JP2000354341A - Rotating electric machine using magnet and electromagnetic equipment - Google Patents

Rotating electric machine using magnet and electromagnetic equipment

Info

Publication number
JP2000354341A
JP2000354341A JP11196403A JP19640399A JP2000354341A JP 2000354341 A JP2000354341 A JP 2000354341A JP 11196403 A JP11196403 A JP 11196403A JP 19640399 A JP19640399 A JP 19640399A JP 2000354341 A JP2000354341 A JP 2000354341A
Authority
JP
Japan
Prior art keywords
skew
rotor
core
magnets
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11196403A
Other languages
Japanese (ja)
Other versions
JP3555016B2 (en
Inventor
Yukio Kinoshita
幸雄 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19640399A priority Critical patent/JP3555016B2/en
Priority to EP00303718A priority patent/EP1052761A3/en
Priority to KR1020000024002A priority patent/KR100676237B1/en
Priority to US09/564,807 priority patent/US6617739B1/en
Publication of JP2000354341A publication Critical patent/JP2000354341A/en
Application granted granted Critical
Publication of JP3555016B2 publication Critical patent/JP3555016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew

Abstract

PROBLEM TO BE SOLVED: To improve productivity of a rotating electric machine by improving the start of the machine and reducing cogging in the machine, by providing magnet insert slots in a rotor core and forming the facing surfaces in the core along the sides of a spacer, and then, forming a skew width within the specific value of the length of the spacer side. SOLUTION: A skew width W is formed, and, at the same time, an internal portion which is engaged with a square nonmagnetic body 14 is formed in such a way that the internal portion astrides the ridge of the body 14 over a width W so that the portion may have a rolling stop function for a core. The formed skew width W can skew within the range from 0 to 1/2L (where, L is the length of one side of the nonmagnetic body 14). When a larger skew is required, each core makes a skew of the maximum skew width (W=1/2L) and the skews made on the cores are integrated. Therefore, the start torque and cogging of a rotating electric machine can be reduced and the manufacturing cost and installation cost of the machine can be saved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[発明の属する技術分野]この発明は、磁
石単独や電磁石と併用して用いる回転子を有する電動機
や発電機及び電磁機器において、起動トルクやコギング
を軽減するため、固定子と対峙する鉄心間に設けたスリ
ットにスキューを設けた磁極構造に関する。
[0001] The present invention relates to a motor, a generator and an electromagnetic device having a rotor used alone or in combination with an electromagnet, which face a stator in order to reduce starting torque and cogging. The present invention relates to a magnetic pole structure in which a skew is provided in a slit provided between iron cores.

【0002】[0002]

【従来の技術】従来の発電機や電動機の回転子は通常円
筒状の磁石を用い、それに着磁時に磁極間の境界にスキ
ューしたスペースを設けて行っている。この場合着磁設
備に膨大な費用がかかり中少量生産には適さなかった。
又円筒状の磁石では磁界形成に限界があり、高出力や高
効率の機器には適さなかった。
2. Description of the Related Art Rotors of conventional generators and motors usually use cylindrical magnets and provide a skewed space at the boundary between magnetic poles when magnetized. In this case, the magnetizing equipment required enormous cost and was not suitable for small-to-medium-volume production.
In addition, a cylindrical magnet has a limit in forming a magnetic field, and is not suitable for a device with high output and high efficiency.

【0003】[0003]

【発明が解決しようとする課題】そこで本発明は交流発
電機や電動機等の回転子のスキュー溝を有する鉄心構造
及びその構成等により、高出力や高効率電機達成のため
の放射型磁極配置でのスキュー形成により起動改善や
コギング低減の実現、それに生産性の向上等を解決す
ることを課題とする。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a radiation type magnetic pole arrangement for achieving a high output and high efficiency electric machine by using an iron core structure having a skew groove of a rotor such as an alternator or an electric motor and its structure. It is an object of the present invention to solve the problems such as the improvement of startup and the reduction of cogging and the improvement of productivity by forming a skew.

