JP2001295611A - Steam/gas combined turbine engine - Google Patents

Steam/gas combined turbine engine

Info

Publication number
JP2001295611A
JP2001295611A JP2000058079A JP2000058079A JP2001295611A JP 2001295611 A JP2001295611 A JP 2001295611A JP 2000058079 A JP2000058079 A JP 2000058079A JP 2000058079 A JP2000058079 A JP 2000058079A JP 2001295611 A JP2001295611 A JP 2001295611A
Authority
JP
Japan
Prior art keywords
steam
turbine
gas turbine
heat exchanger
combustor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000058079A
Other languages
Japanese (ja)
Inventor
Hiroyasu Tanigawa
浩保 谷川
Kazunaga Tanigawa
和永 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000058079A priority Critical patent/JP2001295611A/en
Publication of JP2001295611A publication Critical patent/JP2001295611A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine for supplying heat, electricity and cryogenic heat by lowering the fuel fee of the internal combustion engine to one half and eliminating the discharge of pollutant including CO2, so as to prevent global warming and restrict the electricity rate. SOLUTION: An outer wall of a combustor-cum-heat exchanger of a steam/gas combined turbine engine is formed into the spiral water cooling outer wall unit assembly structure including a conducting tube, and is arranged as a honeycomb having multiple small-diameter holes by miniaturing and pressurizing. One or more spiral annular conducting tubes are provided in the assembly, and the fuel which is about four times that of the conventional technology is converted to the superheated steam as much as possible with the same quantity of the compressed air with the conventional one by injecting the maximum quantity of the superheated steam in the atmosphere of non-NOx, superheated steam suction thermal lean burn and high pressure, so as to generate the energy to be supplied to the steam turbine 10 times of the latest combined power plant, and the condensate fixed combustion gas is restricted to 0, and the thermal efficiency of the steam/gas combined turbine engine is raised to 80%, including the cryogenic heat supply at 0 deg.C or lower of the exhaust temperature of the gas turbine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CO2やNOx等
の有害排気ガス0及び、熱効率80%を狙う蒸気ガスタ
ービン合体機関(完全回転機関)、に関し詳しくは、ガ
スタービンの全多数燃焼器兼熱交換器の外壁を、略螺旋
状の熔接構造水冷外壁熱交換器又は、螺旋状の水冷外壁
単位組立構造熱交換器又は、螺旋状の溶接構造水冷外壁
単位組立て構造熱交換器として、小径多数蜂の巣状に短
小化配置して、内部に螺旋環状に導水管乃至蒸気管を、
1以上出来るだけ多数用途に合わせて設けて、熱交換器
伝熱面積を拡大します。上流側に燃料蒸気供給手段を設
けて、超臨界等の過熱蒸気の中に燃料を希釈した後、空
気と強力に撹拌希薄低温制御燃焼して、NOx等の有害
ガスの発生を阻止する燃焼にします。出来るだけ高圧高
温のNOxを発生しない上限の雰囲気の、900℃前後
以下で燃焼制御希薄冷却燃焼させることで、水素の燃焼
ガスである過熱蒸気(以後過熱蒸気を燃焼ガスに含め
る)の噴射量を最大にして、完全燃焼短時間終了し、地
球温暖化ガス(CO2)等を水固定とする材料を最大に
します。過熱蒸気噴射燃焼・熱交換伝熱面積の増大によ
り、燃料燃焼を従来技術の4倍前後にし、高圧の雰囲気
で熱交換することで熱エネルギ回収量を、例えば最先端
複合火力発電設備の、同一圧縮空気量ガスタービン廃熱
回収熱交換器の、10倍以上に熱エネルギ回収量が増大
し、該回収量を増大する程ガスタービン排気での冷熱供
給量が増大する、燃焼器兼熱交換器とします。燃焼ガス
により出力を得るガスタービンにより、断熱膨張燃焼ガ
スで過熱蒸気を冷却する過程で、凝縮水に順次CO2を
固定して排水し、有害ガス排気0等として排気します。
熱交換して得た過熱蒸気で蒸気タービン等を駆動し、夫
夫の出力を利用するあらゆる用途に対応可能な、各種蒸
気ガスタービン合体機関に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined engine of a steam gas turbine (fully rotating engine) aiming at zero harmful exhaust gas such as CO2 and NOx and a heat efficiency of 80%. The outer wall of the heat exchanger may be used as a substantially spiral welded structure water-cooled outer wall heat exchanger, or a spiral water-cooled outer wall unit assembly heat exchanger, or a spiral welded structure water-cooled outer wall unit assembled heat exchanger. Shortened and arranged in a honeycomb shape, inside a spiral annular water pipe or steam pipe,
Install one or more as many as possible to suit the application and increase the heat exchanger heat transfer area. Provision of a fuel vapor supply means on the upstream side, after diluting the fuel in superheated supercritical steam or the like, and performing strong stirring and lean low temperature controlled combustion with air to achieve combustion that prevents the generation of harmful gases such as NOx You. The superheated steam (hereinafter, superheated steam is included in the combustion gas), which is the combustion gas of hydrogen, is obtained by performing the combustion control lean cooling combustion at around 900 ° C. or less in the upper limit atmosphere where NOx of high pressure and high temperature is not generated as much as possible. Maximize, complete combustion in a short time, maximize materials that fix water such as global warming gas (CO2). By increasing the superheated steam injection combustion / heat exchange heat transfer area, fuel combustion is made about four times that of the conventional technology, and heat exchange is performed in a high-pressure atmosphere to reduce the amount of heat energy recovered. The amount of thermal energy recovered is more than 10 times that of the gas turbine waste heat recovery heat exchanger, and the amount of cold heat supplied to the gas turbine exhaust increases as the recovered amount increases. will do. In the process of cooling the superheated steam with the adiabatic expanded combustion gas by the gas turbine that obtains the output from the combustion gas, CO2 is fixed to the condensed water in order and drained, and exhausted as no harmful gas exhaust.
The present invention relates to various steam gas turbine combined engines capable of driving a steam turbine or the like with superheated steam obtained by heat exchange and using the outputs of the respective steam turbines.

【0002】[0002]

【従来の技術】蒸気タービン・ガスタービン複合機関の
うち、ガスタービン燃焼器の内部に熱交換器を設けた先
行技術として特開昭50−89737号が開示されてい
る。この発明は、ガスタービン燃焼器の高温領域に、蒸
気タービンサイクルの過熱器乃至再熱器を設けることに
よって、特別の補助的な燃焼器を必要とすることなく、
蒸気タービンサイクルの過熱蒸気温度を高め、複合プラ
ント全体の効率向上を図るものである。又、特開昭52
−156248号は、ガスタービン間の燃焼ガスとの熱
交換によって蒸発を行なうことにより、廃熱回収ボイラ
出口廃ガス温度の低下を図り、ボイラ効率を向上させる
ことが開示されている。しかし、これらは、いずれも過
給ボイラサイクルの熱効率の向上を図るもので、ガスタ
ービンの圧力比と比出力の同時上昇を図るものでもガス
タービンの熱効率上昇を図るものでもない。
2. Description of the Related Art Japanese Patent Application Laid-Open No. 50-97737 discloses a prior art in which a heat exchanger is provided inside a gas turbine combustor in a combined steam turbine / gas turbine engine. The present invention provides a steam turbine cycle superheater or reheater in a high temperature region of a gas turbine combustor, thereby eliminating the need for a special auxiliary combustor.
The purpose is to increase the superheated steam temperature of the steam turbine cycle and improve the efficiency of the entire combined plant. Also, Japanese Patent Laid-Open No. 52
No. 156248 discloses that by performing evaporation by heat exchange with combustion gas between gas turbines, the temperature of waste gas at the outlet of the waste heat recovery boiler is reduced, and the boiler efficiency is improved. However, none of these aims to improve the thermal efficiency of the supercharging boiler cycle, and does not aim to simultaneously increase the pressure ratio and the specific output of the gas turbine, nor to increase the thermal efficiency of the gas turbine.

【0003】又、先の出願としてガスタービン燃焼器を
改良した、特願平6−330862号、特願平7−14
5074号、特願平7−335595号、特願平8−4
1998号、特願平8−80407号、特願平8−14
3391号、特願平8−204049号、特願平8−2
72806号、特願平9−106925号、特願平9−
181944号、特願平10−134720号、特願平
10−134721号、特願平11−69406号、特
願平11−77189号があります。以上先の出願に基
づく優先権主張出願は概略的に、全動翼を含む及び/ガ
スタービンの全複数の燃焼器を長大化して、該水冷外壁
を螺旋状に具備して高圧容器とした熱交換器としても兼
用して、大部分の供給熱量を過熱蒸気に変換可能にする
ことにより、タービン耐熱限界温度を越えることなく圧
力比及び比出力を極限まで同時に上昇可能にする装置及
び方法とするものです。
[0003] Further, as a prior application, a gas turbine combustor is improved.
No. 5074, Japanese Patent Application No. 7-335595, Japanese Patent Application No. 8-4
1998, Japanese Patent Application No. 8-80407, Japanese Patent Application No. 8-14
No. 3391, Japanese Patent Application No. 8-204049, Japanese Patent Application No. 8-2
No. 72806, Japanese Patent Application No. 9-106925, Japanese Patent Application No. 9-106
There are 181944, Japanese Patent Application No. 10-134720, Japanese Patent Application No. 10-134721, Japanese Patent Application No. 11-69406, and Japanese Patent Application No. 11-77189. The priority claim application based on the above-mentioned prior application generally includes a heat exchanger including a whole rotor blade and / or a plurality of combustors of a gas turbine being lengthened, and a water-cooled outer wall spirally provided as a high-pressure vessel. An apparatus and method that can simultaneously increase the pressure ratio and the specific output to the maximum without exceeding the turbine heat-resistant limit temperature by being able to convert most of the supplied heat into superheated steam, also serving as an exchanger. Thing.

【0004】[0004]

【発明が解決しようとする課題】内燃機関として重要な
ものに、有害排気ガスを0にする使命があります。そこ
で熱が仕事をすると考える熱力学の発想を転換して、熱
は仕事をしない、高温は単位容積質量小=仕事量の減少
要因と考えると、熱効率×比出力=圧力比×燃焼ガス質
量容積=速度×質量容積となり、谷川力学が確立し、従
来技術では同一質量では高温程容積が大で仕事量が大で
すが、タービン耐熱限界温度があるため、全くの無意味
です。そこでガスタービン燃焼器を熱交換器としても兼
用することで、高圧高温の燃焼器雰囲気で限りなく熱交
換して、過熱蒸気熱エネルギを回収し、同一圧縮空気量
での燃料燃焼質量を、従来技術最先端複合発電ガスター
ビンの4倍として、熱エネルギ回収量を該廃熱回収熱交
換器の10倍以上にした場合、例えば初圧1kg/cm
2・初温0℃・圧力比60で、600℃の計算空気温度
が得られます。即ちガスタービン入口温度を600℃に
すると0℃の排気温度として冷熱の供給が可能になり、
従来技術の4倍の全熱エネルギを過熱蒸気として利用出
来るのに加えて、圧力比の上昇容易・燃焼ガス質量4倍
増・燃焼ガス容積2倍増・膨大な加熱蒸気質量容積によ
りガスタービンを駆動出来ます。ガスタービン入口温度
を400℃にすると冷熱の供給量が増大して、供給燃料
の全熱エネルギ+外気熱エネルギを、過熱蒸気熱エネル
ギとして使用し、外気温度40℃での冷熱供給が可能に
なります。該熱交換した過熱蒸気を蒸気タービン側等に
供給し、該供給量を増大することで、ガスタービン排気
での冷熱供給量を増大し、ガスタービン出力及び熱効率
を最高として、断熱膨張燃焼ガスで過熱蒸気を冷却する
過程で、過熱蒸気凝縮水にCO2を固定して排水し、有
害排気ガスを0にする課題があります。
[Problems to be Solved by the Invention] An important thing as an internal combustion engine is its mission to reduce harmful exhaust gas to zero. Then, we change the idea of thermodynamics, which thinks that heat does work, heat does not work, and high temperature is considered to be a factor of reduction of work volume = low work volume, heat efficiency × specific output = pressure ratio × combustion gas mass volume = Speed x mass volume, and Tanigawa Mechanics has been established. In the conventional technology, the higher the temperature, the higher the volume and the greater the work load, but the turbine temperature limit temperature is completely meaningless. Therefore, by using the gas turbine combustor also as a heat exchanger, heat is exchanged as much as possible in the high-pressure and high-temperature combustor atmosphere, the superheated steam heat energy is recovered, and the fuel combustion mass with the same amount of compressed air is reduced. When the heat energy recovery is four times that of the state-of-the-art combined cycle gas turbine and the heat energy recovery is ten times or more that of the waste heat recovery heat exchanger, for example, the initial pressure is 1 kg / cm.
2. With an initial temperature of 0 ° C and a pressure ratio of 60, a calculated air temperature of 600 ° C can be obtained. That is, when the gas turbine inlet temperature is set to 600 ° C., it becomes possible to supply cold heat as the exhaust temperature of 0 ° C.
In addition to being able to use four times the total heat energy of the conventional technology as superheated steam, it is also possible to drive the gas turbine by increasing the pressure ratio easily, increasing the combustion gas mass by four times, increasing the combustion gas volume by two times, and enormous heating steam mass volume. You. When the gas turbine inlet temperature is set to 400 ° C., the supply amount of cold heat increases, and the total heat energy of the supplied fuel + the outside air heat energy is used as the superheated steam heat energy, and the cold heat supply at the outside air temperature of 40 ° C. becomes possible. You. The heat-exchanged superheated steam is supplied to a steam turbine side or the like, and the supply amount is increased to increase the amount of cold heat supplied in the gas turbine exhaust, thereby maximizing the gas turbine output and thermal efficiency, and using adiabatic expanded combustion gas. During the process of cooling the superheated steam, there is a problem that CO2 is fixed to the superheated steam condensate and drained, thereby reducing harmful exhaust gas to zero.

【0005】ガスタービンサイクルの性能として重要な
ものに、熱効率及び比出力があり、圧力比が大きい程高
い熱効率が得られ、熱効率(圧力比)が一定では、サイ
クルに供給する熱量が大きい程大きな比出力が得られ
る。即ち、この圧力比及び比出力の増大は、いずれもタ
ービンの耐熱限界温度で大きな制約を受ける。このた
め、ガスタービンの耐熱限界温度を越えることなく、更
にガスタービン排気で地域冷房するため、圧力比及び供
給熱量(燃料燃焼質量)を極限まで増大する方法は、供
給熱量(燃料発熱量)の大部分を過熱蒸気に変換してガ
スタービンや蒸気タービン等に使用して、燃焼ガス温度
が、タービン入口耐熱限界温度以下から、用途により4
00℃以下となるように、燃焼器兼熱交換器で限りなく
熱交換して得た、超臨界を含む出来るだけ大量の過熱蒸
気の噴射撹拌燃焼により、燃焼器兼熱交換器内で過熱蒸
気にCO2やNOx等を固定混合して、有害燃焼ガス0
に近付ける準備をします。過熱蒸気圧力を圧力比の10
倍近傍に大上昇して噴射燃焼する、燃料希釈撹拌NOx
皆無燃焼・燃焼ガス質量容積の増大として、該過熱蒸気
を燃焼ガスで冷却することも含めて、ガスタービンを駆
動して、該排気CO2を凝縮水に固定して、有害燃焼ガ
ス0の、排気温度を0℃以下とすることも含めて排気し
ます。該過熱蒸気を噴射するロケットや蒸気タービンの
駆動を含めて、該夫夫の出力により各種機械の駆動や、
人や荷物を運輸する用途や、熱や電気や冷熱を供給する
用途に使用することを目的とする。
[0005] Thermal efficiency and specific output are important as the performance of the gas turbine cycle. Higher thermal efficiency can be obtained as the pressure ratio is higher. If the thermal efficiency (pressure ratio) is constant, the larger the amount of heat supplied to the cycle, the higher the thermal efficiency. A specific output is obtained. That is, the increase in the pressure ratio and the specific output is greatly restricted by the heat-resistant limit temperature of the turbine. For this reason, in order to further cool the district by the gas turbine exhaust without exceeding the heat-resistant limit temperature of the gas turbine, the method of increasing the pressure ratio and the supplied heat (fuel combustion mass) to the limit is to reduce the supplied heat (fuel heat). Most of it is converted to superheated steam and used for gas turbines and steam turbines.
Superheated steam in the combustor / heat exchanger by injection and agitation combustion of as much superheated steam as possible, including supercritical fluid, obtained by exchanging heat as much as possible with the combustor / heat exchanger so that the temperature is below 00 ° C CO2, NOx, etc. are fixedly mixed in
Prepare to get closer to. The superheated steam pressure is reduced to a pressure ratio of 10
Fuel dilution agitation NOx which rises to nearly double and burns
The gas turbine is driven to fix the exhaust CO2 to the condensed water, including cooling the superheated steam with the combustion gas. Exhaust, including keeping the temperature below 0 ° C. Drive of various machines by the output of each of them, including driving of rockets and steam turbines that inject the superheated steam,
It is intended to be used for transporting people or luggage, or for supplying heat, electricity or cold.

【0006】即ち、ガスタービンの圧力比及び、比出力
を増大するための障害は、供給熱量のうち燃料発熱量で
あり、燃料発熱量の用途は過熱蒸気に変換すると、各種
蒸気タービンを含めて、限りなく多いため、燃焼器兼熱
交換器を、小径多数蜂の巣状に短小化・高圧化配置し、
その内部に螺旋環状に導水管乃至蒸気管を1以上出来る
だけ多数、用途に合わせて設けて、燃焼ガスを内径内側
から、ガスタービン最上流に供給して、伝熱面積を大増
大した熱交換器としても兼用して、最上流側多数の燃料
蒸気供給手段により、高圧雰囲気で燃料を過熱蒸気で吸
引、霧吹きの原理を利用して希釈撹拌噴射して、空気と
希薄燃焼し過熱蒸気と冷却温度低下して、NOxを生成
しない上限温度の、900℃前後以下の過熱蒸気噴射量
制御を含む、霧吹きの原理を利用して燃料吸引量を増減
する、過熱蒸気筒口移動形乃至燃料噴口側移動形燃料制
御燃焼として、超臨界など過熱蒸気噴射撹拌冷却燃焼・
熱交換により、有害燃焼ガス水固定・有害排気ガス0乃
至NOx皆無燃焼として、燃料発熱量を過熱蒸気に大変
換して、ガスタービンの入口温度耐熱限界温度以下、更
に400℃以下まで限りなく熱交換して、過熱蒸気の質
量容積増大及び、燃料燃焼質量4倍増等により、圧力比
及び比出力を、極限まで増大させることができる機関を
提供します。
[0006] That is, the obstacle to increase the pressure ratio and the specific output of the gas turbine is the fuel calorific value of the supplied calorific value. When the fuel calorific value is converted into superheated steam, it is included in various steam turbines. Because there are as many as possible, combustors and heat exchangers are arranged in a short, high pressure arrangement in a large number of small diameter honeycombs,
One or more water pipes or steam pipes are provided in a spiral ring inside as much as possible according to the application, and the combustion gas is supplied from the inside of the inner diameter to the uppermost stream of the gas turbine, and the heat exchange area with a greatly increased heat transfer area The fuel is also used as a heater, and the fuel is supplied by superheated steam in a high-pressure atmosphere by means of a large number of fuel vapor supply means on the uppermost stream side. Increasing / decreasing the fuel suction amount by using the principle of atomization, including superheated steam injection amount control at around 900 ° C or lower, which is the upper limit temperature at which NOx is not generated when the temperature is lowered, the superheated steam cylinder port moving type or fuel port side movement Superheated steam injection agitation cooling combustion such as supercritical
By heat exchange, the harmful combustion gas water is fixed and the harmful exhaust gas is 0 to NOx-free combustion. We will provide an engine that can increase the pressure ratio and the specific output to the maximum by exchanging, increasing the mass volume of superheated steam and increasing the fuel combustion mass by four times.

【0007】例えば燃料燃焼質量を、最大で理論空燃比
まで、従来技術の4倍前後に増大して、圧力比及び燃料
燃焼質量の増大により、供給熱量のうち、ガスタービン
の使用熱量を0側に大幅に低減して、ガスタービンの熱
効率及び比出力を、上昇する装置を提供します。その過
程で外気熱エネルギも過熱蒸気に変換して、燃焼ガスで
ガスタービンを駆動し、該排気温度を限りなく低下させ
て冷熱を供給し、燃焼ガス温度がタービン耐熱限界温度
以下用途に合わせて、限りなく低温度となるように熱交
換して得た過熱蒸気により、蒸気タービン圧縮機や蒸気
タービンを駆動して、該夫夫により例えば各種車両を駆
動し、又は各種航空機を駆動し、又は各種船舶等を駆動
し、又は各種機械を駆動することを目的とする。
[0007] For example, the fuel combustion mass is increased up to about four times that of the prior art up to the stoichiometric air-fuel ratio, and the pressure ratio and the fuel combustion mass are increased to reduce the amount of heat used by the gas turbine in the supplied heat to the zero side. Provides a device that significantly reduces and increases the thermal efficiency and specific power of gas turbines. In the process, the outside air heat energy is also converted to superheated steam, the gas turbine is driven by the combustion gas, the exhaust gas temperature is reduced as much as possible, and the cooling gas is supplied. By superheated steam obtained by heat exchange so as to be as low as possible, drive a steam turbine compressor or a steam turbine, for example, to drive various vehicles, or drive various aircraft, respectively, or It is intended to drive various ships and the like, or to drive various machines.

【0008】ガスタービンの作動ガスとしての燃焼ガス
は、一般に空気の割合が非常に多く、理論空燃比の4倍
前後の空気を含む(以下4倍前後の空気を含むものに統
一して説明するが数値に限定するものではない)。即
ち、従来技術では、大量の熱エネルギを消費して圧縮し
た空気の、80%近くを無駄に排出し、加えて燃焼温度
の低減に使用して大損失となるため、熱交換冷却により
燃焼用として圧縮した空気を、100%燃焼に利用・燃
料燃焼質量を4倍も含めて、圧縮空気の必要な別用途に
はバイパスを設けて対応し、出来るだけ高圧の雰囲気で
限りなく熱交換し、過熱蒸気を大増大して、ガスタービ
ン入口温度400℃以下に低下も含めて、燃焼ガス容積
減少質量増大による、圧力比及び燃料燃焼質量の増大に
より、外気温度を含む供給熱量のうち、ガスタービンの
使用熱量を大低減して、使用燃焼ガス質量容積を、過熱
蒸気噴射撹拌900℃前後以下の制御燃焼により、過熱
蒸気により大増大し、ガスタービンの熱効率を従来技術
の3倍前後に、大上昇すると共に、比出力を大上昇しま
す。燃焼ガスでガスタービンを駆動し、過熱蒸気で蒸気
タービン等を駆動して、圧力を空気圧縮の10倍近くに
大上昇した、超臨界の蒸気条件を含む過熱蒸気の使用に
より、CO2を含む有害排気ガスを水固定排水として0
に、総熱効率を2乃至3倍前後に大上昇すると共に、比
出力を大上昇することを目的とする。
[0008] Combustion gas as a working gas for a gas turbine generally has a very high air ratio, and includes air that is about four times the stoichiometric air-fuel ratio. Is not limited to numerical values.) That is, in the conventional technology, nearly 80% of the compressed air that consumes a large amount of heat energy is wastefully discharged, and in addition, it is used to reduce the combustion temperature, resulting in a large loss. Compressed air is used for 100% combustion. Includes 4 times the fuel combustion mass. For other applications that require compressed air, a bypass is provided to deal with heat exchange as much as possible in a high pressure atmosphere. Of the heat quantity supplied, including the outside air temperature, due to the increase in the pressure ratio and the fuel combustion mass due to the increase in the combustion gas volume decrease mass including the decrease in the gas turbine inlet temperature to 400 ° C. The amount of used heat is greatly reduced, and the used combustion gas mass volume is greatly increased by superheated steam by controlled combustion of superheated steam injection and stirring of about 900 ° C. or less. Along with the rise, and a large increase in the ratio output. The use of superheated steam, including supercritical steam conditions, in which the gas turbine is driven by the combustion gas and the steam turbine is driven by the superheated steam, and the pressure is greatly increased to nearly 10 times that of air compression. Exhaust gas is fixed water drainage 0
It is another object of the present invention to greatly increase the total thermal efficiency by about two to three times and to greatly increase the specific output.

【0009】ガスタービン燃焼器を、小径多数蜂の巣状
に短小化配置して、内部に螺旋環状に導水管を1以上設
けて、伝熱面積を大増大した燃焼器兼熱交換器としても
兼用すると、圧力比が大きい程ガスタービンの熱効率が
高くなり、同じ発熱量の燃料燃焼では、圧力比が大きい
程高温が得られるのに加えて、燃焼器兼熱交換器の燃焼
ガス温度が、NOxを生成しない上限の、900 C前
後と高温程熱交換も容易となる。このため、同一圧縮空
気量で燃料供給量4倍の増大を含めて、最先端蒸気・ガ
スタービン複合サイクル発電設備の、廃熱回収熱交換器
で回収する場合の、10倍以上の熱エネルギ回収によ
り、熱効率を2倍にすることを目的にします。更に熱交
換器の伝熱面積の縮少短小化可能により、最上流側のみ
燃料蒸気供給手段を可能にし、高圧の雰囲気での困難
な、900℃前後の燃焼制御NOx皆無燃焼を、超臨界
を含む過熱蒸気による霧吹きの原理を利用して、燃料を
吸引過熱蒸気と混合希釈して、希薄制御燃焼と冷却制御
燃焼により、過熱蒸気噴射量を最大にすることで可能に
し、該過熱蒸気の超高速噴射撹拌燃焼により、最短時間
完全燃焼終了・NOx皆無燃焼とします。
A gas turbine combustor may be arranged in a short shape in the form of a large number of small diameter honeycombs, and one or more spiral water pipes may be provided inside the combustor to double as a combustor / heat exchanger having a greatly increased heat transfer area. The higher the pressure ratio, the higher the thermal efficiency of the gas turbine. In fuel combustion of the same calorific value, the higher the pressure ratio, the higher the temperature. In addition, the combustion gas temperature of the combustor / heat exchanger reduces NOx. Heat exchange becomes easier as the temperature increases to around 900 C, which is the upper limit at which no heat is generated. Therefore, including the increase in fuel supply amount by a factor of four with the same amount of compressed air, more than ten times as much heat energy recovery as in the waste heat recovery heat exchanger of the advanced steam / gas turbine combined cycle power generation facility The purpose is to double the thermal efficiency. Furthermore, the heat transfer area of the heat exchanger can be reduced and shortened, so that only the uppermost stream side can be used as fuel vapor supply means. Utilizing the principle of spraying with superheated steam, the fuel is mixed and diluted with suction superheated steam, and lean control combustion and cooling control combustion are made possible by maximizing the amount of superheated steam injection. By high-speed injection stirring combustion, complete combustion is completed in the shortest time and NOx is completely eliminated.

【0010】熱交換ガスタービン入口燃焼ガス温度40
0℃では、燃焼ガス容積が従来技術の略1/2になるた
め、燃料燃焼質量4倍増に加えて、超臨界を含む540
℃前後の過熱蒸気噴射撹拌燃焼を最大として、過熱蒸気
を含む燃焼ガス容積質量を、燃料4倍増以上の過熱蒸気
による、吸引混合希釈後の希薄制御燃焼により大増大を
図り、過熱蒸気増大による冷却制御燃焼により、NOx
皆無燃焼にします。更に大量水使用による圧縮空気温度
低下及び燃焼温度の低下による、圧力比の上昇及び、過
熱蒸気を燃焼ガスで冷却してCO2を凝縮水固定排水、
ガスタービン排気温度の低下による冷熱の供給等、排気
損失の大幅排気利益へ転換し、燃料発熱量を極限まで熱
交換冷却して、冷却損失を冷却利益に転換し、発熱量を
極限まで有効利用可能な、超高性能・超高熱効率の蒸気
ガスタービン合体機関を提供すると共に、磁気摩擦動力
伝達装置を最大限に活用して、動力伝達損失を極限まで
低減することを目的とする。
[0010] Heat exchange gas turbine inlet combustion gas temperature 40
At 0 ° C., the combustion gas volume is reduced to approximately の of that of the prior art.
The superheated steam injection and agitated combustion at around ℃ is maximized, and the volume of combustion gas containing superheated steam is greatly increased by lean control combustion after suction-mixing dilution with superheated steam of 4 times or more, and cooling by the increase of superheated steam NOx by controlled combustion
I will make it no burning. Furthermore, the pressure ratio rises due to the decrease in the compressed air temperature and the combustion temperature due to the use of a large amount of water, and CO2 is condensed water fixed wastewater by cooling the superheated steam with the combustion gas.
Conversion of exhaust loss to significant exhaust profits, such as supply of cold heat due to a decrease in gas turbine exhaust temperature, heat exchange cooling of fuel heat generation to the limit, cooling loss converted to cooling profit, and effective use of the heat generation to the limit It is an object of the present invention to provide a super-high-performance and ultra-high-efficiency steam-gas-turbine combined engine, and to minimize the power transmission loss by maximizing the use of a magnetic friction power transmission device.

【0011】地球温暖化防止が声高に叫ばれております
が、実態は全く逆に、CO2排出増大が加速しておりま
す。また公害被害者も地球規模で増大しており、特に大
都市周辺の道路沿いに棲む、公害被害者は我慢の限界に
近づいております。そこで誰でも考えることに、人類の
ために何か貢献したいという思いです。私も完全往復機
関と完全回転機関を提供して、人類のために貢献したい
と考えて、略55年を経過しました。その過程で最も強
く感じていることは、少し困難な問題があると、申合せ
たように、誰も挑戦しないことです。即ち、自然現象に
酸性雨があり、人間の周辺には、飲料水など水に物質が
溶解混合したものばかりで、水中植物の藻類などCO2
を消費して必要としておるのです。この自然現象など水
の性質に人智を結集すれば、内燃機関からNOxやCO
2など、有害な排気を皆無にできることは明白です。
[0011] Although the prevention of global warming has been loudly shouted, the actual situation is quite opposite, and the increase in CO2 emissions is accelerating. Pollution victims are also increasing on a global scale, especially those living along roads around metropolitan cities are reaching the limits of patience. So, I want to contribute something to humanity for anyone to think about. It has been almost 55 years since I wanted to provide a fully reciprocating engine and a fully rotating engine to contribute to humanity. What I feel most strongly about in the process is that no one will challenge you, as we have agreed, with some difficulties. In other words, there is acid rain as a natural phenomenon, and in the vicinity of humans, there are only substances obtained by dissolving and mixing substances in water such as drinking water, and CO2 such as algae of underwater plants.
Is consumed and needed. If people gather in the nature of water such as natural phenomena, NOx and CO
It is clear that harmful emissions, such as 2, can be eliminated.

