the combustion gas obtained by heat exchange without exceeding the heat resistant limit temperature of the turbine, and the combustion gas is injected to the left rear. And jet pump 2
8a, the air in the outer cylinder 29 on the center side and the outer cylinder is suction-injected to the rear left, and the combustion gas and superheated steam inject the air in the front right to the rear left to move the whole blade steam gas. Used as a combined engine of turbines, for example, as a jet engine.

【0019】図3を参照して蒸気ガスタービン合体機関
の第3実施例を説明すると、図1の第1実施例との相違
点は、全動翼・蒸気ガスタービン合体機関を蒸気ガスタ
ービン合体機関として、置換動翼を従来技術の静翼に還
元して、従来技術に近づけた圧縮機乃至蒸気ガスタービ
ンを駆動可能として、噴流ポンプ28a・28bを略同
様に噴流ポンプ28a・28bとしたものです。従って
図1の第1実施例から第3実施例までの要素を夫夫適宜
に置換して、例えば船舶や航空機の推進用に使用するこ
とも可能です。
Referring to FIG. 3, a third embodiment of the combined steam / gas turbine engine will be described. The difference from the first embodiment of FIG. As an engine, a replacement rotor blade is reduced to a conventional stator blade so that a compressor or a steam gas turbine closer to the related art can be driven, and the jet pumps 28a and 28b are substantially similar to the jet pumps 28a and 28b. is. Therefore, the elements of the first to third embodiments shown in FIG. 1 can be appropriately replaced with each other and used, for example, for propulsion of a ship or an aircraft.

【0020】図4を参照して蒸気ガスタービン合体機関
の第4実施例を説明すると、図2の第2実施例との相違
点は、全動翼・蒸気ガスタービン合体機関を蒸気ガスタ
ービン合体機関として、置換動翼を従来技術の静翼に還
元して従来技術に近づけた圧縮機乃至ガスタービンを駆
動可能として、無限に多い噴流ポンプ様式の噴流ポンプ
28a・28bを略同様に、噴流ポンプ28a・28b
としたものです。従って図1の第1実施例から該第4実
施例までの要素を夫夫適宜に置換して、例えば船舶や航
空機の推進用に使用することも可能です。
Referring to FIG. 4, a fourth embodiment of the steam gas turbine combined engine will be described. The difference from the second embodiment of FIG. As the engine, the displacement rotor blades are reduced to conventional stator vanes to enable driving of a compressor or gas turbine approaching the prior art, and the infinitely large number of jet pump type jet pumps 28a and 28b are substantially similar to jet pumps. 28a ・ 28b
It was a thing. Therefore, the elements from the first embodiment to the fourth embodiment in FIG. 1 can be appropriately replaced, and used for propulsion of a ship or an aircraft, for example.

【0021】図5を参照して全動翼・蒸気ガスタービン
合体機関の第5実施例を説明すると、図1の第1実施例
とほとんど同じで相違点は、第1実施例が主として空気
等の気体を強力に吸引噴射移動して推進力乃至圧力気体
を得る装置であったのに対して、第5実施例では空気等
を強力に吸引噴射移動して推進力乃至圧力気体を得ると
共に、液体の水を強力に吸引噴射移動して推進力乃至高
圧液体を得る装置としたところです。即ち相違点は、燃
焼ガス温度がタービン耐熱限界温度以下となるように熱
交換して得た燃焼ガスと過熱蒸気により全動翼・蒸気ガ
スタービンを駆動すると共に、その排気等で噴流ポンプ
28aを構成させて、該中央側及び外側外筒29内の空
気を強力に吸引噴射して推進力乃至圧力気体を得ると共
に、該過熱蒸気別動隊を蒸気加減弁7を介して夫夫の1
以上の噴流ポンプ28cより噴射して、水を左後方に強
力に吸引噴射移動して、例えば空気圧により船舶を浮揚
して水噴射により該船舶を推進する用途に使用します。
従って第1実施例から第5実施例までの要素を適宜に置
換して各種用途に使用可能とします。
Referring to FIG. 5, a fifth embodiment of the combined rotor / steam gas turbine engine will be described. The difference between the first embodiment and the first embodiment shown in FIG. In the fifth embodiment, a thrust force or a pressure gas is obtained by strongly sucking and moving air or the like to obtain a propulsion force or a pressure gas. This is a device that obtains propulsive force or high-pressure liquid by strongly sucking and moving liquid water. That is, the difference is that all the blades / steam gas turbines are driven by the combustion gas and the superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistant limit temperature, and the jet pump 28a is exhausted or the like. The air in the central side and the outer cylinder 29 is strongly suctioned and injected to obtain a propulsive force or a pressurized gas.
It is used for the purpose of injecting water from the above jet pump 28c and strongly sucking and moving water to the left rear, for example, to levitate a ship by air pressure and propell the ship by water injection.
Therefore, the elements from the first embodiment to the fifth embodiment can be appropriately replaced and used for various purposes.

【0022】図6を参照して全動翼・蒸気ガスタービン
合体機関の第6実施例を説明すると、図2の第2実施例
と殆ど同じで相違点は、第2実施例が主として空気等の
気体を強力に吸引噴射移動して推進力乃至圧力気体を得
る装置であったのに対して、第6実施例では空気等を強
力に吸引噴射移動して推進力乃至圧力気体を得ると共
に、主として水を強力に吸引噴射して推進力乃至圧力液
体を得る装置とした所です。即ち相違点は、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た燃焼ガス及び過熱蒸気のうち、燃焼ガスにより全動
翼・ガスタービンを駆動して該排気等により噴流ポンプ
28aを構成させて、該中央側及び外側外筒29内の空
気を左後方に吸引噴射して推進力乃至圧力気体を得ると
共に、該熱交換して得た過熱蒸気は、蒸気加減弁7を介
して夫夫適宜に延長された少なくとも1箇以上の噴流ポ
ンプ28cより左後方に噴射して、右前方の水等液体を
左後方に吸引噴射して、例えば空気圧により船舶を浮揚
して水噴射により該船舶を推進する用途に使用します。
従って、第1実施例から第6実施例までの要素を適宜に
置換して各種用途に使用可能とします。
Referring to FIG. 6, a sixth embodiment of the combined rotor / steam gas turbine engine will be described. The second embodiment is almost the same as the second embodiment of FIG. In the sixth embodiment, the thrust or pressure gas is obtained by strongly sucking and moving air or the like, while the device for obtaining thrust or pressure gas is obtained by strongly suctioning and moving gas. It is a device that mainly obtains propulsion or pressure liquid by powerful suction and injection of water. That is, the difference is that, of the combustion gas and the superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, all combustion blades and gas turbines are driven by the combustion gas and jetted by the exhaust gas or the like. A pump 28a is formed, and the air in the center side and the outer cylinder 29 is sucked and ejected to the left rear to obtain a propulsive force or a pressurized gas, and the superheated steam obtained by the heat exchange is supplied to the steam control valve 7. And at least one or more jet pumps 28c appropriately extended through the nozzles to inject the liquid to the left rear, suck the liquid such as water in the right front to the rear left, and float the ship by air pressure, for example. Used for propulsion of the ship by injection.
Therefore, the elements from the first embodiment to the sixth embodiment can be appropriately replaced and used for various purposes.

【0023】図7を参照して蒸気ガスタービン合体機関
の第7実施例を説明すると、図3の第3実施例と殆ど同
じで相違点は、第3実施例が主として空気等の気体を強
力に吸引噴射移動して推進力乃至圧力気体を得る装置で
あったのに対して、第7実施例では空気等を吸引噴射移
動して推進力乃至圧力気体を得ると共に、水等を強力に
吸引噴射して推進力乃至圧力液体を得る装置としたとこ
ろです。即ち相違点は、燃焼ガス温度がタービン耐熱限
界温度以下となるように熱交換して得た燃焼ガス及び過
熱蒸気のうち、燃焼ガスと過熱蒸気の一部により蒸気加
減弁7を介して蒸気ガスタービンを駆動して、該排気等
により噴流ポンプ28aを構成させて、該中央側及び外
側外筒29内の空気を左後方に吸引噴射して推進力乃至
圧力気体を得ると共に、過熱蒸気の残部を夫夫の蒸気加
減弁7を介して、適宜に延長された少なくとも1箇以上
の噴流ポンプ28cより左後方に噴射して、右前方の水
等液体を左後方に強力に吸引噴射して、例えば空気圧に
より船舶を浮揚して水噴射により該船舶を推進する用途
に使用します。従って、第1実施例から第7実施例まで
の要素を適宜に置換して各種用途に使用可能です。
Referring to FIG. 7, a seventh embodiment of the combined steam and gas turbine engine will be described. The difference between the seventh embodiment and the third embodiment shown in FIG. 3 is that the third embodiment mainly uses a strong gas such as air. In the seventh embodiment, air or the like is suctioned and moved to obtain a propulsion force or a pressure gas, and water or the like is strongly suctioned. It is a device that obtains propulsion or pressure liquid by spraying. That is, the difference is that, of the combustion gas and the superheated steam obtained by performing heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat resistance limit temperature, a portion of the combustion gas and the superheated steam are passed through the steam control valve 7 through the steam control valve 7. The turbine is driven to form a jet pump 28a by the exhaust gas or the like, and the air in the center side and the outer cylinder 29 is suction-injected to the rear left to obtain a propulsive force or a pressurized gas, and the remainder of the superheated steam Is jetted to the left rear from at least one or more jet pumps 28c appropriately extended through the steam control valve 7 of each husband, and the liquid such as water on the right front is strongly suction-jetted to the left rear, For example, it is used for the purpose of levitating a ship by air pressure and propelling the ship by water injection. Therefore, the elements of the first to seventh embodiments can be appropriately replaced and used for various purposes.