【0004】[0004]

【課題を解決するための手段】スキュー形成により起
動改善やコギング低減の実現であるが、放射配置の直方
体形状の磁石は通常用いられている積層鉄心のスキュー
溝には、同じ形状の鉄板の積層では、ねじれ状の溝にな
るため隙間無しには挿入出来ない。さらにねじれ状の溝
にぴったりした磁石を作ることは非常にコストが高くな
り経済的ではない。そこで、鉄心の形状に工夫を凝ら
し、直方体形状の磁石でも隙間無しに挿入出来るように
し、鉄心の保持やシャフトとの隔離を目的とした多角形
の非磁性体の辺にそってスキュー溝を形成するようにす
る。この場合スキュー幅Wをかえる場合(a)同じ多角
形の非磁性体の場合に辺の長さをLとした場合、0≦W
≦1/2Lの範囲でかえる。(b)多角形の非磁性体の
辺の長さLを変えてW=1/2Lによりかえる。(c)
(a),(b)にてもスキュー幅Wが不足の場合は、鉄
心を軸方向に分割し、分割した鉄心の多角形の非磁性体
の辺長Lによるスキュー幅Wの限界(1/2L)内で最
大分割数kの倍数のスキュー幅W=1/2kLを形成で
きる。又軸方向にn分割にしたストレートな(スキュー
無)鉄心に,n分割した磁石を軸に平行に挿入後スキュ
ー角によってn個の鉄心を隣接する鉄心相互に回転配置
してジグザグ溝をまず形成し、その外部に(外転型回転
子の場合は内部に)ストレートなスキュー溝を施した円
筒状の鉄心を配置してスキュー効果を持たせて実現す
る。円筒状の鉄心を用いる場合ジグザグ溝による磁気特
性の改善やスキュー幅を微調整するため鉄心の厚さを厚
くする必要がある場合、工作上複数の鉄心で行う。この
場合に生産性を上げるため、磁石鉄心や外周配置の円筒
状の鉄心に積層鉄心をもちいてもよい。又、回転子鉄心
を一体の積層鉄心にて行う場合は、磁石を挿入した際に
鉄心との隙間が生じない程度に、磁石をスキュー溝に挿
入可能な数に分割することにより、生産性を飛躍的に向
上できる。さらに、電機の特性を強さの異なる磁石の組
み合せなどにより特性の変更や改善が容易に出来るよう
になる。生産性の向上ついてであるが、鉄ブロックに
よる鉄心形成は中量産には不向きである。理想的には固
定子コアと回転子コアを一体で作るのが望ましい。そこ
でいくつかの積層鉄心を部分又は全体に使えるように磁
石鉄心にスキュー形成用の等ピッチ孔を設けたり、その
構成を工夫して実現した。
Means for Solving the Problems In order to improve start-up and reduce cogging by forming a skew, a cuboidal magnet in a radiating arrangement is used for stacking iron plates of the same shape in a skew groove of a commonly used laminated core. Then, since it becomes a twisted groove, it cannot be inserted without a gap. Furthermore, making magnets that fit into the twisted grooves is very costly and not economical. Therefore, we devised the shape of the iron core so that even a rectangular parallelepiped magnet can be inserted without a gap, and a skew groove is formed along the side of the polygonal non-magnetic material for the purpose of holding the core and isolating it from the shaft To do it. In this case, when the skew width W is changed (a) When the length of the side is L in the case of a non-magnetic material having the same polygon, 0 ≦ W
Change in the range of ≤1 / 2L. (B) By changing the length L of the side of the polygonal non-magnetic material, it is changed by W = 1 / 2L. (C)
If the skew width W is insufficient also in (a) and (b), the core is divided in the axial direction, and the limit of the skew width W due to the side length L of the polygonal non-magnetic material of the divided core (1/1). 2L), a skew width W = 1/2 kL which is a multiple of the maximum division number k can be formed. Also, a zigzag groove is formed by inserting a magnet n divided into a straight (no skew) iron core in the axial direction in parallel with the axis and then arranging the n iron cores relative to the adjacent iron cores by skew angle. A skew effect is realized by disposing a cylindrical iron core having a straight skew groove on the outside thereof (in the case of an abduction type rotor). When a cylindrical iron core is used When it is necessary to increase the thickness of the iron core in order to improve the magnetic characteristics by the zigzag groove and finely adjust the skew width, the work is performed with a plurality of iron cores on the work. In this case, in order to increase the productivity, a laminated core may be used as the magnet core or the cylindrical core arranged on the outer periphery. Also, when the rotor core is made of an integral laminated core, productivity is increased by dividing the magnet into a number that can be inserted into the skew groove to the extent that there is no gap with the core when the magnet is inserted. It can be dramatically improved. Further, the characteristics of the electric machine can be easily changed or improved by combining magnets having different strengths. Regarding the improvement of productivity, iron core formation by iron blocks is not suitable for medium-volume production. Ideally, it is desirable to make the stator core and the rotor core integrally. Therefore, the magnet core is provided with equal pitch holes for skew so that several laminated cores can be used partially or entirely, or the configuration is devised to realize this.