【0012】特に内燃機関は高圧高温反応から、0℃以
下の低圧低温反応に混合まで、あらゆる条件が完備して
いるのに加えて、NOxを低減するためにも、熱効率を
上昇するためにも、完全燃焼短時間終了するためにも、
水素の燃焼ガスである過熱蒸気を、超臨界以下で超高速
噴射撹拌燃焼するのが、欠点皆無で最高に良いという問
題があります。そこで用途に合わせて燃焼器兼熱交換器
の圧力比を最高として、出来るだけ高圧の雰囲気で熱交
換することで、出来るだけ大量高圧の過熱蒸気を噴射撹
拌燃焼して、完全燃焼短時間終了して、NOxやCO2
等の有害物質を過熱蒸気乃至水に固定混合し、更にガス
タービンで過熱蒸気と低温燃焼ガスを撹拌混合して、酸
性雨以上の低温条件として有害燃焼ガス水固定として排
水し、更に用途規模に合わせて、燃焼ガス水固定・無害
水を促進する物質を混入して、有害排気0で公害皆無の
排気・排水として、熱効率を80%前後に上昇すること
を目的とする。
In particular, the internal combustion engine has a complete set of conditions, from high-pressure high-temperature reactions to low-pressure low-temperature reactions of 0 ° C. or less, in addition to reducing NOx and increasing thermal efficiency. In order to finish the complete combustion for a short time,
There is a problem that super-high-speed injection stirring combustion of superheated steam, which is the combustion gas of hydrogen, at a supercritical level or less has the best performance without any disadvantages. Therefore, by maximizing the pressure ratio of the combustor and heat exchanger according to the application and exchanging heat in the atmosphere as high as possible, superheated steam with as much high pressure as possible is injected, stirred and burned, and complete combustion is completed in a short time. And NOx and CO2
Toxic substances such as harmful substances are fixedly mixed with superheated steam or water, and the superheated steam and low-temperature combustion gas are further mixed and stirred by a gas turbine. In addition, a substance that promotes fixation of combustion gas water and harmless water is mixed into the exhaust gas and effluent with no harmful exhaust and no pollution to increase the thermal efficiency to about 80%.

【0013】[0013]

【課題を解決するための手段】内燃機関を運転しながら
地球温暖化防止するためには、CO2の排出を一刻も早
く皆無に近付けることです。そして内燃機関の公害を皆
無にするためには、NOxや浮遊粒子状物質などの公害
物質排出を、一刻も早く皆無に近付けることです。そこ
で本発明は、CO2及びNOx及び浮遊粒子状物質など
の公害物質を、先ずNOxを生成しない上限温度の90
0℃前後以下で、伝熱面積を増大させた燃焼器兼熱交換
器内で、最上流側の燃料蒸気供給手段より過熱蒸気を噴
射する過程で、霧吹きの原理を利用して燃料を吸引希釈
し、過熱蒸気の中で空気と撹拌希薄燃焼させることで、
燃焼領域内での局所高温域や浮遊粒子状物質などの発生
を皆無として、発熱を分散し発生する熱を過熱蒸気側に
移動して、冷却燃焼制御を容易にすると共に、過熱蒸気
筒口又は燃料噴口側を摺動して、多数の燃料噴口数を増
減して、霧吹きの原理を利用した燃料噴射量制御して、
膨大な過熱蒸気を含む燃焼ガス容積質量を最大にして、
完全燃焼短時間終了・NOx皆無燃焼として、燃焼ガス
をCO2の生成のみとします。
[Means for Solving the Problems] To prevent global warming while operating an internal combustion engine, it is necessary to reduce CO2 emissions to zero as soon as possible. In order to eliminate pollution from internal combustion engines, the emission of pollutants such as NOx and suspended particulate matter should be reduced to zero as soon as possible. Therefore, the present invention reduces pollutants such as CO2 and NOx and suspended particulate matter to an upper limit temperature of 90% at which NOx is not first generated.
In the process of injecting superheated steam from the fuel steam supply means on the most upstream side in a combustor / heat exchanger with an increased heat transfer area at around 0 ° C or less, the fuel is suction-diluted using the principle of atomization. Then, by superheated steam and agitated lean combustion,
Disperse heat generation and transfer generated heat to superheated steam side to make cooling and combustion control easier, and eliminate superheated steam cylinder opening or fuel Sliding the nozzle side, increasing or decreasing the number of fuel nozzles, controlling the fuel injection amount using the principle of spraying,
By maximizing the volumetric mass of the combustion gas containing a huge amount of superheated steam,
Complete combustion short time end ・ No NOx combustion and only combustion gas generation of CO2.

【0014】燃焼器兼熱交換器を利用して、出来るだけ
高圧の雰囲気で燃焼及び熱交換して、過熱蒸気に変換し
て使用することで、同一圧縮空気量での燃料燃焼質量
を、従来技術最先端複合発電ガスタービンの4倍とし
て、熱交換限りなく燃焼ガス温度を冷却して、外気熱エ
ネルギを含む膨大な過熱蒸気に変換することで、冷却損
失を冷却利益に逆転して、例えばガスタービン入口温度
400℃以下を含めて、熱エネルギ回収量を従来技術ガ
スタービン廃熱回収熱交換器の、10倍以上として、外
気熱エネルギを含む、膨大な過熱蒸気を蒸気タービン等
に供給すると共に、排気温度0℃以下として冷熱を供給
して、排気損失を排気利益に逆転します。成層圏以下の
低温も含めて、高温から低温まで過熱蒸気と燃焼ガスを
常に接触させて、あらゆる有害燃焼ガスを付着溶解する
環境を継続して、過熱蒸気の凝縮水に順次有害燃焼ガス
を付着溶解排出します。用途により排気熱交換器で熱交
換することで、過熱蒸気凝縮水に有害燃焼ガスを付着溶
解排出します。用途に合わせて燃焼ガスで過熱蒸気を冷
却する過程で、有害燃焼ガス水固定・無害排水を促進す
る物質を、給水等に混入して、無害の排気及び無害の排
水とします。
By using a combustor / heat exchanger to perform combustion and heat exchange in a high pressure atmosphere as much as possible and converting it into superheated steam, the fuel combustion mass with the same amount of compressed air can be reduced. As a technology four times that of the state-of-the-art combined cycle gas turbine, the heat loss of the combustion gas is cooled as much as possible and converted into enormous superheated steam including the outside heat energy, thereby reversing the cooling loss to the cooling profit. Supplying a large amount of superheated steam, including outside heat energy, to a steam turbine or the like, with the heat energy recovery amount including the gas turbine inlet temperature of 400 ° C. or less and the heat energy recovery amount being 10 times or more of that of the conventional gas turbine waste heat recovery heat exchanger. At the same time, it supplies cold heat at an exhaust temperature of 0 ° C or less to reverse exhaust loss to exhaust profit. The superheated steam and the combustion gas are always in contact from high to low temperatures, including low temperatures below the stratosphere, to maintain an environment in which all harmful combustion gases adhere and dissolve, and adhere and dissolve harmful combustion gases sequentially to the condensate of superheated steam. Discharge. By exchanging heat with the exhaust heat exchanger depending on the application, harmful combustion gas adheres to the superheated steam condensate and is dissolved and discharged. In the process of cooling the superheated steam with the combustion gas according to the application, a substance that promotes fixing of harmful combustion gas water and harmless wastewater is mixed into the water supply, etc. to make harmless exhaust and harmless wastewater.

【0015】圧縮機及び燃焼器兼熱交換器で、限りなく
熱交換することで、圧縮空気温度を最低に圧縮機の圧力
比を最高にして、出来るだけ高圧の雰囲気で過熱蒸気噴
射燃料希釈希薄燃焼及び熱交換して、超臨界以下の過熱
蒸気を、出来るだけ大量に噴射撹拌完全燃焼短時間終了
して、非常に困難な900℃前後の制御燃焼を、NOx
皆無燃焼として、水固定に重要な過熱蒸気を増大しま
す。用途によりCO2以外の有害燃焼ガスの発生も考え
られます。水はあらゆる物質を容易に溶解混合します
が、公害物質を選択して水に溶解混合排出するため、用
途に合わせて、過熱蒸気になる過程で給水等に、燃焼ガ
ス水固定・無害排水を促進する物質の、化学薬品や物質
を混入して、公害物質を高圧高温の化学反応乃至、0℃
以下乃至成層圏以下の低温化学反応・混合により、水に
固定して排出し、公害物質排出0に近付けます。出来る
だけ高圧高温の雰囲気で、燃焼及び熱交換する利点は、
例えば初圧1kg/cm2・初温0℃・圧力比60で、
600℃の計算空気温度が得られるため、外気温度30
℃前後の夏場を考えるとき、最先端蒸気ガスタービン複
合サイクル発電設備の、ガスタービンの廃熱回収熱交換
器の熱回収を越える、外気熱エネルギが得られます。更
に供給燃料4倍増を含めると、蒸気タービン側に供給で
きる熱エネルギは、最先端発電設備ガスタービンの、廃
熱回収の10倍以上となるのに加えて、ガスタービンの
排気温度を0℃以下とした、冷熱の供給が可能になりま
す。従って、ガスタービンの熱効率を考えられない程上
昇して、総合熱効率80%以上を可能にします。
Infinite heat exchange between the compressor and the combustor / heat exchanger maximizes the pressure ratio of the compressor by reducing the temperature of the compressed air to the minimum, and reduces the dilution of the superheated steam injection fuel in the atmosphere as high as possible. Combustion and heat exchange, injection of superheated steam below supercritical as much as possible, complete stirring, complete combustion in a short time, and control combustion at around 900 ° C, which is extremely difficult, with NOx
Increases superheated steam, which is important for water fixation, as no combustion. Depending on the application, the generation of harmful combustion gases other than CO2 can be considered. Water easily dissolves and mixes any substance.However, in order to select a pollutant and dissolve and mix it in water, depending on the application, fix combustion gas water and harmless wastewater to feed water in the process of becoming superheated steam. Mixing chemicals and substances of the promoting substances, polluting substances by high pressure and high temperature chemical reaction or 0 ℃
It is fixed to water and discharged by low-temperature chemical reaction and mixing below the stratosphere and below the stratosphere, and the emission of pollutants approaches zero. The advantage of combustion and heat exchange in the atmosphere of high pressure and high temperature as possible
For example, at an initial pressure of 1 kg / cm2, an initial temperature of 0 ° C, and a pressure ratio of 60,
Since a calculated air temperature of 600 ° C. is obtained, the outside air temperature 30
Considering summertime around ℃, outside air heat energy can be obtained that exceeds the heat recovery of the waste heat recovery heat exchanger of the gas turbine of the advanced steam gas turbine combined cycle power generation equipment. If the supply fuel is further increased by four times, the thermal energy that can be supplied to the steam turbine side will be more than 10 times that of the state-of-the-art power generation equipment gas turbine and waste heat recovery, and the exhaust temperature of the gas turbine will be 0 ° C or less. It is possible to supply cold heat. Therefore, the thermal efficiency of the gas turbine rises inconceivably, enabling a total thermal efficiency of 80% or more.

【0016】従来技術ガスタービンの作動ガスとしての
燃焼ガスは、一般に空気の割合が非常に多く、理論混合
比の4倍前後の空気を含む。即ち、大量の熱エネルギを
消費して圧縮した空気の略80%を無駄使いし、加えて
燃焼温度の低減に使用して大損失となるため、燃焼器兼
熱交換器の外壁を導水管を含む螺旋状の溶接構造水冷外
壁又は、螺旋状の熔接構造水冷外壁単位組立構造又は、
螺旋状の水冷外壁単位組立構造として、小径多数蜂の巣
状に短小化・高圧化配置し、その内部に螺旋環状に導水
管を一組以上出来るだけ多数組設けて、熱交換伝熱面積
を増大して、熱交換による過熱蒸気変換により、燃焼用
として圧縮した空気の略100%を、燃焼に関与させて
有効利用可能にします。高圧化及び燃料蒸気供給手段の
最上流側の増設を容易にして、該燃料供給量の最大を従
来技術の4倍前後にして、燃焼ガス容積質量を増大しま
す。
The combustion gas as the working gas of the prior art gas turbine generally has a very high proportion of air, and contains about 4 times the stoichiometric mixture. That is, a large amount of heat energy is consumed, and about 80% of the compressed air is wasted, and in addition, it is used to reduce the combustion temperature, resulting in a large loss. Spiral welding structure including water cooling outer wall or spiral welding structure water cooling outer wall unit assembly structure, or
As a spiral water-cooled outer wall unit assembling structure, shortening and high pressure are arranged in a large number of small diameter honeycombs, and as many as possible one or more sets of spiral water pipes are provided in the inside to increase the heat exchange heat transfer area. By converting superheated steam by heat exchange, approximately 100% of air compressed for combustion is involved in combustion and made available for effective use. It is easy to increase the pressure and increase the fuel vapor supply means on the most upstream side, and the maximum fuel supply is about four times that of the conventional technology, thereby increasing the volume of combustion gas.

【0017】燃焼器兼熱交換器伝熱面積を大増大して、
燃焼ガス温度を限りなく過熱蒸気に変換して、高圧のN
Ox低減困難な雰囲気での、900℃前後の制御燃焼
を、超臨界の過熱蒸気噴射撹拌燃焼を含めて、燃焼ガス
容積質量増大・NOx皆無を確実にします。過熱蒸気噴
射燃焼ガスタービン入口耐熱限界温度以下から、更に4
00℃以下まで、単位容積を従来技術の略1/2前後と
して、高圧低温燃焼ガスを、ガスタービンの上流内側か
ら供給し、断熱膨張の過程で過熱蒸気を燃焼ガスで冷却
しながら、該凝縮水に燃焼ガスを混合溶解排水し、成層
圏雰囲気水接触水固定及び、過熱蒸気及び燃料4倍増で
燃焼ガス容積質量の増大を図り、排気熱交換器で廃熱回
収により、凝縮水として燃焼ガス水固定し、無害の水に
して排水します。熱交換して得た超臨界等の過熱蒸気を
噴射するロケット等を含めて、ガスタービンや蒸気ター
ビンの出力を多種用途に使用します。
The heat transfer area of the combustor / heat exchanger is greatly increased,
Converting the combustion gas temperature to superheated steam without limit,
Controlled combustion around 900 ° C in an atmosphere where it is difficult to reduce Ox, including supercritical superheated steam injection and agitation combustion, ensures an increase in combustion gas volume mass and no NOx. From the superheated steam injection combustion gas turbine inlet heat-resistant limit temperature to 4 more
Up to 00 ° C. or less, the unit volume is about half that of the prior art, and high-pressure low-temperature combustion gas is supplied from the upstream and inside of the gas turbine. Combustion gas is mixed and discharged into water, stratified atmosphere water is fixed in contact with water, superheated steam and fuel are quadrupled to increase the volume of combustion gas, and waste heat is recovered by an exhaust heat exchanger to produce condensed water. Fix, harmless water and drain. Uses the output of gas turbines and steam turbines for various purposes, including rockets that inject superheated steam such as supercritical heat obtained by heat exchange.

【0018】該燃焼器兼熱交換器の設計事項としては、
最も小型用として使用する場合は、第5・6特例実施例
図17・図18のように、大径の1水冷外壁水冷内壁導
水管の燃焼器兼熱交換器として、水冷外壁内径に応じて
その中に、出来るだけ多数の略螺旋環状の導水管兼蒸気
管を設けて使用します。図1乃至図4の通常の高圧用で
は、蜂の巣状に円筒型燃焼器兼熱交換器を設けるため、
空き間ができますが、該空き間を図にない空き間型燃焼
器兼熱交換器としてもよく、その場合は、図13(d)
の水冷外壁燃焼器兼熱交換器を使用します。該熱交換に
より、ガスタービン入口温度を、タービン耐熱限界温度
以下から400℃以下に、用途に合わせて限りなく低下
させ、燃焼用に圧縮した全圧縮空気を、理論空燃比燃焼
に近づけて、燃料燃焼質量を4倍前後まで増大可能にし
て、燃料発熱量の大部分を過熱蒸気に変換して、超臨界
の蒸気条件等を含めて、空気圧縮の5乃至10倍近い圧
力の上昇と、圧力比の高い雰囲気での、熱交換により外
気熱エネルギ回収を含む膨大な過熱蒸気熱エネルギを回
収して、蒸気タービン等に供給します。
The design items of the combustor / heat exchanger include:
When used for the smallest size, as shown in FIGS. 17 and 18 of the fifth and sixth special embodiments, as a combustor and heat exchanger for a large-diameter one-water-cooled outer-wall water-cooled inner-wall conduit, the diameter of the water-cooled outer wall depends on the inner diameter. In it, as many as possible spiral spiral water pipes and steam pipes are installed and used. In the normal high pressure type shown in FIGS. 1 to 4, since a cylindrical combustor / heat exchanger is provided in a honeycomb shape,
Although an empty space can be created, the empty space may be used as a space type combustor / heat exchanger not shown in the figure. In that case, FIG.
Use a water-cooled external wall combustor and heat exchanger. By this heat exchange, the gas turbine inlet temperature is reduced from the turbine heat-resistant limit temperature or lower to 400 ° C. or lower as much as possible according to the application, and the total compressed air compressed for combustion is brought close to stoichiometric air-fuel ratio combustion, The combustion mass can be increased up to about 4 times, and most of the fuel calorific value is converted to superheated steam, including supercritical steam conditions, a pressure increase of about 5 to 10 times that of air compression, and a pressure increase. A large amount of superheated steam heat energy including external air heat energy is recovered by heat exchange in an atmosphere with a high ratio and supplied to a steam turbine, etc.

【0019】圧縮機での空気冷却及び燃料燃焼質量4倍
増を含む、高圧の雰囲気での熱交換により、最先端蒸気
・ガスタービン複合サイクル発電設備の、同一圧縮空気
量ガスタービンの、廃熱回収熱交換器で回収する場合
の、10倍以上の熱エネルギ回収使用を図り、総合熱効
率80%前後及び比出力を大上昇します。燃焼ガスでガ
スタービンを駆動し、燃焼ガス温度がタービン耐熱限界
温度以下から、400℃以下となるように熱交換して得
た過熱蒸気により、蒸気タービンや蒸気タービン圧縮機
等を駆動して、該回転動力や推力により、プロペラや車
輪や発電機や機械等を回転して、各種航空機や自動車や
船舶や機械等を駆動すると共に、用途により過熱蒸気排
気や燃焼ガス排気や圧縮空気の噴射推力により、各種航
空機や船舶等を浮揚推進する装置等を、夫夫を制御する
制御装置を含めて提供します。
Heat exchange in a high-pressure atmosphere, including air cooling in the compressor and quadrupling the fuel combustion mass, enables waste heat recovery of the gas turbine with the same compressed air amount of the advanced steam / gas turbine combined cycle power generation equipment. By using heat energy more than 10 times when recovering with a heat exchanger, the total thermal efficiency is around 80% and the specific output is greatly increased. By driving the gas turbine with the combustion gas, the superheated steam obtained by exchanging heat so that the combustion gas temperature becomes 400 ° C. or less from the turbine heat-resistant limit temperature or less, drives the steam turbine or the steam turbine compressor, etc. The rotating power and thrust rotate propellers, wheels, generators, machines, and the like to drive various aircraft, automobiles, ships, machines, and the like, and depending on the application, thrust of superheated steam exhaust, combustion gas exhaust, or compressed air. Will provide equipment for levitating and propelling various aircraft and ships, including a control device for controlling each other.

【0020】又、空気を圧縮する場合と水を圧縮する場
合を比較するとき水蒸気が略1700分の1に凝縮され
た水を圧縮するのが遥かに有利であり、超臨界の蒸気条
件まで保有熱量(保有熱エネルギ量)を増大可能なのに
加えて、空気圧縮の5乃至10倍近い圧力の過熱蒸気と
して放出すると、1700倍を遥かに越える大容積・大
速度として、熱効率大上昇が得られるため、圧縮した空
気の略全部を、燃焼に有効利用する最良の方法が、増大
供給燃料の熱エネルギ略全部を含めて、最も効率良く過
熱蒸気に変換して、使用することである。従って超高性
能の燃焼器兼熱交換器を得るため、できるだけ高圧高温
のNOxを生成しない、900℃前後での制御燃焼及
び、熱交換して限りなく低温燃焼ガスにすることで、最
も効率良く熱交換すると共に、水素の燃焼ガスである超
臨界などの過熱蒸気を噴射して、撹拌冷却NOx皆無短
時間完全燃焼終了・出力増大するのが最良です。
Further, when comparing the case where air is compressed and the case where water is compressed, it is much more advantageous to compress water in which water vapor is condensed to about 1/700. In addition to being able to increase the amount of heat (the amount of retained heat energy), if superheated steam is released at a pressure close to 5 to 10 times that of air compression, a large increase in thermal efficiency can be obtained as a large volume and a large speed far exceeding 1700 times. The best way to utilize substantially all of the compressed air for combustion is to convert and use superheated steam with the highest efficiency, including substantially all of the thermal energy of the increased fuel supply. Therefore, in order to obtain an ultra-high performance combustor / heat exchanger, control combustion at around 900 ° C, which does not generate as high pressure and high temperature NOx as possible, and heat exchange to an infinitely low temperature combustion gas are most efficient. In addition to heat exchange, it is best to inject superheated steam, such as supercritical hydrogen, which is the combustion gas of hydrogen, to complete the complete combustion in a short period of time without stirring and to increase the output.

【0021】同一発熱量の燃料から取り出す熱量(過熱
蒸気)を、ガスタービン入口温度400℃以下などを含
めて、外気熱エネルギも含めた最大にして、最も効率良
く膨大な過熱蒸気を得ると共に、ガスタービンを駆動す
る燃焼ガス質量を最大に、該熱交換により駆動燃焼ガス
熱量を最小にして、最も熱効率良くガスタービンを駆動
すると共に、燃焼ガス排気を0℃以下大幅に低温の排気
熱量として、有害燃焼ガス排気を凝縮水に固定して0に
すると共に、ガスタービンの熱エネルギ使用量を低減し
て、窒素ガスの排気にすることで燃焼ガス排気0とし
て、排気熱交換器により冷熱を回収して供給し、排気損
失を排気利益に逆転した、熱と電気と冷熱の供給設備と
しても使用します。圧縮空気の必要な別用途にはバイパ
スを設けて使用し、また通常使用の歯車装置に換えて、
先の出願の磁気摩擦動力伝達装置を適宜に、又は全面的
に使用することで、あらゆる補機を含めて、最も効率良
く動力を伝達する駆動装置として、全動翼を含む蒸気ガ
スタービン合体機関サイクルの最高熱効率を、2倍乃至
3倍前後に大上昇を図ります。
The amount of heat (superheated steam) extracted from the fuel having the same heat value is maximized including the outside air heat energy including the gas turbine inlet temperature of 400 ° C. or less, so that a huge amount of superheated steam can be obtained most efficiently. By maximizing the mass of the combustion gas that drives the gas turbine, minimizing the driving combustion gas calorie by the heat exchange, and driving the gas turbine with the highest thermal efficiency, the combustion gas exhaust gas is cooled at 0 ° C. or less as a low-temperature exhaust calorie, The harmful combustion gas exhaust is fixed to the condensed water and reduced to zero, the amount of thermal energy used in the gas turbine is reduced, and the nitrogen gas is exhausted to reduce the combustion gas exhaust to zero and recover the cold heat by the exhaust heat exchanger. And supply, also used as heat, electricity and cold supply equipment, with exhaust losses reversed to exhaust profits. For other applications that require compressed air, use a bypass and use it instead of a normally used gear unit.
By using the magnetic friction power transmission device of the prior application appropriately or entirely, as a drive device that transmits power most efficiently, including all auxiliary machines, a steam gas turbine combined engine including all blades The maximum thermal efficiency of the cycle is greatly increased by about 2 to 3 times.

【0022】[0022]

【発明の実施の形態】発明の実施の形態や実施例を、図
面を参照して説明するが、実施形態や実施例と、既説明
と、その構成が略同じ部分には、同一の名称又は符号を
付してその重複説明は省略し、特徴的な部分や説明不足
部分は、順次追加説明する。又、発明の意図する所及び
予想を具体的に明快に説明するため、数字で説明する部
分がありますが、数字に限定するものではありません。
又、この発明に使用する燃焼器兼熱交換器4は、小径多
数蜂の巣状に短小化配置して、内部に螺旋環状に導水管
1乃至蒸気管6を、1以上出来るだけ多数用途に合わせ
て設けて、熱交換器伝熱面積を拡大し、該燃焼ガスをガ
スタービンの最上流側から供給する構成とします。図1
乃至図4・図13・図14の如く、水冷外壁26を1以
上複数の導水管1を含む螺旋状の熔接構造又は、螺旋状
の溶接構造を含む水冷外壁単位52組立構造とした、燃
焼器兼熱交換器4として、比較的大きな圧力比を設定し
て、燃料蒸気供給手段27を、夫夫の最上流側に設ける
等、多数とすることで燃料蒸気供給手段27の増設を容
易とし、熱交換速度の大上昇を図るガスタービンを構成
し、熱交換して得た過熱蒸気で駆動する蒸気タービン等
を構成し、例えば図にない発電機兼電動機等を設けて、
熱と電気と冷熱の併給設備や、始動装置としても兼用す
ると共に、各種運輸装置の駆動や機械の駆動等多種用途
に使用します。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and embodiments of the present invention will be described with reference to the drawings. The reference numerals are used to omit duplicate explanations, and the characteristic parts and the parts that are not explained are added and explained sequentially. In addition, some parts are described with numbers in order to specifically and clearly explain the intended and expected aspects of the invention, but are not limited to numbers.
Further, the combustor / heat exchanger 4 used in the present invention is arranged in a short shape in the form of a large number of small diameter honeycombs, and one or more water guide pipes 1 to steam pipes 6 are formed in a spiral ring inside in accordance with as many as possible. To expand the heat transfer area of the heat exchanger and supply the combustion gas from the most upstream side of the gas turbine. FIG.
As shown in FIGS. 4, 13, and 14, the water-cooled outer wall 26 has a spiral welded structure including one or more water guide tubes 1 or a water-cooled outer wall unit 52 assembly structure including a spiral welded structure. As the heat exchanger 4, a relatively large pressure ratio is set, and the fuel vapor supply means 27 is provided at the most upstream side of each of the heat exchangers. Construct a gas turbine that aims to greatly increase the heat exchange speed, configure a steam turbine etc. driven by superheated steam obtained by heat exchange, for example, provide a generator and electric motor not shown in the figure,
It is also used as a heat / electricity / cold heat supply system and as a starting device, and is also used for various purposes such as driving various transportation devices and driving machinery.

【0023】図1・図2を参照して、全動翼・蒸気ガス
タービン合体機関中核部の実施例を説明する。全動翼の
発想は、自動車を手で押して移動する場合、ブレーキを
引いた状態で押すと非常に疲れますが、仕事量は0であ
り、ブレーキを解除して押すと容易に移動できます。従
って、圧縮機やタービンに静翼があると、エネルギの大
損失となるため、静翼を動翼に置換して全動翼として、
置換動翼を外側軸装置に結合し、従来動翼を内側軸装置
に結合して、互いに反対方向に回転する、内側軸装置と
外側軸装置を、導水管1などの冷却装置を有する磁気摩
擦動力伝達装置14により結合して、最も効率良く2軸
を2重反転駆動すると共に、周速を略半分づつ分担し
て、外径を略2倍にして流体通路を略4倍として、比出
力を大増大すると共に、熱効率の大上昇を図る。又は周
速を従来技術と略同じにして、動翼間相対速度を略2倍
にして、比出力及び熱効率の大上昇を図る。又は周速を
従来技術の略半分づつにして、許容応力が略4分の1
の、安価で静粛等、多様な設計(業務用または家庭用の
熱と電気と冷熱の併給設備等)を可能にしながら、熱効
率の大上昇を図るものです。又はCO2を含む有害燃焼
ガスの排気ガス0とするため、低温の燃焼ガスによりガ
スタービンの中で、断熱膨張の過程で過熱蒸気を冷却し
て、該凝縮水に有害燃焼ガスを固定して、外側タービン
動翼群に設けた毛細管放出手段(57)より、遠心力を
利用して放出し、有害排気ガスを0とします。
Referring to FIG. 1 and FIG. 2, an embodiment of a core portion of a combined blade / steam gas turbine engine will be described. The idea of the whole rotor blade is that when you move a car by hand, you can be very tired if you push it with the brake applied, but the workload is 0, and you can move easily by releasing the brake and pushing. Therefore, if there is a stationary blade in a compressor or a turbine, a large loss of energy will occur.
The displacement rotor blades are connected to the outer shaft device, and the conventional rotor blades are connected to the inner shaft device, and the inner shaft device and the outer shaft device rotating in opposite directions are connected to each other by magnetic friction having a cooling device such as a water pipe 1. The power transmission device 14 couples the two shafts with the most efficient double reversal drive, and at the same time, divides the peripheral speed by approximately half, makes the outer diameter approximately twice, and makes the fluid passage approximately four times, thereby increasing the specific output. And the thermal efficiency is greatly increased. Alternatively, the peripheral speed is made substantially the same as that of the prior art, and the relative speed between the moving blades is made about twice, so that the specific output and the thermal efficiency are greatly increased. Alternatively, the permissible stress is reduced to approximately one-fourth by reducing the peripheral speed by approximately half of that of the prior art.
It allows for a variety of designs (combined use of heat, electricity and cold for business or home use), such as low-cost, quiet, etc., while greatly increasing thermal efficiency. Or, in order to make the exhaust gas 0 of the harmful combustion gas containing CO2, the superheated steam is cooled in the process of adiabatic expansion in the gas turbine by the low-temperature combustion gas, and the harmful combustion gas is fixed to the condensed water. Hazardous exhaust gas is reduced to zero using centrifugal force from the capillary discharge means (57) provided in the outer turbine blade group.

【0024】図1の蒸気ガスタービン合体機関中核部の
第1実施例及び、図5乃至図8の蒸気タービン圧縮機の
実施例及び、図9乃至図12の蒸気ガスタービン合体機
関の実施形態を参照して説明します。図1全動翼圧縮機
右端の置換した外側圧縮機動翼群1段16より、通常の
如く空気を吸入して、偶数段の内側圧縮機動翼群17
と、奇数段の外側圧縮機動翼群16が協力して、全動翼
により効率良く空気を圧縮して、該圧縮空気15を、内
側軸装置を含む内側圧縮機動翼群17に設けた、冷却手
段55により該夫夫を冷却水により冷却し、該冷却水を
水噴射手段56より噴射して直接接触空気冷却し、外側
軸装置を含む外側圧縮機動翼群16に設けた、毛細管放
出手段57より該凝縮冷却水を、遠心力および毛細管現
象を利用して放出する、空気冷却により高圧低温の圧縮
空気15を供給します。高圧低温の圧縮空気15は、外
側圧縮機動翼群終段16より、環状の出口21を介し
て、環状の受け口22、環状の圧縮空気溜8より、小径
多数蜂の巣状に短小化配置して、内部に螺旋環状に導水
管1乃至蒸気管6を1以上出来るだけ多数、用途に合わ
せて設けて、伝熱面積の増大した、燃焼器兼熱交換器4
に供給します。
The first embodiment of the core portion of the combined steam gas turbine engine shown in FIG. 1, the embodiment of the steam turbine compressor shown in FIGS. 5 to 8, and the embodiment of the combined steam gas turbine engine shown in FIGS. See and explain. As shown in FIG. 1, air is sucked in as usual from the first stage 16 of the replaced outer compressor blade group at the right end of the full blade compressor, and the inner compressor blade group 17 of the even-numbered stage is sucked.
And the odd-numbered outer compressor blade groups 16 cooperate to efficiently compress the air by all the rotor blades and provide the compressed air 15 to the inner compressor blade group 17 including the inner shaft device. Each of them is cooled by cooling water by means 55, and the cooling water is jetted from water jetting means 56 for direct contact air cooling, and the capillary discharge means 57 provided in the outer compressor blade group 16 including the outer shaft device. The condensed cooling water is discharged using the centrifugal force and the capillary phenomenon to supply compressed air 15 of high pressure and low temperature by air cooling. The high-pressure / low-temperature compressed air 15 is shortened from the outer compressor rotor blade group final stage 16 through the annular outlet 21 through the annular receiving port 22 and the annular compressed air reservoir 8 into a small-diameter multi-honeycomb arrangement. A combustor / heat exchanger 4 in which one or more water guide pipes 1 to steam pipes 6 are provided as many as possible in a helical ring in accordance with the application to increase the heat transfer area.
Supply.