【0024】図8を参照して蒸気ガスタービン合体機関
の第8実施例を説明すると、図4の第4実施例と殆ど同
じで相違点は、第4実施例が空気等の気体を吸引噴射移
動して推進力乃至圧力気体を得る装置であったのに対し
て、第8実施例では空気等を吸引噴射移動して推進力乃
至圧力気体を得ると共に、水等を強力に吸引噴射して推
進力乃至圧力液体を得る装置としたところです。即ち相
違点は、燃焼ガス温度がタービン耐熱限界温度以下とな
るように熱交換して得た燃焼ガス及び過熱蒸気のうち、
燃焼ガスによりガスタービンを駆動して該排気等により
噴流ポンプ28aを構成させて、該中央側及び外側外筒
29内の空気を左後方に吸引噴射して推進力乃至圧力気
体を得ると共に、過熱蒸気により夫夫の蒸気加減弁7を
介して適宜に延長された、少なくとも1箇以上の噴流ポ
ンプ28cを駆動して、過熱蒸気を直接左後方に噴射し
て右前方の水等液体を左後方に強力に吸引噴射して、例
えば空気圧により船舶を浮揚して水噴射により該船舶を
推進する用途に使用します。従って、第1実施例から第
8実施例までの要素を適宜に置換して各種用途に使用可
能です。
Referring to FIG. 8, the eighth embodiment of the combined steam / gas turbine engine will be described. The difference between the fourth embodiment and the fourth embodiment shown in FIG. 4 is that the fourth embodiment suctions and injects gas such as air. In the eighth embodiment, air or the like is suctioned and moved to obtain a propulsion or pressure gas, and water or the like is strongly suctioned and injected in the eighth embodiment. It is a device that obtains propulsion or pressure liquid. That is, the difference is that, of the combustion gas and superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistant limit temperature,
The gas turbine is driven by the combustion gas and the exhaust gas or the like constitutes a jet pump 28a, and the air in the center side and the outer cylinder 29 is sucked and jetted to the left rear to obtain a propulsive force or a pressurized gas. By driving at least one or more jet pumps 28c appropriately extended by the steam through the respective steam control valves 7, the superheated steam is directly jetted to the left rear and the liquid such as water in the right front is jetted to the left rear. It is used for propulsion of the ship by water injection, for example, by levitation of the ship by air pressure. Therefore, the elements from the first embodiment to the eighth embodiment can be appropriately replaced and used for various purposes.

【0025】図9を参照して蒸気ガスタービン合体機関
の第9実施例を説明すると、図1の第1実施例から噴流
ポンプ28及び外筒29を削除したもので、相違点は、
第1実施例が主として空気等の気体を強力に吸引噴射移
動して推進力乃至圧力気体を得る装置であったのに対し
て、第9実施例では主として回転動力を得る装置とて、
又は図16のように公知の排熱回収熱熱交換器11を具
備することで熱と電気の併給設備として家庭用超小型に
も対応します。即ち相違点は、燃焼ガスと燃焼ガス温度
がタービン耐熱限界温度以下になるように熱交換して得
た過熱蒸気の全部により、全動翼・蒸気ガスタービンを
駆動するところです。
Referring to FIG. 9, a ninth embodiment of the combined steam and gas turbine engine will be described. The jet pump 28 and the outer cylinder 29 are omitted from the first embodiment of FIG.
While the first embodiment is a device that mainly obtains a thrust or a pressure gas by strongly sucking and moving a gas such as air, the ninth embodiment is a device that mainly obtains rotational power.
Alternatively, as shown in FIG. 16, by equipping a well-known exhaust heat recovery heat heat exchanger 11, it can also be used for household ultra-small as a combined heat and electricity supply facility. In other words, the difference is that all the moving blades / steam gas turbines are driven by all the superheated steam obtained by exchanging heat so that the combustion gas and the combustion gas temperature are below the turbine heat-resistant limit temperature.

【0026】図10を参照して蒸気ガスタービン合体機
関の第10実施例を説明すると、図3の第3実施例から
噴流ポンプ28及び外筒29を削除したもので、相違点
は、第3実施例が主として空気等の気体を強力に吸引噴
射移動して推進力乃至圧力気体を得る装置であったのに
対して、第10実施例では主として回転動力を得る装置
として、又は図16のように公知の排熱回収熱交換器1
1を具備することで熱と電気の併給設備とします。即ち
相違点は、燃焼ガスと燃焼ガス温度がタービン耐熱限界
温度以下になるように熱交換して得た過熱蒸気の全部に
より、蒸気ガスタービンを駆動するところです。
Referring to FIG. 10, a description will be given of a tenth embodiment of a combined steam and gas turbine engine. In the tenth embodiment, a jet pump 28 and an outer cylinder 29 are omitted from the third embodiment of FIG. In the tenth embodiment, a device for mainly obtaining rotational power is provided as a device for obtaining a propulsive force or a pressurized gas by strongly sucking and moving a gas such as air. Heat recovery heat exchanger 1
By equipping with 1, it will be a combined heat and electricity facility. That is, the difference is that the steam gas turbine is driven by all the superheated steam obtained by exchanging heat so that the combustion gas and the combustion gas temperature become lower than the turbine heat resistance limit temperature.

【0027】図11を参照して燃焼器兼熱交換器4の高
圧化・長大化手段の熔接構造を説明すると、(a)
(b)(c)(d)に示すように少なくとも1本以上の
螺旋状導水管1を含む水冷外壁を、螺旋状の熔接構造と
することで大きな圧力比を可能にすると共に、長大化を
容易にします。即ち(a)(b)に示す実施例の如く、
螺旋状に設けた導水管1の半径方向外方に少し離して燃
焼器外箱部25を設けて、1本以上の導水管1を軸方向
T字型等螺旋状に熔接して、大幅に高圧容器の燃焼器を
可能にすると共に燃焼器兼熱交換器4の伝熱面積大増大
も可能にします。又、(c)に示す実施例の如く、螺旋
状に設けた導水管1の半径方向外方に燃焼器外箱部25
を設けて、一本以上の導水管1を軸方向螺旋状に熔接し
て、超臨界の蒸気条件以下の大幅に高圧の燃焼器兼熱交
換器4の伝熱面積大増大を可能にします。又、(d)に
示す実施例の如く、螺旋状に設けた導水管1の半径方向
略中央に燃焼器外箱部25を設けて、一本以上の導水管
1を軸方向螺旋状に熔接して、超臨界の蒸気条件以下の
及び比較的高圧の圧力比の燃焼器兼熱交換器4の伝熱面
積大増大を可能にします。
The welding structure of the means for increasing the pressure and length of the combustor / heat exchanger 4 will be described with reference to FIG.
(B) As shown in (c) and (d), a water-cooled outer wall including at least one or more spiral water pipes 1 has a spiral welding structure to enable a large pressure ratio and increase the length. Make it easy. That is, as in the embodiment shown in (a) and (b),
A combustor outer box part 25 is provided slightly outward in the radial direction of the water guide pipe 1 provided in a spiral shape, and one or more water guide pipes 1 are welded in a spiral shape such as a T-shape in the axial direction to greatly reduce the size. It enables a high-pressure vessel combustor and a large heat transfer area for the combustor / heat exchanger 4. Further, as in the embodiment shown in (c), the combustor outer casing 25 is disposed radially outward of the water guide pipe 1 provided spirally.
Is installed, and one or more water pipes 1 are welded in a spiral shape in the axial direction, enabling a large increase in the heat transfer area of the combustor / heat exchanger 4 with a significantly higher pressure under supercritical steam conditions. Further, as in the embodiment shown in (d), a combustor outer box 25 is provided substantially at the center in the radial direction of the spirally provided water pipe 1, and one or more water guide pipes 1 are welded in an axially spiral manner. As a result, it is possible to increase the heat transfer area of the combustor / heat exchanger 4 having a pressure ratio lower than the supercritical steam condition and a relatively high pressure ratio.

【0028】図12を参照して燃焼器兼熱交換器4の高
圧化・長大化手段の水冷壁管単位52を説明すると、
(a)(b)(c)に示すように少なくとも一本以上の
螺旋状導水管1を含む水冷壁管単位52を、両端に鍔5
3を設けて組立て可能な一単位として、複数の水冷壁管
単位52を連結して大幅に高圧化・長大化可能な燃焼器
兼熱交換器4の主要部とします。即ち(a)(b)に示
す実施例の如く、螺旋状に設けた少なくとも1本以上の
導水管1の半径方向外方に少し離して燃焼器外箱部25
を設けて、該両端に鍔53を夫夫具備して該鍔53に導
水管1を夫夫開口して導水管1を含む水冷壁管単位52
を連結可能にします。又、(c)に示す実施例の如く、
螺旋状に設けた少なくとも1本以上の導水管1の半径方
向外方に燃焼器外箱部25を設けて、該両端に鍔53を
夫夫具備して該鍔53に導水管1を夫夫開口して導水管
1を含む水冷壁管単位52を連結可能に構成し、超臨界
の蒸気条件以下の及び比較的高圧の圧力比の燃焼器兼熱
交換器4の伝熱面積大増大を可能にします。
Referring to FIG. 12, the water cooling wall tube unit 52 of the means for increasing the pressure and lengthening the combustor / heat exchanger 4 will be described.
(A) As shown in (b) and (c), a water cooling wall pipe unit 52 including at least one or more spiral water pipes 1 is provided with flanges 5 at both ends.
As a unit that can be assembled by providing 3 units, a plurality of water cooling wall tube units 52 are connected to form the main part of the combustor / heat exchanger 4 that can be significantly increased in pressure and lengthened. That is, as in the embodiment shown in (a) and (b), the combustor outer box part 25 is slightly apart from the spirally provided at least one or more water guide pipes 1 in the radial direction.
The water cooling wall tube unit 52 including the water guide tube 1 is provided with the flange 53 provided at both ends thereof, and the water guide tube 1 is respectively opened at the flange 53.
To be concatenated. Also, as in the embodiment shown in FIG.
A combustor outer box part 25 is provided radially outward of at least one or more water guide pipes 1 provided in a spiral shape, and flanges 53 are provided at both ends thereof. The water cooling wall pipe unit 52 including the water pipe 1 can be connected so as to be openable, and the heat transfer area of the combustor / heat exchanger 4 having a supercritical steam condition or less and a relatively high pressure ratio can be increased. To