【0005】[実施の形態]以下、この発明の実施の形
態を図面を参照して内転型発電機を例に説明する。図1
は内転型の発電機で図1aが本発明のスキュー構造を有
し、磁石1単独や電磁石10との組み合せにて構成した
回転子3を有する発電機の断面構造を示し、図1bは従
来の円筒型磁石回転子3′を用いた発電機の断面構造を
示す。回転子は動力源により外から駆動されると固定子
2、2’に巻き込んでいるコイル5等に回転数に応じた
電圧が発生し、電気取り出しコード9、9’に抵抗等負
荷をつなげば電流が流れ電力を供給する。コイルの発生
電圧は固定子と回転子との空隙の磁束密度に比例し、又
回転数にも比例する。本発明は回転子に放射状に配した
磁石にて形成した磁石式回転子の起動トルクやコギング
を軽減するためスキューを形成し、さらにその生産性を
考慮したいくつかの例を示めす。
Embodiments of the present invention will be described below with reference to the drawings, taking an adduction type generator as an example. FIG.
FIG. 1a shows a cross-sectional structure of a generator having an adduction type, in which FIG. 1a has the skew structure of the present invention, and has a rotor 3 constituted by the magnet 1 alone or in combination with the electromagnet 10, and FIG. 2 shows a cross-sectional structure of a generator using the cylindrical magnet rotor 3 ′. When the rotor is driven from the outside by a power source, a voltage corresponding to the number of revolutions is generated in the coil 5 and the like wound on the stators 2 and 2 ', and a load such as a resistor is connected to the electric extraction cords 9 and 9'. A current flows and supplies power. The voltage generated by the coil is proportional to the magnetic flux density in the air gap between the stator and the rotor, and is also proportional to the number of revolutions. The present invention shows several examples in which a skew is formed in order to reduce starting torque and cogging of a magnet type rotor formed by magnets radially arranged on the rotor, and further considering its productivity.

【0006】次に本発明の磁石式スキュード回転子につ
いてその鉄心構造・材質・構成、非磁性体スペーサーの
構造等について以下図面に基ずき説明する。図2は内転
型四極の電機に用いるスキューを施した磁石式回転子の
鉄心構造を示し、図2aは内転型電機に用いる分割鉄心
12で平面図と両側の側面図を示している。この場合ス
キュー幅Wを形成すると同時に四角形非磁性体14の稜
線を跨ぎ幅Wにて跨ぐように系合する内径部分を形成
(この図では直角の切り欠き部分dを形成)するととも
に、鉄心の転り止め機能も同時に持たせるようにしてい
る。図2bは図2aの分割鉄心12を四個組み合わせて
四極電機のスキューを施した磁石式回転子を構成したも
ので平面図と両側面図を示している。この場合形成でき
るスキュー幅wは鉄心外径、磁石寸法(特に放射方向寸
法)、多角形非磁性体の辺の長さ等により自ずと限界が
あり、四角形非磁性体14の一辺の長さLとした時W=
1/2Lを最大として0から1/2Lまでスキュー可能
となる。そこで、さらに大きなスキューを行う場合は、
図2cに示す例は鉄心12を軸方向に四分割にした場合
で、各鉄心にて最大のスキュー幅w=1/2Lを施し、
それらのスキューを総合して図2bでのスキューの約四
倍のスキュー幅4wを実現した例を示している。この場
合シャフト8に圧入等で固着した非磁性体14′も四分
割し、しかもシャフトに固着する時スキュー形成が直線
状やジグザグ状等、目的に応じてうまく出来るように適
切な角度相互にずらして行うことがポイントとなる。こ
れによりスキュー幅や形を目的に応じて自由自在に変え
て形成出来るようになる。
Next, the magnetic skewed rotor of the present invention will be described with reference to the drawings, with respect to the iron core structure, material, configuration, and the structure of the nonmagnetic spacer. FIG. 2 shows a core structure of a skewed magnet type rotor used for an adduction type quadrupole electric machine, and FIG. 2a shows a plan view and side views of a split core 12 used for an adduction type electric machine. In this case, at the same time as forming the skew width W, the inner diameter portion is formed so as to straddle the ridge line of the square non-magnetic member 14 at the width W (in this figure, a cutout portion d at a right angle is formed), and the iron core is formed. It also has an anti-roll function. FIG. 2B is a plan view and side views showing a skewed magnet type rotor of a quadrupole electric machine constructed by combining four split cores 12 of FIG. 2A. In this case, the skew width w that can be formed is naturally limited by the outer diameter of the iron core, the dimensions of the magnet (particularly the radial dimension), the length of the sides of the polygonal non-magnetic material, and the like. W =
It is possible to skew from 0 to 1 / 2L with 1 / 2L as the maximum. So if you want to make a bigger skew,
The example shown in FIG. 2C is a case where the iron core 12 is divided into four in the axial direction, and a maximum skew width w = 1 / L is applied to each iron core.
An example is shown in which those skews are combined to realize a skew width 4w that is about four times the skew in FIG. 2B. In this case, the non-magnetic material 14 'fixed to the shaft 8 by press fitting or the like is also divided into four parts, and when fixed to the shaft, the skews are shifted from each other by an appropriate angle such as a straight line or a zigzag shape so that the skew can be properly formed according to the purpose. The point is to do it. As a result, the skew width and shape can be changed freely according to the purpose.