【0025】供給された高圧低温の圧縮空気15は、図
にない公知の制御装置からの指令により、該夫夫の上流
側図1図19の、燃料蒸気供給手段27の燃料噴口60
に供給された、最大で従来技術の4倍の燃料を、過熱蒸
気筒口59の超臨界を含む大量の過熱蒸気により、霧吹
きの原理を利用して吸引希釈して、過熱蒸気の中に拡散
させて、次に吸引希釈された空気と撹拌希薄燃焼し、噴
射撹拌冷却燃焼により、NOxを生成しない上限温度
の、900℃前後に燃焼制御短時間完全燃焼終了して、
高圧の雰囲気での非常に困難なNOx皆無燃焼により、
燃焼ガスCO2のみを成功させます。略理論空燃比燃焼
も含めて燃焼させて、過熱蒸気筒口59の先端中央に
は、針弁61を設けて全開全閉可能に、螺子又は往復ピ
ストンを設けて、回転又は往復させて過熱蒸気流量最大
乃至0とするため、電動駆動制御又は空気圧駆動制御又
は油圧駆動制御として、過熱蒸気の流量制御により燃焼
温度を制御します。燃料蒸気供給手段27の燃料噴口6
0に供給された、最大で従来技術の4倍の燃料は、該燃
料噴口60に設けた、螺子又は往復ピストンにより、燃
料噴口60を回転又は往復させて、内径側多数の燃料小
穴62を、過熱蒸気筒口59により開閉して、燃料の流
量制御により燃焼温度を制御します。
The supplied high-pressure / low-temperature compressed air 15 is supplied to a fuel injection port 60 of the fuel vapor supply means 27 shown in FIG.
The fuel supplied at a maximum of four times that of the prior art is suction-diluted by a large amount of superheated steam including the supercritical gas at the superheated steam cylinder port 59 using the principle of spraying, and diffused into the superheated steam. Then, the mixture is agitated and lean-burned with the air diluted with suction, and the combustion control is completed at a temperature around 900 ° C., which is the upper limit temperature at which NOx is not generated by the injection-stirred cooling combustion.
With very difficult NOx-free combustion in high pressure atmosphere,
Only the combustion gas CO2 succeeds. Combustion is performed including substantially stoichiometric air-fuel ratio combustion, and a needle valve 61 is provided at the center of the tip of the superheated steam cylinder port 59 so that it can be fully opened and closed, and a screw or a reciprocating piston is provided. The combustion temperature is controlled by controlling the flow rate of superheated steam as electric drive control, pneumatic drive control, or hydraulic drive control to set the maximum to 0. Fuel nozzle 6 of fuel vapor supply means 27
The fuel supplied up to 0 times the maximum of four times that of the prior art is rotated or reciprocated by a screw or a reciprocating piston provided in the fuel injection port 60, and a large number of fuel small holes 62 on the inner diameter side are formed. It is opened and closed by the superheated steam cylinder port 59, and the combustion temperature is controlled by controlling the fuel flow rate.

【0026】燃焼ガス温度がガスタービン入口800℃
以下から、用途により400℃以下となるように、燃焼
器兼熱交換器4内で限りなく熱交換しながら、用途に合
わせた熱交換にして、導水管1の夫夫の水冷外壁26
や、蒸気管6により、燃焼ガス10を冷却熱交換し、N
Ox皆無燃焼等で得た燃焼ガス10を、夫夫の燃焼器兼
熱交換器4より、環状の燃焼ガス溜9を介して、環状の
受け口23に、回転自在に挿入れ気密保持された、環状
の噴口群24より、置換した外側タービン動翼群1段1
9及び、内側タービン動翼群2段20を含む、下流側に
順次噴射して、回転動力を発生させると共に、断熱膨張
の過程で過熱蒸気5を燃焼ガス10により冷却して、凝
縮水にCO2を固定して、有害排気ガス0に近付け、排
気熱交換器58による熱交換により、更に凝縮水にCO
2を固定して有害排気ガス0にします。用途により排気
温度0℃以下として、排気利益を確保しながら、凝縮水
にCO2を固定して有害排気ガス0にし、排気熱交換器
58による熱交換により、冷熱の供給を含めて排気しま
す。
The combustion gas temperature is 800 ° C. at the gas turbine inlet.
From the following, while exchanging heat as much as possible in the combustor / heat exchanger 4 so as to be 400 ° C. or less depending on the application, heat exchange is performed according to the application, and the water cooling outer wall 26 of each of the water guide pipes 1 is used.
Alternatively, the combustion gas 10 is cooled and exchanged by the steam pipe 6,
The combustion gas 10 obtained by Ox-free combustion or the like was rotatably inserted into the annular receiving port 23 from the respective combustor / heat exchanger 4 via the annular combustion gas reservoir 9 and was airtightly maintained. Outer turbine blade group 1 stage 1
9 and the inner turbine blade group 2 stage 20, which are sequentially injected to the downstream side to generate rotational power and to cool the superheated steam 5 by the combustion gas 10 in the process of adiabatic expansion, and to convert CO 2 into condensed water. Is fixed to approach the harmful exhaust gas 0, and the heat exchange by the exhaust heat exchanger 58 further reduces CO to the condensed water.
Fix 2 to make harmful exhaust gas 0. Depending on the application, the exhaust temperature is kept at 0 ° C or less, and CO2 is fixed to the condensed water to make no harmful exhaust gas while maintaining the profit of the exhaust gas.

【0027】熱が仕事をすると考える熱力学の発想を逆
転して、熱は仕事をしない、高温は単位容積質量小=単
位容積仕事量の減少になると考えると、熱効率X比出力
=圧力比X燃焼ガス質量容積=速度X質量容積となり、
同一質量では高温程容積が大で仕事量が大ですが、ター
ビン耐熱限界温度があるため無意味です。そこでガスタ
ービン燃焼機を熱交換器としても兼用すると、高圧高温
の雰囲気で限りなく熱交換して、外気熱エネルギを含む
過熱蒸気熱エネルギを回収し、同一圧縮空気量での燃料
燃焼質量を、従来技術最先端複合発電ガスタービンの4
倍として、熱エネルギ回収量を該廃熱回収熱交換器の1
0倍以上にして、ガスタービンの出力を増大し、排気損
失を排気利益に逆転して、熱効率を大上昇できるため、
外気熱エネルギを含む、全部乃至大部分の供給熱エネル
ギは過熱蒸気5に変換して、夫夫の燃焼器兼熱交換器4
の、蒸気管6及び制御装置を含む蒸気加減弁7を介し
て、図5乃至図8・図9乃至図12の全動翼を含む蒸気
タービンの最上流側に供給して、該出力と全動翼を含む
ガスタービンの出力により自動車等を駆動します。図5
乃至図8の全動翼を含む蒸気タービン圧縮機の、蒸気タ
ービンの最上流側より、外側タービン動翼群1段19又
は、内側タービン静翼又は、従来技術静翼に噴射して、
通常の如く順次下流側を駆動して、順次大きな回転出力
を発生させて、用途により蒸気タービンとしても使用
し、又は図の各種圧縮機を強力に駆動して、推力乃至圧
力気体を得るものです。
Reversing the idea of thermodynamics, which considers that heat does work, heat does not work, and high temperature means that unit volume mass is small = unit volume work is reduced. Therefore, thermal efficiency X specific output = pressure ratio X Combustion gas mass volume = velocity X mass volume,
At the same mass, the higher the temperature, the larger the volume and the larger the work, but it is meaningless due to the turbine heat-resistant limit temperature. Therefore, when the gas turbine combustor is also used as a heat exchanger, heat is exchanged as much as possible in a high-pressure and high-temperature atmosphere, and superheated steam heat energy including outside air heat energy is recovered. 4 of the prior art advanced combined cycle gas turbine
Twice as much as the heat energy recovery amount of the waste heat recovery heat exchanger.
It is possible to increase the output of the gas turbine to 0 times or more, to reverse the exhaust loss to the exhaust profit, and to greatly increase the thermal efficiency.
All or most of the supplied heat energy, including the outside air heat energy, is converted into superheated steam 5 to be supplied to the respective combustor / heat exchanger 4.
Of the steam turbine including all the moving blades shown in FIGS. 5 to 8 and FIGS. 9 to 12 through a steam control valve 7 including a steam pipe 6 and a control device. Cars and other vehicles are driven by the output of gas turbines including moving blades. FIG.
8 to the outer turbine moving blade group 1 stage 19 or the inner turbine stationary blade or the prior art stationary blade from the most upstream side of the steam turbine of the steam turbine compressor including all the rotating blades of FIG.
Drives the downstream side sequentially as usual to generate a large rotation output, and uses it as a steam turbine depending on the application, or strongly drives the various compressors in the figure to obtain thrust or pressure gas. .

【0028】下流側に供給されて湿り蒸気乃至水滴とな
った過熱蒸気は、外側タービン動翼群19より、遠心力
により毛細管放出手段57より、外周後方に噴射して推
力を発生し、又は動圧+重力により毛細管放出手段57
より放出し、成層圏飛行など排気損失大低減を可能に、
蒸気タービンを駆動します。該夫夫の排気を噴出して、
右前方の空気を左後方に強力に噴射して、回転力や浮揚
推進力を必要とする各種用途、例えばヘリコプターやジ
ェット機等の各種航空機や、各種船舶等の噴射推進に使
用し、又は、航空機と船舶の中間的なもの等を、浮揚噴
射推進する用途に使用し、又は、図9過熱蒸気溜32及
び噴口29を設けて、過熱蒸気を噴射するロケットとし
ても使用し、又は、プロペラや車輪や発電機や機械等を
回転駆動する用途に使用して、圧力が従来空気圧縮機の
5乃至10倍に近い過熱蒸気により、熱効率及び推進効
率及び浮揚推進効率を大上昇する、公知の各種制御装置
を有する、各種全動翼を含む蒸気ガスタービン合体機関
とします。
The superheated steam, which is supplied to the downstream side and becomes wet steam or water droplets, is ejected from the outer turbine blade group 19 to the rear of the outer periphery from the capillary discharge means 57 by centrifugal force to generate thrust, or Capillary discharge means 57 by pressure + gravity
More emissions, enabling a great reduction in exhaust loss such as stratospheric flight,
Drive the steam turbine. Spout the husband's exhaust,
Use to inject air in the front right strongly to the rear left and use it in various applications that require rotational force and levitation propulsion, such as helicopters and jet aircraft, and jet propulsion of various ships, or aircraft And intermediate use of a ship, etc., is used for levitation injection propulsion, or FIG. 9 is provided with a superheated steam reservoir 32 and an injection port 29 to be used also as a rocket for jetting superheated steam, or a propeller or a wheel. Various types of known control for increasing the thermal efficiency, propulsion efficiency and levitation propulsion efficiency by using superheated steam whose pressure is about 5 to 10 times that of conventional air compressors, for use in rotating and driving generators, machines, etc. It is a steam gas turbine combined engine including various moving blades with the equipment.

【0029】図1を参照して別の説明をする。燃焼器兼
熱交換器4の伝熱面積増大容易に小径多数蜂の巣状に短
小化配置して、内部に螺旋環状に導水管1乃至蒸気管6
を1以上出来るだけ多数、用途に合わせて設けて、軽量
高圧容器を容易にし、燃料蒸気供給手段27を、最大で
従来技術の4倍前後に、最上流側に設ける等、増設容易
に熱交換増大容易に設けます。中央左右に夫夫磁気摩擦
動力伝達装置14を設けて、夫夫内側軸装置に固着し
て、該外周に環状に設けた、外側圧縮機動翼群終段16
及び、外側タービン動翼群1段19を固着した、外側軸
装置を夫夫回転自在に外嵌して、夫夫互いに反対方向に
回転する2軸を、磁気摩擦動力伝達装置14により、夫
夫最適回転比で結合して、内側軸装置に内側圧縮機動翼
群終段17及び、内側タービン動翼群2段20を固着し
て、以後外側軸装置の外側圧縮機動翼群奇数終段16
に、外側圧縮機動翼群奇数段16を固着し、内側圧縮機
動翼群終段17に、内側圧縮機動翼群偶数段17を固着
する、というように交互に固着し、最も効率良く動力を
伝達するため、磁気摩擦動力伝達装置を含む駆動装置に
より、全動翼圧縮機を構成させます。そして前記外側軸
装置の外側タービン動翼群1段19に、外側タービン動
翼群奇数段19を固着し、内側タービン動翼群2段20
に、内側タービン動翼群偶数段20を固着するというよ
うに、交互に固着して、内側タービン動翼群偶数終段2
0を、内側軸装置に固着して、外側タービン動翼群奇数
終段19を、外側軸装置に固着して、内側軸装置に回転
自在に外嵌枢支して、全動翼ガスタービンを構成させ、
全動翼・蒸気ガスタービン合体機関の、中核部を構成さ
せます。
Another explanation will be given with reference to FIG. The heat transfer area of the combustor / heat exchanger 4 can be easily increased and shortened in the form of a large number of small diameter honeycombs.
As many as one or more can be provided according to the application to facilitate a lightweight high-pressure vessel, and the fuel vapor supply means 27 can be easily added and installed at the most upstream side, up to about four times that of the conventional technology. Easy to increase. A magnetic friction power transmission device 14 is provided on each of the left and right sides of the center, and each is fixed to the inner shaft device, and is provided annularly on the outer periphery.
An outer shaft device, to which the outer turbine blade group one stage 19 is fixed, is rotatably fitted to the outer shaft device, and the two shafts rotating in opposite directions to each other are respectively moved by the magnetic friction power transmission device 14. At the optimum rotational ratio, the final stage 17 of the inner compressor blade group and the second stage 20 of the inner turbine blade group are fixed to the inner shaft device, and thereafter the odd-numbered final stage 16 of the outer compressor blade group of the outer shaft device is fixed.
The outer compressor rotor blade group odd-numbered stage 16 is fixed to the outer compressor blade group, and the inner compressor rotor blade group even-numbered stage 17 is fixed to the inner compressor blade group final stage 17, so that power is transmitted most efficiently. For this purpose, a drive unit including a magnetic friction power transmission device is used to configure an all-blade compressor. The outer turbine blade group odd stage 19 is fixed to the outer turbine blade group first stage 19 of the outer shaft device, and the inner turbine blade group second stage 20 is fixed.
The inner turbine blade group even-numbered stage 20 is alternately fixed to the inner turbine blade group even-number
0 is fixed to the inner shaft device, and the outer turbine blade group odd-numbered final stage 19 is fixed to the outer shaft device, and is rotatably fitted to the inner shaft device so as to be rotatably fitted on the inner shaft device. Configure
The core part of the combined rotor / steam gas turbine engine.

【0030】図2を参照して、バイパス付加全動翼・蒸
気ガスタービン合体機関中核部の、第2実施例を説明す
る。従来技術では、大量の熱エネルギを消費して燃焼用
として圧縮した空気の、80%近くを利用することな
く、無駄に(燃焼温度を逆に低下させて)排出して大損
失となるため、燃焼用として圧縮した空気を、燃焼に1
00%有効利用可能にすると共に、燃焼用以外に使用す
る圧縮空気15は、バイパス28を設けて、別途使用す
ることで、比出力を極限まで増大して、熱効率の大上昇
を図るものです。即ち、従来技術ガスタービンの、作動
ガスとしての燃焼ガスは、一般に空気の割合が非常に多
く、理論空燃比の4倍前後の空気を含むため、燃焼用圧
縮空気を100%燃焼に利用するためには、供給した熱
量の大部分を、過熱蒸気に変換利用することを必須とし
ます。そこでこの発明は、燃焼器兼熱交換器4を、小径
多数蜂の巣状に短小化配置して、内部に螺旋環状に導水
管乃至蒸気管6を、1以上出来るだけ多数設けて、伝熱
熱交換面積を増大し、高圧化容易・燃料蒸気供給増大容
易として、供給熱量の全部乃至大部分を、過熱蒸気に変
換可能にすると共に、該水冷外壁26を、少なくとも1
本以上複数の導水管1を含む、螺旋状の熔接構造又は、
溶接構造を含む、螺旋状導水管1の水冷外壁単位52の
組立て構造とし、圧力比の大上昇及び、超臨界を含む過
熱蒸気の噴射を可能にして、比出力を大増大すると共
に、燃焼用に圧縮した空気の略全部を、燃焼に有効使用
可能にし、圧縮空気の必要な別用途には、バイパスを設
けて別使用とし、回転力を必要とする用途には、出力軸
12を設けて回転動力を取り出し、空気圧縮の無駄を全
廃して熱効率の大幅上昇を図ります。
With reference to FIG. 2, a second embodiment of the core portion of the combined engine with all the moving blades and the steam gas turbine added to the bypass will be described. In the prior art, a large amount of heat energy is consumed and wasteful (reversely lowering the combustion temperature) is discharged without using nearly 80% of the compressed air for combustion, resulting in a large loss. Air compressed for combustion is used for combustion.
The compressed air 15 used for purposes other than combustion is provided with a bypass 28 and used separately to increase the specific output to the utmost limit and greatly increase the thermal efficiency. That is, the combustion gas as the working gas of the prior art gas turbine generally has a very high air ratio and contains air that is about four times the stoichiometric air-fuel ratio, so that the compressed air for combustion is used for 100% combustion. Requires that most of the supplied heat be converted to superheated steam. Therefore, the present invention provides a heat exchanger 4 in which the combustor / heat exchanger 4 is shortened and arranged in a small number of honeycombs and one or more spiral water pipes or steam pipes 6 are provided inside as much as possible. In order to increase the area, to easily increase the pressure and to easily increase the supply of fuel vapor, all or most of the supplied heat can be converted to superheated steam, and the water-cooled outer wall 26 has at least one
A spiral welding structure including a plurality of water pipes 1 or more, or
The water-cooled outer wall unit 52 of the spiral water pipe 1 includes an assembly structure including a welding structure, which enables a large increase in the pressure ratio and injection of superheated steam including supercritical fluid, thereby greatly increasing the specific output and increasing the combustion efficiency. Approximately all of the compressed air can be used effectively for combustion. For other uses requiring compressed air, a bypass is provided for separate use. For uses requiring rotational force, the output shaft 12 is provided. By taking out the rotating power, the waste of air compression is completely eliminated and the thermal efficiency is greatly increased.

【0031】図2・図5乃至図12を参照して別の説明
をする。バイパス28を含む右端の全動翼圧縮機の、置
換した外側圧縮機動翼群1段16より、通常の如く空気
を吸入して、偶数段の内側圧縮機動翼群17と、奇数段
の外側圧縮機動翼群16が協力して、全動翼により効率
良く空気を圧縮して、圧縮空気の必要な別用途には、用
途に応じて適宜に設けた、バイパス28通路より最適供
給し、燃焼用の圧縮空気15は、内側軸装置を含む内側
圧縮機動翼群17に設けた、冷却手段55により該夫夫
を冷却水により冷却し、該冷却水を水噴射手段56より
噴射して、直接接触で空気冷却し、該凝縮冷却水を外側
圧縮機動翼群16を含む外側軸装置に設けた、毛細管放
出手段57より、遠心力及び毛細管現象を利用して放出
する、空気冷却により高圧低温の、圧縮空気15を供給
します。高圧低温の圧縮空気15は、外側圧縮機動翼群
終段16より、環状の出口21を介して、環状の受け口
22、環状の圧縮空気溜8より、小径多数蜂の巣状に高
圧化配置して、内部に螺旋環状に導水管乃至蒸気管6
を、1以上出来るだけ多数、用途に合わせて設けて、伝
熱面積の増大した、燃焼器兼熱交換器4に供給します。
Another explanation will be given with reference to FIGS. 2 and 5 to 12. Air is sucked in as usual from the replaced outer compressor blade group 1 stage 16 of the rightmost full blade compressor including the bypass 28, and the even-numbered inner compressor blade group 17 and the odd-numbered outer compressor The moving blade group 16 cooperates to efficiently compress the air by all the moving blades, and for other applications requiring compressed air, optimally supplies compressed air from a bypass 28 passage provided appropriately according to the application. The compressed air 15 is cooled by cooling water provided by the cooling means 55 provided on the inner compressor blade group 17 including the inner shaft device, and the cooling water is jetted from the water jetting means 56 for direct contact. The condensed cooling water is discharged from a capillary discharge means 57 provided on the outer shaft device including the outer compressor rotor blade group 16 using centrifugal force and capillary phenomenon. Supply compressed air 15. The high-pressure and low-temperature compressed air 15 is arranged from the outer compressor rotor blade group final stage 16 through the annular outlet 21 to the annular receiving port 22 and the annular compressed air reservoir 8 so as to be pressurized and arranged in a large number of small-diameter honeycombs. A water pipe or steam pipe 6 with a spiral ring inside
Is provided as many as possible in accordance with the application, and is supplied to the combustor / heat exchanger 4 with an increased heat transfer area.

【0032】供給された高圧低温の圧縮空気15は、図
にない公知の制御装置からの指令により、該夫夫の燃焼
器兼熱交換器4の上流側の、燃料蒸気供給手段27から
供給される過熱蒸気により、最大で従来技術の4倍前後
の供給燃料を、希釈撹拌混合希薄燃焼完全燃焼短時間終
了+過熱蒸気噴射撹拌冷却燃焼を、略理論空燃比900
℃前後制御燃焼も含めて行い、非常に困難な高圧高温の
雰囲気でのNOx皆無燃焼を、熱交換を含めて可能に
し、用途により有害燃焼ガスをCO2のみとします。熱
交換伝熱面積の拡大した燃焼器兼熱交換器4内で、燃焼
制御900℃前後の燃焼として熱交換すると共に、導水
管1の夫夫の水冷外壁26や、蒸気管6により、熱交換
冷却してNOx皆無燃焼・燃焼ガス温度を低下します。
ガスタービン燃焼ガス入口温度800℃以下又は、40
0℃以下となるように、熱交換して得た燃焼ガス10
は、夫夫の燃焼器兼熱交換器4より、環状の燃焼ガス溜
9を介して、環状の受け口23に、回転自在に挿入れ気
密保持された、環状の噴口群24より、置換した外側タ
ービン動翼群1段19及び、内側タービン動翼群2段2
0を含む、下流側に順次噴射して、回転力を発生させる
と共に、過熱蒸気を燃焼ガス10により冷却して、凝縮
水にCO2を固定して有害排気ガス0とし、用途により
排気温度0℃以下の、熱交換による冷熱の供給も含めて
排気します。
The supplied high-pressure / low-temperature compressed air 15 is supplied from fuel vapor supply means 27 upstream of the respective combustor / heat exchanger 4 in accordance with a command from a known control device (not shown). By using superheated steam, a maximum of about four times the fuel supply compared to the prior art can be supplied, and the short-time dilution-mixing-lean combustion complete combustion + superheated steam injection-stirring cooling combustion can be performed at a stoichiometric air-fuel ratio of 900.
Performs control combustion around ℃, and enables NOx-free combustion in a very difficult high-pressure and high-temperature atmosphere, including heat exchange. Depending on the application, the only harmful combustion gas is CO2. In the combustor / heat exchanger 4 having an enlarged heat exchange heat transfer area, heat exchange is performed as combustion at around 900 ° C. in the combustion control, and heat exchange is performed by the water cooling outer wall 26 and the steam pipe 6 of each of the water guide tubes 1. Cools down and burns NOx and reduces combustion gas temperature.
Gas turbine combustion gas inlet temperature 800 ° C or less or 40
Combustion gas 10 obtained by heat exchange so as to be 0 ° C. or less
Is replaced by a group of annular nozzles 24 rotatably inserted into the annular receiving port 23 from the respective combustor / heat exchanger 4 via the annular combustion gas reservoir 9 and held in an airtight manner. Turbine blade group 1 stage 19 and inner turbine blade group 2 stage 2
0, and sequentially injects to the downstream side to generate rotational force, cools the superheated steam with the combustion gas 10, fixes CO2 in the condensed water to make harmful exhaust gas 0, and the exhaust temperature is 0 ° C depending on the application. Exhaust including the supply of cold heat by the following heat exchange.

【0033】ガスタービンの入口温度800℃以下又は
400℃以下となるように、熱交換して得た大部分の過
熱蒸気5は、用途により夫夫の燃焼器兼熱交換器4の、
蒸気加減弁7を介して、図5乃至図8及び図10・図1
1の如く、蒸気管6により過熱蒸気5を、全動翼を含む
蒸気タービン圧縮機の、蒸気タービン最上流側に供給
し、順次下流側を駆動して、大きな回転力を発生させ、
蒸気タービンとしても使用します。該全動翼を含む蒸気
タービンにより、全動翼を含む圧縮機を駆動して、推力
乃至回転力を発生し、蒸気ガスタービンを含めて従来技
術同様に、ターボシャフトエンジン及び、ターボプロッ
プエンジン及び、ターボジェットエンジン及び、ターボ
ファンエンジン及び、船舶浮揚推進装置等として、各種
中核部と共に、各種航空機及び各種船舶等に使用しま
す。同様に図9では、全動翼を含む蒸気ガスタービン合
体機関中核部と、導水管1を螺旋状円筒状に密集して設
けた、過熱蒸気溜32及び噴口29を、止め弁13・1
3間で切離し可能にすることで、ロケットを構成しま
す。同様に図12では、図5乃至図8の全動翼を含む蒸
気タービン(圧縮機削除)を駆動して、該回転力及び中
核部回転力により、主としてプロペラや車輪や発電機や
機械等を、駆動する用途に使用し、推力・浮揚力を同時
利用してもよく、排気の熱利用等を図る、熱と電気と冷
熱の併給設備としても使用し、公知の各種制御装置を有
する、全動翼・蒸気ガスタービン合体機関とし、第7実
施例と同様に多数用途に使用します。
Most of the superheated steam 5 obtained by heat exchange so that the gas turbine inlet temperature is 800 ° C. or lower or 400 ° C. or lower is supplied to the respective combustor / heat exchanger 4 depending on the application.
5 to 8 and FIGS. 10 and 1 through the steam control valve 7.
As shown in 1, the superheated steam 5 is supplied to the steam turbine compressor including all the moving blades by the steam pipe 6 to the most upstream side of the steam turbine, and the downstream side is sequentially driven to generate a large torque.
Also used as a steam turbine. The compressor including the entire moving blades is driven by the steam turbine including the entire moving blades to generate thrust or rotational force, and a turboshaft engine, a turboprop engine, and Used as a turbojet engine, turbofan engine, ship levitation propulsion device, etc., with various core parts, various aircraft and various ships. Similarly, in FIG. 9, the core portion of the combined engine of the steam gas turbine including all the moving blades, the superheated steam reservoir 32 and the injection port 29 in which the water pipes 1 are densely provided in a spiral cylindrical shape are connected to the stop valves 13 and 1.
A rocket is constructed by making it possible to separate between the three. Similarly, in FIG. 12, the steam turbine (compressor removed) including all the moving blades of FIGS. 5 to 8 is driven, and the propeller, the wheels, the generator, the machine, and the like are mainly driven by the torque and the core torque. , Used for driving, may use thrust and levitation force at the same time, aim at heat utilization of exhaust, etc., also used as combined heat, electricity and cold heat equipment, and have various known control devices. It is a combined blade and steam gas turbine engine, and is used for many applications as in the seventh embodiment.

【0034】図2を参照して別の説明をする。小径多数
蜂の巣状に短小化配置して、内部に螺旋環状に導水管1
乃至蒸気管6を1以上出来るだけ多数、用途に合わせて
設けた、燃焼器兼熱交換器4を設けて、その内側の内側
軸装置中央左右の、磁気摩擦動力伝達装置14に、夫夫
の内側軸装置を連結して、該左右夫夫の内側軸装置に、
環状に設けた外側圧縮機動翼群終段16及び、外側ター
ビン動翼群1段19を固着した、外側軸装置を回転自在
に外嵌枢支して、夫夫互いに反対方向に回転する2軸
を、前記磁気摩擦動力伝達装置14により、最適回転比
で夫夫結合して、夫夫の内側軸装置に、内側圧縮機動翼
群終段17及び、内側タービン動翼群2段20を固着し
て、以後外側圧縮機動翼群奇数段16及び、内側圧縮機
動翼群偶数段17を交互に固着し、燃焼用以外に使用す
る圧縮空気用バイパスとして、外径を拡大したものを含
めて交互に固着し、外側圧縮機動翼群1段16に、外側
軸装置を固着し、内側軸装置に回転自在に外嵌枢支し
て、磁気摩擦動力伝達装置14により、最適の2重反転
回転比で結合されて、最も効率良く2軸を駆動する、全
動翼圧縮機を構成させます。また外側タービン動翼群1
段19には、外側タービン動翼群奇数段19を固着し、
内側タービン動翼群2段20に、内側タービン動翼群偶
数段20を固着するというように、交互に固着して、内
側タービン動翼群偶数終段20を、内側軸装置に固着し
て、外側タービン動翼群奇数終段19を、外側軸装置に
固着して、内側軸装置に回転自在に外嵌枢支し、磁気摩
擦動力伝達装置14により、同様に2重反転全動翼蒸気
ガスタービンを構成させて、バイパス付加全動翼・蒸気
ガスタービン合体機関の、中核部を構成します。
Another explanation will be given with reference to FIG. The water pipes 1 are arranged in a short shape in the shape of a large number of small diameter honeycombs, and are spirally annular inside.
And at least one steam pipe 6 as many as possible according to the application, the combustor / heat exchanger 4 is provided. By connecting the inner shaft device, the left and right inner shaft devices,
A two-shaft, to which an outer shaft device is rotatably fitted and externally rotatably fitted with an outer compressor rotor blade group final stage 16 and an outer turbine rotor blade group first stage 19, which are provided in an annular shape. Are connected at the optimum rotational ratio by the magnetic friction power transmission device 14, and the inner compressor rotor blade group final stage 17 and the inner turbine rotor blade group second stage 20 are fixed to the respective inner shaft devices. Thereafter, the odd-numbered stage 16 of the outer compressor blade group and the even-numbered stage 17 of the inner compressor blade group are alternately fixed, and alternately including the one having an enlarged outer diameter as a compressed air bypass used for purposes other than combustion. The outer shaft device is fixed to the first stage 16 of the outer compressor rotor blade group, and the outer shaft device is rotatably fitted to the inner shaft device so as to be rotatably fitted to the inner shaft device. Combined to form a full blade compressor that drives the two shafts most efficiently. It is. Outer turbine blade group 1
The outer turbine blade group odd number stage 19 is fixed to the stage 19,
The even-numbered stage 20 of the inner turbine blade group is alternately fixed to the second stage 20 of the inner turbine blade group, and the even final stage 20 of the inner turbine blade group is fixed to the inner shaft device. The outer turbine blade group odd-numbered final stage 19 is fixed to the outer shaft device, and rotatably fitted to the inner shaft device so as to be rotatably fitted to the outer shaft device. By configuring the turbine, the core part of the combined engine with bypass and all blades and steam gas turbine is configured.