【0029】図13・図14を参照して磁気摩擦動力伝
達装置を説明すると、通常の変速や逆転を含む各種動力
伝達装置は主として歯車装置を使用している。このた
め、歯面に大きな荷重を含む滑り歯面を必須とするた
め、潤滑油を必要とするのに加えて摩擦熱損失も非常に
大きく、高速回転を含む大動力の伝達装置には使用不可
という問題がある。このため、全動翼・蒸気ガスタービ
ン合体機関を実用化するには、ころがり接触による超高
速大動力伝達装置が必須となり、超高速大動力伝達装置
を可能にすると共に潤滑油も不用にするためには、歯車
装置の滑り歯面を皆無に近づけたころがり接触による動
力伝達装置が必要となる。このため、歯車のかみ合い高
さを限りなく縮小した低凹凸40とし、回転方向35上
流側及び下流側に棒磁石33又は電磁石34を設けて、
該磁石の強い吸引力を利用した例えば各種着磁摩擦車3
7・37及び各種磁着摩擦車39・39等と多様な組み
合わせを含む各種磁気摩擦動力伝達装置として全面的に
使用するのが好ましい。即ち、転がり接触に近づけるこ
とにより、摩擦熱損失を皆無に近づけて、超高速大動力
伝達装置や潤滑油に換えて無害の水冷却を可能にするも
のです。
The magnetic friction power transmission device will be described with reference to FIGS. 13 and 14. Various power transmission devices including normal speed change and reverse rotation mainly use a gear device. For this reason, since a sliding tooth surface that includes a large load is essential for the tooth surface, in addition to the need for lubricating oil, the friction heat loss is also very large, so it can not be used for high power transmission equipment including high speed rotation There is a problem. For this reason, in order to commercialize an all-blade / steam gas turbine combined engine, an ultra-high-speed, large-power transmission device by rolling contact is indispensable. Requires a power transmission device by rolling contact with the sliding tooth surface of the gear device being almost zero. For this reason, the meshing height of the gears is reduced as much as possible to provide low irregularities 40, and a bar magnet 33 or an electromagnet 34 is provided on the upstream and downstream sides in the rotation direction 35,
Various magnetized friction wheels 3 utilizing the strong attraction of the magnet
It is preferable to use the device as a whole as various magnetic friction power transmission devices including various combinations with the 7.37 and various magnetically-attached friction wheels 39,39. In other words, by bringing rolling contact closer, the frictional heat loss can be reduced to almost zero, and harmless water cooling can be achieved in place of ultra-high-speed large power transmission and lubricating oil.

【0030】図14・図15を参照して磁気摩擦動力伝
達装置を説明すると、各種歯車に換えて各種着磁摩擦車
37・37や各種磁着摩擦車39・39等を使用し、動
力伝達面31には低凹凸40として例えば平歯車に換え
て平凹凸41車を、ハスバ歯車に換えてハスバ凹凸42
車を、ヤマバ歯車に換えてヤマバ凹凸43車を設ける。
これにより磁気摩擦動力伝達装置14として、公知の各
種歯車式動力伝達装置と同様に各種磁気摩擦動力伝達装
置を構成して使用します。特殊な磁気摩擦動力伝達装置
14としては、図15の実施例のようにレール54と車
輪55と棒磁石33又は電磁石34の組合せがありま
す。この実施例ではレール54が磁石に吸着する物質で
あれば車輪55の材質を問いませんので、磁石を棒磁石
33又は電磁石34のみとした磁気摩擦動力伝達装置1
4を構成して、急な坂を含む鉄道を磁石の強い吸引力を
利用して超高速走行する鉄道輸送機器の実用化を図りま
す。
The magnetic friction power transmission device will be described with reference to FIGS. 14 and 15. Power transmission is performed by using various magnetized friction wheels 37, 37 and various magnetic friction wheels 39, 39 instead of various gears. On the surface 31, low unevenness 40 is used, for example, a flat unevenness 41 wheel instead of a spur gear, and a helical unevenness 42 instead of a helical gear.
The car is replaced with a Yamaba gear, and 43 Yamaba irregularities are provided.
As a result, various magnetic friction power transmission devices are configured and used as the magnetic friction power transmission device 14 in the same manner as the known various gear type power transmission devices. As the special magnetic friction power transmission device 14, there is a combination of a rail 54, a wheel 55, a bar magnet 33 or an electromagnet 34 as in the embodiment of FIG. In this embodiment, the material of the wheel 55 does not matter as long as the rail 54 is a substance that is attracted to the magnet. Therefore, the magnetic friction power transmission device 1 in which the magnet is only the bar magnet 33 or the electromagnet 34 is used.
By constructing No.4, practical use of railway transportation equipment that travels at very high speed on railways including steep hills by using the strong attraction of magnets.

【0031】図16を参照して蒸気ガスタービン合体機
関の第11実施例を説明すると、回転動力を得るための
蒸気ガスタービン合体機関とすると、燃焼器兼熱交換器
4の長大化手段として、蒸気ガスタービン及び圧縮機の
うち片方又は両方を反転した、燃焼器兼熱交換器4の長
大化伝熱面積の大増大が加わります。即ち、左端の反転
した圧縮機より通常の如く空気を吸入圧縮して高圧圧縮
空気を燃焼器兼熱交換器4に供給し、該高圧空気と従来
技術の4倍前後を含む燃料とも理論空燃比燃焼が可能に
攪拌混合燃焼して、燃焼ガス温度がタービン耐熱限界温
度以下となるように熱交換して得た過熱蒸気を蒸気加減
弁7を介して蒸気ガスタービンの最上流側より下流側に
噴射して出力を発生させ、該熱交換して得た燃焼ガスを
蒸気ガスタービンの最適中間段に供給して出力を増大す
ると共に過熱蒸気に接触して直接再熱し、該排気を排熱
回収熱交換器11で冷却熱交換して排気します。該熱交
換により得られた給湯用水及び給水3は適宜に使用され
ますが、排気自体が100℃に近い低温のため、ごみ焼
炉12及びごみ焼炉熱交換器13を設けて給水3の温度
を上昇し、給水ポンプ2により燃焼器兼熱交換器4に供
給可能にします。
The eleventh embodiment of the combined steam / gas turbine engine will be described with reference to FIG. 16. If the combined combined gas / gas turbine engine for obtaining rotational power is used, the means for increasing the length of the combustor / heat exchanger 4 is as follows. One or both of the steam gas turbine and the compressor are reversed, and the length of the combustor / heat exchanger 4 is increased. That is, air is sucked and compressed as usual from the leftmost inverted compressor, and high-pressure compressed air is supplied to the combustor / heat exchanger 4. Superheated steam obtained by performing heat-exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature by stirring and mixing combustion so as to be combustible is transferred downstream from the most upstream side of the steam gas turbine through the steam control valve 7. The power is injected to generate power, and the combustion gas obtained by the heat exchange is supplied to the optimum intermediate stage of the steam gas turbine to increase the power, and is directly reheated by contact with the superheated steam to recover the exhaust heat. Exhaust after cooling heat exchange in heat exchanger 11. The hot-water supply water and the feed water 3 obtained by the heat exchange are appropriately used. However, since the exhaust gas itself is a low temperature close to 100 ° C., the refuse-burning furnace 12 and the refuse-burning furnace heat exchanger 13 are provided and the temperature of the feed water 3 To be supplied to the combustor / heat exchanger 4 by the feedwater pump 2.

【0032】図17を参照して蒸気ガスタービン合体機
関の第1の実施形態を説明すると、空気を強力に吸引噴
射して推進力を得る各種航空機用に使用する蒸気ガスタ
ービン合体機関で、いずれも過熱蒸気と燃焼ガスを噴射
して推進力を得る必要があるため、図1から図4までの
主要部を全動翼蒸気ガスタービン又は全動翼ガスタービ
ン又は蒸気ガスタービン又はガスタービンとした、蒸気
ガスタービン合体機関を使用します。動力伝達装置は、
補機を含めて通常の動力伝達装置の使用から順次磁気摩
擦動力伝達装置の開発使用に切り替えます。
Referring to FIG. 17, a first embodiment of a combined steam gas turbine engine will be described. A combined steam gas turbine engine used for various aircrafts for obtaining a propulsion force by strongly sucking and injecting air. Also, since it is necessary to inject superheated steam and combustion gas to obtain a propulsion force, the main part of FIGS. 1 to 4 is a full-blade steam gas turbine, a full-blade gas turbine, a steam gas turbine, or a gas turbine. Uses a steam gas turbine coalescence engine. The power transmission device
We will gradually switch from using normal power transmissions, including accessories, to developing and using magnetic friction power transmissions.

【0033】図18を参照して蒸気ガスタービン合体機
関の第2の実施形態を説明すると、空気及び水を強力に
吸引噴射して船体を浮揚して推進力を得る各種船舶用に
使用する蒸気ガスタービン合体機関で、いずれも過熱蒸
気と燃焼ガスを噴射して船体を浮揚しながら推進力を得
る必要があるため、図5から図8までの主要部を全動翼
蒸気ガスタービン又は全動翼ガスタービン又は蒸気ガス
タービン又はガスタービンとした、蒸気ガスタービン合
体機関を使用します。動力伝達装置は、補機を含めて通
常の動力伝達装置の使用から順次磁気摩擦動力伝達装置
の開発使用に切り替えます。
A second embodiment of the combined steam and gas turbine engine will be described with reference to FIG. 18. A steam used for various types of ships that obtains propulsion by floating and inflating a hull by strongly sucking and injecting air and water. In the combined gas turbine engine, it is necessary to inject superheated steam and combustion gas to obtain the propulsion force while floating the hull, so that the main parts in FIG. 5 to FIG. Use a steam gas turbine combined engine, which is a wing gas turbine or a steam gas turbine or a gas turbine. The power transmission system will gradually switch from using normal power transmission systems, including accessories, to developing and using magnetic friction power transmission systems.

【0034】図19を参照して蒸気ガスタービン合体機
関の第3の実施形態を説明すると、各種車輪を強力に回
転させて各種車両を移動させる蒸気ガスタービン合体機
関で、いずれも過熱蒸気と燃焼ガスを噴射して回転動力
を得る必要があるため、図9・図10・図16のよう
に、主要部を全動翼蒸気ガスタービン又は蒸気ガスター
ビンとした蒸気ガスタービン合体機関を使用します。動
力伝達装置は、補機を含めて逆転や変速を含む通常の動
力伝達装置の使用から順次磁気摩擦動力伝達装置の開発
使用に切り替えます。
Referring to FIG. 19, a third embodiment of the combined steam and gas turbine engine will be described. This is a combined combined steam and gas turbine engine for rotating various wheels to move various vehicles. Since it is necessary to obtain rotational power by injecting gas, use a steam gas turbine combined engine with the main part as a whole blade steam gas turbine or a steam gas turbine as shown in Fig. 9, Fig. 10, and Fig. 16. . The power transmission system will gradually switch from using normal power transmission systems including reversing and shifting including auxiliary equipment to developing and using magnetic friction power transmission systems.