【0007】図3は図2で示した四極の回転子に対し、
六極と8極の例を示しており、図3aは6極の構成例を
示し、スキュー幅W′はW′≦1/2L′で形成出来、
図3bは八極の構成例を示し、スキュー幅W″はW″≦
1/2L″で形成出来ている。図4はスキュー幅をかえ
る場合に非磁性体14c、14d、14eの外徑を変え
て行う例を八極の回転子を例に示している。非磁性体は
外径が14e〉14d〉14cとなっており、スキュー
幅も外脛の大きさに比例して大きくなっていて、W1∠
W2∠W3となっている。この場合磁界の強さを維持す
るため、磁石13d、eは13cに比べ放射方向の長さ
の減少を磁石の幅の増加で補っている。これら多極の回
転子も図2cで示した鉄心の軸方向の分割にて同様にス
キュー幅を自由自在に変えうることは言うまでもない。
FIG. 3 shows the four-pole rotor shown in FIG.
FIG. 3A shows an example of a configuration of 6 poles, and a skew width W ′ can be formed by W ′ ≦ 1 / L ′,
FIG. 3b shows an example of an eight-pole configuration, and the skew width W ″ is W ″ ≦
FIG. 4 shows an example in which the skew width is changed by changing the outer diameters of the non-magnetic members 14c, 14d, and 14e, using an eight-pole rotor as an example. The body has an outer diameter of 14e>14d> 14c, and the skew width increases in proportion to the size of the outer shin.
W2∠W3. In this case, in order to maintain the strength of the magnetic field, the magnets 13d and 13e compensate for the decrease in the length in the radial direction as compared with the magnet 13c by increasing the magnet width. Needless to say, the skew width of these multi-pole rotors can also be freely changed by dividing the iron core in the axial direction shown in FIG. 2C.