【0035】図3を参照して、蒸気ガスタービン合体機
関の中核部の、第3実施例を説明する。図1の第1実施
例との相違点は、全動翼・蒸気ガスタービン合体機関の
中核部を、蒸気ガスタービン合体機関の中核部として、
置換動翼を、従来技術の静翼に還元し、該夫夫の外側動
翼の毛細管放出手段57の、直接接触空気冷却による凝
縮冷却水の放出手段及び、過熱蒸気凝縮水の放出手段
を、遠心力の利用から動圧+重力利用に変換して、従来
技術の圧縮機とガスタービンに置換したところです。そ
の他は略同様に、右端の圧縮機静翼より通常の如く空気
を吸入して、偶数段の内側圧縮機動翼群17と奇数段の
静翼が協力して、空気を圧縮してその過程で、内側圧縮
機動翼群17に設けた、冷却手段55により該夫夫を冷
却水により冷却し、該冷却水を水噴射手段56より噴射
して、直接接触空気冷却し、該凝縮冷却水をケーシング
下部付近に設けた、毛細管放出手段57より毛細管現象
及び動圧+重力を利用して放出する、空気冷却により圧
縮した、高圧低温の圧縮空気15を供給します。
Referring to FIG. 3, a description will be given of a third embodiment of the core portion of the combined steam and gas turbine engine. The difference from the first embodiment of FIG. 1 is that the core of the combined rotor / steam gas turbine engine is the core of the steam gas turbine combined engine.
The replacement blade is reduced to a prior art stationary blade, and the means for discharging the condensed cooling water by direct contact air cooling and the means for discharging the superheated steam condensed water of the capillary discharge means 57 of the respective outer blades are provided. The use of centrifugal force has been converted to the use of dynamic pressure and gravity, and it has just been replaced with conventional compressors and gas turbines. In other respects, in a similar manner, air is normally sucked from the rightmost compressor stationary blade, and the even-stage inner compressor blade group 17 and the odd-numbered stationary blades cooperate to compress the air. The cooling means 55 provided in the inner compressor rotor blade group 17 cools each of them with cooling water, and the cooling water is jetted from the water jetting means 56 for direct contact air cooling. It supplies high-pressure and low-temperature compressed air 15 compressed by air cooling and released using capillary action and dynamic pressure + gravity from the capillary discharge means 57 provided near the lower part.

【0036】該高圧低温の圧縮空気15を、内側圧縮機
動翼群終段17より、環状の出口21を介して、環状の
受け口22・空気溜8より、小径多数蜂の巣状に短小化
配置して、その内部に螺旋環状に導水管1乃至蒸気管6
を、1以上出来るだけ多数、用途に合わせて設けた、燃
焼器兼熱交換器4に供給します。質量容積X速度(圧力
比)が仕事をし、高温は単位容積質量小=単位容積仕事
量の減少と考え、燃焼器兼熱交換器により、外気熱エネ
ルギを含む燃焼ガス熱エネルギを、限りなく過熱蒸気に
変換して使用し、超臨界を含む過熱蒸気により、従来技
術の4倍の燃料を、吸引希釈噴射撹拌希薄燃焼完全燃焼
短時間終了及び、NOx皆無冷却燃焼により、大量の過
熱蒸気噴射燃焼ガス容積質量を増大しながら、ガスター
ビン入口温度800℃乃至400℃以下燃焼ガス冷却容
積半減の、外気熱エネルギを含む(6MPa600℃で
排気温度0℃)、供給熱エネルギを限りなく過熱蒸気に
変換して、例えば排気温度0℃以下・有害排気ガス0の
ガスタービンや蒸気タービンを、駆動可能としたもので
す。従って図1の第1実施例から第3実施例までの要素
を、夫夫適宜に置換して、第1実施例と同様に多種用途
の、例えば車両の移動及び船舶や航空機の推進用や発電
用に使用します。
The high-pressure and low-temperature compressed air 15 is shortened from the inner compressor rotor blade group final stage 17 through the annular outlet 21 to the annular receiving port 22 and the air reservoir 8 into a small-diameter multi-honeycomb arrangement. , And a spiral annular water pipe 1 to a steam pipe 6 therein.
Is supplied to the combustor / heat exchanger 4 provided as many as possible, depending on the application. Mass volume X speed (pressure ratio) works, high temperature is considered to be unit volume mass small = unit volume work decrease, and combustion gas heat energy including outside air heat energy is infinitely reduced by combustor and heat exchanger. Converted into superheated steam and used, and superheated steam containing supercritical fluid, 4 times the fuel of the prior art, suction dilution injection agitation lean combustion complete combustion short-term completion, and NOx non-cooling combustion, a large amount of superheated steam injection Increasing the combustion gas volume mass while halving the combustion gas cooling volume below 800 ° C to 400 ° C, including outside air heat energy (exhaust temperature 0 ° C at 6MPa 600 ° C), and supplying heat energy as much as possible to superheated steam By converting, for example, a gas turbine or a steam turbine with an exhaust temperature of 0 ° C or less and no harmful exhaust gas can be driven. Therefore, the elements from the first embodiment to the third embodiment shown in FIG. 1 are appropriately replaced with each other, and similarly to the first embodiment, for various purposes, for example, for moving a vehicle and for propulsion of a ship or an aircraft, or for power generation. Used for

【0037】従来技術、蒸気・ガスタービン複合サイク
ル火力発電設備に近い、図3・図12を参照して、最先
端火力発電設備として使用する場合を、従来技術と比較
説明する。図3のガスタービンを利用した第3実施例
で、発電機を駆動の場合、燃焼器兼熱交換器4を、小径
多数蜂の巣状に短小化配置して、内部に螺旋環状の導水
管1乃至蒸気管6を1以上設けて、熱交換面積を増大し
た、高圧高温の雰囲気での熱交換では、圧力比60圧縮
比18・外気温度0℃で、600℃の空気温度が得られ
るため、タービン入口温度を400℃前後にすれば、3
0℃前後の外気温度から回収出来る、過熱蒸気熱エネル
ギも非常に大きくなり、更に同一燃焼用圧縮空気量で、
従来技術の最大で4倍前後の燃料燃焼となり、該従来ガ
スタービン廃熱回収熱交換器で回収する熱エネルギの、
10倍を遥かに越える熱エネルギ量となり、加えて排気
温度0℃以下大幅な低下による、排気損失を逆転した排
気利益も考えられない程大きくなり、熱と電気と冷熱の
大量供給を含めて、熱効率の大上昇にします。
Referring to FIG. 3 and FIG. 12, which are close to the prior art, a combined steam and gas turbine combined cycle thermal power plant, the case of using it as a state-of-the-art thermal power plant will be described in comparison with the prior art. In the third embodiment using the gas turbine of FIG. 3, when the generator is driven, the combustor / heat exchanger 4 is shortened and arranged in a large number of small-diameter honeycombs, and the spiral annular water pipes 1 to 3 are provided inside. In the heat exchange in a high-pressure and high-temperature atmosphere in which one or more steam pipes 6 are provided to increase the heat exchange area, an air temperature of 600 ° C is obtained at a pressure ratio of 60, a compression ratio of 18, and an outside air temperature of 0 ° C. If the inlet temperature is around 400 ° C, 3
The superheated steam heat energy that can be recovered from the outside air temperature of around 0 ° C also becomes very large.
Up to about four times the fuel combustion of the conventional technology, the heat energy recovered by the conventional gas turbine waste heat recovery heat exchanger,
The heat energy amount is much more than 10 times, and the exhaust profits, which have reversed the exhaust loss due to the significant decrease of the exhaust temperature below 0 ° C, are also incredibly large, including the large supply of heat, electricity and cold heat. Great increase in thermal efficiency.

【0038】更に、過熱蒸気を含む大幅に増大した燃焼
ガス質量容積として、小型大出力のガスタービンが得ら
れるのに加えて、熱エネルギ使用量外気熱エネルギのみ
等の大出力ガスタービンとして、過熱蒸気の凝縮水にC
O2を溶解固定して排水し、窒素ガス排気温度0℃以下
の排気により、燃焼ガス排気0及び排気損失の排気利益
転換により、冷熱の供給を可能にします。発生過熱蒸気
の全部を使用する蒸気タービン及びガスタービンでは、
自動車用などの小型が可能になり、排気熱交換器58に
より、蒸気タービン排気ガスの過熱蒸気の凝縮水に、燃
焼ガスのCO2を溶解混合固定して排水し、燃焼ガス排
気0にできるし、蒸気タービン排気ガスで比較的高温の
給水3を供給出来ます。圧力比の比較についても、大量
水使用により圧縮空気温度の低下が容易なため、極限ま
で圧力比を上昇して、熱効率を上昇できます。即ち、圧
力比が大きい雰囲気で熱交換するほど、蒸気ガスタービ
ン合体機関の熱効率が高くなり、燃焼ガス単位容積質量
が大きい程、ガスタービンが小型大出力になり、排気温
度が0℃以下大幅に低い程、ガスタービンの熱効率が高
くなり、同一圧縮空気量から取り出す熱エネルギ量が多
い程、蒸気タービンの出力が大きくなるため、総合熱効
率を80%前後に上昇できます。
Furthermore, in addition to obtaining a small and large-output gas turbine with a greatly increased combustion gas mass volume including superheated steam, the amount of heat energy used and a large-output gas turbine using only outside air heat C in steam condensate
O2 is melted and drained, and nitrogen gas exhaust temperature of 0 ° C or less enables the supply of cold heat by converting the exhaust gas profit to zero combustion gas exhaust and exhaust loss. In steam turbines and gas turbines that use all generated superheated steam,
It is possible to reduce the size of an automobile or the like, and the exhaust heat exchanger 58 dissolves and fixes the CO2 of the combustion gas to the condensed water of the superheated steam of the steam turbine exhaust gas and discharges it. Steam turbine exhaust gas can supply relatively hot water 3. As for the comparison of pressure ratios, the use of large amounts of water makes it easier to lower the compressed air temperature, so the pressure ratio can be raised to the limit and thermal efficiency can be increased. That is, the more heat exchanged in an atmosphere having a large pressure ratio, the higher the thermal efficiency of the steam gas turbine combined engine becomes, and the larger the unit mass of combustion gas becomes, the smaller the gas turbine becomes, and the larger the output becomes. The lower the temperature, the higher the thermal efficiency of the gas turbine, and the greater the amount of thermal energy extracted from the same amount of compressed air, the higher the output of the steam turbine. As a result, the overall thermal efficiency can be increased to about 80%.

【0039】図4を参照して、バイパス付加蒸気ガスタ
ービン合体機関の中核部の、第4実施例を説明する。図
3の第3実施例との相違点は、第3実施例の蒸気ガスタ
ービン合体機関中核部の圧縮機に、バイパスを付加し
て、バイパス付加蒸気ガスタービン合体機関の中核部と
したものです。その他は第3実施例と同様に、置換動翼
を、従来技術の静翼に還元して、該夫夫の動翼の毛細管
放出手段57の、直接接触空気冷却による凝縮冷却水の
放出手段及び、過熱蒸気凝縮水の放出手段を、遠心力の
利用から動圧+重力利用に変換して、バイパス付加圧縮
機とガスタービンを構成したところです。その他も同様
に、燃焼器兼熱交換器4を、小径多数蜂の巣状に短小化
配置して、その内部に螺旋環状に、導水管1乃至蒸気管
6を1以上設けて、供給熱量を限りなく過熱蒸気に変換
して、超臨界を含む過熱蒸気噴射燃料吸引希釈撹拌希薄
燃焼完全燃焼短時間終了及び、燃焼ガス単位容積半減質
量倍増、NOx皆無冷却燃焼により、過熱蒸気を含む燃
焼ガス質量容積を増大しながら、ガスタービンや蒸気タ
ービン等を、駆動可能としたもので、ガスタービンの排
気温度0℃以下・燃焼ガス排気0等とします。従って、
図1の第1実施例から第4実施例までの要素を、夫夫適
宜に置換して、第1実施例と同様に多種用途の、例えば
車両の移動及び、船舶や航空機の推進用に使用します。
Referring to FIG. 4, a fourth embodiment of the core portion of the combined steam-gas turbine engine with bypass will be described. The difference from the third embodiment of FIG. 3 is that a bypass is added to the compressor in the core part of the steam gas turbine combined engine of the third embodiment to make it the core part of the combined steam gas turbine combined engine. . Otherwise, as in the third embodiment, the replacement blade is reduced to a stationary blade of the prior art, and the capillary discharge means 57 of each of the blades discharges condensed cooling water by direct contact air cooling. The means for discharging superheated steam condensate has been converted from the use of centrifugal force to the use of dynamic pressure and gravity to form a compressor with bypass and a gas turbine. Similarly, the combustor / heat exchanger 4 is similarly arranged in a short shape in the form of a large number of small-diameter honeycombs, and one or more water guide pipes 1 to steam pipes 6 are provided in a spiral ring inside the combustor / heat exchanger 4 so that the amount of supplied heat is infinite. By converting to superheated steam, the superheated steam injection fuel suction dilution dilution stirring and lean combustion complete combustion including supercritical energy is completed in a short time, the combustion gas unit volume is reduced by half, the NOx is completely cooled, and the combustion gas mass volume including superheated steam is reduced. The gas turbines and steam turbines can be driven while increasing, and the exhaust temperature of the gas turbine is 0 ° C or less and the combustion gas exhaust is 0. Therefore,
The elements from the first embodiment to the fourth embodiment in FIG. 1 are replaced as appropriate, and are used for various purposes, for example, for moving a vehicle and propelling a ship or an aircraft as in the first embodiment. To do.

【0040】図5を参照して、全動翼・蒸気タービン圧
縮機の第1実施例を説明する。各種蒸気ガスタービン合
体機関の中核部で、熱交換して得た過熱蒸気5により、
全動翼蒸気タービンを駆動して回転力を発生させて、左
端の出力軸12により回転動力として利用し、全動翼・
蒸気タービンとしても使用します。又、該回転力によ
り、図5の全動翼圧縮機を具備して回転させ、高圧縮空
気乃至高速気流を得るもので、回転力及び推力及び浮揚
力等を得るものです。従って、中核部で熱交換して得た
過熱蒸気5を、蒸気加減弁7より蒸気管6により、全動
翼蒸気タービンの最上流側に運搬して、該最上流側を駆
動すると共に順次下流側を駆動して、大きな回転動力を
発生させると共に、その過程で過熱蒸気の凝縮水を、外
側タービン動翼群19の毛細管放出手段57より放出
し、左端の磁気摩擦動力伝達装置14により、互いに反
対方向に回転する、外側タービン動翼群19及び外側軸
装置と、内側タービン動翼群20及び内側軸装置を、最
適回転比で結合します。更に、右端の圧縮機側磁気摩擦
動力伝達装置14により、内側圧縮機動翼群17及びタ
ービン外側軸装置と兼用の内側軸装置と、外側圧縮機動
翼群16及び外側軸装置を最適二重反転回転比で結合し
て、全動翼圧縮機を構成させて、全動翼蒸気タービン及
び全動翼蒸気タービン圧縮機の第1実施例とします。
Referring to FIG. 5, a first embodiment of the all blade / steam turbine compressor will be described. Superheated steam 5 obtained by heat exchange at the core of various steam gas turbine combined engines
The rotor blade steam turbine is driven to generate rotational force, which is used as rotational power by the output shaft 12 at the left end.
Also used as a steam turbine. In addition, the rotating blade is equipped with the full-blade compressor shown in FIG. 5 and rotated to obtain a high compressed air or a high-speed airflow. The rotating force, the thrust and the levitation force are obtained. Therefore, the superheated steam 5 obtained by heat exchange in the core portion is conveyed from the steam control valve 7 to the most upstream side of the all-blade steam turbine by the steam pipe 6 to drive the most upstream side and sequentially downstream. To generate large rotational power, and in the process, condensed water of superheated steam is discharged from the capillary discharge means 57 of the outer turbine bucket group 19, and mutually separated by the magnetic friction power transmission device 14 at the left end. The outer turbine blade group 19 and the outer shaft device, which rotate in opposite directions, are connected with the inner turbine blade group 20 and the inner shaft device at the optimum rotation ratio. Further, the right end compressor-side magnetic friction power transmission device 14 optimally reverses the inner compressor blade group 17 and the inner shaft device also serving as the turbine outer shaft device, and the outer compressor blade group 16 and the outer shaft device. The first embodiment of the all-blade steam turbine and the all-blade steam turbine compressor is constructed by combining them by the ratio.

【0041】図6を参照して、全動翼・蒸気タービン圧
縮機の第2実施例を説明する。各種蒸気ガスタービン合
体機関の中核部で、熱交換して得た過熱蒸気5を蒸気管
6により、内側軸装置右端中央より、全動翼蒸気タービ
ンの上流側に供給して、全動翼蒸気タービンを駆動し
て、回転力を発生させて、その過程で過熱蒸気の凝縮水
を、外側タービン動翼群19の毛細管放出手段57より
放出し、左端の出力軸12により、回転動力として利用
し、全動翼・蒸気タービンとしても使用します。又、該
回転力により、図6の全動翼圧縮機を設けて回転させ、
高圧縮空気乃至高速気流を得るもので、回転力及び推力
及び浮揚力等を得るものです。従って、熱交換して得た
過熱蒸気5を蒸気加減弁7より蒸気管6により、全動翼
蒸気タービンの最上流側に運搬して、該最上流側を駆動
すると共に順次下流側を駆動して、大きな回転動力を発
生させると共に、左端の磁気摩擦動力伝達装置14によ
り、互いに反対方向に回転する、外側タービン動翼群1
9及び外側軸装置と、内側タービン動翼群20及び内側
軸装置を、最適回転比で結合して、全動翼蒸気タービン
を構成させます。更に、右端の圧縮機側磁気摩擦動力伝
達装置14により、内側圧縮機動翼群17及び内側軸装
置と、外側圧縮機動翼群16及び外側軸装置を、最適二
重反転回転比で結合して、全動翼圧縮機を構成させて、
全動翼蒸気タービン及び全動翼蒸気タービン圧縮機の第
2実施例とします。
Referring to FIG. 6, a description will be given of a second embodiment of the all-blade / steam turbine compressor. Superheated steam 5 obtained by heat exchange at the core of various steam gas turbine combined engines is supplied from a center of the right end of the inner shaft device to the upstream side of the all-blade steam turbine by a steam pipe 6, and the all-blade steam The turbine is driven to generate a rotational force, and in the process, the condensed water of the superheated steam is discharged from the capillary discharge means 57 of the outer turbine bucket group 19 and is used as the rotational power by the output shaft 12 at the left end. Also used as all blades / steam turbine. Further, by using the rotating force, the whole blade compressor shown in FIG. 6 is provided and rotated.
It obtains high compressed air or high-speed airflow, and obtains rotational force, thrust, levitation, etc. Therefore, the superheated steam 5 obtained by heat exchange is conveyed from the steam control valve 7 to the most upstream side of the all-blade steam turbine by the steam pipe 6 to drive the most upstream side and sequentially drive the downstream side. The outer turbine rotor blade group 1 generates a large rotational power and rotates in opposite directions by the magnetic friction power transmission device 14 at the left end.
9 and the outer shaft unit, and the inner turbine blade group 20 and the inner shaft unit are combined at an optimum rotation ratio to form a full blade steam turbine. Further, the inner compressor rotor blade group 17 and the inner shaft device, and the outer compressor rotor blade group 16 and the outer shaft device are connected by the right-most compressor-side magnetic friction power transmission device 14 at an optimum counter-rotating rotation ratio. By composing a full-blade compressor,
It is the second embodiment of the all blade steam turbine and the all blade steam turbine compressor.

【0042】図7を参照して、蒸気タービン圧縮機の第
3実施例を説明する。各種蒸気ガスタービン合体機関の
中核部で、熱交換して得た過熱蒸気5により、蒸気ター
ビンを駆動して回転力を発生させて、出力軸12により
利用し、蒸気タービンとしても使用します。又、該回転
力により、図7の圧縮機を具備して回転させ、高圧縮空
気乃至高速気流を得るもので、回転力及び推力及び浮揚
力等を得るものです。従って、熱交換して得た過熱蒸気
5を、蒸気加減弁7より蒸気管6により、内側固定軸装
置の右端中央より、蒸気タービンの最上流側に運搬し
て、該最上流側を駆動すると共に順次下流側を駆動し
て、大きな回転動力を発生させると共に、通常とは逆
の、外側タービン動翼群19及び外側軸装置を回転させ
ることにより、過熱蒸気5の凝縮水を、遠心力により外
後方に噴射して、前記全動翼ガスタービンや、全動翼蒸
気タービンの第1・2実施例と同様に、成層圏飛行など
排気温度低下・排気圧力低下に対応し、圧縮空気流の質
量増大として推進力を増大し、左端の内側固定軸装置に
外嵌枢支して、該外側軸装置の左端を出力軸12とし
て、蒸気タービンを構成します。内側タービン静翼軸兼
内側固定軸装置の右端は、ケーシングの水平継ぎ手によ
り固定して、該ケーシングを、タービン外側軸装置と兼
用の内側軸装置及び、内側圧縮機動翼群17に外嵌枢支
して、圧縮機を構成させて、蒸気タービン圧縮機の第3
実施例とします。
Referring to FIG. 7, a third embodiment of the steam turbine compressor will be described. At the core of various steam gas turbine combined engines, the superheated steam 5 obtained by heat exchange drives the steam turbine to generate torque, which is used by the output shaft 12 and used as a steam turbine. In addition, the compressor shown in Fig. 7 is rotated by the rotational force to obtain high compressed air or high-speed airflow, and to obtain rotational force, thrust, levitation, and the like. Therefore, the superheated steam 5 obtained by heat exchange is conveyed from the center of the right end of the inner fixed shaft device to the most upstream side of the steam turbine by the steam pipe 6 through the steam control valve 7 to drive the most upstream side. And the downstream side is sequentially driven to generate a large rotational power, and by rotating the outer turbine blade group 19 and the outer shaft device, which are opposite to the usual, the condensed water of the superheated steam 5 is removed by centrifugal force. As in the first and second embodiments of the full-blade gas turbine and the full-blade steam turbine, the fuel is injected outward and rearward to cope with a decrease in exhaust temperature and a decrease in exhaust pressure such as a stratospheric flight, and the mass of the compressed air flow. As the increase, the propulsion force is increased, the outer shaft device is externally pivoted to the inner fixed shaft device on the left end, and the left end of the outer shaft device is used as the output shaft 12 to constitute a steam turbine. The right end of the inner turbine stationary blade shaft and inner fixed shaft device is fixed by a horizontal joint of a casing, and the casing is externally fitted to the inner shaft device also serving as the turbine outer shaft device and the inner compressor blade group 17. Then, the compressor is constituted, and the third of the steam turbine compressor is
An example.

【0043】図8を参照して、蒸気タービン圧縮機の第
4実施例を説明する。各種蒸気ガスタービン合体機関の
中核部で、熱交換して得た過熱蒸気5により、蒸気ター
ビンを駆動して、回転力を発生させて、出力軸12によ
り利用し、従来技術の蒸気タービンとしても使用しま
す。又、該回転力により、右側に圧縮機を具備して回転
させ、高圧縮空気乃至高速気流を得るもので、回転力及
び推力及び浮揚力等を得るものです。従って、熱交換し
て得た過熱蒸気5を、蒸気加減弁7より蒸気管6によ
り、公知技術蒸気タービンの、最上流側に運搬して、通
常どおりに該最上流側を駆動すると共に、順次下流側を
駆動して、大きな回転動力を発生させて、その過程で過
熱蒸気の凝縮水を、ケーシングの下部に設けた毛細管放
出手段57より、動圧及び重力により放出し、内側軸装
置の左端を出力軸12として、回転力を取り出す蒸気タ
ービンを構成します。即ち、内側タービン動翼群20及
び内側軸装置の外側に、水平継ぎ手で分解組立て可能な
ケーシングに、夫夫静翼を固定して外嵌枢支し、蒸気タ
ービンを構成します。同様に内側圧縮機動翼群17及び
内側軸装置の外側に、夫夫静翼を固定したケーシングを
外嵌枢支して、圧縮機を構成させて、蒸気タービン圧縮
機の第4実施例とします。
Referring to FIG. 8, a fourth embodiment of the steam turbine compressor will be described. A steam turbine is driven by superheated steam 5 obtained by heat exchange in a core portion of various steam gas turbine combined engines to generate a rotational force and is used by an output shaft 12 to be used as a conventional steam turbine. Use In addition, a compressor is provided on the right side and rotated by the rotational force to obtain high compressed air or high-speed airflow, and to obtain rotational force, thrust and levitation force. Therefore, the superheated steam 5 obtained by the heat exchange is conveyed to the most upstream side of the known steam turbine by the steam pipe 6 from the steam control valve 7 to drive the most upstream side as usual, and sequentially. By driving the downstream side to generate a large rotational power, in the process, the condensed water of the superheated steam is released by dynamic pressure and gravity from the capillary discharge means 57 provided at the lower part of the casing, and the left end of the inner shaft device Is used as an output shaft 12 to constitute a steam turbine that extracts rotational force. That is, a stationary turbine is fixed to a casing that can be disassembled and assembled with a horizontal joint on the outer side of the inner turbine moving blade group 20 and the inner shaft device, and is externally fitted and pivoted to constitute a steam turbine. Similarly, outside the inner compressor rotor blade group 17 and the inner shaft device, a casing to which the stationary vane is fixed is externally fitted and pivoted to form a compressor, which is a fourth embodiment of the steam turbine compressor. .

【0044】図13を参照して、燃焼器兼熱交換器4を
小径多数蜂の巣状に配置して短小化した、熱交換伝熱面
積の増大手段の熔接構造を説明すると、(a)(b)
(c)(d)に示すように、少なくとも1本以上の螺旋
状導水管1を含む水冷外壁26を、螺旋状の熔接構造と
して小径多数化することで、大きな圧力比の設定と、伝
熱面積の増大による熱交換速度の加速と、燃料蒸気供給
手段27の最上流側増設を容易にすると共に、蒸気ガス
タービン全体機関中核部を、合理的な円筒形状としま
す。即ち(a)(b)に示す実施例の如く、螺旋状に設
けた導水管1の半径方向外方に少し離して燃焼器外箱部
25を設けて、1本以上の導水管1を軸方向T字型等、
螺旋状に熔接して、大幅に高圧容器の、燃焼器兼熱交換
器4を可能にすると共に、燃焼器兼熱交換器4の、伝熱
面積増大も可能にします。又、(c)に示す実施例の如
く、螺旋状に設けた導水管1の半径方向外方に、燃焼器
外箱部25乃至水冷外壁26を設けて、一本以上の導水
管1を、軸方向螺旋状に熔接して、超臨界の蒸気条件以
下の大幅に高圧の、燃焼器兼熱交換器4の、伝熱面積増
大を可能にします。又、(d)に示す実施例の如く、螺
旋状に設けた導水管1の、半径方向略中央に、燃焼器外
箱部25を設けて、一本以上の導水管1を、軸方向螺旋
状に熔接して、超臨界の蒸気条件以下の及び比較的高圧
の圧力比の、燃焼器兼熱交換器4の、熱交換伝熱面積増
大を可能にします。
Referring to FIG. 13, a description will be given of the welding structure of the means for increasing the heat exchange heat transfer area, in which the combustor / heat exchanger 4 is arranged in a small number of honeycombs to reduce the size thereof. )
(C) As shown in (d), the water-cooling outer wall 26 including at least one or more spiral water pipes 1 is formed into a spiral welding structure with a small number of diameters, thereby setting a large pressure ratio and increasing heat transfer. Acceleration of the heat exchange rate due to the increase in the area and easy addition of the fuel vapor supply means 27 at the most upstream side are facilitated, and the core of the entire steam gas turbine engine is formed into a reasonable cylindrical shape. That is, as in the embodiments shown in (a) and (b), the combustor outer box part 25 is provided a little outward in the radial direction of the spirally provided water guide pipe 1, and one or more water guide pipes 1 are pivoted. Direction T-shaped, etc.
Spiral welding makes it possible to greatly increase the heat transfer area of the combustor / heat exchanger 4 as well as the high pressure vessel. Further, as in the embodiment shown in (c), a combustor outer box 25 to a water-cooled outer wall 26 are provided radially outward of the spirally provided water guide tube 1 so that one or more water guide tubes 1 are provided. Axial helical welding makes it possible to increase the heat transfer area of the combustor / heat exchanger 4 at a significantly higher pressure than supercritical steam conditions. Further, as in the embodiment shown in (d), a combustor outer box part 25 is provided substantially at the center in the radial direction of the water guide pipe 1 provided in a spiral shape, and one or more water guide pipes 1 are axially spiraled. It enables the heat exchange heat transfer area of the combustor / heat exchanger 4 to be increased below the supercritical steam condition and at a relatively high pressure ratio.

【0045】図13・図14を参照して、燃焼器兼熱交
換器4を小径多数として、蜂の巣状に配置して短小化し
た、伝熱面積の増大手段の、水冷外壁単位52を説明す
る。図14(a)(b)(c)に示すように、少なくと
も一本以上の螺旋状導水管1を含む、水冷外壁単位52
を、両端に鍔53を設けて、組立て可能な一単位とし
て、複数の水冷外壁単位52を連結して、大幅に高圧化
・短小化可能な、燃焼器兼熱交換器4の主要部としま
す。即ち図13・図14の(a)(b)(a)(b)に
示す実施例の如く、螺旋状に設けた少なくとも1本以上
の導水管1の、半径方向外方に少し離して、溶接構造を
含む燃焼器外箱部25を設けて、該両端に鍔53を夫夫
具備して、該鍔53に導水管1を夫夫開口して、該導水
管1を含む水冷外壁単位52を、連結可能にします。
又、(c)(d)(c)に示す実施例の如く、螺旋状に
設けた少なくとも1本以上の導水管1の、半径方向外方
又は、半径方向略中央に、溶接構造を含む燃焼器外箱部
25を設けて、該両端に鍔53を夫夫具備して、該鍔5
3に導水管1を夫夫開口して、導水管1を含む水冷外壁
単位52を、連結可能に構成し、超臨界の蒸気条件以下
の及び、比較的高圧の圧力比の、燃焼器兼熱交換器4
の、熱交換伝熱面積増大を可能にします。従って図13
・図14の水冷外壁を逆に内壁(図17・図18)とし
て、内側に設けてその外側より、導水管1により冷却す
るものを水冷内壁54とします。
Referring to FIGS. 13 and 14, the water-cooled outer wall unit 52 of the means for increasing the heat transfer area, which has a small number of combustor / heat exchangers 4 having a large number of small diameters and arranged in a honeycomb shape, will be described. . As shown in FIGS. 14A, 14B and 14C, a water-cooled outer wall unit 52 including at least one or more spiral water pipes 1
Is provided with flanges 53 at both ends, and as a unit that can be assembled, a plurality of water-cooled outer wall units 52 are connected to form a main part of the combustor / heat exchanger 4 that can be significantly increased in pressure and shortened. . That is, as in the embodiments shown in FIGS. 13 and 14 (a), (b), (a), and (b), at least one or more spirally provided water pipes 1 are slightly separated radially outward. A combustor outer box part 25 including a welding structure is provided, and flanges 53 are provided at both ends of the combustor outer part 25. The water pipe 1 is opened in the flange 53, and a water-cooled outer wall unit 52 including the water pipe 1 is provided. To be concatenable.
Further, as in the embodiments shown in (c), (d), and (c), at least one or more spirally provided water pipes 1 includes a welding structure at a position radially outward or substantially at the center in the radial direction. An outer box part 25 is provided, and flanges 53 are provided at both ends thereof.
3 and a water-cooled outer wall unit 52 including the water pipe 1 is configured to be connectable, and a combustor / heat unit having a supercritical steam condition or lower and a relatively high pressure ratio is used. Exchanger 4
The heat exchange heat transfer area can be increased. Therefore, FIG.
The water-cooled outer wall shown in FIG. 14 is used as the inner wall (FIGS. 17 and 18). The water-cooled inner wall 54 is provided inside and cooled from the outside by the water pipe 1.