【0035】図20を参照して蒸気ガスタービン合体機
関の第4の実施形態を説明すると、各種羽根を強力に回
転させて推進力乃至浮揚力を得る各種航空機に使用する
蒸気ガスタービン合体機関で、いずれも過熱蒸気と燃焼
ガスを噴射して回転動力を得る必要があるため、図9・
図10・図16のように、主要部を全動翼蒸気ガスター
ビンとした蒸気ガスタービン合体機関を使用します。動
力伝達装置は、補機を含めて逆転や変速を含む通常の動
力伝達装置の使用から順次磁気摩擦動力伝達装置の開発
使用に切り替えます。
Referring to FIG. 20, a fourth embodiment of the steam-gas-turbine combined engine will be described. The steam-gas-turbine combined engine used in various aircraft for obtaining propulsion or levitation by rotating various blades strongly. In both cases, it is necessary to inject superheated steam and combustion gas to obtain rotational power.
As shown in Fig.10 and Fig.16, a steam gas turbine combined engine with the main part being a whole blade steam gas turbine is used. The power transmission system will gradually switch from using normal power transmission systems including reversing and shifting including auxiliary equipment to developing and using magnetic friction power transmission systems.

【0036】図21を参照して蒸気ガスタービン合体機
関の第5の実施形態を説明すると、各種スクリュープロ
ペラを強力に回転させて推進力を得る各種船舶に使用す
る蒸気ガスタービン合体機関で、いずれも過熱蒸気と燃
焼ガスを噴射して回転動力を得る必要があるため、図9
・図10・図16のように、主要部を全動翼蒸気ガスタ
ービン又は蒸気ガスタービンとした蒸気ガスタービン合
体機関を使用します。動力伝達装置は、補機を含めて逆
転や変速を含む通常の動力伝達装置の使用から順次磁気
摩擦動力伝達装置の開発使用に切り替えます。
Referring to FIG. 21, a fifth embodiment of the combined steam and gas turbine engine will be described. A combined steam and gas turbine combined engine used for various ships that obtains propulsion by strongly rotating various screw propellers. FIG. 9 also shows that it is necessary to obtain rotational power by injecting superheated steam and combustion gas.
-As shown in Fig. 10 and Fig. 16, use a steam gas turbine combined engine whose main part is a whole blade steam gas turbine or a steam gas turbine. The power transmission system will gradually switch from using normal power transmission systems including reversing and shifting including auxiliary equipment to developing and using magnetic friction power transmission systems.

【0037】図22を参照して蒸気ガスタービン合体機
関の第6の実施形態を説明すると、各種発電機を駆動し
て超小型を含む熱と電気の併給が可能な蒸気ガスタービ
ン合体機関で、いずれも過熱蒸気と燃焼ガスを噴射して
回転動力を得ると共に排熱を利用する必要があるため、
図9・図10・図16のように、主要部を全動翼蒸気ガ
スタービン発電機又は蒸気ガスタービン発電機とした蒸
気ガスタービン合体機関を使用し、図16のように排熱
回収熱交換器11のあるものを使用し、又はごみ焼炉1
2及び該ごみ焼炉熱交換器13を追加したものを使用し
て熱と電気の併給に使用します。動力伝達装置は、補機
を含めて通常の動力伝達装置の使用から順次磁気摩擦動
力伝達装置の開発使用に切り替えます。
A sixth embodiment of the combined steam and gas turbine engine will be described with reference to FIG. 22. A combined steam and gas turbine combined engine capable of driving heat and electricity, including microminiatures, by driving various generators. In any case, it is necessary to obtain rotational power by injecting superheated steam and combustion gas and use exhaust heat,
As shown in FIG. 9, FIG. 10 and FIG. 16, a main part is a full-blade steam gas turbine generator or a steam gas turbine combined engine having a steam gas turbine generator as shown in FIG. Using a vessel 11 or a garbage furnace 1
2 and the refuse incinerator heat exchanger 13 are used for the combined supply of heat and electricity. The power transmission system will gradually switch from using normal power transmission systems, including accessories, to developing and using magnetic friction power transmission systems.

【0038】[0038]

【発明の効果】本発明は、全動翼を含む各種蒸気ガスタ
ービン合体機関として、ガスタービン燃焼器の外壁を、
導水管を含む螺旋状の熔接構造又は、螺旋状の水冷壁管
単位組立構造として高圧化・長大化して、伝熱面積を大
増大した高圧容器の燃焼器兼熱交換器として、供給熱量
の大部分を過熱蒸気に変換可能にして、タービンの耐熱
限界温度を越えることなく熱交換して得られた燃焼ガス
及び過熱蒸気により、回転動力を得ると共に各種噴流ポ
ンプを構成させたため、圧縮空気量を従来技術と同一に
した場合、従来ガスタービンの4倍前後の燃料による理
論空燃比燃焼まで、供給熱量を大増大して比出力が大増
大できるし、圧縮した空気量を100%燃焼に利用して
通常圧力比の10倍近い圧力比の超高圧の過熱蒸気を噴
射できるため、最も効率の良い各種ガスタービン・蒸気
タービン合体サイクルを含む各種蒸気ガスタービン合体
機関として、各種各様の噴流ポンプを得る等、熱効率の
大上昇に大きな効果があります。又、磁気摩擦動力伝達
装置を全面的に開発使用することで、従来技術の動力伝
達装置による摩擦熱損失を大幅に低減して熱効率を更に
上昇する効果があります。従って、各種運輸機器や熱と
電気の併給設備として使用することで、CO2を地球規
模で低減するために大きな効果があります。
According to the present invention, an outer wall of a gas turbine combustor is provided as a combined steam and gas turbine engine including all rotor blades.
High pressure and length as a spiral welding structure including a water pipe or a spiral water cooling wall tube unit assembly structure, and as a combustor and heat exchanger for a high pressure vessel with a large heat transfer area, a large supply of heat. The part can be converted to superheated steam, and the combustion gas and superheated steam obtained by exchanging heat without exceeding the heat-resistant limit temperature of the turbine obtains rotational power and configures various jet pumps. In the case of the same as the conventional technology, the specific heat can be greatly increased by increasing the supplied heat amount up to the stoichiometric air-fuel ratio combustion with about four times the fuel of the conventional gas turbine, and the compressed air amount can be used for 100% combustion. And super-high-pressure steam with a pressure ratio close to 10 times the normal pressure ratio can be injected, so that various types of steam gas turbine combined engines, including various gas turbine and steam turbine combined cycles, are the most efficient. Such as obtaining the like of the jet pump, there is a large effect on the large increase in thermal efficiency. Also, by fully developing and using the magnetic friction power transmission device, it has the effect of significantly reducing frictional heat loss due to the power transmission device of the prior art and further increasing thermal efficiency. Therefore, it is very effective to reduce CO2 on a global scale by using it as various transportation equipment and cogeneration equipment for heat and electricity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】蒸気ガスタービン合体機関の第1実施例を示す
一部断面図。
FIG. 1 is a partial cross-sectional view showing a first embodiment of a combined steam gas turbine engine.

【図2】蒸気ガスタービン合体機関の第2実施例を示す
一部断面図。
FIG. 2 is a partial cross-sectional view showing a second embodiment of the combined steam gas turbine engine.

【図3】蒸気ガスタービン合体機関の第3実施例を示す
一部断面図。
FIG. 3 is a partial cross-sectional view illustrating a third embodiment of the combined steam gas turbine engine.

【図4】蒸気ガスタービン合体機関の第4実施例を示す
一部断面図。
FIG. 4 is a partial sectional view showing a fourth embodiment of the steam gas turbine combined engine.

【図5】蒸気ガスタービン合体機関の第5実施例を示す
一部断面図。
FIG. 5 is a partial sectional view showing a fifth embodiment of the steam gas turbine combined engine.

【図6】蒸気ガスタービン合体機関の第6実施例を示す
一部断面図。
FIG. 6 is a partial cross-sectional view showing a sixth embodiment of the combined steam gas turbine engine.

【図7】蒸気ガスタービン合体機関の第7実施例を示す
一部断面図。
FIG. 7 is a partial cross-sectional view showing a seventh embodiment of the steam gas turbine combined engine.

【図8】蒸気ガスタービン合体機関の第8実施例を示す
一部断面図。
FIG. 8 is a partial cross-sectional view showing an eighth embodiment of the combined steam gas turbine engine.

【図9】蒸気ガスタービン合体機関の第9実施例を示す
一部断面図。
FIG. 9 is a partial cross-sectional view showing a ninth embodiment of the combined steam gas turbine engine.

【図10】蒸気ガスタービン合体機関の第10実施例を
示す一部断面図。
FIG. 10 is a partial sectional view showing a tenth embodiment of the steam gas turbine combined engine.

【図11】燃焼器兼熱交換器の水冷外壁の螺旋状溶接構
造を示す断面図。
FIG. 11 is a sectional view showing a spiral welding structure of a water-cooled outer wall of the combustor / heat exchanger.

【図12】燃焼器兼熱交換器の螺旋状の水冷壁管単位を
説明するための断面図。
FIG. 12 is a cross-sectional view for explaining a spiral water cooling wall tube unit of the combustor / heat exchanger.

【図13】蒸気ガスタービン合体機関用磁気摩擦動力伝
達装置の概念図。
FIG. 13 is a conceptual diagram of a magnetic friction power transmission device for a steam gas turbine combined engine.

【図14】着磁摩擦車及び磁着摩擦車等の摩擦増大手段
を説明するための図。
FIG. 14 is a view for explaining friction increasing means such as a magnetic friction wheel and a magnetic friction wheel.

【図15】磁気摩擦動力伝達装置の特殊実施例を説明す
るための図。
FIG. 15 is a view for explaining a special embodiment of the magnetic friction power transmission device.

【図16】蒸気ガスタービン合体機関の第11実施例の
全体構成図。
FIG. 16 is an overall configuration diagram of an eleventh embodiment of a combined steam gas turbine engine.

【図17】蒸気ガスタービン合体機関の第1の実施形態
を示す全体構成図。
FIG. 17 is an overall configuration diagram showing a first embodiment of the steam gas turbine combined engine.

【図18】蒸気ガスタービン合体機関の第2の実施形態
を示す全体構成図。
FIG. 18 is an overall configuration diagram showing a second embodiment of the combined steam gas turbine engine.

【図19】蒸気ガスタービン合体機関の第3の実施形態
を示す全体構成図。
FIG. 19 is an overall configuration diagram showing a third embodiment of the steam gas turbine combined engine.

【図20】蒸気ガスタービン合体機関の第4の実施形態
を示す全体構成図。
FIG. 20 is an overall configuration diagram showing a fourth embodiment of the steam gas turbine combined engine.