【0008】図5、6、7は回転子の鉄心を分割し、放
射状及び軸方向に平行に挿入した磁石をスキューに応じ
てある角度軸心に対しずらしてジグザグにスキューを形
成した、鉄心部の外周にスキュー溝を有する円筒状の鉄
心を配置したスキュード磁石式回転子を示している。こ
の場合磁石挿入鉄心23、23aは単一の鉄のブロック
材は勿論、積層鉄板でも製作可能で、低コストで生産性
抜群の構造となっている。鉄心に開けている孔22、2
2a,22bは同一円周上に位置し、スキュー角に合せ
て同一ピッチで複数個設けていて、分割した鉄心間での
結合組み立てがスムーズに行えるようになっている。図
5は円筒状鉄心24が一重の場合で、磁石21a,21
b,21cをそれぞれ挿入した鉄心を孔22を用いてジ
グザグにスキューさせた後、円筒状鉄心24を外周に配
置した構造となっている。スキューを大きくする場合は
磁石21a,b,cの幅やスキュー溝20gなどの幅を
大きくして、鉄心間の孔22を大きくずらすことにより
達成できる。鉄心部分を積層鉄心にした場合は固定子の
鉄心と同一製作工具で同時抜きで製作出来るのでコス
ト、生産性は非常に優れたものとなる。図6は図5の磁
石鉄心の外周に配置した円筒状鉄心24の代わりに複数
の円筒状鉄心24a,b,cに置き換えたもので、図5
の円筒状鉄心24が厚くなった場合に生産性を上げるた
めに厚さ方向を分割して目的を達成するもので、さらに
分割した円筒状鉄心のスキューを外部のものほど大きく
して固定子と対峙する空隙でのスキュー幅の微調整や鉄
心空隙部の磁気特性の改善が出来る特徴がある。図7は
円筒状鉄心の材質に積層鉄心26にし通常行われている
スキューを施した円筒状鉄心でジグザグスキュー磁石鉄
心の外周に配置した例である。この場合鉄心類は全て積
層材で出来るようになり、生産コスト、生産性抜群の量
産に適した磁石式スキュード回転子を提供可能となる。
FIGS. 5, 6, and 7 show a core part in which a rotor core is divided, and magnets inserted radially and axially parallel to each other are displaced from a certain angle axis in accordance with skew to form a zigzag skew. 2 shows a skewed magnet type rotor in which a cylindrical iron core having a skew groove is arranged on the outer periphery of the skewed magnet rotor. In this case, the magnet insertion cores 23, 23a can be manufactured not only from a single iron block material but also from a laminated iron plate, and have a low cost and excellent productivity. Holes 22 and 2 in the iron core
A plurality of 2a and 22b are located on the same circumference and are provided at the same pitch in accordance with the skew angle so that the assembling between the divided iron cores can be performed smoothly. FIG. 5 shows a case where the cylindrical iron core 24 is single, and the magnets 21a, 21
After the iron cores b and 21c are respectively inserted and skewed zigzag using the holes 22, a cylindrical iron core 24 is arranged on the outer periphery. The skew can be increased by increasing the width of the magnets 21a, 21b, 21c, and the width of the skew groove 20g, and by displacing the hole 22 between the iron cores. When the iron core is a laminated iron core, it can be manufactured simultaneously with the same manufacturing tool as the iron core of the stator, so that the cost and productivity are extremely excellent. FIG. 6 shows a case where a plurality of cylindrical cores 24a, 24b, and 24c are used in place of the cylindrical core 24 arranged on the outer periphery of the magnet core shown in FIG.
In order to increase the productivity when the cylindrical iron core 24 becomes thicker, the thickness direction is divided to achieve the purpose. Further, the skew of the divided cylindrical iron core is made larger as the outer one is increased, and the There is a feature that the fine adjustment of the skew width in the confronting gap and the improvement of the magnetic characteristics of the core gap are possible. FIG. 7 shows an example in which a laminated iron core 26 is formed of a material of a cylindrical iron core and a skew that is usually performed is disposed on the outer periphery of a zigzag skew magnet iron core. In this case, all the iron cores can be made of a laminated material, and it is possible to provide a magnet type skewed rotor suitable for mass production excellent in production cost and productivity.

【0009】図8は回転子鉄心を一体の積層鉄心25に
て製作しスキュー後、鉄心とのギャップが最少になるよ
うに分割した複数の磁石(特性を調節出来るようにする
ため特性の異なるものでもよい)を外周より挿入して形
成した磁石式スキュード回転子の例をしめす。この場合
に鉄心スロットより磁石の飛び出しを防止するために別
途かしめ、圧入、溶接あるいは別部品のリングなどで固
着するようにしている。この例は一体の積層鉄心となっ
ているため、前述の実施例に比べ、生産性抜群で量産に
適した磁石式スキュード回転子を提供可能となる。
FIG. 8 shows a plurality of magnets which are manufactured so that the rotor core is made of an integrated laminated core 25 and which is skewed and then divided so as to minimize the gap with the iron core. The following is an example of a magnetic skewed rotator formed by inserting a skewed rotor from the outer periphery. In this case, the magnet is separately caulked in order to prevent the magnet from protruding from the iron core slot, and is fixed by press fitting, welding, or a ring of another component. In this example, since it is an integrated laminated iron core, it is possible to provide a magnet type skewed rotor excellent in productivity and suitable for mass production as compared with the above-described embodiment.