【0046】図15・図16を参照して、磁気摩擦動力
伝達装置14を説明する。通常の変速や逆転を含む各種
動力伝達装置は、主として歯車装置を使用している。こ
のため、歯面に大きな荷重を含む、滑り歯面を必須とす
るため、潤滑油を必要とするのに加えて、摩擦熱損失も
非常に大きく、高速回転を含む大動力の伝達装置には、
使用不可という問題がある。このため、全動翼・蒸気ガ
スタービン合体機関を実用化するには、ころがり接触に
よる、超高速大動力伝達装置が必須となり、超高速大動
力伝達装置を可能にすると共に、潤滑油も不用にするた
めには、歯車装置の滑り歯面を皆無に近づけた、ころが
り接触による、動力伝達装置が必要となる。このため、
歯車のかみ合い高さを限りなく縮小した、低凹凸40と
し、回転方向35上流側及び下流側、又は上流側又は下
流側に、図15のように、棒磁石33又は電磁石34を
設けて、該磁石の強い吸引力を利用した、例えば図15
・図16の、各種着磁摩擦車37・37及び、各種磁着
摩擦車39・39等と、多様な組み合わせを含む、各種
磁気摩擦動力伝達装置14として、全面的に使用するの
が好ましい。即ち、転がり接触に近づけることにより、
摩擦熱損失を皆無に近づけて、超高速大動力伝達装置
や、潤滑油に換えて無公害の水冷却を可能にするもので
す。
Referring to FIGS. 15 and 16, the magnetic friction power transmission device 14 will be described. Various power transmission devices including normal speed change and reverse rotation mainly use a gear device. For this reason, in order to require a sliding tooth surface including a large load on the tooth surface, in addition to requiring lubricating oil, friction heat loss is also very large, and transmission equipment for large power including high speed rotation is required. ,
There is a problem that it cannot be used. For this reason, in order to commercialize an all-blade / steam gas turbine combined engine, an ultra-high-speed and large-power transmission device by rolling contact is indispensable. In order to do so, a power transmission device by rolling contact is required, in which the sliding tooth surfaces of the gear device are almost zero. For this reason,
As shown in FIG. 15, a bar magnet 33 or an electromagnet 34 is provided on the upstream and downstream sides in the rotation direction 35 or on the upstream or downstream side in the rotational direction 35, as shown in FIG. Using the strong attractive force of the magnet, for example, FIG.
It is preferable to use the entire magnetic friction power transmission device 14 including various combinations of the magnetized friction wheels 37, 37 and the magnetic friction wheels 39, 39 shown in FIG. That is, by approaching rolling contact,
This is an ultra-high-speed large-power transmission device that reduces frictional heat loss to almost zero, and enables pollution-free water cooling in place of lubricating oil.

【0047】図16を参照して、磁気摩擦動力伝達装置
14を説明する。各種歯車に換えて、各種着磁摩擦車3
7・37や各種磁着摩擦車39・39等を使用して、動
力伝達面31には低凹凸40として、例えば平歯車に換
えて平凹凸41車を、ハスバ歯車に換えてハスバ凹凸4
2車を、ヤマバ歯車に換えてヤマバ凹凸43車を設け
る。これにより磁気摩擦動力伝達装置14として、公知
の各種歯車式動力伝達装置と同様に、各種磁気摩擦動力
伝達装置14を構成して、使用します。
Referring to FIG. 16, the magnetic friction power transmission device 14 will be described. Instead of various gears, various magnetized friction wheels 3
7 and 37, and various magnetically attached friction wheels 39, 39, etc., the power transmission surface 31 is provided with a low unevenness 40, for example, a flat unevenness 41 wheel instead of a spur gear, and a boss unevenness 4 instead of a helical gear.
The two wheels are replaced with Yamaba gears, and 43 Yamaba irregularities are provided. As a result, various types of magnetic friction power transmission devices 14 are configured and used as the magnetic friction power transmission device 14 in the same manner as known various gear type power transmission devices.

【0048】図17を参照して、全動翼蒸気ガスタービ
ン合体機関の中核部の、構造簡単で安価な第5特殊実施
例を説明する。図1の第1実施例との相違点は、全動翼
蒸気ガスタービン合体機関の中核部である、燃焼器兼熱
交換器4を一つの大径筒型中空の、燃焼器兼熱交換器4
として、図13・図14の水冷外壁を逆にして、図17
・図18の水冷内壁54を筒型中空部に設けて、その内
部に螺旋環状に、導水管1乃至蒸気管6を1以上出来る
だけ多数、用途に合わせて設けた、燃焼器兼熱交換器4
として使用するところです。その他は同様に、質量容積
X速度(圧力比)が仕事をし、高温は単位容積質量小=
単位容積仕事量の減少と考え、燃焼器兼熱交換器4によ
り、外気温度を含む燃焼ガス熱エネルギを、限りなく過
熱蒸気に変換して、超臨界を含む過熱蒸気噴射燃料吸引
希釈撹拌、希薄燃焼完全燃焼短時間終了及び、燃焼ガス
容積半減質量倍増NOx皆無冷却燃焼熱交換により、過
熱蒸気を含む燃焼ガス容積質量を増大しながら、外気熱
エネルギを含む、供給熱エネルギを限りなく過熱蒸気に
変換して、例えば構造簡単で安価なガスタービンや蒸気
タービンを、駆動可能としたもので、ガスタービンの排
気温度0℃以下・燃焼ガス排気0等とします。従って図
1の第1実施例から第5特殊実施例までの要素を、夫夫
適宜に置換して、第1実施例と同様に多種用途の、例え
ば熱と電気と冷熱の供給や、車両の移動及び船舶や航空
機の推進用に使用します。
Referring to FIG. 17, a fifth special embodiment having a simple structure and an inexpensive structure at the core of the all-blade steam gas turbine combined engine will be described. The difference from the first embodiment shown in FIG. 1 is that the combustor / heat exchanger 4 which is the core part of the combined rotor blade steam gas turbine engine is a single large-diameter cylindrical hollow combustor / heat exchanger. 4
The water-cooled outer wall in FIGS.
A combustor / heat exchanger in which the water-cooled inner wall 54 of FIG. 18 is provided in a cylindrical hollow portion, and one or more water guide tubes 1 to steam tubes 6 are provided in a helically annular shape inside the hollow portion according to the application. 4
It is a place to use as. Otherwise, the mass-volume X speed (pressure ratio) works similarly, and the high temperature is smaller than the mass per unit mass =
Considering that the unit work volume is reduced, the combustor / heat exchanger 4 converts the combustion gas heat energy including the outside air temperature into infinitely superheated steam, and superheated steam injection fuel suction dilution and stirring including supercritical, lean, Combustion complete combustion short time end and combustion gas volume halved mass doubling NOx no-cooling combustion heat exchange, while increasing combustion gas volume mass including superheated steam, supply heat energy including outside air heat energy to superheated steam without limit By converting, for example, a gas turbine or a steam turbine that is simple and inexpensive and can be driven, the exhaust temperature of the gas turbine is 0 ° C or less, and the combustion gas exhaust is 0. Therefore, the elements from the first embodiment to the fifth special embodiment in FIG. 1 are appropriately replaced with each other to supply various kinds of applications like the first embodiment, for example, supply of heat, electricity, cold heat, and vehicle. Used for moving and propulsion of ships and aircraft.

【0049】図18を参照して、蒸気ガスタービン合体
機関の中核部の、構造簡単で安価な第6特殊実施例を説
明する。図17の第5特殊実施例との相違点は、全動翼
蒸気ガスタービン合体機関の中核部を、蒸気ガスタービ
ン合体機関の中核部として、置換動翼を、従来技術の静
翼に還元して、従来技術の圧縮機とガスタービンにした
ところです。その他は第5特殊実施例と同様に、燃焼器
兼熱交換器4を一つの大径筒型中空の、燃焼器兼熱交換
器として、図13・図14の水冷外壁を逆にして、図1
7・図18の水冷内壁54を筒型中空部に設けて、その
内部に螺旋環状に、導水管1乃至蒸気管6を1以上出来
るだけ多数、用途に合わせて設けた、燃焼器兼熱交換器
4として使用し、質量容積X速度(圧力比)が仕事を
し、高温は単位容積質量小=単位容積仕事量の減少と考
え、燃焼器兼熱交換器により、超臨界を含む過熱蒸気噴
射燃料吸引希釈撹拌、希薄燃焼完全燃焼短時間終了及
び、燃焼ガス単位容積半減単位質量倍増、NOx皆無冷
却燃焼により、過熱蒸気を含む燃焼ガス容積質量を増大
しながら、外気熱エネルギを含む、供給熱エネルギを限
りなく過熱蒸気に変換して、例えば構造簡単で安価なガ
スタービンや蒸気タービンを、駆動可能としたもので、
ガスタービンの排気温度0℃以下・燃焼ガス排気0等と
します。従って図1の第1実施例から第6特殊実施例ま
での要素を、夫夫適宜に置換して、第実施例と同様に多
種用途の、例えば熱と電気と冷熱の供給や、車両の移動
及び船舶や航空機の推進用に使用します。
Referring to FIG. 18, a sixth special embodiment having a simple structure and an inexpensive structure at the core of the combined steam and gas turbine engine will be described. The difference from the fifth special embodiment shown in FIG. 17 is that the replacement blade is reduced to the stationary blade of the prior art by using the core part of the all-blade steam gas turbine combined engine as the core part of the steam gas turbine combined engine. And a conventional compressor and gas turbine. Otherwise, as in the fifth special embodiment, the combustor / heat exchanger 4 is formed as one large-diameter cylindrical hollow combustor / heat exchanger, and the water-cooled outer wall in FIGS. 1
7. A water-cooling inner wall 54 shown in FIG. 18 is provided in a cylindrical hollow portion, and as many as one or more water guide pipes 1 to steam pipes 6 are provided in a helically annular shape therein according to the application. Superheated steam injection including supercritical by combustor / heat exchanger, using mass volume X velocity (pressure ratio) to work, high temperature is considered to be smaller per unit mass per unit volume = reduced work per unit volume Supply heat including outside air heat energy while increasing combustion gas volume mass including superheated steam by fuel suction dilution agitation, lean combustion complete combustion short-term completion, combustion gas unit volume halving unit mass doubling, and NOx non-cooling combustion It converts energy into superheated steam without limit, and makes it possible to drive, for example, gas turbines and steam turbines that are simple and inexpensive,
The exhaust temperature of the gas turbine shall be 0 ° C or less and the exhaust gas of the combustion gas shall be 0. Therefore, the elements from the first embodiment to the sixth special embodiment in FIG. 1 are appropriately replaced with each other to supply various applications such as supply of heat, electricity and cold heat, and movement of the vehicle as in the case of the first embodiment. Used for propulsion of ships and aircraft.

【0050】図19を参照して、燃料蒸気供給手段27
を説明する。従来技術NOx低減燃焼器は、燃料を空気
により希釈するため、燃焼領域内に局所高温域や、燃料
過多空気不足不完全燃焼による黒煙が発生し易く、NO
xや浮遊粒子状物質の生成による、公害の原因となって
おります。そこでこの発明は、NOxや浮遊粒子状物質
の生成を皆無とするため、水素の燃焼ガスである過熱蒸
気を、出来るだけ高温にして噴射することで、霧吹きの
原理を利用して、燃料を吸引希釈撹拌してガス化し、一
瞬遅れて空気を吸引希釈して燃料と撹拌燃焼させること
で、燃焼領域内の局所高温域を皆無とした最適の希薄燃
焼として、NOxや浮遊粒子状物質の生成の皆無を図る
ものです。従って、着火時などの燃焼初期には、過熱蒸
気噴射量を最低として着火燃焼を優先し、燃焼周囲温度
の上昇と共に、過熱蒸気噴射量を増大して、NOxや浮
遊粒子状物質の生成を阻止します。また高圧高温の雰囲
気では用途に合わせて高圧高温の過熱蒸気を使用し、ボ
イラ等大気圧で使用するものについては、出来るだけ高
温低圧の過熱蒸気を使用して、NOxや浮遊粒子状物質
の生成を阻止します。
Referring to FIG. 19, fuel vapor supply means 27
Will be described. Since the conventional NOx reduction combustor dilutes the fuel with air, it tends to generate black smoke due to a local high-temperature region or insufficient fuel-deficient air-deficient combustion in the combustion region.
It causes pollution due to the generation of x and suspended particulate matter. Therefore, in order to eliminate the generation of NOx and suspended particulate matter, the present invention injects superheated steam, which is the combustion gas of hydrogen, at the highest possible temperature and injects fuel using the principle of atomization. By diluting and agitating and gasifying, and after a moment's delay, aspirating and diluting the air to agitate and combust with the fuel, the optimal lean combustion with no local high-temperature region in the combustion region is achieved, producing NOx and suspended particulate matter. It's all about nothing. Therefore, in the early stage of combustion such as ignition, priority is given to ignition combustion with the minimum amount of superheated steam injection, and with the rise in combustion ambient temperature, the amount of superheated steam injection is increased to prevent the generation of NOx and suspended particulate matter. To do. In high-pressure and high-temperature atmospheres, use high-pressure and high-temperature superheated steam in accordance with the application. For those used at atmospheric pressure such as boilers, use high-temperature and low-pressure superheated steam as much as possible to generate NOx and suspended particulate matter. Block.

【0051】図19(a)の過熱蒸気筒口59内の過熱
蒸気5は、針弁61を電動制御などで回転させること
で、該ネジ部を回転させて針弁61を開閉して、過熱蒸
気の噴射量を増減して、過熱蒸気の流量を増減制御しま
す。燃料蒸気供給手段27内の燃料11は予熱して、燃
料噴口60の燃料小穴62に供給されて、過熱蒸気に吸
引希釈撹拌噴射の過程で、空気と撹拌希薄燃焼し、該燃
料噴口60を電動制御などで回転させることで、該ネジ
部を回転させて多数の燃料小穴62を往復開閉して、燃
料小穴数を増減して、燃料の流量を増減制御します。従
ってこの場合は、多数の燃料小穴62を往復開閉する別
の筒型部品を設けて、その筒型部品のネジ部を回転させ
て、該筒型部品を往復させて燃料の流量を増減制御して
もよろしい。即ち、過熱蒸気の流量増減制御と燃料の流
量増減制御により、燃焼温度を設定値に維持します。
The superheated steam 5 in the superheated steam cylinder opening 59 shown in FIG. 19A is rotated by rotating the needle valve 61 by electric control or the like, thereby rotating the threaded portion to open and close the needle valve 61, thereby obtaining the superheated steam. The amount of superheated steam is increased or decreased by increasing or decreasing the injection amount. The fuel 11 in the fuel vapor supply means 27 is preheated and supplied to the small fuel hole 62 of the fuel injection port 60, and in the process of suction dilution stirring injection into the superheated steam, agitated and lean combustion is performed with the air, and the fuel injection port 60 is electrically driven. By rotating by control, the screw part is rotated to open and close a large number of small holes 62, and the number of small holes is increased / decreased, and the flow rate of fuel is increased / decreased. Therefore, in this case, another cylindrical part for reciprocatingly opening and closing a large number of small fuel holes 62 is provided, and the screw part of the cylindrical part is rotated to reciprocate the cylindrical part to increase or decrease the fuel flow rate. You can In other words, the combustion temperature is maintained at the set value by controlling the flow rate of superheated steam and the fuel flow rate.

【0052】図19(b)の過熱蒸気筒口59内の過熱
蒸気5は、針弁61のピストン部を油圧乃至空気圧制御
などで往復させることで、該ピストン部を往復させて針
弁61を開閉し、過熱蒸気の噴射量を増減して、過熱蒸
気の流量を増減制御します。燃料蒸気供給手段27内の
燃料11は予熱して、燃料噴口60の燃料小穴62に供
給されて、過熱蒸気に吸引希釈撹拌噴射の過程で、空気
と撹拌希薄燃焼し、該燃料噴口60を油圧制御又は空気
圧制御などで該ピストン部を往復させることで、該ピス
トン部を往復させて、多数の燃料小穴62を往復開閉し
て、燃料小穴数を増減して、燃料の流量を増減制御しま
す。従ってこの場合は、多数の燃料小穴62を往復開閉
する別の筒型部品を設けて、その筒型部品ピストン部を
油圧制御乃至空気圧制御などで往復させて、燃料の流量
を増減制御してもよろしい。即ち、過熱蒸気の流量増減
制御と燃料の流量増減制御により、燃焼温度を設定値に
維持します。
The superheated steam 5 in the superheated steam cylinder port 59 in FIG. 19B reciprocates the piston portion of the needle valve 61 by hydraulic or pneumatic control or the like, thereby reciprocating the piston portion to open and close the needle valve 61. Then, the flow rate of superheated steam is increased or decreased by increasing or decreasing the injection amount of superheated steam. The fuel 11 in the fuel vapor supply means 27 is preheated and supplied to the fuel small hole 62 of the fuel nozzle 60, and in the process of suction dilution stirring stirring injection to the superheated steam, agitated and lean burn with the air, and the fuel nozzle 60 By reciprocating the piston part by control or air pressure control, the piston part is reciprocated to open and close a number of fuel small holes 62, and the number of fuel small holes is increased or decreased, and the flow rate of fuel is increased or decreased. . Therefore, in this case, another cylindrical component for reciprocatingly opening and closing a large number of small fuel holes 62 is provided, and the piston of the cylindrical component is reciprocated by hydraulic control or pneumatic control to increase or decrease the fuel flow rate. All right In other words, the combustion temperature is maintained at the set value by controlling the flow rate of superheated steam and the fuel flow rate.

【0053】[0053]

【発明の効果】本発明は、全動翼を含む、各種蒸気ガス
タービン合体機関の中核部として、燃焼器兼熱交換器の
外壁を、導水管を含む螺旋状の熔接構造又は、溶接構造
を含む螺旋状の水冷外壁単位組立構造として、小径多数
蜂の巣状に短小化配置して、その内部に螺旋環状に導水
管乃至蒸気管を1以上出来るだけ多数設けたため、蒸気
ガスタービン合体機関の中核部の外形を、コンパクトに
できる大きな効果があります。更に伝熱面積を増大した
高圧容器の、燃焼器兼熱交換器として、燃料蒸気供給手
段も、最上流側に最大で従来技術の4倍増容易に加え
て、燃料を霧吹きの原理を利用して、過熱蒸気により吸
引希釈した後、空気と希薄撹拌燃焼する構成を採用した
ため、NOxや浮遊粒子状物質を皆無に近付ける、大き
な効果があります。また外気温度を含む供給熱量の大部
分を、過熱蒸気に変換できる効果が大きく、熱交換によ
りガスタービンの入口温度を、400℃以下として排気
温度0℃以下大幅に低下させて、排気損失を排気利益と
する大きな効果があります。
According to the present invention, the outer wall of a combustor / heat exchanger is provided with a spiral welding structure or a welding structure including a water pipe as a core part of various steam gas turbine combined engines including all rotor blades. As a helical water-cooled outer wall unit assembling structure, a small-diameter multiple-honeycomb-shaped short arrangement is provided, and as many as one or more helically annular water-conducting pipes or steam pipes are provided therein, so that the core part of the steam-gas-turbine united engine There is a big effect that can make the external shape compact. Furthermore, as a combustor and heat exchanger for the high-pressure vessel with an increased heat transfer area, the fuel vapor supply means is also easily added to the most upstream side up to four times that of the conventional technology, and uses the principle of spraying fuel. It adopts a configuration in which it is diluted with superheated steam and then agitated and burns with air. This has a great effect of reducing NOx and suspended particulate matter to almost zero. In addition, the effect of converting a large part of the supplied heat including the outside air temperature into superheated steam is great, and the exhaust temperature is greatly reduced by reducing the exhaust temperature to 0 ° C or less by setting the inlet temperature of the gas turbine to 400 ° C or less by heat exchange. It has a great effect on profit.

【0054】熱交換して得た、燃焼ガス及び膨大な過熱
蒸気により、大きな回転動力を得ると共に、燃焼用圧縮
空気の冷却水量を最大にして、圧縮空気温度を低下させ
て、高圧低温の圧縮空気を得る大きな効果があります。
燃焼用圧縮空気量を従来技術と同一にした場合、最大で
従来ガスタービンの4倍前後の燃料による、理論空燃比
燃焼まで供給熱量を大増大して、NOxを発生しない上
限の900℃前後に燃焼制御するため、膨大な過熱蒸気
を高速噴射して、短時間完全燃焼終了出来る効果があ
り、加えてCO2を水固定する材料を最大にして、環境
を高圧高温から低圧低温まで最良に出来る効果があり、
CO2等の燃焼ガス排気を0に近付ける効果もありま
す。熱交換により燃焼ガス質量容積も増大して、比出力
が増大できる効果があります。燃焼用に圧縮した空気量
を100%燃焼に利用して、通常圧力比の5乃至10倍
近い圧力の、超臨界圧以下の過熱蒸気を大量高速噴射で
きるため、燃焼温度を900℃前後に燃焼制御出来る効
果が大きく、NOx皆無冷却燃焼として有害排気ガスを
CO2に限定し、最も公害が少ない熱効率の良い、各種
蒸気ガスタービン合体機関サイクルとして、公害低減・
熱効率の大上昇に大きな効果があります。
A large rotating power is obtained by the combustion gas and a huge amount of superheated steam obtained by the heat exchange, the cooling water amount of the compressed air for combustion is maximized, the temperature of the compressed air is reduced, and the high pressure and low temperature compression is performed. It has a great effect of getting air.
When the amount of compressed air for combustion is the same as that of the conventional technology, the amount of heat to be supplied is greatly increased up to the stoichiometric air-fuel ratio combustion with a fuel approximately four times as large as that of the conventional gas turbine, and the upper limit is approximately 900 ° C. at which NOx is not generated. The combustion control has the effect of injecting a huge amount of superheated steam at high speed and completes the combustion in a short time. In addition, the effect of maximizing the material that fixes CO2 in water and the best environment from high pressure and high temperature to low pressure and low temperature is achieved. There is
It also has the effect of reducing the emission of combustion gas such as CO2 to zero. Heat exchange also increases the combustion gas mass volume, which has the effect of increasing the specific output. The amount of air compressed for combustion is used for 100% combustion, and superheated steam at a pressure close to the supercritical pressure, which is 5 to 10 times the normal pressure ratio, can be injected at a high speed in large quantities. The controllable effect is large, NOx is completely non-cooled combustion, and the harmful exhaust gas is limited to CO2.
It has a great effect on a large increase in thermal efficiency.

【0055】ガスタービンの圧力比を、熱交換燃焼ガス
限りなき冷却により、極限まで上昇してガスタービンの
熱効率を、極限まで上昇できる効果があります。更に圧
力比を極限まで上昇した状態で熱交換するため、超臨界
の蒸気条件を含む、過熱蒸気エネルギの取り出し量を最
大して、排気温度を最低にして、総合比出力及び熱効率
を極限まで上昇できる効果があります。更に、圧力比を
極限まで上昇した状態で熱交換するため、燃焼ガスガス
タービン入口温度を400℃以下として、大量の過熱蒸
気噴射によるガスタービンの消費熱量を最少に、燃焼ガ
ス質量容積を最大にして、熱効率を極限まで上昇できる
効果があります。更に、圧力比を極限まで上昇した状態
で、限りなく熱交換した燃焼ガスを使用するため、ガス
タービンの排気温度を0℃以下大幅に低下させて、熱エ
ネルギを極限まで有効利用できる効果があります。又、
各種磁気摩擦動力伝達装置を全面的に開発使用すること
で、従来技術の各種動力伝達装置による、摩擦損失を大
幅に低減して、熱効率を更に上昇する効果があります。
従って、各種運輸機器や熱と電気と冷熱の併給機器等と
して、多種多様に使用することで、CO2を地球規模で
低減するために、大きな効果があります。
The infinite cooling of the gas turbine pressure ratio by heat exchange combustion gas has the effect of increasing the heat efficiency of the gas turbine to the limit by raising it to the limit. Furthermore, to exchange heat with the pressure ratio raised to the limit, maximize the amount of superheated steam energy including supercritical steam conditions, minimize the exhaust temperature, and increase the total specific output and thermal efficiency to the limit There is an effect that can be done. Furthermore, in order to exchange heat in a state where the pressure ratio is raised to the limit, the combustion gas gas turbine inlet temperature is set to 400 ° C. or less, the heat consumption of the gas turbine by a large amount of superheated steam injection is minimized, and the combustion gas mass volume is maximized. It has the effect of increasing the thermal efficiency to the limit. Furthermore, the use of combustion gas that has undergone heat exchange as much as possible with the pressure ratio raised to the limit has the effect of significantly reducing the exhaust temperature of the gas turbine to 0 ° C or less, and allowing thermal energy to be used to the limit. . or,
By fully developing and using various magnetic friction power transmission devices, the friction loss of the various power transmission devices of the prior art is greatly reduced, and there is the effect of further increasing the thermal efficiency.
Therefore, it can be used as a variety of transportation equipment and co-supply equipment of heat, electricity and cold, etc., and has a great effect to reduce CO2 on a global scale.

【0056】本発明の最大の特徴は、ガスタービンと蒸
気タービンを分離可能としたため、最も一般的に世界に
普及している、最先端火力発電設備の熱効率を最大にで
きるところです。即ち、最先端蒸気・ガスタービン複合
サイクル発電設備では、ガスタービンの廃熱を回収し
て、蒸気タービンサイクルを駆動するため、蒸気タービ
ンサイクルに供給する熱量が僅少となり、排気損失も大
きくなります。そこで本発明は、燃焼器兼熱交換器とし
て、出来るだけ高圧の雰囲気で、燃焼及び熱交換するた
め、例えば外気温度0℃圧力比60で空気温度600℃
と、略廃熱回収温度と略同回収温度として、更に外気温
度30℃前後として、外気熱エネルギが大量に回収でき
るのに加えて、同一圧縮空気量の燃料燃焼による供給熱
エネルギも、4倍前後に大幅アップするため、蒸気ター
ビンサイクルに供給する過熱蒸気熱エネルギを、10倍
以上にアップし、排気温度0℃以下大幅に低下させて、
排気損失を排気利益として、ガスタービンの使用熱量は
最小にして、総合熱効率を80%前後に大幅アップする
効果があります。
The most significant feature of the present invention is that since the gas turbine and the steam turbine can be separated, the thermal efficiency of the most advanced thermal power generation equipment, which is most commonly spread around the world, can be maximized. In other words, in a state-of-the-art steam / gas turbine combined cycle power generation facility, the waste heat of the gas turbine is recovered and the steam turbine cycle is driven, so the amount of heat supplied to the steam turbine cycle becomes small and the exhaust loss increases. Therefore, in order to perform combustion and heat exchange in a high pressure atmosphere as much as possible as a combustor / heat exchanger, the present invention employs, for example, an outside air temperature of 0 ° C., a pressure ratio of 60 and an air temperature of 600 ° C.
In addition to recovering a large amount of outside air heat energy by setting the outside air temperature to about 30 ° C., the supply heat energy by fuel combustion with the same amount of compressed air is also quadrupled. In order to significantly increase the temperature before and after, the superheated steam heat energy supplied to the steam turbine cycle is increased by 10 times or more, and the exhaust temperature is significantly reduced to 0 ° C or less.
Using the exhaust loss as the exhaust profit, the amount of heat used by the gas turbine is minimized, and the overall thermal efficiency is greatly increased to around 80%.

【図面の簡単な説明】[Brief description of the drawings]

【図1】蒸気ガスタービン合体機関中核部の第1実施例
を示す一部断面図。
FIG. 1 is a partial cross-sectional view showing a first embodiment of a core portion of a combined steam gas turbine engine.

【図2】蒸気ガスタービン合体機関中核部の第2実施例
を示す一部断面図。
FIG. 2 is a partial cross-sectional view showing a second embodiment of the core part of the steam gas turbine combined engine.

【図3】蒸気ガスタービン合体機関中核部の第3実施例
を示す一部断面図。
FIG. 3 is a partial cross-sectional view showing a third embodiment of a core portion of a combined steam gas turbine engine.

【図4】蒸気ガスタービン合体機関中核部の第4実施例
を示す一部断面図。
FIG. 4 is a partial cross-sectional view showing a fourth embodiment of the core portion of the combined steam gas turbine engine.

【図5】蒸気タービン圧縮機の第1実施例を示す一部断
面図。
FIG. 5 is a partial sectional view showing a first embodiment of the steam turbine compressor.

【図6】蒸気タービン圧縮機の第2実施例を示す一部断
面図。
FIG. 6 is a partial sectional view showing a second embodiment of the steam turbine compressor.

【図7】蒸気タービン圧縮機の第3実施例を示す一部断
面図。
FIG. 7 is a partial sectional view showing a third embodiment of the steam turbine compressor.

【図8】蒸気タービン圧縮機の第4実施例を示す一部断
面図。
FIG. 8 is a partial sectional view showing a fourth embodiment of the steam turbine compressor.

【図9】蒸気ガスタービン合体機関の第1実施形態を示
す全体構成図。
FIG. 9 is an overall configuration diagram showing a first embodiment of the combined steam gas turbine engine.

【図10】蒸気ガスタービン合体機関の第2実施形態を
示す全体構成図。
FIG. 10 is an overall configuration diagram showing a second embodiment of the combined steam gas turbine engine.

【図11】蒸気ガスタービン合体機関の第3実施形態を
示す全体構成図。
FIG. 11 is an overall configuration diagram showing a third embodiment of the steam gas turbine combined engine.

【図12】蒸気ガスタービン合体機関の第4実施形態を
示す全体構成図。
FIG. 12 is an overall configuration diagram showing a fourth embodiment of the steam gas turbine combined engine.

【図13】燃焼器兼熱交換器の水冷外壁の螺旋状溶接構
造を示す断面図。
FIG. 13 is a sectional view showing a spiral welding structure of a water-cooled outer wall of the combustor / heat exchanger.

【図14】燃焼器兼熱交換器の螺旋状の水冷壁管単位を
説明するための断面図。
FIG. 14 is a cross-sectional view for explaining a spiral water cooling wall tube unit of the combustor / heat exchanger.

【図15】蒸気ガスタービン合体機関用磁気摩擦動力伝
達装置の概念図。
FIG. 15 is a conceptual diagram of a magnetic friction power transmission device for a steam gas turbine combined engine.

【図16】着磁摩擦車及び磁着摩擦車等の摩擦増大手段
を説明するための図。
FIG. 16 is a view for explaining friction increasing means such as a magnetic friction wheel and a magnetic friction wheel.

【図17】蒸気ガスタービン合体機関中核部の第5特殊
実施例を示す一部断面図。
FIG. 17 is a partial sectional view showing a fifth special embodiment of the core of the steam gas turbine combined engine.

【図18】蒸気ガスタービン合体機関中核部の第6特殊
実施例を示す一部断面図。
FIG. 18 is a partial cross-sectional view showing a sixth special embodiment of the core of the steam gas turbine combined engine.

【図19】燃焼器兼熱交換器の燃料蒸気供給手段を示す
一部断面図。
FIG. 19 is a partial cross-sectional view showing a fuel vapor supply means of the combustor / heat exchanger.