【図21】蒸気ガスタービン合体機関の第5の実施形態
を示す全体構成図。
FIG. 21 is an overall configuration diagram showing a fifth embodiment of the steam gas turbine combined engine.

【図22】蒸気ガスタービン合体機関の第6の実施形態
を示す全体構成図。
FIG. 22 is an overall configuration diagram showing a sixth embodiment of the combined steam gas turbine engine.

【符号の説明】[Explanation of symbols]

1:導水管 2:給水ポンプ 3:給水 4:燃
焼器兼熱交換器 5:蒸気 6:蒸気管 7:蒸
気加減弁 10燃焼ガス 11:排熱回収熱交換器
12:ごみ焼炉 13:ごみ焼炉熱交換器 1
4:磁気摩擦動力伝達装置 16:外側圧縮機動翼群
17:内側圧縮機動翼群 19:外側タービン動
翼群 20:内側タービン動翼群 21:環状の出
口 22:環状の受け口 23:環状の受け口
24:環状の噴口群 25:燃焼器外箱部 26:
水冷外壁 27:燃料供給手段 28:噴流ポンプ 29:外筒 30:圧力低減手段 31:動力伝達
面 32:ヨーク 33:棒磁石 34:電磁石 35:回転方向
36:磁極 37:着磁摩擦車 38:内着磁摩擦
車 39:磁着摩擦車 40:低凹凸 41:平凹凸 42:ハスバ凹凸 43:ヤマバ凹
凸 44:内磁着摩擦車 45:摩擦増大耐久手段
46:磁石部 47:ヨーク(着磁摩擦車用)
48:絶縁材料 50:機関本体 51:支軸
52:水冷壁管単位 53:鍔 54:レール
55:車輪
1: water guide pipe 2: feed water pump 3: feed water 4: combustor and heat exchanger 5: steam 6: steam pipe 7: steam control valve 10 combustion gas 11: waste heat recovery heat exchanger 12: garbage furnace 13: refuse Furnace heat exchanger 1
4: Magnetic friction power transmission device 16: Outer compressor blade group 17: Inner compressor blade group 19: Outer turbine blade group 20: Inner turbine blade group 21: Annular outlet 22: Annular socket 23: Annular socket
24: annular nozzle group 25: combustor outer box 26:
Water-cooled outer wall 27: Fuel supply means 28: Jet pump 29: Outer cylinder 30: Pressure reducing means 31: Power transmission surface 32: Yoke 33: Bar magnet 34: Electromagnet 35: Rotation direction
36: Magnetic pole 37: Magnetized friction wheel 38: Inner magnetized friction wheel 39: Magnetized friction wheel 40: Low unevenness 41: Flat unevenness 42: Husva unevenness 43: Yamaba unevenness 44: Inner magnetized friction wheel 45: Increased friction durability Means 46: Magnet part 47: Yoke (for magnetized friction wheel)
48: Insulating material 50: Engine body 51: Support shaft
52: Water cooling wall tube unit 53: Tsuba 54: Rail
55: Wheel

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F01D 15/10 F01D 15/10 B F02C 3/30 F02C 3/30 Z 7/00 7/00 G 7/36 7/36 F23R 3/00 F23R 3/00 C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI F01D 15/10 F01D 15/10 B F02C 3/30 F02C 3/30 Z 7/00 7/00 G 7/36 7/36 F23R 3/00 F23R 3/00 C

Claims (48)