【0010】以上内転型回転電機について説明してきた
が、外転型回転電機にも反転構造になっているので内転
型同様適用出来るのはいうまでもない。また、発電機に
ついて説明を行ってきたが、これらの技術は他の磁石を
用いるあらゆる電機や電磁機器に適用出来ることはいう
までもない。例えばパンケーキタイプ電機、リニアーモ
ータ、電磁石機器等。
Although the internal rotation type rotating electric machine has been described above, it is needless to say that the external rotation type rotating electric machine can be applied similarly to the internal rotation type since the external rotation type rotating electric machine also has an inverted structure. Although the description has been given of the generator, it goes without saying that these techniques can be applied to any electric or electromagnetic device using other magnets. For example, pancake type electric machines, linear motors, electromagnet devices, etc.

【発明の効果】以上説明したように、本発明は磁石式ス
キュード回転子を有する電動機や発電機の鉄心構造、材
質や構成などを見直し、スキュー幅を自由自在に変化出
来る構造を考案して、電機の起動トルクやコギングを低
減出来、しかもコスト的に安く、設備費のかからない電
機を実現できる。特にブロック回転子鉄心の分割・分離
構造でのスキュー形成と同時に転りどめ多角形非磁性体
の稜線またぎ構造、多角形非磁性体の一辺の長さを変え
てスキュー角を変化させる方法、磁石鉄心を複数分割し
てスキュー幅を自由自在に変えうるようにしたものなど
画期的な考案が多々含まれている。また、量産時の生産
性を上げるため、鉄心に積層鉄板を使用可能にした鉄心
構造の数々もコストパフオーマンスに優れたもので有効
性大といえる。
As described above, the present invention reviews the iron core structure, the material and the configuration of the motor or the generator having the magnet type skewed rotor, and devises a structure in which the skew width can be freely changed. The starting torque and cogging of the electric machine can be reduced, and the electric machine can be realized at low cost and with no equipment cost. In particular, the skew is formed in the division / separation structure of the block rotor core, and at the same time, the skew angle is changed by changing the length of one side of the polygonal non-magnetic material by changing the length of the polygonal non-magnetic material. There are many groundbreaking ideas, such as one in which the magnet core is divided into multiple parts so that the skew width can be freely changed. Also, in order to increase productivity during mass production, a number of iron core structures in which laminated iron plates can be used for the iron core have excellent cost performance and can be said to be highly effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁石式スキュード回転子にて構成した
回転子を有する内転型発電機の一実施例を示す構造図と
従来型発電機の構造説明図
FIG. 1 is a structural diagram showing an embodiment of an adduction type generator having a rotor constituted by a magnet type skewed rotor of the present invention, and a structural explanatory view of a conventional type generator.

【図2】四極の分割、分離磁石鉄心を正方形の非磁性体
に配した磁石式スキュード回転子の構造の例を示す図
FIG. 2 is a diagram showing an example of the structure of a magnet type skewed rotor in which quadrupole divided and separated magnet cores are arranged in a square non-magnetic material.

【図3】六極及び八極の分割、分離磁石鉄心を正六及び
八角形の非磁性体に配した磁石式スキュード回転子の例
を示す説明図
FIG. 3 is an explanatory view showing an example of a magnet type skewed rotor in which hexapole and octapole divided and separated magnet cores are arranged on regular hexagonal and octagonal non-magnetic materials.

【図4】外徑の異なる三種類の正八角形の非磁性体に配
した磁石鉄心を有する磁石式スキュード回転子の例を示
す説明図
FIG. 4 is an explanatory view showing an example of a magnet type skewed rotor having a magnet core arranged on three types of regular octagonal non-magnetic materials having different outer diameters;

【図5】積層鉄心等を用いたジグザグ磁石鉄心とスキュ
ー溝つき円筒鉄心を組み合わせた磁石式スキュード回転
子の例を示す説明図
FIG. 5 is an explanatory diagram showing an example of a magnet type skewed rotor in which a zigzag magnet core using a laminated core and the like and a cylindrical core having a skew groove are combined.