【符号の説明】[Explanation of symbols]

1:導水管 2:給水ポンプ 3:給水 4:燃
焼器兼熱交換器 5:過熱蒸気 6:蒸気管
7:蒸気加減弁 8:環状の圧縮空気溜 9:環状
の燃焼ガス溜 10:燃焼ガス 11:燃料 1
2:出力軸 13:止め弁 14:磁気摩擦動力伝
達装置 15:圧縮空気 16:外側圧縮機動翼群
17:内側圧縮機動翼群 19:外側タービン動
翼群 20:内側タービン動翼群 21:環状の出
口 22:環状の受け口 23:環状の受け口
24:環状の噴口群 25:燃焼器外箱部 26:
水冷外壁 27:燃料蒸気供給手段 28:バイパ
ス 29:噴口 30:冷却翼 31:動力伝達
面 32:過熱蒸気溜 33:棒磁石 34:電
磁石 35:回転方向 36:磁極 37:着磁
摩擦車 38:内着磁摩擦車 39:磁着摩擦車
40:低凹凸 41:平凹凸 42:ハスバ凹凸
43:ヤマバ凹凸 44:内磁着摩擦車 4
5:摩擦増大耐久手段 46:磁石部 47:ヨー
ク(着磁摩擦車用) 48:絶縁材料 52:水冷外壁単位 53:鍔 54:水冷内壁
55:冷却手段 56:水噴射手段 57:毛細管放出手段 58:
排気熱交換器 59:過熱蒸気筒口 60:燃料噴
口 61:針弁 62:燃料小穴
1: water pipe 2: water supply pump 3: water supply 4: combustor and heat exchanger 5: superheated steam 6: steam pipe
7: Steam control valve 8: Annular compressed air reservoir 9: Annular combustion gas reservoir 10: Combustion gas 11: Fuel 1
2: Output shaft 13: Stop valve 14: Magnetic friction power transmission device 15: Compressed air 16: Outer compressor blade group 17: Inner compressor blade group 19: Outer turbine blade group 20: Inner turbine blade group 21: Annular Exit 22: Annular socket 23: Annular socket
24: annular nozzle group 25: combustor outer box 26:
Water-cooled outer wall 27: Fuel vapor supply means 28: Bypass 29: Injector 30: Cooling blade 31: Power transmission surface 32: Superheated steam reservoir 33: Bar magnet 34: Electromagnet 35: Rotation direction 36: Magnetic pole 37: Magnetized friction wheel 38: Inner magnetized friction wheel 39: Magnetically magnetized friction wheel
40: low unevenness 41: flat unevenness 42: boss unevenness 43: Yamaba unevenness 44: inner magnetized friction wheel 4
5: friction increasing durability means 46: magnet part 47: yoke (for magnetized friction wheel) 48: insulating material 52: water cooling outer wall unit 53: flange 54: water cooling inner wall
55: cooling means 56: water injection means 57: capillary discharge means 58:
Exhaust heat exchanger 59: Superheated steam cylinder mouth 60: Fuel nozzle 61: Needle valve 62: Fuel small hole

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02C 3/30 F02C 7/16 Z 7/16 7/224 7/224 F04D 19/02 F04D 19/02 F22B 1/18 R F22B 1/18 F23R 3/28 A F23R 3/28 B60K 9/00 C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02C 3/30 F02C 7/16 Z 7/16 7/224 7/224 F04D 19/02 F04D 19/02 F22B 1/18 R F22B 1/18 F23R 3/28 A F23R 3/28 B60K 9/00 C

Claims (171)