【特許請求の範囲】[Claims] 【請求項1】 水冷外壁を螺旋状の熔接構造として高圧
化・長大化した複数の燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガ
スと燃焼ガス温度がタービン耐熱限界温度以下となるよ
うに熱交換して得た過熱蒸気で出力を得る全動翼蒸気ガ
スタービンと、該排気を含む噴流ポンプ(28a)と、
該過熱蒸気を噴射して空気を吸引噴射する過熱蒸気噴口
を含む噴流ポンプ(28b)と、該夫夫の噴流ポンプの
推力により機体を浮揚移動させるための装置とを有する
蒸気ガスタービン合体機関運輸発電機器。
1. A plurality of combustors and heat exchangers of which pressure and length are increased by using a spirally welded outer wall of a water-cooled outer wall, and a full blade compressor that supplies compressed air to the combustors and heat exchangers; An all-blade steam gas turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas and the combustion gas temperature are equal to or lower than the turbine heat-resistant limit temperature, a jet pump (28a) including the exhaust gas,
A steam gas turbine combined engine transport having a jet pump (28b) including a superheated steam injection port for injecting the superheated steam and sucking and injecting air, and a device for levitating and moving the airframe by the thrust of the respective jet pumps. Power generation equipment.
【請求項2】 螺旋状の水冷壁管単位組立構造として高
圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空気
を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼
ガスと燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
ガスタービンと、該排気を含む噴流ポンプ(28a)
と、該過熱蒸気を噴射して空気を吸引噴射する過熱蒸気
噴口を含む噴流ポンプ(28b)と、該夫夫の噴流ポン
プの推力により機体を浮揚移動させるための装置とを有
する蒸気ガスタービン合体機関運輸発電機器。
2. A plurality of combustor / heat exchangers of high pressure and length as a spiral water cooling wall tube unit assembly structure, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. An all-blade steam gas turbine that obtains an output with superheated steam obtained by heat exchange so that the combustion gas and the combustion gas temperature are equal to or lower than the turbine heat resistant limit temperature, and a jet pump including the exhaust gas (28a)
And a jet pump (28b) including a superheated steam nozzle for injecting the superheated steam and sucking and injecting air, and a device for levitating and moving the airframe by the thrust of the respective jet pumps Engine transport power equipment.
【請求項3】 水冷外壁を螺旋状の熔接構造として高圧
化・長大化した複数の燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガ
スで出力を得る全動翼ガスタービンと、該排気を含む噴
流ポンプ(28a)と、燃焼ガス温度がタービン耐熱限
界温度以下となるように熱交換して得た過熱蒸気を噴射
して空気を吸引噴射する過熱蒸気噴口を含む噴流ポンプ
(28b)と、該夫夫の噴流ポンプの推力により機体を
浮揚移動させるための装置とを有する蒸気ガスタービン
合体機関運輸発電機器。
3. A plurality of combustors and heat exchangers whose pressure and length are increased by using a water-cooled outer wall as a spiral welding structure, and an all-blade compressor that supplies compressed air to the combustors and heat exchangers. An all-blade gas turbine that obtains output with combustion gas, a jet pump (28a) containing the exhaust gas, and air by injecting superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistant limit temperature And a jet pump (28b) including a superheated steam jet port for sucking and injecting steam, and a device for levitating and moving the airframe by the thrust of the respective jet pumps.
【請求項4】 螺旋状の水冷壁管単位組立構造として高
圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空気
を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼
ガスで出力を得る全動翼ガスタービンと、該排気を含む
噴流ポンプ(28a)と、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気を噴
射して空気を吸引噴射する過熱蒸気噴口を含む噴流ポン
プ(28b)と、該夫夫の噴流ポンプの推力により機体
を浮揚移動させるための装置とを有する蒸気ガスタービ
ン合体機関運輸発電機器。
4. A plurality of combustor / heat exchangers of high pressure and length as a spiral water cooling wall tube unit assembly structure, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. And a jet blade pump (28a) containing the exhaust gas, which obtains an output from the combustion gas, and a superheated steam obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature. A steam-gas-turbine combined engine transport power generation device having a jet pump (28b) including a superheated steam jet port for sucking and injecting air, and a device for levitating and moving the airframe by the thrust of the respective jet pumps.
【請求項5】 水冷外壁を螺旋状の熔接構造として高圧
化・長大化した複数の燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと燃
焼ガス温度がタービン耐熱限界温度以下となるように熱
交換して得た過熱蒸気で出力を得る蒸気ガスタービン
と、該排気を含む噴流ポンプ(28a)と、該過熱蒸気
を噴射して空気を吸引噴射する過熱蒸気噴口を含む噴流
ポンプ(28b)と、該夫夫の噴流ポンプの推力により
機体を浮揚移動させるための装置とを有する蒸気ガスタ
ービン合体機関運輸発電機器。
5. A plurality of combustor / heat exchangers whose pressure and length are increased by using a spirally welded outer wall of a water-cooled outer wall, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A steam gas turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature, a jet pump (28a) including the exhaust gas, and air that is injected by injecting the superheated steam to generate air A steam-gas-turbine combined engine transport power generation device having a jet pump (28b) including a superheated steam jet port for suction injection, and a device for levitating and moving the airframe by the thrust of the respective jet pumps.
【請求項6】 螺旋状の水冷壁管単位組立構造として高
圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空気
を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る蒸気ガスタービン
と、該排気を含む噴流ポンプ(28a)と、該過熱蒸気
を噴射して空気を吸引噴射する過熱蒸気噴口を含む噴流
ポンプ(28b)と、該夫夫の噴流ポンプの推力により
機体を浮揚移動させるための装置とを有する蒸気ガスタ
ービン合体機関運輸発電機器。
6. A plurality of combustor / heat exchangers of high pressure and length as a spiral water cooling wall tube unit assembly structure, a compressor for supplying compressed air to the combustor / heat exchanger, and combustion gas And a steam gas turbine that obtains an output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, a jet pump (28a) including the exhaust gas, and air that injects the superheated steam and air And a jet pump (28b) including a superheated steam jet port for sucking and injecting steam, and a device for levitating and moving the airframe by the thrust of the respective jet pumps.
【請求項7】 請求項5又は6に於いて、圧縮機、蒸気
ガスタービンのいずれかが全動翼である蒸気ガスタービ
ン合体機関運輸発電機器。
7. The steam and gas turbine combined engine transport power generation equipment according to claim 5, wherein one of the compressor and the steam gas turbine is a full blade.
【請求項8】 水冷外壁を螺旋状の熔接構造として高圧
化・長大化した複数の燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、該排気を含む噴流ポンプ(2
8a)と、燃焼ガス温度がタービン耐熱限界温度以下と
なるように熱交換して得た過熱蒸気を噴射して空気を吸
引噴射する過熱蒸気噴口を含む噴流ポンプ(28b)
と、該夫夫の噴流ポンプの推力により機体を浮揚移動さ
せるための装置とを有する蒸気ガスタービン合体機関運
輸発電機器。
8. A plurality of combustors and heat exchangers of which pressure and length are increased by using a spirally welded outer wall of a water-cooled outer wall, a compressor for supplying compressed air to the combustor and heat exchangers, and a combustion gas. A gas turbine for obtaining an output, and a jet pump (2
8a) and a jet pump (28b) including a superheated steam injection port for injecting superheated steam obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat resistant limit temperature and sucking and injecting air.
And a device for levitating and moving the airframe by the thrust of the respective jet pumps.
【請求項9】 螺旋状の水冷壁管単位組立構造として高
圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空気
を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで
出力を得るガスタービンと、該排気を含む噴流ポンプ
(28a)と、燃焼ガス温度がタービン耐熱限界温度以
下となるように熱交換して得た過熱蒸気を噴射して空気
を吸引噴射する過熱蒸気噴口を含む噴流ポンプ(28
b)と、該夫夫の噴流ポンプの推力により機体を浮揚移
動させるための装置とを有する蒸気ガスタービン合体機
関運輸発電機器。
9. A plurality of combustor / heat exchangers of high pressure and length as a spiral water cooling wall unit assembly structure, a compressor for supplying compressed air to the combustor / heat exchanger, and combustion gas Gas turbine, a jet pump including the exhaust gas, a superheater that injects superheated steam obtained by heat exchange so that a combustion gas temperature is equal to or lower than a turbine heat resistant limit temperature, and suctions and injects air. Jet pump including steam nozzle (28
b) and a steam-gas-turbine combined-engine transport power generation device having a device for levitating and moving the airframe by the thrust of the respective jet pumps.
【請求項10】 請求項8又は9に於いて、圧縮機、ガ
スタービンのいずれかが全動翼である蒸気ガスタービン
合体機関運輸発電機器。
10. The steam and gas turbine combined engine transport power generation equipment according to claim 8, wherein either the compressor or the gas turbine is a full blade.
【請求項11】 水冷外壁を螺旋状の熔接構造として高
圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空気
を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼
ガスと燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
ガスタービンと、該排気を含む噴流ポンプ(28a)か
らの噴気を船底に噴射し、該過熱蒸気を噴射して水を吸
引船底噴射する過熱蒸気噴口を含む噴流ポンプ(28
c)と、該夫夫の噴流ポンプの力により船舶を移動させ
るための装置とを有する蒸気ガスタービン合体機関運輸
発電機器。
11. A plurality of combustors and heat exchangers whose pressure and length are increased by using a spirally welded outer wall of a water-cooled outer wall, and a full-blade compressor that supplies compressed air to the combustors and heat exchangers. A combustion blade and a full-blade steam gas turbine that obtains an output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resisting limit temperature, and a jet from a jet pump (28a) including the exhaust gas is sent to a ship bottom. Jet pump including a superheated steam nozzle for injecting the superheated steam and injecting water into the suction bottom of the ship (28)
and c) and a device for moving the ship by the force of the respective jet pumps.
【請求項12】 螺旋状の水冷壁管単位組立構造として
高圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
気ガスタービンと、該排気を含む噴流ポンプ(28a)
からの噴気を船底に噴射し、該過熱蒸気を噴射して水を
吸引船底噴射する過熱蒸気噴口を含む噴流ポンプ(28
c)と、該夫夫の噴流ポンプの力により船舶を移動させ
るための装置とを有する蒸気ガスタービン合体機関運輸
発電機器。
12. A plurality of combustor / heat exchangers of high pressure and length as a spiral water cooling wall tube unit assembly structure, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. An all-blade steam gas turbine that obtains an output with superheated steam obtained by heat exchange so that the combustion gas and the combustion gas temperature are equal to or lower than the turbine heat resistant limit temperature, and a jet pump including the exhaust gas (28a)
A jet pump (28) including a superheated steam nozzle for injecting the superheated steam into the bottom of the ship,
and c) and a device for moving the ship by the force of the respective jet pumps.
【請求項13】 水冷外壁を螺旋状の熔接構造として高
圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空気
を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼
ガスで出力を得る全動翼ガスタービンと、該排気を含む
噴流ポンプ(28a)からの噴気を船底に噴射し、燃焼
ガス温度がタービン耐熱限界温度以下となるように熱交
換して得た過熱蒸気を噴射して水を吸引船底噴射する過
熱蒸気噴口を含む噴流ポンプ(28c)と、該夫夫の噴
流ポンプの力により船舶を移動させるための装置とを有
する蒸気ガスタービン合体機関運輸発電機器。
13. A plurality of combustors and heat exchangers whose pressure and length are increased by using a spirally welded outer wall of a water-cooled outer wall, and an all-blade compressor that supplies compressed air to the combustors and heat exchangers. An all-blade gas turbine that obtains output with combustion gas, and a jet from a jet pump (28a) containing the exhaust gas are injected to the bottom of the ship, and heat exchange is performed so that the combustion gas temperature becomes equal to or lower than the turbine heat resistance limit temperature. A steam-gas-turbine combined-engine transport power generator having a jet pump (28c) including a superheated steam nozzle for injecting superheated steam and suctioning water to the bottom of the ship, and a device for moving the ship by the power of the respective jet pumps. machine.
【請求項14】 螺旋状の水冷壁管単位組立構造として
高圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
焼ガスで出力を得る全動翼ガスタービンと、該排気を含
む噴流ポンプ(28a)からの噴気を船底に噴射し、燃
焼ガス温度がタービン耐熱限界温度以下となるように熱
交換して得た過熱蒸気を噴射して水を吸引船底噴射する
過熱蒸気噴口を含む噴流ポンプ(28c)と、該夫夫の
噴流ポンプの力により船舶を移動させるための装置とを
有する蒸気ガスタービン合体機関運輸発電機器。
14. A plurality of combustor / heat exchangers of high pressure and length as a spiral water cooling wall tube unit assembly structure, and a full blade compressor for supplying compressed air to said combustor / heat exchanger. And an all-blade gas turbine that obtains an output from combustion gas, and a jet from a jet pump (28a) containing the exhaust gas is injected into the bottom of the ship, and heat exchange is performed so that the combustion gas temperature becomes equal to or lower than the turbine heat resistant limit temperature. Steam turbine having a jet pump (28c) including a superheated steam nozzle for injecting superheated steam and injecting water into a suction bottom of the ship, and a device for moving the ship by the power of the respective jet pumps Power generation equipment.
【請求項15】 水冷外壁を螺旋状の熔接構造として高
圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空気
を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る蒸気ガスタービン
と、該排気を含む噴流ポンプ(28a)からの噴気を船
底に噴射し、該過熱蒸気を噴射して水を吸引船底噴射す
る過熱蒸気噴口を含む噴流ポンプ(28c)と、該夫夫
の噴流ポンプの力により船舶を移動させるための装置と
を有する蒸気ガスタービン合体機関運輸発電機器。
15. A plurality of combustors and heat exchangers of which pressure and length are increased by using a spirally welded outer wall of a water-cooled outer wall, a compressor for supplying compressed air to the combustor and heat exchangers, and a combustion gas. A steam gas turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature, and a jet from a jet pump (28a) including the exhaust gas is injected to the bottom of the ship, A steam gas turbine combined engine transport power generator having a jet pump (28c) including a superheated steam nozzle for injecting steam and injecting water into a suction bottom of the ship, and a device for moving the ship by the power of the respective jet pumps. .
【請求項16】 螺旋状の水冷壁管単位組立構造として
高圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
と燃焼ガス温度がタービン耐熱限界温度以下となるよう
に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
ンと、該排気を含む噴流ポンプ(28a)からの噴気を
船底に噴射し、該過熱蒸気を噴射して水を吸引船底噴射
する過熱蒸気噴口を含む噴流ポンプ(28c)と、該夫
夫の噴流ポンプの力により船舶を移動させるための装置
とを有する蒸気ガスタービン合体機関運輸発電機器。
16. A plurality of combustor / heat exchangers of high pressure and length as a spiral water cooling wall tube unit assembly structure, a compressor for supplying compressed air to the combustor / heat exchanger, and combustion gas And a steam gas turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature, and a jet from a jet pump (28a) including the exhaust gas is jetted to the ship bottom. A steam-gas-turbine combined-engine transport power generator having a jet pump (28c) including a superheated steam nozzle for injecting superheated steam and suctioning water to the bottom of the ship, and a device for moving the ship by the power of the respective jet pumps. machine.
【請求項17】 請求項15又は16に於いて、圧縮
機、蒸気ガスタービンのいずれかが全動翼である蒸気ガ
スタービン合体機関運輸発電機器。
17. The steam-turbine combined engine transport power generation equipment according to claim 15, wherein one of the compressor and the steam gas turbine is a full blade.
【請求項18】 水冷外壁を螺旋状の熔接構造として高
圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空気
を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで
出力を得るガスタービンと、該排気を含む噴流ポンプ
(28a)からの噴気を船底に噴射し、燃焼ガス温度が
タービン耐熱限界温度以下となるように熱交換して得た
過熱蒸気を噴射して水を吸引船底噴射する過熱蒸気噴口
を含む噴流ポンプ(28c)と、該夫夫の噴流ポンプの
力により船舶を移動させるための装置とを有する蒸気ガ
スタービン合体機関運輸発電機器。
18. A plurality of combustors / heat exchangers whose pressure and length are increased by using a spirally welded outer wall for water cooling, a compressor for supplying compressed air to the combustor / heat exchangers, and a combustion gas. A gas turbine for obtaining an output and a jet from a jet pump (28a) containing the exhaust gas are injected to the bottom of the ship, and superheated steam obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat resistant limit temperature is injected. A steam-gas turbine combined engine transport power generation device including a jet pump (28c) including a superheated steam jet port for injecting water into a suction bottom of a ship, and a device for moving a ship by the power of the respective jet jet pumps.
【請求項19】 螺旋状の水冷壁管単位組立構造として
高圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービンと、該排気を含む噴流ポンプ
(28a)からの噴気を船底に噴射し、燃焼ガス温度が
タービン耐熱限界温度以下となるように熱交換して得た
過熱蒸気を噴射して水を吸引船底噴射する過熱蒸気噴口
を含む噴流ポンプ(28c)と、該夫夫の噴流ポンプの
力により船舶を移動させるための装置とを有する蒸気ガ
スタービン合体機関運輸発電機器。
19. A plurality of combustor / heat exchangers of high pressure and length as a spiral water cooling wall tube unit assembly structure, a compressor for supplying compressed air to the combustor / heat exchanger, and combustion gas And a jet turbine including the exhaust gas from a jet pump (28a) is injected into the bottom of the ship, and superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistant limit temperature is injected. A steam jet turbine including a superheated steam jet port for injecting water into the bottom of a ship by suction and a device for moving a ship by the force of the respective jet jet pumps.
【請求項20】 請求項18又は19に於いて、圧縮
機、ガスタービンのいずれかが全動翼である蒸気ガスタ
ービン合体機関運輸発電機器。
20. The steam and gas turbine combined engine transport power generation equipment according to claim 18 or 19, wherein one of the compressor and the gas turbine is a full blade.
【請求項21】 水冷外壁を螺旋状の熔接構造として高
圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空気
を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼
ガスと燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
ガスタービンと、該出力により車輪を回転させて移動す
るための動力伝達装置とを有する蒸気ガスタービン合体
機関運輸発電機器。