【図6】積層鉄心等を用いたジグザグ磁石鉄心と複数の
スキュー溝つき円筒鉄心を組み合わせた磁石式スキュー
ド回転子の例を示す説明図
FIG. 6 is an explanatory view showing an example of a magnet type skewed rotor combining a zigzag magnet core using a laminated iron core and a plurality of cylindrical cores with skew grooves.

【図7】積層板を用いた鉄心等を用いたジグザグ磁石鉄
心とスキュー溝つき積層板円筒鉄心を組み合わせた磁石
式スキュード回転子の例を示す説明図
FIG. 7 is an explanatory diagram showing an example of a magnetic skewed rotor combining a zigzag magnet core using a core using a laminated plate and the like and a cylindrical core having a skew groove.

【図8】スキューした積層板鉄心に複数に分割した特性
が同一又は異なる磁石を配した磁石式スキュード回転子
の例を示す説明図
FIG. 8 is an explanatory view showing an example of a magnet type skewed rotor in which a plurality of magnets having the same or different characteristics and divided into a plurality of pieces are arranged on a skewed laminated iron core.

【符号の説明】[Explanation of symbols]

1、 1’ : 磁石 2、 2’ : 固定子 3 : 磁石式スキュード回転子 3’ : 円筒型磁石回転子 4、4’ : ハウジング 5、5’ : コイル 6、6’ : エンドブラケット 7、7’ : 軸受け 8、8’、8a,8b,8c,8d,8e: シャフト 9、9’ : 電源コード 10 : 電磁石 11、11’: ベース 12、12a,12b,12c,12d,12e
: 分割鉄心 13,13a,13b,13c,13d,13e,21
a,21b,21c,21d,21e,21f,21
g,21h,21i ,31,32,33: 磁石 14,14’、14a,14b,14c,14d,14
e : 非磁性体 20a,20a’,20b,20c,20d,20e,
20f,20g、20h、20i,20j :
スキュー溝 d : 鉄心内徑切り欠き部 N,S : 磁石の極性 w,w’,w“,w,w,w,w,w
,w、4w: スキュー幅 L,L’,L“,L,L,L: 非磁性体の辺の
幅 22,22a,22b : 孔 23,23a,25,26 : 積層鉄心 24,24a,24b,24c : 円筒状スキュー
溝付き鉄心
1, 1 ': magnet 2, 2': stator 3: magnetic skewed rotor 3 ': cylindrical magnet rotor 4, 4': housing 5, 5 ': coil 6, 6': end bracket 7, 7, ': Bearings 8, 8', 8a, 8b, 8c, 8d, 8e: Shafts 9, 9 ': Power cord 10: Electromagnet 11, 11': Base 12, 12a, 12b, 12c, 12d, 12e
: Split cores 13, 13a, 13b, 13c, 13d, 13e, 21
a, 21b, 21c, 21d, 21e, 21f, 21
g, 21h, 21i, 31, 32, 33: magnets 14, 14 ', 14a, 14b, 14c, 14d, 14
e: Non-magnetic material 20a, 20a ', 20b, 20c, 20d, 20e,
20f, 20g, 20h, 20i, 20j:
Skew groove d: iron core徑切Ri-away portion N, S: polar w magnets, w ', w ", w 1, w 2, w 3, w 4, w 5,
w 6, w 7, 4w: skew width L, L ', L ", L 1, L 2, L 3: non-magnetic side of the width 22, 22a, 22b: hole 23, 23a, 25 and 26: laminated Iron core 24, 24a, 24b, 24c: Iron core with cylindrical skew groove