【特許請求の範囲】[Claims] 【請求項1】 水冷外壁を螺旋状の熔接構造として、内
部に螺旋環状の導水管を1以上設けて、小径多数蜂の巣
状に短小化配置した燃焼器兼熱交換器と、圧縮空気を該
燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガス
で出力を得る全動翼ガスタービンとを有する蒸気ガスタ
ービン合体機関。
1. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure and one or more spiral annular water pipes are provided therein, and the combustor / heat exchanger has a small diameter and a large number of honeycombs. A combined steam gas turbine engine having an all-blade compressor for supplying heat to a heat exchanger and an all-blade gas turbine for obtaining output from combustion gas.
【請求項2】 水冷外壁を螺旋状の熔接構造単位組立て
構造として、内部に螺旋環状の導水管を1以上設けて、
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンとを
有する蒸気ガスタービン合体機関。
2. A water-cooled outer wall is formed as a spiral welded structural unit assembly structure, and one or more spiral annular water pipes are provided therein,
A combustor / heat exchanger, which is arranged in a short shape in the form of a large number of small-diameter honeycombs, an all-blade compressor that supplies compressed air to the combustor / heat exchanger, and a whole-blade gas turbine that obtains output using combustion gas. Steam gas turbine united engine.
【請求項3】 螺旋状の水冷外壁単位組立構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガ
スで出力を得る全動翼ガスタービンとを有する蒸気ガス
タービン合体機関。
3. A spiral water-cooled outer wall unit assembling structure,
A combustor / heat exchanger in which at least one water guide pipe is provided in a helical ring inside and shortened and arranged in a small number of honeycombs, and a full blade compressor for supplying compressed air to the combustor / heat exchanger, A combined steam gas turbine engine having a full blade gas turbine that obtains output with combustion gas.
【請求項4】 水冷外壁を螺旋状の熔接構造として、内
部に螺旋環状に導水管を1以上設けて、小径多数蜂の巣
状に短小化配置した燃焼器兼熱交換器と、圧縮空気を該
燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出力
を得るガスタービンとを有する蒸気ガスタービン合体機
関。
4. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure, one or more water guide tubes are provided in a spiral annular shape inside, and the combustor / heat exchanger is shortened and arranged in a large number of small diameter honeycombs. A combined steam and gas turbine engine having a compressor for supplying heat to a heat exchanger and a gas turbine for obtaining output from combustion gas.
【請求項5】 水冷外壁を螺旋状の熔接構造単位組立て
構造として、内部に螺旋環状に導水管を1以上設けて、
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンとを有する蒸気
ガスタービン合体機関。
5. A water-cooled outer wall is formed as a spiral welding unit assembly structure, and one or more water guide tubes are provided in a spiral ring inside thereof.
A combined steam / gas turbine engine having a combustor / heat exchanger, which is shortened and arranged in the shape of a large number of small-diameter honeycombs, a compressor that supplies compressed air to the combustor / heat exchanger, and a gas turbine that obtains output using combustion gas. .
【請求項6】 螺旋状の水冷外壁単位組立構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンとを有する蒸気ガスタービン合体
機関。
6. A spiral water-cooled outer wall unit assembly structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside and are arranged in a short shape in a small number of honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A combined gas and gas turbine engine having a gas turbine for obtaining output.
【請求項7】 前記請求項4乃至請求項6に於いて、圧
縮機、ガスタービンのいずれかが全動翼である蒸気ガス
タービン合体機関。
7. The combined steam and gas turbine engine according to claim 4, wherein one of the compressor and the gas turbine is a full moving blade.
【請求項8】 水冷外壁を螺旋状の熔接構造として、内
部に螺旋環状の導水管を1以上設けて、小径多数蜂の巣
状に短小化配置した燃焼器兼熱交換器と、圧縮空気を該
燃焼器兼熱交換器に供給する全動翼圧縮機と、燃焼ガス
で出力を得る全動翼ガスタービンと、燃焼ガス温度がタ
ービン耐熱限界温度以下となるように熱交換して得た過
熱蒸気で出力を得る全動翼蒸気タービンとを有する蒸気
ガスタービン合体機関。
8. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welded structure and one or more spiral annular water pipes are provided therein, and the combustor / heat exchanger is arranged in a short shape in a small-diameter multi-honeycomb form. Blade compressor that supplies the heat and heat to the heat exchanger. A combined steam gas turbine engine having an all-blade steam turbine for obtaining output.
【請求項9】 水冷外壁を螺旋状の熔接構造単位組立て
構造として、内部に螺旋環状の導水管を1以上設けて、
小径多数蜂の巣状に短小化配置した燃焼器兼熱交換器
と、圧縮空気を該燃焼器兼熱交換器に供給する全動翼圧
縮機と、燃焼ガスで出力を得る全動翼ガスタービンと、
燃焼ガス温度がタービン耐熱限界温度以下となるように
熱交換して得た過熱蒸気で出力を得る全動翼蒸気タービ
ンとを有する蒸気ガスタービン合体機関。
9. A water-cooled outer wall is formed as a spiral welding structure unit assembling structure, and one or more spiral annular water pipes are provided therein,
A combustor / heat exchanger which is arranged in a short shape in the form of a large number of small diameter honeycombs, a full blade compressor for supplying compressed air to the combustor / heat exchanger, a full blade gas turbine which obtains output with combustion gas,
A combined steam gas turbine engine comprising: a full-rotor blade steam turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than a turbine heat-resistant limit temperature.
【請求項10】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する全動翼圧縮機と、燃
焼ガスで出力を得る全動翼ガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る全動翼蒸気タービンとを有す
る蒸気ガスタービン合体機関。
10. A combustor / heat exchanger in which one or more spirally-circulated water pipes are provided as a spiral water-cooled outer wall unit assembling structure and are arranged in a small number of small honeycombs, and the compressed air is burned. Rotor blade compressor to supply heat to the heat exchanger and heat exchanger, and all blade rotor gas turbine that obtains output with combustion gas, and superheated steam obtained by performing heat exchange so that the combustion gas temperature is lower than the turbine heat resistance limit temperature. A combined steam gas turbine engine having an all-blade steam turbine for obtaining output.
【請求項11】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る蒸気タービンとを有する蒸気ガスタービン合体
機関。
11. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and arranged in a small number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas A combined steam gas turbine engine having a gas turbine for obtaining output, and a steam turbine for obtaining output with superheated steam obtained by performing heat exchange so that a combustion gas temperature is equal to or lower than a turbine heat resistant limit temperature.
【請求項12】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンとを有する蒸気
ガスタービン合体機関。
12. A combustor / heat exchanger having a water-cooled outer wall formed as a spiral welded unit assembling structure and one or more spirally-arranged water pipes provided inside and shortened and arranged in a small-diameter multiple-honeycomb form, and compressed air. And a gas turbine that obtains output with combustion gas, and obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A combined steam gas turbine engine having a steam turbine.
【請求項13】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービンと、燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る蒸気タービンとを有する蒸気ガスタービン
合体機関。
13. A combustor / heat exchanger in which one or more spirally-circulated water pipes are provided inside as a spiral water-cooled outer wall unit assembling structure, and are arranged in a short shape in a plurality of small diameter honeycombs; A compressor that supplies heat to the heat exchanger and a gas turbine that obtains output using combustion gas, and a steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature. A steam gas turbine combined engine having
【請求項14】 前記請求項11乃至請求項13に於い
て、圧縮機、ガスタービン、蒸気タービンのいずれか2
以下が全動翼である蒸気ガスタービン合体機関。
14. A compressor, a gas turbine, or a steam turbine according to claim 11, wherein
The following is a combined steam gas turbine engine with all blades.
【請求項15】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る噴口(29)と、該噴口に過熱蒸気を供給する
過熱蒸気溜(30)とを有する蒸気ガスタービン合体機
関。
15. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and are arranged in a short shape like a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A gas turbine for obtaining an output, an orifice (29) for obtaining an output with superheated steam obtained by performing heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat-resistant limit temperature, and a superheated steam reservoir for supplying the superheated steam to the orifice ( 30) a combined steam gas turbine engine having:
【請求項16】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る噴口(29)と、該噴口に過
熱蒸気を供給する過熱蒸気溜(30)とを有する蒸気ガ
スタービン合体機関。
16. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welding structure unit assembling structure and one or more water pipes are provided inside in a spiral ring shape and are arranged in a small-diameter multiple-honeycomb shape, and compressed air. And a gas turbine that obtains output with combustion gas, and obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistant limit temperature. A combined steam gas turbine engine having an injection port (29) and a superheated steam reservoir (30) for supplying superheated steam to the injection port.
【請求項17】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービンと、燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る噴口(29)と、該噴口に過熱蒸気を供給
する過熱蒸気溜(30)とを有する蒸気ガスタービン合
体機関。
17. A combustor / heat exchanger in which one or more spirally-circulated water pipes are provided inside as a spiral water-cooled outer wall unit assembly structure, and are arranged in a small-diameter multi-honey structure, and the compressed air is burned. A compressor for supplying heat to the heat exchanger, a gas turbine for obtaining output from combustion gas, and an injection port for obtaining output from superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistant limit temperature (29 ) And a superheated steam reservoir (30) for supplying superheated steam to the injection port.
【請求項18】 前記請求項15乃至請求項17に於い
て、圧縮機、ガスタービンの2以下いずれかが全動翼で
ある蒸気ガスタービン合体機関。
18. The combined steam and gas turbine engine according to claim 15, wherein at least one of the compressor and the gas turbine are all blades.
【請求項19】 前記請求項15乃至請求項18に於い
て、圧縮機・ガスタービン・燃焼器兼熱交換器と、過熱
蒸気溜(30)が、止め弁(13)(13)及び(1
3)(13)間で夫夫分離することを特徴とする蒸気ガ
スタービン合体機関。
19. The method according to claim 15, wherein the compressor, gas turbine, combustor and heat exchanger and the superheated steam reservoir (30) are provided with stop valves (13), (13) and (1).
3) A combined steam gas turbine engine wherein the two are separated from each other.
【請求項20】 前記過熱蒸気溜(30)を、導水管
(1)を円筒型螺旋状の、断面蜂の巣状に密集させたこ
とを特徴とする蒸気ガスタービン合体機関。
20. A combined steam gas turbine engine wherein the superheated steam reservoir (30) is formed by densely packing a water guide pipe (1) in a cylindrical spiral shape with a honeycomb structure.
【請求項21】 前記過熱蒸気溜(30)を、導水管
(1)を溶接を含む円筒型螺旋環状の、断面蜂の巣状に
密集させたことを特徴とする蒸気ガスタービン合体機
関。
21. A steam-gas turbine combined engine, wherein the superheated steam reservoir (30) is densely packed in a cylindrical spiral annular shape including a welded water pipe (1) in a honeycomb shape.
【請求項22】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る蒸気タービンとを、一軸に設けたことを特徴と
する蒸気ガスタービン合体機関。
22. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and arranged in a small number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas A steam turbine that combines a gas turbine that obtains output and a steam turbine that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. organ.
【請求項23】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンとを、一軸に設
けたことを特徴とする蒸気ガスタービン合体機関。
23. A combustor / heat exchanger having a water-cooled outer wall formed as a spiral welded unit assembling structure, one or more spirally-circulated water pipes provided inside and shortened and arranged in a small-diameter multi-honey structure, and compressed air. And a gas turbine that obtains output with combustion gas, and obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A combined steam and gas turbine engine comprising a steam turbine and a single shaft.
【請求項24】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービンと、燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る蒸気タービンとを、一軸に設けたことを特
徴とする蒸気ガスタービン合体機関。
24. A combustor / heat exchanger in which at least one water pipe is provided in a spiral ring shape as a spiral water-cooled outer wall unit assembling structure and which is arranged in a small number of small diameter honeycombs, and the compressed air is burned. A compressor that supplies heat to the heat exchanger and a gas turbine that obtains output using combustion gas, and a steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. A steam gas turbine united engine provided on a single shaft.
【請求項25】 前記請求項22乃至請求項24に於い
て、圧縮機、蒸気タービン、ガスタービンのいずれか3
以下が全動翼である蒸気ガスタービン合体機関。
25. The method according to claim 22, wherein any one of a compressor, a steam turbine, and a gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
【請求項26】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る蒸気タービン圧縮機と、該夫夫の推力により、
航空機体を浮揚移動させるための装置とを有する蒸気ガ
スタービン合体機関。
26. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and arranged in a small number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas A gas turbine that obtains output, a steam turbine compressor that obtains output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature,
An apparatus for levitating and moving an aircraft body.
【請求項27】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービン圧縮機と、該夫
夫の推力により、航空機体を浮揚移動させるための装置
とを有する蒸気ガスタービン合体機関。
27. A combustor / heat exchanger having a water-cooled outer wall formed as a unitary structure of a helical welding structure unit and having at least one helically annular water guide tube therein, and arranged in a small-diameter multi-honey-comb shape, and a compressed air. And a gas turbine that obtains output with combustion gas, and obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistant limit temperature. A combined steam and gas turbine engine having a steam turbine compressor and a device for levitating and moving an aircraft body by the thrust of the steam turbine compressor.
【請求項28】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービンと、燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る蒸気タービン圧縮機と、該夫夫の推力によ
り、航空機体を浮揚移動させるための装置とを有する蒸
気ガスタービン合体機関。
28. As a spiral water-cooled outer wall unit assembly structure, a combustor / heat exchanger in which one or more spirally-arranged water pipes are provided inside and short-circuited in a small-diameter multi-honey structure, and the compressed air is burned. Compressor that supplies heat to a heat exchanger and a gas turbine that obtains output with combustion gas, and steam turbine compression that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature And a device for levitating and moving the aircraft body by the thrust of the husband and the wife.
【請求項29】 前記請求項26乃至請求項28に於い
て、圧縮機、蒸気タービン圧縮機、ガスタービンのいず
れか3以下が全動翼である蒸気ガスタービン合体機関。
29. The combined steam and gas turbine engine according to claim 26, wherein at least three of the compressor, the steam turbine compressor, and the gas turbine are all blades.
【請求項30】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る蒸気タービンと、該過熱蒸気で出力を得る蒸気
タービン圧縮機と、該夫夫の推力により、航空機体を浮
揚移動させるための装置とを有する蒸気ガスタービン合
体機関。
30. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and arranged in a small number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas A gas turbine that obtains output, a steam turbine that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistant limit temperature, a steam turbine compressor that obtains output with the superheated steam, A combined steam and gas turbine engine having a device for levitating and moving an aircraft body with the use of husband and wife.
【請求項31】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンと、該過熱蒸気
で出力を得る蒸気タービン圧縮機と、該夫夫の推力によ
り、航空機体を浮揚移動させるための装置とを有する蒸
気ガスタービン合体機関。
31. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure unit assembly structure and one or more spirally-circulated water pipes are provided inside thereof, and the combustor / heat exchanger is shortened and arranged in a small-diameter multi-honey structure. And a gas turbine that obtains output with combustion gas, and obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A combined steam gas turbine engine having a steam turbine, a steam turbine compressor that obtains an output with the superheated steam, and a device for levitating and moving the aircraft body by the thrust of the steam turbine and the compressor.
【請求項32】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービンと、燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る蒸気タービンと、該過熱蒸気で出力を得る
蒸気タービン圧縮機と、該夫夫の推力により、航空機体
を浮揚移動させるための装置とを有する蒸気ガスタービ
ン合体機関。
32. As a helical water-cooled outer wall unit assembly structure, a combustor / heat exchanger in which one or more helically annular water guide pipes are provided inside, and which are arranged in a short shape in a small number of honeycombs, and the compressed air is burned. A compressor that supplies heat to the heat exchanger, a gas turbine that obtains output with combustion gas, and a steam turbine that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. A combined steam and gas turbine engine comprising: a steam turbine compressor that obtains an output with the superheated steam; and a device that levitates and moves the aircraft body by the thrust of the steam turbine compressor.
【請求項33】 前記請求項30乃至請求項32に於い
て、圧縮機、蒸気タービン、蒸気タービン圧縮機、ガス
タービンのいずれか4以下が全動翼である蒸気ガスター
ビン合体機関。
33. The combined steam / gas turbine engine according to claim 30, wherein at least four of the compressor, the steam turbine, the steam turbine compressor, and the gas turbine are all blades.
【請求項34】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る蒸気タービン圧縮機と、該夫夫の力により、船
舶を浮揚移動させるための装置とを有する蒸気ガスター
ビン合体機関。
34. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and are arranged in a short shape like a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A gas turbine that obtains output, a steam turbine compressor that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, and the ship is levitated and moved by the force of each of them. Steam turbine combined engine having a device for
【請求項35】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービン圧縮機と、該夫
夫の力により、船舶を浮揚移動させるための装置とを有
する蒸気ガスタービン合体機関。
35. A combustor / heat exchanger in which a water-cooled outer wall is formed as a unitary structure of a welding structure having a spiral shape, and one or more water pipes are provided in a spiral ring shape inside thereof, and the combustor / heat exchanger is shortened and arranged in a small-diameter multi-honey structure. And a gas turbine that obtains output with combustion gas, and obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A combined steam and gas turbine engine having a steam turbine compressor and a device for levitating and moving a ship by their respective forces.
【請求項36】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービンと、燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る蒸気タービン圧縮機と、該夫夫の力によ
り、船舶を浮揚移動させるための装置とを有する蒸気ガ
スタービン合体機関。
36. As a helical water-cooled outer wall unit assembly structure, one or more helical annular water pipes are provided inside, and a combustor / heat exchanger in which a plurality of small-diameter, honeycomb-shaped tubes are arranged and shortened. Compressor that supplies heat to a heat exchanger and a gas turbine that obtains output with combustion gas, and steam turbine compression that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature And a device for levitating and moving a ship by the power of the couple.
【請求項37】 前記請求項34乃至請求項36に於い
て、圧縮機、蒸気タービン圧縮機、ガスタービンのいず
れか3以下が全動翼である蒸気ガスタービン合体機関。
37. The combined steam and gas turbine engine according to claim 34, wherein at least three of the compressor, the steam turbine compressor, and the gas turbine are all blades.
【請求項38】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る蒸気タービンと、該過熱蒸気で出力を得る蒸気
タービン圧縮機と、該夫夫の力により、船舶を浮揚移動
させるための装置とを有する蒸気ガスタービン合体機
関。
38. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and arranged in a small number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas A gas turbine that obtains output, a steam turbine that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat resistant limit temperature, a steam turbine compressor that obtains output with the superheated steam, A combined steam and gas turbine engine having a device for levitating and moving a ship under the influence of husband and wife.
【請求項39】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンと、該過熱蒸気
で出力を得る蒸気タービン圧縮機と、該夫夫の力によ
り、船舶を浮揚移動させるための装置とを有する蒸気ガ
スタービン合体機関。
39. A combustor / heat exchanger having a water-cooled outer wall formed as a spiral welded unit assembly structure and one or more spirally-circulated water pipes provided inside and shortened and arranged in a small-diameter multi-honey structure, and compressed air. And a gas turbine that obtains output with combustion gas, and obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A combined steam gas turbine engine having a steam turbine, a steam turbine compressor that obtains an output with the superheated steam, and a device for levitating and moving a ship by the respective forces.
【請求項40】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービンと、燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る蒸気タービンと、該過熱蒸気で出力を得る
蒸気タービン圧縮機と、該夫夫の力により、船舶を浮揚
移動させるための装置とを有する蒸気ガスタービン合体
機関。
40. A combustor / heat exchanger in which one or more spiral water pipes are provided inside as a spiral water-cooled outer wall unit assembling structure, and the combustor / heat exchanger is arranged in a short shape in a number of small diameter honeycombs, and the compressed air is burned. A compressor that supplies heat to the heat exchanger and a gas turbine that obtains output using combustion gas, and a steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. A steam gas turbine combined engine comprising: a steam turbine compressor that obtains an output using the superheated steam; and a device that levitates and moves a ship by the power of the steam turbine compressor.
【請求項41】 前記請求項38乃至請求項40に於い
て、圧縮機、蒸気タービン、蒸気タービン圧縮機、ガス
タービンのいずれか4以下が全動翼である蒸気ガスター
ビン合体機関。
41. The combined steam and gas turbine engine according to claim 38, wherein at least four of the compressor, the steam turbine, the steam turbine compressor, and the gas turbine are all blades.
【請求項42】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る蒸気タービンと、該過熱蒸気で出力を得る蒸気
タービン圧縮機と、夫夫の出力と推力により、プロペラ
を回転させて機体を浮揚移動させるための装置とを有す
る蒸気ガスタービン合体機関。
42. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and arranged in a small number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas A gas turbine that obtains output, a steam turbine that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature becomes equal to or lower than the turbine heat resistant limit temperature, and a steam turbine compressor that obtains output with the superheated steam. A combined steam gas turbine engine having a device for lifting and moving an airframe by rotating a propeller by an output and a thrust of a husband.
【請求項43】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンと、該過熱蒸気
で出力を得る蒸気タービン圧縮機と、夫夫の出力と推力
により、プロペラを回転させて機体を浮揚移動させるた
めの装置とを有する蒸気ガスタービン合体機関。
43. A combustor / heat exchanger in which a water-cooled outer wall is formed as a unitary structure of a welding structure in a spiral shape, and one or more water guide tubes are provided in a spiral ring shape inside, and are arranged in a short shape in a honeycomb shape with a plurality of small diameters. And a gas turbine that obtains output with combustion gas, and obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A combined steam and gas turbine engine comprising: a steam turbine; a steam turbine compressor that obtains an output from the superheated steam; and a device for rotating a propeller to levitate and move the fuselage by using the output and thrust of each.
【請求項44】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービンと、燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る蒸気タービンと、該過熱蒸気で出力を得る
蒸気タービン圧縮機と、夫夫の出力と推力により、プロ
ペラを回転させて機体を浮揚移動させるための装置とを
有する蒸気ガスタービン合体機関。
44. As a helical water-cooled outer wall unit assembly structure, one or more helically annular water pipes are provided inside, and a combustor / heat exchanger in which a plurality of small-diameter honeycomb structures are arranged, and the compressed air is burned. A compressor that supplies heat to the heat exchanger and a gas turbine that obtains output using combustion gas, and a steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. A steam turbine combined engine having a steam turbine compressor for obtaining an output with the superheated steam, and a device for rotating a propeller to levitate and move the airframe by using the output and the thrust of each of them.
【請求項45】 前記請求項42乃至請求項44に於い
て、圧縮機、蒸気タービン、蒸気タービン圧縮機、ガス
タービンのいずれか4以下が全動翼である蒸気ガスター
ビン合体機関。
45. The combined steam and gas turbine engine according to claim 42, wherein at least four of the compressor, the steam turbine, the steam turbine compressor, and the gas turbine are all blades.
【請求項46】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る蒸気タービンと、夫夫の出力と推力により、プ
ロペラを回転させて機体を浮揚移動させるための装置と
を有する蒸気ガスタービン合体機関。
46. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and arranged in a small number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas A gas turbine that obtains output, a steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature, and a fuselage that rotates a propeller with the output and thrust of each And a device for levitating the gas.
【請求項47】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンと、夫夫の出力
と推力により、プロペラを回転させて機体を浮揚移動さ
せるための装置とを有する蒸気ガスタービン合体機関。
47. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welded unit assembling structure, one or more water pipes are provided in a spiral annular shape inside, and a small-diameter multiple-honeycomb is arranged and shortened. And a gas turbine that obtains output with combustion gas, and obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A combined steam and gas turbine engine having a steam turbine and a device for rotating a propeller to levitate and move the airframe by using the output and thrust of each of them.
【請求項48】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービンと、燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る蒸気タービンと、夫夫の出力と推力によ
り、プロペラを回転させて機体を浮揚移動させるための
装置とを有する蒸気ガスタービン合体機関。
48. As a helical water-cooled outer wall unit assembly structure, a combustor / heat exchanger in which one or more helically annular water pipes are provided inside, and which are arranged in a short shape in a number of small diameter honeycombs, and the compressed air is burned. A compressor that supplies heat to the heat exchanger and a gas turbine that obtains output using combustion gas, and a steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature. And a device for rotating the propeller to levitate and move the fuselage by the output and thrust of the husband and wife.
【請求項49】 前記請求項46乃至請求項48に於い
て、圧縮機、蒸気タービン、ガスタービンのいずれか3
以下が全動翼である蒸気ガスタービン合体機関。
49. The method according to claim 46, wherein any one of a compressor, a steam turbine, and a gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
【請求項50】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る蒸気タービン圧縮機と、夫夫の出力と推力によ
り、機体を浮揚移動させるための装置とを有する蒸気ガ
スタービン合体機関。
50. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and arranged in a small number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas A gas turbine that obtains output, a steam turbine compressor that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. And a device for causing the combined gas and gas turbine to have an engine.
【請求項51】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービン圧縮機と、夫夫
の出力と推力により、機体を浮揚移動させるための装置
とを有する蒸気ガスタービン合体機関。
51. A combustor / heat exchanger having a water-cooled outer wall formed as a unitary structure of a helical welding structure and having at least one helically annular water-conducting pipe therein and arranged in a small-diameter multiple-honeycomb shape, and a compressed air. And a gas turbine that obtains output with combustion gas, and obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A combined steam gas turbine engine having a steam turbine compressor and a device for levitating and moving the airframe by the output and thrust of each of them.
【請求項52】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービンと、燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る蒸気タービン圧縮機と、夫夫の出力と推力
により、機体を浮揚移動させるための装置とを有する蒸
気ガスタービン合体機関。
52. As a spiral water-cooled outer wall unit assembly structure, a combustor / heat exchanger in which one or more spirally-arranged water pipes are provided inside and shortened and arranged in a honeycomb shape with a small diameter, and the compressed air is burned. Compressor that supplies heat to the heat exchanger and a gas turbine that obtains output with combustion gas, and steam turbine compression that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature A combined steam and gas turbine engine having a power unit and a device for levitating and moving the vehicle using the power and thrust of each of the power units.
【請求項53】 前記請求項50乃至請求項52に於い
て、圧縮機、蒸気タービン圧縮機、ガスタービンのいず
れか3以下が全動翼である蒸気ガスタービン合体機関。
53. The combined steam and gas turbine engine according to claim 50, wherein at least three of the compressor, the steam turbine compressor, and the gas turbine are all blades.
【請求項54】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る蒸気タービンと、夫夫の出力と推力により、プ
ロペラを回転させて船体を浮揚移動させるための装置と
を有する蒸気ガスタービン合体機関。
54. The water-cooled outer wall has a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and are arranged in a short shape like a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A gas turbine that obtains output, a steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature, and a hull that rotates a propeller by using the output and thrust of each. And a device for levitating and moving the steam turbine.
【請求項55】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンと、夫夫の出力
と推力により、プロペラを回転させて船体を浮揚移動さ
せるための装置とを有する蒸気ガスタービン合体機関。
55. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welded unit assembling structure and one or more spirally-circulated water pipes are provided inside thereof, and the combustor / heat exchanger is shortened and arranged in a small-diameter multi-honey structure. And a gas turbine that obtains output with combustion gas, and obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A combined steam and gas turbine engine having a steam turbine and a device for rotating a propeller to levitate and move a hull by the output and thrust of each of them.
【請求項56】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービンと、燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る蒸気タービンと、夫夫の出力と推力によ
り、プロペラを回転させて船体を浮揚移動させるための
装置とを有する蒸気ガスタービン合体機関。
56. A combustor / heat exchanger in which one or more spirally-circulated water pipes are provided as a spiral water-cooled outer wall unit assembling structure and which are arranged in a short shape in a plurality of small diameter honeycombs, and the compressed air is burned. A compressor that supplies heat to the heat exchanger and a gas turbine that obtains output using combustion gas, and a steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature. And a device for rotating a propeller to levitate and move the hull by the output and thrust of the husband and wife.
【請求項57】 前記請求項54乃至請求項56に於い
て、圧縮機、蒸気タービン、ガスタービンのいずれか3
以下が全動翼である蒸気ガスタービン合体機関。
57. The method according to claim 54, wherein any one of a compressor, a steam turbine, and a gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
【請求項58】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る蒸気タービン圧縮機と、夫夫の出力と推力によ
り、船体を浮揚移動させるための装置とを有する蒸気ガ
スタービン合体機関。
58. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and are arranged in a short shape like a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A gas turbine that obtains output, a steam turbine compressor that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. And a device for causing the combined gas and gas turbine to have an engine.
【請求項59】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービン圧縮機と、夫夫
の出力と推力により、船体を浮揚移動させるための装置
とを有する蒸気ガスタービン合体機関。
59. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welding unit assembly structure, one or more water pipes are provided in a spiral annular shape inside, and are arranged to be short and arranged in a small number of honeycombs; And a gas turbine that obtains output with combustion gas, and obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A combined steam and gas turbine engine having a steam turbine compressor and a device for levitating and moving a hull by the output and thrust of each.
【請求項60】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービンと、燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る蒸気タービン圧縮機と、夫夫の出力と推力
により、船体を浮揚移動させるための装置とを有する蒸
気ガスタービン合体機関。
60. A combustor / heat exchanger in which one or more spirally-circulated water pipes are provided inside as a spiral water-cooled outer wall unit assembling structure, and the combustor / heat exchanger is arranged in a small-diameter multiple honeycomb shape, and the compressed air is burned. Compressor that supplies heat to the heat exchanger and a gas turbine that obtains output with combustion gas, and steam turbine compression that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature And a device for lifting and moving the hull by the output and thrust of the husband and wife.
【請求項61】 前記請求項58乃至請求項60に於い
て、圧縮機、蒸気タービン圧縮機、ガスタービンのいず
れか3以下が全動翼である蒸気ガスタービン合体機関。
61. A combined steam gas turbine engine according to claim 58, wherein at least three of the compressor, the steam turbine compressor, and the gas turbine are all blades.
【請求項62】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る蒸気タービンと、夫夫の出力により、車輪を回
転させて移動するための動力伝達装置とを有する蒸気ガ
スタービン合体機関。
62. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and are arranged in a short shape like a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A gas turbine that obtains output, a steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. Steam turbine combined engine having a power transmission device.
【請求項63】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る蒸気タービンと、夫夫の出力により、車輪を回
転させて移動可能にすると共に、該出力により発電・充
電して電動機により車輪を回転させて移動可能にするた
めの動力伝達装置とを有する蒸気ガスタービン合体機
関。
63. The water-cooled outer wall has a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and are arranged in a short shape like a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A gas turbine that obtains output, a steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature. And a power transmission device for generating and charging the output and rotating the wheels by an electric motor so as to be movable.
【請求項64】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンと、夫夫の出力
により、車輪を回転させて移動するための動力伝達装置
とを有する蒸気ガスタービン合体機関。
64. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welded unit assembling structure and one or more water pipes are provided in a spiral ring inside, and are arranged in a small-diameter multiple-honeycomb shape, and compressed air is provided. And a gas turbine that obtains output with combustion gas, and obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A combined steam and gas turbine engine having a steam turbine and a power transmission device for rotating and moving wheels according to outputs of the steam turbine and the steam turbine.
【請求項65】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンと、夫夫の出力
により、車輪を回転させて移動可能にすると共に、該出
力により発電・充電して電動機により車輪を回転させて
移動可能にするための動力伝達装置とを有する蒸気ガス
タービン合体機関。
65. A combustor / heat exchanger in which a water-cooled outer wall is formed as a unitary structure of a helical welding structure and one or more helical annular water pipes are provided therein, and the unit is compactly arranged in a small-diameter multi-honey structure, and compressed air. And a gas turbine that obtains output with combustion gas, and obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A steam gas having a steam turbine and a power transmission device for rotating and moving wheels by means of their respective outputs, and for generating and charging the output to rotate the wheels with an electric motor so as to be movable. Turbine united engine.
【請求項66】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービンと、燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る蒸気タービンと、夫夫の出力により、車輪
を回転させて移動するための動力伝達装置とを有する蒸
気ガスタービン合体機関。
66. A combustor / heat exchanger in which one or more spirally-circulated water pipes are provided internally as a spiral water-cooled outer wall unit assembly structure and arranged in a small-diameter multi-honey structure, and the compressed air is burned. A compressor that supplies heat to the heat exchanger and a gas turbine that obtains output using combustion gas, and a steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature. And a power transmission device for rotating and moving wheels according to the outputs of the steam and gas turbine.
【請求項67】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
と燃焼ガス温度がタービン耐熱限界温度以下となるよう
に熱交換して得た過熱蒸気で出力を得る蒸気ガスタービ
ンと、該過熱蒸気で出力を得る蒸気タービンと、夫夫の
出力により、車輪を回転させて移動可能にすると共に、
該出力により発電・充電して電動機により車輪を回転さ
せて移動可能にするための動力伝達装置とを有する蒸気
ガスタービン合体機関。
67. A combustor / heat exchanger in which one or more spirally-circulated water pipes are provided inside as a spiral water-cooled outer wall unit assembly structure, and are arranged in a small-diameter multi-honey structure, and the compressed air is burned. A compressor for supplying heat to a heat exchanger and a heat exchanger, a steam gas turbine for obtaining output using superheated steam obtained by exchanging heat so that a combustion gas and a combustion gas temperature are equal to or lower than a turbine heat-resistant limit temperature, and an output using the superheated steam. With the steam turbine that obtains and the output of each husband and wife, the wheels are rotated and movable,
A power transmission device for generating and charging the output and rotating the wheels by an electric motor so as to be movable.
【請求項68】 前記請求項62乃至請求項67に於い
て、圧縮機、蒸気タービン、ガスタービンのいずれか3
以下が全動翼である蒸気ガスタービン合体機関。
68. The method according to claim 62, wherein any one of a compressor, a steam turbine, and a gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
【請求項69】 前記請求項62乃至請求項68に於い
て、鉄道レール(54)及び車輪(55)の動力伝達面
(31)に低凹凸(40)を夫夫具備して、該車輪の進
行方向前後のレール(54)との間に棒磁石(33)又
は電磁石(34)を設けて、吸引する力を作用させたこ
とを特徴とする蒸気ガスタービン合体機関。
69. The method according to claim 62, wherein the power transmission surface (31) of the rail (54) and the wheel (55) is provided with low irregularities (40), respectively. A combined steam gas turbine engine wherein a bar magnet (33) or an electromagnet (34) is provided between the front and rear rails (54) in the traveling direction to apply a suction force.
【請求項70】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る蒸気タービンと、夫夫の出力により、プロペラ
を回転させて船体を移動させるための装置とを有する蒸
気ガスタービン合体機関。
70. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and are arranged in a short shape like a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A gas turbine that obtains output, a steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature, and a propeller is rotated to move the hull by the output of each. And a device for causing the combined gas and gas turbine to have an engine.
【請求項71】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンと、夫夫の出力
により、プロペラを回転させて船体を移動させるための
装置とを有する蒸気ガスタービン合体機関。
71. A combustor / heat exchanger in which a water-cooled outer wall is formed as a unitary structure of a helical welding structure and one or more helically annular water pipes are provided therein, and the combustor / heat exchanger is shortened and arranged in a small-diameter multi-honey structure. And a gas turbine that obtains output with combustion gas, and obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. An integrated steam gas turbine engine having a steam turbine and a device for rotating a propeller by rotating the propeller according to the output of the steam turbine.
【請求項72】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービンと、燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る蒸気タービンと、夫夫の出力により、プロ
ペラを回転させて船体を移動させるための装置とを有す
る蒸気ガスタービン合体機関。
72. A combustor / heat exchanger in which one or more spirally-circulated water pipes are provided internally as a spiral water-cooled outer wall unit assembly structure, and are arranged in a small-diameter multi-honey structure, and the compressed air is burned. A compressor that supplies heat to the heat exchanger and a gas turbine that obtains output using combustion gas, and a steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature. And a device for moving a hull by rotating a propeller according to the outputs of the husband and wife.
【請求項73】 前記請求項70乃至請求項72に於い
て、圧縮機、蒸気タービン、ガスタービンのいずれか3
以下が全動翼である蒸気ガスタービン合体機関。
73. The method according to claim 70, wherein any one of a compressor, a steam turbine, and a gas turbine is selected.
The following is a combined steam gas turbine engine with all blades.
【請求項74】 前記請求項70乃至請求項73に於い
て、前記過熱蒸気を含む排気噴口を船底に開口した蒸気
ガスタービン合体機関。
74. The combined steam and gas turbine engine according to claim 70, wherein an exhaust orifice containing the superheated steam is opened at the bottom of the ship.
【請求項75】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービンと、燃焼ガス温度がタービン耐熱
限界温度以下となるように熱交換して得た過熱蒸気で出
力を得る蒸気タービンと、夫夫の出力により、機械を回
転させて仕事をさせるための装置とを有する蒸気ガスタ
ービン合体機関。
75. The water-cooled outer wall has a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and are arranged in a short shape like a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A gas turbine that obtains output, a steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, and rotates the machine to work according to the output of each. And a combined apparatus for a steam gas turbine.
【請求項76】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービンと、燃焼ガス温
度がタービン耐熱限界温度以下となるように熱交換して
得た過熱蒸気で出力を得る蒸気タービンと、夫夫の出力
により、機械を回転させて仕事をさせるための装置とを
有する蒸気ガスタービン合体機関。
76. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welded unit assembling structure and one or more water pipes are provided in a spiral annular shape inside thereof, and the combustor / heat exchanger is shortened and arranged in a small number of honeycombs; And a gas turbine that obtains output with combustion gas, and obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A combined steam gas turbine engine having a steam turbine and a device for rotating a machine to perform work according to the output of the steam turbine.
【請求項77】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービンと、燃焼ガス温度がタービン
耐熱限界温度以下となるように熱交換して得た過熱蒸気
で出力を得る蒸気タービンと、夫夫の出力により、機械
を回転させて仕事をさせるための装置とを有する蒸気ガ
スタービン合体機関。
77. A combustor / heat exchanger in which one or more spiral water pipes are provided inside as a spiral water-cooled outer wall unit assembling structure, and the combustor / heat exchanger is shortened and arranged in a small number of honeycombs, and the compressed air is burned. A compressor that supplies heat to the heat exchanger and a gas turbine that obtains output using combustion gas, and a steam turbine that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is below the turbine heat resistance limit temperature. And a device for rotating the machine according to the output of the husband and the wife to perform work.
【請求項78】 前記請求項75乃至請求項77に於い
て、圧縮機、蒸気タービン、ガスタービンのいずれか3
以下が全動翼である蒸気ガスタービン合体機関。
78. The method according to claim 75, wherein any one of a compressor, a steam turbine, and a gas turbine is selected.
The following is a combined steam gas turbine engine with all blades.
【請求項79】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービン発電機と、燃焼ガス温度がタービ
ン耐熱限界温度以下となるように熱交換して得た過熱蒸
気で出力を得る蒸気タービン発電機と、夫夫のいずれか
からの熱供給と、該夫夫からの電気を供給するための装
置とを有する蒸気ガスタービン合体機関。
79. The water-cooled outer wall has a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and are arranged in a short shape like a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A gas turbine generator that obtains output, a steam turbine generator that obtains output using superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature, and heat supply from either of the two. And a device for supplying electricity from the couple.
【請求項80】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービン発電機と、燃焼ガス温度がタービ
ン耐熱限界温度以下となるように熱交換して得た過熱蒸
気で出力を得る蒸気タービン発電機と、該夫夫のいずれ
かからの熱及び冷熱供給と、該夫夫からの電気を供給す
るための装置とを有する蒸気ガスタービン合体機関。
80. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and are arranged in a short shape like a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A gas turbine generator that obtains output, a steam turbine generator that obtains output with superheated steam obtained by performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, and heat and heat from either one of the two. A combined steam gas turbine engine having a cold heat supply and a device for supplying electricity from the couple.
【請求項81】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得るガスタービン発電機と、燃焼ガス温度がタービ
ン耐熱限界温度以下となるように熱交換して得た過熱蒸
気で出力を得る蒸気タービン発電機と、該夫夫からの電
気を供給するための装置とを有する蒸気ガスタービン合
体機関。
81. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and are arranged in a short shape like a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A gas turbine generator for obtaining an output, a steam turbine generator for obtaining an output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, and for supplying electricity from each of them. And a combined steam gas turbine engine having the apparatus.
【請求項82】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービン発電機と、燃焼
ガス温度がタービン耐熱限界温度以下となるように熱交
換して得た過熱蒸気で出力を得る蒸気タービン発電機
と、夫夫のいずれかからの熱供給と、該夫夫からの電気
を供給するための装置とを有する蒸気ガスタービン合体
機関。
82. A combustor / heat exchanger in which a water-cooled outer wall is formed as a spiral welding structure unit assembly structure and one or more spirally-circulated water pipes are provided inside thereof, and the combustor / heat exchanger is shortened and arranged in a small-diameter multi-honey structure. And a gas turbine generator that obtains output with combustion gas, and outputs with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A steam gas turbine united engine comprising: a steam turbine generator for obtaining the above; a heat supply from any of the husband and the husband; and a device for supplying electricity from the husband and the husband.
【請求項83】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービン発電機と、燃焼
ガス温度がタービン耐熱限界温度以下となるように熱交
換して得た過熱蒸気で出力を得る蒸気タービン発電機
と、該夫夫のいずれかからの熱及び冷熱の供給と、該夫
夫からの電気を供給するための装置とを有する蒸気ガス
タービン合体機関。
83. A combustor / heat exchanger having a water-cooled outer wall formed as a unitary structure of a helical welding structure and having at least one helically annular water-conducting pipe therein and arranged to be short and arranged in a small-diameter multi-honey structure, and compressed air. And a gas turbine generator that obtains output with combustion gas, and outputs with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A steam turbine combined engine comprising: a steam turbine generator for obtaining the above; a device for supplying heat and cold from one of the couple; and a device for supplying electricity from the couple.
【請求項84】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得るガスタービン発電機と、燃焼
ガス温度がタービン耐熱限界温度以下となるように熱交
換して得た過熱蒸気で出力を得る蒸気タービン発電機
と、該夫夫からの電気を供給するための装置とを有する
蒸気ガスタービン合体機関。
84. A combustor / heat exchanger in which a water-cooled outer wall has a spiral welding structure unit assembly structure and one or more spirally-circulated water pipes are provided inside thereof, and the combustor / heat exchanger is short and arranged in a small-diameter multi-honey structure. And a gas turbine generator that obtains output with combustion gas, and outputs with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A combined steam and gas turbine engine having a steam turbine generator for obtaining the above and a device for supplying electricity from the couple.
【請求項85】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービン発電機と、燃焼ガス温度がタ
ービン耐熱限界温度以下となるように熱交換して得た過
熱蒸気で出力を得る蒸気タービン発電機と、夫夫のいず
れかからの熱供給と、該夫夫からの電気を供給するため
の装置とを有する蒸気ガスタービン合体機関。
85. A combustor / heat exchanger in which one or more spirally-circulated water pipes are provided inside as a spiral water-cooled outer wall unit assembly structure, and the combustor / heat exchanger is shortened and arranged in a large number of small diameter honeycombs. A compressor that supplies the heat to the heat exchanger, a gas turbine generator that obtains output with combustion gas, and a steam that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature A combined steam and gas turbine engine having a turbine generator, heat supply from either of them, and a device for supplying electricity from the couple.
【請求項86】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービン発電機と、燃焼ガス温度がタ
ービン耐熱限界温度以下となるように熱交換して得た過
熱蒸気で出力を得る蒸気タービン発電機と、該夫夫のい
ずれかからの熱及び冷熱の供給と、該夫夫からの電気を
供給するための装置とを有する蒸気ガスタービン合体機
関。
86. A combustor / heat exchanger in which one or more spirally-circulated water pipes are provided inside as a spiral water-cooled outer wall unit assembling structure, and the combustor / heat exchanger is shortened and arranged in a large number of small diameter honeycombs, and the compressed air is burned. A compressor that supplies the heat to the heat exchanger, a gas turbine generator that obtains output with combustion gas, and a steam that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature A combined steam and gas turbine engine comprising: a turbine generator; heat and cold heat supply from any one of the two; and a device for supplying electricity from the couple.
【請求項87】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得るガスタービン発電機と、燃焼ガス温度がタ
ービン耐熱限界温度以下となるように熱交換して得た過
熱蒸気で出力を得る蒸気タービン発電機と、該夫夫から
の電気を供給するための装置とを有する蒸気ガスタービ
ン合体機関。
87. A combustor / heat exchanger in which one or more spirally-circulated water pipes are provided as a spiral water-cooled outer wall unit assembling structure and which are arranged in a short shape in a plurality of small diameter honeycombs, and the compressed air is burned. A compressor that supplies the heat to the heat exchanger, a gas turbine generator that obtains output with combustion gas, and a steam that obtains output with superheated steam obtained by exchanging heat so that the combustion gas temperature is equal to or lower than the turbine heat resistance limit temperature A combined steam gas turbine engine having a turbine generator and a device for supplying electricity from the couple.
【請求項88】 前記請求項79乃至請求項87に於い
て、圧縮機、蒸気タービン、ガスタービンのいずれか3
以下が全動翼である蒸気ガスタービン合体機関。
88. The method according to claim 79, wherein any one of a compressor, a steam turbine, and a gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
【請求項89】 水冷外壁を螺旋状の熔接構造として、
内部に螺旋環状に導水管を1以上設けて、小径多数蜂の
巣状に短小化配置した燃焼器兼熱交換器と、圧縮空気を
該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガスで出
力を得る排気温度0℃以下のガスタービン発電機と、燃
焼ガス温度がタービン耐熱限界温度以下となるように熱
交換して得た過熱蒸気で出力を得る復水器付蒸気タービ
ン発電機と、該夫夫からの電気を供給するための装置と
を有する蒸気ガスタービン合体機関。
89. A water-cooled outer wall having a spiral welding structure,
A combustor / heat exchanger in which one or more water pipes are provided in a spiral ring inside, and are arranged in a short shape like a large number of small diameter honeycombs, a compressor for supplying compressed air to the combustor / heat exchanger, and a combustion gas. A gas turbine generator having an exhaust temperature of 0 ° C. or less for obtaining an output, and a steam turbine generator with a condenser for obtaining an output with superheated steam obtained by heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature, And a device for supplying electricity from the couple.
【請求項90】 水冷外壁を螺旋状の熔接構造単位組立
て構造として、内部に螺旋環状に導水管を1以上設け
て、小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器と、圧縮空気を該燃焼器兼熱交換器に供給する圧縮機
と、燃焼ガスで出力を得る排気温度0℃以下のガスター
ビン発電機と、燃焼ガス温度がタービン耐熱限界温度以
下となるように熱交換して得た過熱蒸気で出力を得る復
水器付蒸気タービン発電機と、該夫夫からの電気を供給
するための装置とを有する蒸気ガスタービン合体機関。
90. A combustor / heat exchanger having a water-cooled outer wall formed as a unitary structure of a helical welding structure and having at least one helically annular water-conducting pipe therein and arranged in a small-diameter multi-honey structure, and a compressed air. And a gas turbine generator having an exhaust temperature of 0 ° C. or lower for obtaining an output from the combustion gas, and performing heat exchange so that the combustion gas temperature is equal to or lower than the turbine heat-resistant limit temperature. A combined steam gas turbine engine having a steam turbine generator with a condenser that obtains an output with the obtained superheated steam, and a device for supplying electricity from the couple.
【請求項91】 螺旋状の水冷外壁単位組立構造とし
て、内部に螺旋環状に導水管を1以上設けて、小径多数
蜂の巣状に短小化配置した燃焼器兼熱交換器と、圧縮空
気を該燃焼器兼熱交換器に供給する圧縮機と、燃焼ガス
で出力を得る排気温度0℃以下のガスタービン発電機
と、燃焼ガス温度がタービン耐熱限界温度以下となるよ
うに熱交換して得た過熱蒸気で出力を得る復水器付蒸気
タービン発電機と、該夫夫からの電気を供給するための
装置とを有する蒸気ガスタービン合体機関。
91. A combustor / heat exchanger in which one or more spirally-circulated water pipes are provided internally as a spiral water-cooled outer wall unit assembly structure, and are arranged in a small-diameter multi-honey structure, and the compressed air is burned. Compressor to supply to the heat exchanger and heat exchanger, gas turbine generator with exhaust temperature of 0 ° C or less to obtain output from combustion gas, and superheat obtained by heat exchange so that combustion gas temperature is below the turbine heat resistance limit temperature A combined steam gas turbine engine having a steam turbine generator with a condenser for obtaining output with steam, and a device for supplying electricity from the couple.
【請求項92】 前記請求項89乃至請求項91に於い
て、圧縮機、蒸気タービン、ガスタービンのいずれか3
以下が全動翼である蒸気ガスタービン合体機関。
92. The method according to claim 89, wherein any one of the compressor, the steam turbine, and the gas turbine is used.
The following is a combined steam gas turbine engine with all blades.
【請求項93】 前記全動翼ガスタービンの燃焼器兼熱
交換器は、超臨界以下の過熱蒸気を噴射して、撹拌燃焼
によりNOxを低減することを特徴とする蒸気ガスター
ビン合体機関。
93. A combined steam gas turbine engine, wherein the combustor / heat exchanger of the all-blade gas turbine injects supercritical steam or superheated steam to reduce NOx by agitated combustion.
【請求項94】 前記ガスタービンの燃焼器兼熱交換器
は、超臨界以下の過熱蒸気を噴射して、撹拌燃焼により
NOxを低減することを特徴とする蒸気ガスタービン合
体機関。
94. A combined steam gas turbine engine, wherein the combustor and heat exchanger of the gas turbine injects supercritical or superheated steam to reduce NOx by agitated combustion.
【請求項95】 前記全動翼ガスタービンは、排気温度
を0℃以下にすることを特徴とする蒸気ガスタービン合
体機関。
95. The combined steam gas turbine engine, wherein the exhaust gas temperature of the all blade gas turbine is set to 0 ° C. or lower.
【請求項96】 前記ガスタービンは、排気温度を0℃
以下にすることを特徴とする蒸気ガスタービン合体機
関。
96. The gas turbine has an exhaust gas temperature of 0 ° C.
A steam gas turbine combined engine characterized by the following.
【請求項97】 前記小径多数蜂の巣状に短小化配置し
て、内部に螺旋環状に導水管を1以上設けた燃焼器兼熱
交換器を、大径単数として配置したことを特徴とする蒸
気ガスタービン合体機関。
97. A steam gas characterized in that the combustor / heat exchanger having one or more water pipes arranged in a helical ring inside is arranged as a single unit having a large diameter, wherein the small diameter is arranged so as to be a large number of honeycombs. Turbine united engine.
【請求項98】 前記蒸気タービンは、超臨界の蒸気条
件以下の過熱蒸気を使用することを特徴とする請求項1
乃至請求項97のいずれかに記載の蒸気ガスタービン合
体機関。
98. The steam turbine uses superheated steam under supercritical steam conditions.
A combined steam gas turbine engine according to any one of claims 97 to 97.
【請求項99】 前記全動翼ガスタービンの内側軸装置
と外側軸装置を最適回転比で結合した磁気摩擦動力伝達
装置(14)を具備したことを特徴とする蒸気ガスター
ビン合体機関。
99. A combined steam gas turbine engine comprising: a magnetic friction power transmission device (14) in which an inner shaft device and an outer shaft device of the full blade gas turbine are connected at an optimum rotation ratio.
【請求項100】 前記全動翼圧縮機の内側軸装置と外
側軸装置を最適回転比で結合した磁気摩擦動力伝達装置
(14)を具備したことを特徴とする蒸気ガスタービン
合体機関。
100. A combined steam gas turbine engine comprising a magnetic friction power transmission device (14) in which an inner shaft device and an outer shaft device of the full blade compressor are connected at an optimum rotation ratio.
【請求項101】 前記磁気摩擦動力伝達装置(14)
は冷却装置を有することを特徴とする蒸気ガスタービン
合体機関。
101. The magnetic friction power transmission device (14)
Is a steam gas turbine combined engine having a cooling device.
【請求項102】 前記圧縮空気を燃焼器兼熱交換器に
供給する全動翼圧縮機に、バイパスを設けたことを特徴
とする蒸気ガスタービン合体機関。
102. A combined steam gas turbine engine, wherein a bypass is provided in an all-blade compressor that supplies the compressed air to a combustor / heat exchanger.
【請求項103】 前記圧縮空気を燃焼器兼熱交換器に
供給する圧縮機に、バイパスを設けたことを特徴とする
蒸気ガスタービン合体機関。
103. A steam gas turbine combined engine, wherein a bypass is provided in a compressor for supplying the compressed air to a combustor / heat exchanger.
【請求項104】 前記全動翼ガスタービンの内側軸装
置と外側軸装置を2重反転させる磁気摩擦動力伝達装置
14に冷却装置を設けたことを特徴とする蒸気ガスター
ビン合体機関。
104. A combined steam gas turbine engine, wherein a cooling device is provided in a magnetic friction power transmission device 14 for reversing an inner shaft device and an outer shaft device of the full blade gas turbine.
【請求項105】 前記全動翼圧縮機の内側軸装置と外
側軸装置を2重反転させる磁気摩擦動力伝達装置14に
冷却装置を設けたことを特徴とする蒸気ガスタービン合
体機関。
105. A combined steam gas turbine engine, wherein a cooling device is provided in a magnetic friction power transmission device 14 for reversing an inner shaft device and an outer shaft device of the all-blade compressor.
【請求項106】 前記全動翼蒸気タービンを、内側軸
装置に内側タービン動翼群(20)を設け、外側軸装置
に外側タービン動翼群(19)を設けて、互いに反転す
る2軸を磁気摩擦動力伝達装置により結合して全動翼蒸
気タービンを構成して、内側軸装置の中心より過熱蒸気
(5)を供給して、該全動翼蒸気タービンを駆動するこ
とを特徴とする蒸気ガスタービン合体機関。
106. The full-blade steam turbine comprises an inner shaft device provided with an inner turbine blade group (20), and an outer shaft device provided with an outer turbine blade group (19). A steam turbine comprising: a rotor blade steam turbine which is combined with a magnetic friction power transmission device to supply superheated steam (5) from a center of an inner shaft device to drive the rotor blade steam turbine; Gas turbine combined engine.
【請求項107】 前記全動翼蒸気タービン圧縮機を、
内側軸装置に内側タービン動翼群(20)を設け、外側
軸装置に外側タービン動翼群(19)及び内側圧縮機動
翼群(17)を設けて内側軸装置と兼用して、互いに反
転する2軸を磁気摩擦動力伝達装置により結合して全動
翼蒸気タービンを構成し、内側圧縮機動翼群(17)の
外側に外側軸装置及び外側圧縮機動翼群(16)を設け
て、互いに反転する該外側軸装置と内側軸装置を磁気摩
擦動力伝達装置により結合して全動翼圧縮機を構成させ
て、内側軸装置の中心より過熱蒸気(5)を供給して、
該全動翼蒸気タービン圧縮機を駆動する装置を設けたこ
とを特徴とする蒸気ガスタービン合体機関。
107. The all-blade steam turbine compressor,
The inner shaft device is provided with an inner turbine blade group (20), and the outer shaft device is provided with an outer turbine blade group (19) and an inner compressor blade group (17). The two shafts are connected by a magnetic friction power transmission device to form a full-blade steam turbine, and an outer shaft device and an outer compressor blade group (16) are provided outside the inner compressor blade group (17), and are mutually inverted. The outer shaft device and the inner shaft device are combined by a magnetic friction power transmission device to form a full blade compressor, and superheated steam (5) is supplied from the center of the inner shaft device.
A combined steam gas turbine engine comprising a device for driving the all-blade steam turbine compressor.
【請求項108】 前記全動翼蒸気タービン圧縮機を、
内側軸装置に内側タービン動翼群(20)を設け、外側
軸装置に外側タービン動翼群(19)を設けて互いに反
転する2軸を磁気摩擦動力伝達装置により結合して全動
翼蒸気タービンを構成し、該前方内側軸装置に内側圧縮
機動翼群(17)を設け、該外側に外側軸装置及び外側
圧縮機動翼群(16)を設けて、互いに反転する該外側
軸装置と内側軸装置を磁気摩擦動力伝達装置により結合
して全動翼圧縮機を構成させて、内側軸装置の中心より
過熱蒸気(5)を供給して、該全動翼蒸気タービン圧縮
機として駆動する装置を設けたことを特徴とする蒸気ガ
スタービン合体機関。
108. The all-blade steam turbine compressor comprising:
An inner shaft unit is provided with an inner turbine blade group (20), and an outer shaft unit is provided with an outer turbine blade group (19). The front inner shaft device is provided with an inner compressor blade group (17), and the outer shaft device and the outer compressor blade group (16) are provided on the outer side, so that the outer shaft device and the inner shaft which are mutually inverted are provided. A device that is combined with a magnetic friction power transmission device to form a full blade compressor, supplies superheated steam (5) from the center of the inner shaft device, and drives the device as the full blade steam turbine compressor. A combined steam gas turbine engine, comprising:
【請求項109】 前記蒸気タービンを、内側固定軸装
置に内側タービン静翼を設け、外側軸装置に外側タービ
ン動翼群(19)を設けて、内側軸装置の中心より過熱
蒸気(5)を供給して駆動可能に、蒸気タービンを構成
したことを特徴とする蒸気ガスタービン合体機関。
109. The steam turbine, wherein an inner turbine stationary blade is provided on an inner fixed shaft device, and an outer turbine rotor blade group (19) is provided on an outer shaft device, and superheated steam (5) is provided from the center of the inner shaft device. A combined steam gas turbine engine comprising a steam turbine configured to be supplied and driven.
【請求項110】 前記蒸気タービン圧縮機を、内側固
定軸装置に内側タービン静翼を設け、外側軸装置に外側
タービン動翼群(19)を設けて内側軸装置の中心より
過熱蒸気(5)を供給して駆動可能に蒸気タービンを構
成し、該外側軸装置に内側圧縮機動翼群(17)を設け
て内側軸装置と兼用して、該内側圧縮機動翼群(17)
の外側にケーシング及び静翼を設けて圧縮機を構成させ
て、蒸気タービン圧縮機として設けたことを特徴とする
蒸気ガスタービン合体機関。
110. The steam turbine compressor, wherein an inner turbine stationary blade is provided on an inner fixed shaft device, and an outer turbine rotor blade group (19) is provided on an outer shaft device, and superheated steam (5) is provided from the center of the inner shaft device. The steam turbine is configured to be drivable by supplying the inner compressor rotor blade group (17) to the outer shaft device, and the inner compressor device blade group (17) is also used as the inner shaft device.
A combined steam and gas turbine engine comprising a compressor and a compressor provided by providing a casing and a stationary vane outside of the steam turbine.
【請求項111】 前記蒸気タービン圧縮機を、内側軸
装置に内側タービン動翼群(20)を設け、外側軸装置
に静翼を設けて、該上流側より過熱蒸気(5)を噴射供
給して駆動可能に蒸気タービンを構成し、前方内側軸装
置に内側圧縮機動翼群(17)を設けて、該内側圧縮機
動翼群(17)の外側にケーシング及び静翼を設けて圧
縮機を構成させて、蒸気タービン圧縮機として設けたこ
とを特徴とする蒸気ガスタービン合体機関。
111. The steam turbine compressor is provided with an inner turbine blade group (20) on an inner shaft device and a stationary blade on an outer shaft device, and injects and supplies superheated steam (5) from the upstream side. A steam turbine is configured so as to be drivable, a compressor is provided by providing an inner compressor moving blade group (17) in a front inner shaft device, and a casing and a stator blade provided outside the inner compressor moving blade group (17). A combined steam gas turbine engine provided as a steam turbine compressor.
【請求項112】 前記全動翼蒸気タービン圧縮機を、
全動翼圧縮機を除去することで、全動翼蒸気タービンと
して設けたことを特徴とする蒸気ガスタービン合体機
関。
112. The all-blade steam turbine compressor comprises:
A combined steam and gas turbine engine, wherein an all-blade compressor is removed to provide a full-blade steam turbine.
【請求項113】 前記蒸気タービン圧縮機を、圧縮機
を除去することで、蒸気タービンとして設けたことを特
徴とする蒸気ガスタービン合体機関。
113. A combined steam gas turbine engine, wherein the steam turbine compressor is provided as a steam turbine by removing the compressor.
【請求項114】 前記水冷外壁を螺旋状の熔接構造と
して内部に螺旋環状の導水管を1以上設けて小径多数蜂
の巣状に短小化配置した燃焼器兼熱交換器としていたも
のを変更し、水冷外壁及び水冷内壁(54)を螺旋状の
熔接構造として内部に螺旋環状の導水管を1以上設けた
一つの燃焼器兼熱交換器としたことを特徴とする蒸気ガ
スタービン合体機関。
114. A water-cooled outer wall having a spiral welded structure and one or more spiral annular water pipes provided therein and having a combustor / heat exchanger in which a plurality of small-diameter multiple honeycombs are arranged and shortened. A combined steam and gas turbine engine comprising a combustor and a heat exchanger in which an outer wall and a water-cooled inner wall (54) are formed in a spiral welding structure and one or more spiral annular water pipes are provided therein.
【請求項115】 前記水冷外壁を螺旋状の熔接構造単
位組立て構造として内部に螺旋環状の導水管を1以上設
けて小径多数蜂の巣状に短小化配置した燃焼器兼熱交換
器としていたものを変更し、水冷外壁及び水冷内壁(5
4)を螺旋状の熔接構造単位組立て構造として内部に螺
旋環状の導水管を1以上設けた一つの燃焼器兼熱交換器
としたことを特徴とする蒸気ガスタービン合体機関。
115. A combustor / heat exchanger in which the water-cooled outer wall is formed as a spiral welding structure unit assembly structure and one or more spiral annular water pipes are provided therein and are arranged in a small-diameter multi-honey compact arrangement. Water-cooled outer wall and water-cooled inner wall (5
(4) A combined steam gas turbine engine, wherein (1) is a helical welding structure unit assembly structure, and a single combustor / heat exchanger having at least one helical annular water pipe therein.
【請求項116】 前記螺旋状の水冷外壁単位組立て構
造として内部に螺旋環状の導水管を1以上設けて小径多
数蜂の巣状に短小化配置した燃焼器兼熱交換器としてい
たものを変更し、螺旋状の水冷外壁(26)単位組立て
構造及び水冷内壁(54)単位組立て構造として内部に
螺旋環状の導水管を1以上設けた一つの燃焼器兼熱交換
器としたことを特徴とする蒸気ガスタービン合体機関。
116. A helical water cooling outer wall unit assembling structure in which one or more helical annular water pipes are provided inside and a combustor / heat exchanger which is arranged in a small number of small-diameter honeycombs is arranged. A steam-cooled gas turbine having a unitary structure of a water-cooled outer wall (26) and a unitary structure of a water-cooled inner wall (54), each of which is provided with one or more spiral annular water pipes therein. Coalition organization.
【請求項117】 前記全動翼ガスタービンは、水滴と
なった過熱蒸気(5)を遠心力により、外後方に噴射す
ることを特徴とする蒸気ガスタービン合体機関。
117. A combined steam gas turbine engine, wherein the all-blade gas turbine injects superheated steam (5) that has become water droplets outward and rearward by centrifugal force.
【請求項118】 前記全動翼蒸気タービンは、水滴と
なった過熱蒸気(5)を遠心力により、外後方に噴射す
ることを特徴とする蒸気ガスタービン合体機関。
118. The combined steam gas turbine engine, wherein the all-blade steam turbine injects superheated steam (5) that has become water droplets outward and rearward by centrifugal force.
【請求項119】 前記外側に動翼を設けた蒸気タービ
ンは、水滴となった過熱蒸気(5)を遠心力により、外
後方に噴射することを特徴とする蒸気ガスタービン合体
機関。
119. A steam gas turbine combined engine, wherein the steam turbine provided with the rotor blades on the outside injects superheated steam (5) as water droplets outward and rearward by centrifugal force.
【請求項120】 前記燃焼器兼熱交換器は、燃料蒸気
噴射手段(27)から、過熱蒸気を噴射して燃焼ガスを
過熱蒸気に固定することを特徴とする蒸気ガスタービン
合体機関。
120. A combined steam gas turbine engine wherein the combustor / heat exchanger injects superheated steam from fuel vapor injection means (27) to fix combustion gas to superheated steam.
【請求項121】 前記燃焼器兼熱交換器は、燃料蒸気
噴射手段(27)から、超臨界の過熱蒸気乃至水のいず
れかを噴射して、燃焼ガスを過熱蒸気に固定することを
特徴とする蒸気ガスタービン合体機関。
121. The combustor / heat exchanger injects any one of supercritical superheated steam or water from a fuel vapor injection means (27) to fix the combustion gas to the superheated steam. Steam gas turbine combined engine.
【請求項122】 前記燃焼器兼熱交換器は、超臨界の
過熱蒸気乃至水のいずれかを噴射して、燃焼ガスを過熱
蒸気に固定することを特徴とする蒸気ガスタービン合体
機関。
122. The combined steam gas turbine engine, wherein the combustor / heat exchanger injects any one of supercritical superheated steam and water to fix the combustion gas to the superheated steam.
【請求項123】 前記燃焼器兼熱交換器は、燃料蒸気
噴射手段(27)から、燃焼ガス水固定を促進する物質
を含む、超臨界の過熱蒸気乃至水のいずれかを噴射して
燃焼ガスを過熱蒸気に固定することを特徴とする蒸気ガ
スタービン合体機関。
123. The combustor / heat exchanger injects any one of supercritical superheated steam or water containing a substance which promotes fixation of combustion gas water from a fuel vapor injection means (27), and A steam gas turbine combined engine, wherein the steam turbine is fixed to superheated steam.
【請求項124】 前記燃焼器兼熱交換器は、燃焼ガス
水固定を促進する物質を含む、超臨界の過熱蒸気乃至水
のいずれかを噴射して、燃焼ガスを過熱蒸気に固定する
ことを特徴とする蒸気ガスタービン合体機関。
124. The combustor / heat exchanger injects any one of supercritical superheated steam or water containing a substance that promotes fixation of combustion gas water to fix the combustion gas to the superheated steam. A combined steam gas turbine engine.
【請求項125】 前記過熱蒸気に固定する燃焼ガス
は、主としてCO2であることを特徴とする蒸気ガスタ
ービン合体機関。
125. A combined steam gas turbine engine, wherein the combustion gas fixed to the superheated steam is mainly CO2.
【請求項126】 前記過熱蒸気に固定する燃焼ガス
は、主として有害燃焼ガスであることを特徴とする蒸気
ガスタービン合体機関。
126. A combined steam gas turbine engine, wherein the combustion gas fixed to the superheated steam is mainly a harmful combustion gas.
【請求項127】 前記全動翼ガスタービンは、過熱蒸
気を低温燃焼ガスにより冷却して、有害燃焼ガスを水固
定混合排出することを特徴とする蒸気ガスタービン合体
機関。
127. The combined steam gas turbine engine, wherein the all blade gas turbine cools the superheated steam with the low-temperature combustion gas and discharges the harmful combustion gas by fixed-water mixing and discharge.
【請求項128】 前記ガスタービンは、過熱蒸気を低
温燃焼ガスにより冷却して、有害燃焼ガスを水固定混合
排出することを特徴とする蒸気ガスタービン合体機関。
128. A steam gas turbine combined engine, wherein the gas turbine cools superheated steam with a low-temperature combustion gas and discharges harmful combustion gas into a fixed water mixture.
【請求項129】 前記全動翼ガスタービンは、過熱蒸
気及び燃焼ガスを排気熱交換器(58)で冷却して、有
害燃焼ガスを水固定混合排出することを特徴とする蒸気
ガスタービン合体機関。
129. The combined steam / gas turbine engine, wherein the all-blade gas turbine cools superheated steam and combustion gas by an exhaust heat exchanger (58), and discharges harmful combustion gas into a fixed water mixture. .
【請求項130】 前記ガスタービンは、過熱蒸気及び
燃焼ガスを排気熱交換器(58)で冷却して、有害燃焼
ガスを水固定混合排出することを特徴とする蒸気ガスタ
ービン合体機関。
130. The combined steam gas turbine engine according to claim 130, wherein the gas turbine cools the superheated steam and the combustion gas by an exhaust heat exchanger (58), and discharges the harmful combustion gas in a fixed water mixture.
【請求項131】 前記水に固定する燃焼ガスは、無害
に近付けて排水することを特徴とする蒸気ガスタービン
合体機関。
131. A steam gas turbine combined engine, wherein the combustion gas fixed to the water is drained by approaching harmlessly.
【請求項132】 前記ガスタービンは、冷熱を供給す
ることを特徴とする蒸気ガスタービン合体機関。
132. A steam gas turbine combined engine, wherein the gas turbine supplies cold heat.
【請求項133】 前記ガスタービンの全動翼圧縮機
は、内側軸装置を含む内側圧縮機動翼群に冷却手段(5
5)を設けていることを特徴とする蒸気ガスタービン合
体機関。
133. A full blade compressor of the gas turbine includes a cooling means (5) provided on an inner compressor blade group including an inner shaft device.
5) A combined steam and gas turbine engine comprising:
【請求項134】 前記ガスタービンの圧縮機は、内側
軸装置を含む内側圧縮機動翼群に冷却手段(55)を設
けていることを特徴とする蒸気ガスタービン合体機関。
134. A combined steam gas turbine engine according to claim 134, wherein the compressor of the gas turbine is provided with cooling means (55) in an inner compressor rotor group including an inner shaft device.
【請求項135】 前記ガスタービンの全動翼圧縮機
は、内側軸装置を含む内側圧縮機動翼群に冷却手段(5
5)及び水噴射手段(56)を設けていることを特徴と
する蒸気ガスタービン合体機関。
135. The full-blade compressor of the gas turbine includes a cooling means (5) provided on an inner compressor blade group including an inner shaft device.
5) and a steam gas turbine combined engine, comprising: a water injection means (56).
【請求項136】 前記ガスタービンの圧縮機は、内側
軸装置を含む内側圧縮機動翼群に冷却手段(55)及び
水噴射手段(56)を設けていることを特徴とする蒸気
ガスタービン合体機関。
136. The steam gas turbine combined engine of the compressor of the gas turbine, wherein a cooling means (55) and a water injection means (56) are provided in an inner compressor blade group including an inner shaft device. .
【請求項137】 前記ガスタービンの全動翼圧縮機
は、外側軸装置を含む外側圧縮機動翼群に毛細管放出手
段(57)を設けていることを特徴とする蒸気ガスター
ビン合体機関。
137. The combined steam and gas turbine engine according to claim 137, wherein the full blade compressor of the gas turbine is provided with a capillary discharge means (57) in an outer compressor blade group including an outer shaft device.
【請求項138】 前記ガスタービンの圧縮機は、圧縮
機静翼を含むケーシングに毛細管放出手段(57)を設
けていることを特徴とする蒸気ガスタービン合体機関。
138. The steam gas turbine combined engine, wherein the compressor of the gas turbine is provided with a capillary discharge means (57) in a casing including a compressor stationary blade.
【請求項139】 前記全動翼ガスタービンは、外側タ
ービン動翼群を含む外側軸装置に毛細管放出手段(5
7)を設けていることを特徴とする蒸気ガスタービン合
体機関。
139. The all-blade gas turbine includes a capillary discharge means (5) provided on an outer shaft device including an outer turbine blade group.
7) A combined steam gas turbine engine comprising:
【請求項140】 前記ガスタービンは、外側タービン
静翼を含むケーシングに毛細管放出手段(57)を設け
ていることを特徴とする蒸気ガスタービン合体機関。
140. The combined steam and gas turbine engine according to claim 140, wherein the gas turbine is provided with a capillary discharge means (57) in a casing including an outer turbine stationary blade.
【請求項141】 前記全動翼ガスタービンは、外側タ
ービン動翼群を含む外側軸装置に毛細管放出手段(5
7)を設けて、燃焼ガスを含む水を放出することを特徴
とする蒸気ガスタービン合体機関。
141. The full blade gas turbine includes a capillary discharge means (5) provided on an outer shaft device including an outer turbine blade group.
7. A combined steam gas turbine engine according to 7), wherein water containing combustion gas is discharged.
【請求項142】 前記ガスタービンは、外側タービン
静翼を含むケーシングに毛細管放出手段(57)を設け
て、燃焼ガスを含む水を放出することを特徴とする蒸気
ガスタービン合体機関。
142. A combined steam gas turbine engine according to claim 142, wherein the gas turbine is provided with a capillary discharge means (57) in a casing including an outer turbine stationary blade to discharge water containing combustion gas.
【請求項143】 前記ガスタービンは、排気温度を0
℃以下としたことを特徴とする蒸気ガスタービン合体機
関。
143. The gas turbine, wherein the exhaust gas temperature is set to 0.
A combined steam and gas turbine engine having a temperature of ℃ or lower.
【請求項144】 前記ガスタービンは、該入口燃焼ガ
ス温度を600℃以下としたことを特徴とする蒸気ガス
タービン合体機関。
144. A combined steam gas turbine engine according to claim 144, wherein said gas turbine has an inlet combustion gas temperature of 600 ° C. or lower.
【請求項145】 前記ガスタービンは、該入口燃焼ガ
ス温度を400℃以下としたことを特徴とする蒸気ガス
タービン合体機関。
145. The steam gas turbine combined engine, wherein the gas turbine has an inlet combustion gas temperature of 400 ° C or lower.
【請求項146】 前記燃焼器兼熱交換器は、燃焼ガス
水固定を促進するため、熱交換して限りなく燃焼ガス温
度を低下し、燃焼ガスを過熱蒸気の親戚にすることを特
徴とする蒸気ガスタービン合体機関。
146. The combustor / heat exchanger is characterized in that in order to promote fixation of combustion gas water, heat exchange is performed to lower the temperature of the combustion gas as much as possible, thereby making the combustion gas a relative of superheated steam. Steam gas turbine combined engine.
【請求項147】 前記燃焼器兼熱交換器は、燃焼ガス
水固定を促進するため、過熱蒸気撹拌燃焼して限りなく
燃焼ガス温度を低下し、燃焼ガスを過熱蒸気の親戚にす
ることを特徴とする蒸気ガスタービン合体機関。
147. In the combustor / heat exchanger, in order to promote fixation of the combustion gas water, superheated steam agitated combustion lowers the combustion gas temperature as much as possible, and makes the combustion gas a relative of the superheated steam. Steam gas turbine combined engine.
【請求項148】 前記燃焼器兼熱交換器を含むガスタ
ービンは、燃焼ガス水固定を促進するため、過熱蒸気撹
拌燃焼を含めた高温高圧から低温低圧で接触させて限り
なく燃焼ガス温度を低下し、燃焼ガスを過熱蒸気の親戚
にすることを特徴とする蒸気ガスタービン合体機関。
148. The gas turbine including the combustor / heat exchanger, in order to promote fixing of the combustion gas water, lowers the combustion gas temperature by contacting at a high temperature and a high pressure including a superheated steam agitated combustion to a low temperature and a low pressure. A steam gas turbine combined engine, wherein combustion gas is made relative to superheated steam.
【請求項149】 前記燃焼器兼熱交換器は、過熱蒸気
で燃料を加熱希釈して噴射する、燃料蒸気供給手段(2
7)を具備したことを特徴とする蒸気ガスタービン合体
機関。
149. A fuel vapor supply means (2) for heating and diluting fuel with superheated steam for injection.
7) A combined steam gas turbine engine comprising:
【請求項150】 前記燃焼器兼熱交換器は、霧吹きの
原理を利用して、過熱蒸気で燃料を吸引希釈して噴射す
る、燃料蒸気供給手段(27)を具備したことを特徴と
する蒸気ガスタービン合体機関。
150. The steam combustor / heat exchanger further comprising a fuel vapor supply means (27) for suctioning and diluting fuel with superheated vapor and injecting it by utilizing the principle of spraying. Gas turbine combined engine.
【請求項151】 前記燃焼器兼熱交換器は、過熱蒸気
で燃料を希釈して空気と撹拌燃焼することで、NOxを
低減乃至0とする燃料蒸気供給手段(27)を具備した
ことを特徴とする蒸気ガスタービン合体機関。
151. The combustor / heat exchanger further comprises a fuel vapor supply means (27) for reducing NOx to 0 by diluting fuel with superheated steam and agitating and burning it with air. Steam gas turbine combined engine.
【請求項152】 前記燃焼器兼熱交換器は、高圧の雰
囲気で、過熱蒸気で燃料を希釈して空気と撹拌燃焼する
ことで、NOxを低減乃至0とする燃料蒸気供給手段
(27)を具備したことを特徴とする蒸気ガスタービン
合体機関。
152. The combustor / heat exchanger includes a fuel vapor supply means (27) for reducing NOx to 0 by diluting fuel with superheated steam and agitating combustion with air in a high-pressure atmosphere. A combined steam gas turbine engine comprising:
【請求項153】 前記燃焼器兼熱交換器は、高圧の雰
囲気で、超臨界の過熱蒸気で燃料を希釈して空気と撹拌
燃焼することで、NOxを低減乃至0とする燃料蒸気供
給手段(27)を具備したことを特徴とする蒸気ガスタ
ービン合体機関。
153. The combustor / heat exchanger, in a high-pressure atmosphere, dilutes fuel with supercritical superheated steam and agitates and combusts with air to reduce NOx to 0, thereby providing fuel vapor supply means ( 27) A combined steam gas turbine engine comprising:
【請求項154】 前記燃料蒸気供給手段(27)は、
燃料噴口(60)を具備したことを特徴とする蒸気ガス
タービン合体機関。
154. The fuel vapor supply means (27)
A combined steam gas turbine engine comprising a fuel injection port (60).
【請求項155】 前記燃料蒸気供給手段(27)は、
燃料噴口(60)の内側に多数の燃料小穴(62)を具
備したことを特徴とする蒸気ガスタービン合体機関。
155. The fuel vapor supply means (27)
A combined steam gas turbine engine comprising a plurality of small fuel holes (62) inside a fuel injection port (60).
【請求項156】 前記燃料蒸気供給手段(27)は、
燃料噴口(60)の内側に多数の燃料小穴(62)を具
備して、過熱蒸気筒口(59)に外嵌摺動自在としたこ
とを特徴とする蒸気ガスタービン合体機関。
156. The fuel vapor supply means (27)
A combined steam gas turbine engine comprising a plurality of small fuel holes (62) inside a fuel injection port (60) and slidably fitted over a superheated steam cylinder port (59).
【請求項157】 前記燃料蒸気供給手段(27)は、
燃料噴口(60)の内側に多数の燃料小穴(62)を具
備して、過熱蒸気筒口(59)に外嵌摺動自在とし、燃
料噴口(60)を回転することで、燃料小穴(62)の
開口数を増減することを特徴とする蒸気ガスタービン合
体機関。
157. The fuel vapor supply means (27)
A number of small fuel holes (62) are provided inside the fuel nozzle (60) so that the fuel nozzle (60) can be slidably fitted on the superheated steam cylinder port (59). A steam gas turbine combined engine characterized by increasing or decreasing the numerical aperture of a steam turbine.
【請求項158】 前記燃料蒸気供給手段(27)は、
燃料噴口(60)の内側に多数の燃料小穴(62)を具
備して、過熱蒸気筒口(59)に外嵌摺動自在とし、燃
料噴口(60)を電動駆動回転することで、燃料小穴
(62)の開口数を増減し、燃料噴射量を増減制御する
ことを特徴とする蒸気ガスタービン合体機関。
158. The fuel vapor supply means (27)
A number of small fuel holes (62) are provided inside the fuel nozzle (60) so that the fuel nozzle (60) can be externally slidably fitted to the superheated steam cylinder port (59). 62) A combined steam gas turbine engine, characterized in that the numerical aperture is increased / decreased and the fuel injection amount is increased / decreased.
【請求項159】 前記燃料蒸気供給手段(27)は、
燃料噴口(60)の内側に多数の燃料小穴(62)を具
備して、過熱蒸気筒口(59)に外嵌摺動自在とし、燃
料噴口(60)を空気圧で往復させることで、燃料小穴
(62)の開口数を増減し、燃料噴射量を増減制御する
ことを特徴とする蒸気ガスタービン合体機関。
159. The fuel vapor supply means (27)
A large number of small fuel holes (62) are provided inside the fuel nozzle (60) so that the fuel nozzle (60) can be externally slidably fitted to the superheated steam cylinder port (59). 62) A combined steam gas turbine engine wherein the numerical aperture is increased or decreased to control the fuel injection amount.
【請求項160】 前記燃料蒸気供給手段(27)は、
燃料噴口(60)の内側に多数の燃料小穴(62)を具
備して、過熱蒸気筒口(59)に外嵌摺動自在とし、燃
料噴口(60)を油圧で往復させることで、燃料小穴
(62)の開口数を増減し、燃料噴射量を増減制御する
ことを特徴とする蒸気ガスタービン合体機関。
160. The fuel vapor supply means (27)
A number of small fuel holes (62) are provided inside the fuel nozzle (60) so that the fuel nozzle (60) can be externally slidably fitted to the superheated steam cylinder port (59). 62) A combined steam gas turbine engine wherein the numerical aperture is increased or decreased to control the fuel injection amount.
【請求項161】 前記燃料蒸気供給手段(27)は、
燃料噴口(60)の内側に多数の燃料小穴(62)を具
備してその内側、過熱蒸気筒口(59)に外嵌摺動往復
自在に別の筒型部品を設けたことを特徴とする蒸気ガス
タービン合体機関。
161. The fuel vapor supply means (27)
A steam characterized in that a plurality of small fuel holes (62) are provided inside the fuel injection port (60), and another cylindrical part is provided inside the superheated steam cylinder port (59) so as to be slidably reciprocated. Gas turbine combined engine.
【請求項162】 前記燃料蒸気供給手段(27)は、
燃料噴口(60)の内側に多数の燃料小穴(62)を具
備してその内側、過熱蒸気筒口(59)に外嵌摺動往復
自在に別の筒型部品を設け、該筒型部品を回転すること
で、燃料小穴(62)の開口数を増減することを特徴と
する蒸気ガスタービン合体機関。
162. The fuel vapor supply means (27)
A plurality of small fuel holes (62) are provided inside the fuel injection port (60), and inside the superheated steam cylinder port (59), another cylindrical component is provided so as to be slidable and reciprocated, and the cylindrical component is rotated. Thereby increasing or decreasing the numerical aperture of the fuel small hole (62).
【請求項163】 前記燃料蒸気供給手段(27)は、
燃料噴口(60)の内側に多数の燃料小穴(62)を具
備してその内側、過熱蒸気筒口(59)に外嵌摺動往復
自在に別の筒型部品を設け、該筒型部品を電動駆動回転
することで、燃料小穴(62)の開口数を増減し、燃料
噴射量を増減制御することを特徴とする蒸気ガスタービ
ン合体機関。
163. The fuel vapor supply means (27)
A number of small fuel holes (62) are provided inside the fuel injection port (60), and inside the superheated steam cylinder port (59), another cylindrical component is provided so as to be able to slide around and reciprocate, and the cylindrical component is electrically operated. A combined steam gas turbine engine wherein the driving rotation increases or decreases the numerical aperture of the fuel small hole (62) and controls the fuel injection amount.
【請求項164】 前記燃料蒸気供給手段(27)は、
燃料噴口(60)の内側に多数の燃料小穴(62)を具
備してその内側、過熱蒸気筒口(59)に外嵌摺動往復
自在に別の筒型部品を設け、該筒型部品を空気圧で往復
させることで、燃料小穴(62)の開口数を増減し、燃
料噴射量を増減制御することを特徴とする蒸気ガスター
ビン合体機関。
164. The fuel vapor supply means (27)
A number of small fuel holes (62) are provided inside the fuel injection port (60), and inside the superheated steam cylinder port (59), another cylindrical component is provided so as to be slidable and reciprocally fitted to the superheated steam cylinder port (59). A steam gas turbine combined engine characterized by increasing and decreasing the numerical aperture of the small fuel hole (62) by reciprocating the fuel gas and controlling the increase and decrease of the fuel injection amount.
【請求項165】 前記燃料蒸気供給手段(27)は、
燃料噴口(60)の内側に多数の燃料小穴(62)を具
備してその内側、過熱蒸気筒口(59)に外嵌摺動往復
自在に別の筒型部品を設け、該筒型部品を油圧で往復さ
せることで、燃料小穴(62)の開口数を増減し、燃料
噴射量を増減制御することを特徴とする蒸気ガスタービ
ン合体機関。
165. The fuel vapor supply means (27)
A number of small fuel holes (62) are provided inside the fuel injection port (60), and inside the superheated steam cylinder port (59), another cylindrical component is provided so as to slide around and reciprocate, and the cylindrical component is hydraulically driven. A steam gas turbine combined engine characterized by increasing and decreasing the numerical aperture of the fuel small hole (62) by reciprocating the fuel gas and controlling the increase and decrease of the fuel injection amount.
【請求項166】 前記燃料蒸気供給手段(27)は、
過熱蒸気筒口(59)を具備したことを特徴とする蒸気
ガスタービン合体機関。
166. The fuel vapor supply means (27)
A combined steam gas turbine engine comprising a superheated steam cylinder port (59).
【請求項167】 前記燃料蒸気供給手段(27)は、
過熱蒸気筒口(59)に針弁(61)を具備したことを
特徴とする蒸気ガスタービン合体機関。
167. The fuel vapor supply means (27)
A combined steam gas turbine engine comprising a superheated steam cylinder port (59) and a needle valve (61).
【請求項168】 前記燃料蒸気供給手段(27)は、
過熱蒸気筒口(59)に針弁(61)を具備して、該針
弁(61)を回転させて過熱蒸気の噴射量を増減するこ
とを特徴とする蒸気ガスタービン合体機関。
168. The fuel vapor supply means (27)
A combined steam and gas turbine engine comprising a needle valve (61) provided at a superheated steam cylinder port (59) and rotating the needle valve (61) to increase or decrease the injection amount of superheated steam.
【請求項169】 前記燃料蒸気供給手段(27)は、
過熱蒸気筒口(59)に針弁(61)を具備して、該針
弁(61)を電動駆動制御して過熱蒸気の噴射量を増減
することを特徴とする蒸気ガスタービン合体機関。
169. The fuel vapor supply means (27)
A combined steam gas turbine engine comprising a needle valve (61) at a superheated steam cylinder opening (59), and electrically controlling the needle valve (61) to increase or decrease the injection amount of superheated steam.
【請求項170】 前記燃料蒸気供給手段(27)は、
過熱蒸気筒口(59)に針弁(61)を具備して、該針
弁(61)を空気圧駆動制御して過熱蒸気の噴射量を増
減することを特徴とする蒸気ガスタービン合体機関。
170. The fuel vapor supply means (27)
A combined steam gas turbine engine comprising a needle valve (61) provided at a superheated steam cylinder port (59) and controlling the needle valve (61) by pneumatic drive to increase or decrease the injection amount of superheated steam.
【請求項171】 前記燃料蒸気供給手段(27)は、
過熱蒸気筒口(59)に針弁(61)を具備して、該針
弁(61)を油圧駆動制御して過熱蒸気の噴射量を増減
することを特徴とする蒸気ガスタービン合体機関。
171. The fuel vapor supply means (27),
A combined steam gas turbine engine comprising a needle valve (61) at a superheated steam cylinder opening (59), and hydraulically controlling the needle valve (61) to increase or decrease the injection amount of superheated steam.
JP2000058079A 2000-02-10 2000-03-03 Steam/gas combined turbine engine Pending JP2001295611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000058079A JP2001295611A (en) 2000-02-10 2000-03-03 Steam/gas combined turbine engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-32539 2000-02-10
JP2000032539 2000-02-10
JP2000058079A JP2001295611A (en) 2000-02-10 2000-03-03 Steam/gas combined turbine engine