21. A plurality of combustors and heat exchangers whose pressure and length are increased by making the water-cooled outer wall a helical welding structure, and a full-blade compressor that supplies compressed air to the combustors and heat exchangers. All-blade steam gas turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas and the combustion gas temperature are equal to or lower than the turbine heat-resistant limit temperature, and power transmission for rotating and moving wheels by the output. And a steam-gas-turbine combined-engine transport power generator having a device.
【請求項22】 螺旋状の水冷壁管単位組立構造として
高圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
気ガスタービンと、該出力により車輪を回転させて移動
するための動力伝達装置とを有する蒸気ガスタービン合
体機関運輸発電機器。
22. A plurality of combustor / heat exchangers of high pressure and length as a spiral water cooling wall tube unit assembly structure, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. An all-blade steam gas turbine that obtains an output with superheated steam obtained by heat exchange so that the combustion gas and the combustion gas temperature are equal to or lower than the turbine heat resistance limit temperature, and a power for rotating and moving wheels by the output. A steam-gas-turbine combined-engine transport power generator having a transmission device.
【請求項23】 水冷外壁を螺旋状の熔接構造として高
圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空気
を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る蒸気ガスタービン
と、該出力により車輪を回転させて移動するための動力
伝達装置とを有する蒸気ガスタービン合体機関運輸発電
機器。
23. A plurality of combustor / heat exchangers whose pressure is increased and lengthened by using a spirally welded water cooling outer wall, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A steam gas having a steam gas turbine that obtains an output with superheated steam obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature, and a power transmission device for rotating and moving wheels by the output. Turbine united engine transport power generation equipment.
【請求項24】 螺旋状の水冷壁管単位組立構造として
高圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
と燃焼ガス温度がタービン耐熱限界温度以下となるよう
に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
ンと、該出力により車輪を回転させて移動するための動
力伝達装置とを有する蒸気ガスタービン合体機関運輸発
電機器。
24. A plurality of combustor / heat exchangers of high pressure and length as a spiral water cooling wall tube unit assembly structure, a compressor for supplying compressed air to the combustor / heat exchanger, and combustion gas Steam having a superheated steam obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature, and a power transmission device for rotating and moving wheels by the output. Gas turbine combined engine transport power generation equipment.
【請求項25】 請求項23又は24に於いて、圧縮
機、蒸気ガスタービンのいずれかが全動翼である蒸気ガ
スタービン合体機関運輸発電機器。
25. The power generation equipment for a combined steam and gas turbine engine according to claim 23 or 24, wherein one of the compressor and the steam gas turbine is a full blade.
【請求項26】 請求項21乃至25に於いて、鉄道レ
ール(54)及び車輪(55)の動力伝達面(31)に
低凹凸(40)を夫夫具備して、該車輪の進行方向前後
のレール(54)との間に棒磁石(33)又は電磁石
(34)を設けて、吸引する力を作用させたことを特徴
とする蒸気ガスタービン合体機関運輸発電機器。
26. The power transmission surface (31) of the rail (54) and the wheel (55) according to claim 21 to 25, wherein the power transmission surface (31) is provided with low unevenness (40), respectively, and the front and rear of the wheel in the traveling direction. A bar magnet (33) or an electromagnet (34) is provided between the rail and the rail (54) to apply a suction force.
【請求項27】 水冷外壁を螺旋状の熔接構造として高
圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空気
を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼
ガスと燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
ガスタービンと、該出力により羽根を回転させて機体を
浮揚移動させるための動力伝達装置及び該排気を含む過
熱蒸気噴口とを有する蒸気ガスタービン合体機関運輸発
電機器。
27. A plurality of combustors and heat exchangers whose pressure and length are increased by using a water-cooled outer wall as a spiral welding structure, and a full blade compressor that supplies compressed air to the combustors and heat exchangers. All rotor blade steam gas turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas and the combustion gas temperature are equal to or lower than the turbine heat resistant limit temperature, and for rotating the blades by the output to levitate the airframe And a superheated steam injection port including the exhaust gas.
【請求項28】 螺旋状の水冷壁管単位組立構造として
高圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
気ガスタービンと、該出力により羽根を回転させて機体
を浮揚移動させるための動力伝達装置及び該排気を含む
過熱蒸気噴口とを有する蒸気ガスタービン合体機関運輸
発電機器。
28. A plurality of combustor / heat exchangers of high pressure and length as a spiral water cooling wall tube unit assembly structure, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. An all-blade steam gas turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas and the combustion gas temperature are equal to or lower than the turbine heat-resistant limit temperature, and the blades are rotated by the output to levitate the airframe. Gas turbine united engine transport power generation device having a power transmission device for the same and a superheated steam injection port including the exhaust gas.
【請求項29】 水冷外壁を螺旋状の熔接構造として高
圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空気
を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る蒸気ガスタービン
と、該出力により羽根を回転させて機体を浮揚移動させ
るための動力伝達装置及び該排気を含む過熱蒸気噴口と
を有する蒸気ガスタービン合体機関運輸発電機器。
29. A plurality of combustor / heat exchangers whose pressure is increased and lengthened by using a spirally welded outer wall for water cooling, a compressor for supplying compressed air to the combustor / heat exchanger, and combustion gas. A steam gas turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, a power transmission device for rotating the blades by the output to levitate and move the airframe, and A steam-gas-turbine combined-engine transport power generation device having a superheated steam injection port including exhaust gas.
【請求項30】 螺旋状の水冷壁管単位組立構造として
高圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
と燃焼ガス温度がタービン耐熱限界温度以下となるよう
に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
ンと、該出力により羽根を回転させて機体を浮揚移動さ
せるための動力伝達装置及び該排気を含む過熱蒸気噴口
とを有する蒸気ガスタービン合体機関運輸発電機器。
30. A plurality of combustor / heat exchangers of high pressure and length as a spiral water cooling wall tube unit assembly structure, a compressor for supplying compressed air to the combustor / heat exchanger, and combustion gas And a steam gas turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature, a power transmission device for rotating the blades by the output to levitate the airframe, and And a superheated steam injection port containing the exhaust gas.
【請求項31】 請求項28又は29に於いて、圧縮
機、蒸気ガスタービンのいずれかが全動翼である蒸気ガ
スタービン合体機関運輸発電機器。
31. The power generation equipment for a combined steam and gas turbine engine according to claim 28, wherein one of the compressor and the steam gas turbine is a full blade.
【請求項32】 水冷外壁を螺旋状の熔接構造として高
圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空気
を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼
ガスと燃焼ガス温度がタービン耐熱限界温度以下となる
ように熱交換して得た過熱蒸気で出力を得る全動翼蒸気
ガスタービンと、該出力によりスクリューを回転させて
船体を移動させるための動力伝達装置及び該過熱蒸気を
含む排気噴口とを有する蒸気ガスタービン合体機関運輸
発電機器。
32. A plurality of combustors and heat exchangers of which pressure and length are increased by making a water-cooled outer wall a spiral welding structure, and a full-blade compressor for supplying compressed air to the combustor and heat exchangers; An all-blade steam gas turbine that obtains an output with superheated steam obtained by heat exchange so that the combustion gas and the combustion gas temperature are equal to or lower than the turbine heat-resistant limit temperature, and for rotating the screw by the output to move the hull. A steam-gas-turbine combined-engine transport power generation device having a power transmission device and an exhaust port containing the superheated steam.
【請求項33】 螺旋状の水冷壁管単位組立構造として
高圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
焼ガスと燃焼ガス温度がタービン耐熱限界温度以下とな
るように熱交換して得た過熱蒸気で出力を得る全動翼蒸
気ガスタービンと、該出力によりスクリューを回転させ
て船体を移動させるための動力伝達装置及び該過熱蒸気
を含む排気噴口とを有する蒸気ガスタービン合体機関運
輸発電機器。
33. A plurality of combustor / heat exchangers of high pressure and length as a spiral water cooling wall tube unit assembly structure, and a full blade compressor for supplying compressed air to the combustor / heat exchanger. An all-blade steam gas turbine that obtains an output with superheated steam obtained by heat exchange so that the combustion gas and the combustion gas temperature are equal to or lower than the turbine heat resistance limit temperature, and a screw that is rotated by the output to move the hull. And a power transmission device and an exhaust orifice containing the superheated steam.
【請求項34】 水冷外壁を螺旋状の熔接構造として高
圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空気
を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスと
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る蒸気ガスタービン
と、該出力によりスクリューを回転させて船体を移動さ
せるための動力伝達装置及び該過熱蒸気を含む排気噴口
とを有する蒸気ガスタービン合体機関運輸発電機器。
34. A plurality of combustor / heat exchangers whose pressure is increased and lengthened by using a water-cooled outer wall as a spiral welding structure, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A steam gas turbine that obtains an output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, a power transmission device for rotating a screw by the output to move a hull, and the superheat A steam-gas-turbine combined engine transport power generator having an exhaust port containing steam.
【請求項35】 螺旋状の水冷壁管単位組立構造として
高圧化・長大化した複数の燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
と燃焼ガス温度がタービン耐熱限界温度以下となるよう
に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
ンと、該出力によりスクリューを回転させて船体を移動
させるための動力伝達装置及び該過熱蒸気を含む排気噴
口とを有する蒸気ガスタービン合体機関運輸発電機器。
35. A plurality of combustor / heat exchangers of high pressure and length as a spiral water cooling wall tube unit assembly structure, a compressor for supplying compressed air to the combustor / heat exchanger, and combustion gas And a steam gas turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature, a power transmission device for rotating a screw by the output to move a hull, and A steam-gas-turbine combined-engine transport power generation device having an exhaust port containing superheated steam.
【請求項36】 請求項34又は35に於いて、圧縮
機、蒸気ガスタービンのいずれかが全動翼である蒸気ガ
スタービン合体機関運輸発電機器。
36. The steam and gas turbine combined engine transport power generation equipment according to claim 34 or 35, wherein one of the compressor and the steam gas turbine is a full blade.
【請求項37】 請求項32乃至36に於いて、前記過
熱蒸気を含む排気噴口を船底に開口した蒸気ガスタービ
ン合体機関運輸発電機器。
37. The steam-turbine combined engine transport power generation equipment according to claim 32, wherein an exhaust port including the superheated steam is opened at the bottom of the ship.
【請求項38】 水冷外壁を螺旋状の熔接構造として高
圧化し、中間に発電機を設けて長大化した複数の燃焼器
兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給す
る全動翼圧縮機と、燃焼ガスと燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る全動翼蒸気ガスタービンと、該排気による
熱と発電機からの電気を供給するための装置とを有する
蒸気ガスタービン合体機関運輸発電機器。
38. A plurality of combustor / heat exchangers having a water-cooled outer wall formed as a spiral welding structure having a high pressure and a generator provided in the middle to increase the length, and compressed air is supplied to the combustor / heat exchanger. A full-blade compressor, a full-blade steam gas turbine that obtains output with superheated steam obtained by exchanging heat so that a combustion gas and a combustion gas temperature are equal to or lower than a turbine heat-resistant limit temperature, and heat generated by the exhaust gas and a generator. And a device for supplying electricity from a steam-gas-turbine-combined-engine transport power plant.
【請求項39】 螺旋状の水冷壁管単位組立構造として
高圧化し、中間に発電機を設けて長大化した複数の燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する全動翼圧縮機と、燃焼ガスと燃焼ガス温度がタービ
ン耐熱限界温度以下となるように熱交換して得た過熱蒸
気で出力を得る全動翼蒸気ガスタービンと、該排気によ
る熱と発電機からの電気を供給するための装置とを有す
る蒸気ガスタービン合体機関運輸発電機器。
39. A plurality of combustor / heat exchangers which are pressurized as a spiral water-cooled wall tube unit assembly structure and provided with a generator in the middle and which are lengthened, and compressed air is supplied to the combustor / heat exchanger. All-blade compressor, a full-blade steam gas turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas and the combustion gas temperature are equal to or lower than the turbine heat resistance limit temperature, and heat and power generation by the exhaust gas And a device for supplying electricity from the power plant.
【請求項40】 水冷外壁を螺旋状の熔接構造として高
圧化し、中間に発電機を設けて長大化した複数の燃焼器
兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給す
る圧縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱限
界温度以下となるように熱交換して得た過熱蒸気で出力
を得る蒸気ガスタービンと、該排気による熱と発電機か
らの電気を供給するための装置とを有する蒸気ガスター
ビン合体機関運輸発電機器。
40. A plurality of combustor / heat exchangers whose water cooling outer wall is formed into a spiral welded structure with a high pressure and a generator is provided in the middle to increase the length, and compressed air is supplied to the combustor / heat exchanger. A compressor, a steam gas turbine that obtains an output with superheated steam obtained by exchanging heat so that a combustion gas and a combustion gas temperature are equal to or lower than a turbine heat-resistant limit temperature, and supplies heat from the exhaust gas and electricity from a generator. And a steam-gas-turbine combined engine transport power generator having a device for the same.
【請求項41】 螺旋状の水冷壁管単位組立構造として
高圧化し、中間に発電機を設けて長大化した複数の燃焼
器兼熱交換器と、圧縮空気を該燃焼器兼熱交換器に供給
する圧縮機と、燃焼ガスと燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る蒸気ガスタービンと、該排気による熱と発電機
からの電気を供給するための装置とを有する蒸気ガスタ
ービン合体機関運輸発電機器。
41. A plurality of combustor / heat exchangers which are pressurized as a spiral water-cooled wall tube unit assembly structure and provided with a generator in the middle and which are lengthened, and compressed air is supplied to the combustor / heat exchanger. A compressor that generates heat, a steam gas turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas and the combustion gas temperature are equal to or lower than the turbine heat resistance limit temperature, and supplies heat from the exhaust gas and electricity from a generator. And an apparatus for transporting steam and gas turbines.
【請求項42】 請求項40又は41に於いて、圧縮
機、蒸気ガスタービンのいずれかが全動翼である蒸気ガ
スタービン合体機関運輸発電機器。
42. The power generation equipment for a combined steam and gas turbine engine according to claim 40 or 41, wherein one of the compressor and the steam gas turbine is a full blade.
【請求項43】 前記噴流ポンプに使用する過熱蒸気
は、超臨界の蒸気条件以下の過熱蒸気を使用する請求項
1乃至42のいずれかに記載の蒸気ガスタービン合体機
関運輸発電機器。
43. The steam turbine combined engine transport power generation equipment according to claim 1, wherein the superheated steam used in the jet pump uses superheated steam having a supercritical steam condition or less.
【請求項44】 前記蒸気ガスタービンは、超臨界の蒸
気条件以下の過熱蒸気を使用する請求項1乃至43のい
ずれかに記載の蒸気ガスタービン合体機関運輸発電機
器。
44. The steam turbine combined engine transport power generation equipment according to claim 1, wherein the steam gas turbine uses superheated steam under supercritical steam conditions.
【請求項45】 前記蒸気ガスタービンに供給する燃焼
ガスは、該圧力に応じて中間段に供給し、過熱蒸気と混
合して直接再熱することを特徴とする請求項1乃至44
のいずれかに記載の蒸気ガスタービン合体機関運輸発電
機器。
45. The combustion gas supplied to the steam gas turbine is supplied to an intermediate stage according to the pressure, mixed with superheated steam, and directly reheated.
A steam-powered turbine combined engine transport power generation device according to any one of the above.
【請求項46】 前記蒸気ガスタービンに供給する燃焼
ガスの一部は、該圧力より高い上流側の圧力低減手段
(30)より供給して過熱蒸気と混合し、直接再熱する
ことを特徴とする請求項1乃至45のいずれかに記載の
蒸気ガスタービン合体機関運輸発電機器。
46. A part of the combustion gas supplied to the steam gas turbine is supplied from a pressure reducing means (30) on the upstream side higher than the pressure, mixed with superheated steam, and directly reheated. 46. The steam turbine combined unit transport power generator according to any one of claims 1 to 45.
【請求項47】 前記噴流ポンプ(28c)は、1以上
の過熱蒸気噴口を有する請求項11乃至20のいずれか
に記載の蒸気ガスタービン合体機関運輸発電機器。
47. The steam-turbine combined engine transport power generation equipment according to claim 11, wherein the jet pump (28c) has one or more superheated steam injection ports.
【請求項48】 前記噴流ポンプ(28c)を1以上有
する請求項11乃至20、32乃至37のいずれかに記
載の蒸気ガスタービン合体機関運輸発電機器。
48. The steam-gas-turbine combined engine transport power generation equipment according to any one of claims 11 to 20, and 32 to 37, comprising one or more of the jet pumps (28c).
JP13472198A 1997-08-07 1998-05-18 Steam gas turbine combined engine, transportation and generating equipment Pending JPH11107778A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP13472198A JPH11107778A (en) 1997-08-07 1998-05-18 Steam gas turbine combined engine, transportation and generating equipment
JP11069406A JP2000038902A (en) 1998-05-18 1999-03-16 Steam gas turbine integrated engine apparatus
JP11077189A JP2000038903A (en) 1998-05-18 1999-03-23 Steam gas turbine integrated engine having controller
JP11106329A JP2000038928A (en) 1998-05-18 1999-04-14 Steam gas turbine integrated engine
JP11117404A JP2000038904A (en) 1998-05-18 1999-04-26 Various kinds of steam gas turbine integrated engine
JP11132083A JP2000038927A (en) 1998-05-18 1999-05-13 Various kinds of steam gas turbine integrated engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21237397 1997-08-07
JP9-212373 1997-08-07
JP13472198A JPH11107778A (en) 1997-08-07 1998-05-18 Steam gas turbine combined engine, transportation and generating equipment