Publications (1)

Publication Number Publication Date
JP2001295611A true JP2001295611A (en) 2001-10-26

Family

ID=26585137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000058079A Pending JP2001295611A (en) 2000-02-10 2000-03-03 Steam/gas combined turbine engine

Country Status (1)

Country Link
JP (1) JP2001295611A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101129071B1 (en) 2007-06-08 2012-03-23 오픈 조인트 스탁 컴퍼니 “러시안 레일웨이즈” Two-unit gas-turbine locomotive
CZ304338B6 (en) * 2012-08-28 2014-03-12 VĂŤTKOVICE POWER ENGINEERING a.s. Integrated power source employing waste heat
CZ304339B6 (en) * 2012-11-13 2014-03-12 VĂŤTKOVICE POWER ENGINEERING a.s. Device to regulate utilization of waste heat of cooled engines
CN109386329A (en) * 2018-11-27 2019-02-26 李桂江 Double dynamical steam turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101129071B1 (en) 2007-06-08 2012-03-23 오픈 조인트 스탁 컴퍼니 “러시안 레일웨이즈” Two-unit gas-turbine locomotive
CZ304338B6 (en) * 2012-08-28 2014-03-12 VĂŤTKOVICE POWER ENGINEERING a.s. Integrated power source employing waste heat
CZ304339B6 (en) * 2012-11-13 2014-03-12 VĂŤTKOVICE POWER ENGINEERING a.s. Device to regulate utilization of waste heat of cooled engines
CN109386329A (en) * 2018-11-27 2019-02-26 李桂江 Double dynamical steam turbine

Similar Documents

Publication Publication Date Title
US6446425B1 (en) Ramjet engine for power generation
AU696828B2 (en) Improved method and apparatus for power generation
WO2012003706A1 (en) Supersonic rotor engine
JP2001295611A (en) Steam/gas combined turbine engine
JP2001295612A (en) Various steam/gas combined turbine engines
CN103790706B (en) A kind of low-temperature mixed power gas turbine method of work
CN203702343U (en) Low-temperature hybrid power gas turbine
JP2001012209A (en) Steam gas turbine united engine device
JP2001012210A (en) Various steam gas turbines combined engine
JP2000038927A (en) Various kinds of steam gas turbine integrated engine
JP2000038902A (en) Steam gas turbine integrated engine apparatus
JP2000038903A (en) Steam gas turbine integrated engine having controller
JP2000038904A (en) Various kinds of steam gas turbine integrated engine
JPH11107778A (en) Steam gas turbine combined engine, transportation and generating equipment
JP2001295664A (en) Various types of steam and gas combination turbine engines
RU2363604C1 (en) Gas turbine locomotive and its power plant
RU2605994C2 (en) Internal combustion engine
JP6528347B1 (en) Turbine engine
JP2004100678A (en) Various full rotor blade steam gas turbine combined engine
Brain How gas turbine engines work
JP2002195002A (en) Combined engine of various types of steam and gas turbines
JP2003286809A (en) Engine combined with various entire rotor-blade steam- gas turbine
JP2003286804A (en) Engine combined with variety of entire rotor blade steam gas turbine
JP2002303152A (en) Various full rotor blade steam gas turbine combined- engine
JP2000038928A (en) Steam gas turbine integrated engine