Publications (1)

Publication Number Publication Date
JPH11107778A true JPH11107778A (en) 1999-04-20

Family

ID=26468746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13472198A Pending JPH11107778A (en) 1997-08-07 1998-05-18 Steam gas turbine combined engine, transportation and generating equipment

Country Status (1)

Country Link
JP (1) JPH11107778A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112780361A (en) * 2019-11-08 2021-05-11 中国航发商用航空发动机有限责任公司 Water vapor power system, water vapor generating assembly, aircraft and power supply method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112780361A (en) * 2019-11-08 2021-05-11 中国航发商用航空发动机有限责任公司 Water vapor power system, water vapor generating assembly, aircraft and power supply method
CN112780361B (en) * 2019-11-08 2022-08-19 中国航发商用航空发动机有限责任公司 Water vapor power system, water vapor generating assembly, aircraft and power supply method

Similar Documents

Publication Publication Date Title
US6263664B1 (en) Combined steam and gas turbine engine with magnetic transmission
KR20140116504A (en) System and method for generating power using a supercritical fluid
WO1999045321A1 (en) An improved heat exchanger for operating with a combustion turbine in either a simple cycle or a combined cycle
CN113756900A (en) Internal and external mixed combustion engine
WO2019224563A1 (en) Rotary regenerator
JPH11107778A (en) Steam gas turbine combined engine, transportation and generating equipment
CN215979531U (en) Internal and external mixed combustion engine
JP2000038903A (en) Steam gas turbine integrated engine having controller
JP2001012209A (en) Steam gas turbine united engine device
JP2000038902A (en) Steam gas turbine integrated engine apparatus
JP2000038928A (en) Steam gas turbine integrated engine
JP2000038927A (en) Various kinds of steam gas turbine integrated engine
JP2001295611A (en) Steam/gas combined turbine engine
JP2000038904A (en) Various kinds of steam gas turbine integrated engine
US20210293181A1 (en) A system and a method for power generation
JP2001295612A (en) Various steam/gas combined turbine engines
JP2001012210A (en) Various steam gas turbines combined engine
RU2363604C1 (en) Gas turbine locomotive and its power plant
JP2004100678A (en) Various full rotor blade steam gas turbine combined engine
JPH11107777A (en) Steam gas turbine combined engine and its power transmitting device
JP2003286804A (en) Engine combined with variety of entire rotor blade steam gas turbine
JPS6365804B2 (en)
JP2003286809A (en) Engine combined with various entire rotor-blade steam- gas turbine
JPH116451A (en) Drive device containing magnetic friction transmission device and drive method
JP2002303152A (en) Various full rotor blade steam gas turbine combined- engine