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】磁石及び電磁石を用いて回転子を形成する
回転電機において、起動トルクやコギングを少なくする
ため、固定子との空隙部のスキュー形成において、回転
子鉄心に放射状に磁石を挿入するスロットを設け、磁極
数がnの場合にn角形の非磁性体でできたスペーサーの
辺に沿うように回転子コアの対峙面を形成し、長い直方
体の磁石でもスロットとのギャップを生ずることなく挿
入できるようにし、スキュー幅Wを変える場合に、スペ
ーサーの辺の長さLの1/2以内でスキュー幅W(0∠
W≦1/2L)を形成出来るようにしたたことを特徴と
する回転電機。
In a rotating electric machine that forms a rotor using magnets and electromagnets, in order to reduce starting torque and cogging, magnets are radially inserted into a rotor core when forming a skew in a gap with a stator. A slot is provided, and when the number of magnetic poles is n, the facing surface of the rotor core is formed along the side of the spacer made of an n-sided non-magnetic material, so that even a long rectangular parallelepiped magnet does not produce a gap with the slot. When the skew width W is changed by allowing insertion, the skew width W (0∠) is set within 1/2 of the length L of the side of the spacer.
W ≦ 1 / L).
【請求項2】磁石及び電磁石を用いて回転子を形成する
回転電機において、起動トルクやコギングを少なくする
ため、固定子との空隙部のスキュー形成において、回転
子鉄心に放射状に磁石を挿入するスロットを設け、磁極
数がnの場合にn角形の非磁性体でできたスペーサーの
辺に沿うように回転子コアの対峙面を形成し、n角形ス
ペーサーの稜線を跨ぎ幅W(W≦1/2L)にて跨ぐよ
うにした鉄心にてスキューを形成し、長い直方体の磁石
でもスロットとのギャップを生ずることなく挿入できる
ようにしたことを特徴とする回転電機。
2. In a rotating electric machine that forms a rotor using magnets and electromagnets, in order to reduce starting torque and cogging, magnets are radially inserted into the rotor core when forming a skew in a gap with the stator. A slot is provided, and when the number of magnetic poles is n, the facing surface of the rotor core is formed along the side of the spacer made of an n-sided non-magnetic material, and the width W (W ≦ 1) straddles the ridge line of the n-sided spacer. / 2L), wherein a skew is formed by an iron core straddled by a magnet, and a long rectangular parallelepiped magnet can be inserted without generating a gap with a slot.
【請求項3】磁石及び電磁石を用いて回転子を形成する
回転電機において、起動トルクやコギングを少なくする
ため、固定子との空隙部のスキュー形成において、回転
子鉄心に放射状に磁石を挿入するスロットを設け、磁極
数がnの場合にn角形の非磁性体でできたスペーサーの
辺に沿うように回転子コアの対峙面を形成し、さらに、
n角形スペーサーの稜線を跨ぐようにスキューを形成
し、長い直方体の磁石でもスロットとのギャップを生ず
ることなく挿入できるようにした鉄心において、各極ご
とに鉄心を分轄して工作を容易にし、精度よく工作出来
るようにしたことを特徴とする回転電機。
3. In a rotating electric machine in which a rotor is formed using magnets and electromagnets, in order to reduce starting torque and cogging, a magnet is radially inserted into a rotor core when forming a skew in a gap with a stator. A slot is provided, and when the number of magnetic poles is n, an opposing surface of the rotor core is formed along a side of the spacer made of an n-sided nonmagnetic material, and further,
A skew is formed so as to straddle the ridgeline of the n-sided spacer so that even a long rectangular parallelepiped magnet can be inserted without creating a gap with the slot. A rotating electric machine characterized by good workability.
【請求項4】磁石及び電磁石を用いて回転子を形成する
回転電機において、起動トルクやコギングを少なくする
ため、固定子との空隙部のスキュー形成において、回転
子鉄心に放射状に磁石を挿入するスロットを設け、磁極
数がnの場合にn角形の非磁性体でできたスペーサーの
辺に沿うように回転子コアの対峙面を形成し、n角形ス
ペーサーの稜線を跨ぐようにスキューを形成し、長い直
方体の磁石でもスロットとのギャップを生ずることなく
挿入できるようにした磁極鉄心において、スキューを変
える場合に、軸方向に鉄心をn分割して、非磁性体でで
きたスペーサー相互の角度を変え、スペーサーの辺の長
さにより決まるスキュー長さのn倍のスキューを形成出
来るようにしたことを特徴とする回転電機。
4. In a rotating electric machine in which a rotor is formed using magnets and electromagnets, in order to reduce starting torque and cogging, a magnet is radially inserted into a rotor core when forming a skew in a gap with a stator. A slot is provided, and when the number of magnetic poles is n, the facing surface of the rotor core is formed along the side of the spacer made of an n-sided nonmagnetic material, and a skew is formed so as to straddle the ridge of the n-sided spacer. When changing the skew in a magnetic pole core that allows a long rectangular parallelepiped magnet to be inserted without creating a gap with a slot, the core is divided into n parts in the axial direction, and the angle between the spacers made of a non-magnetic material is changed. Alternatively, the rotating electric machine can form a skew n times the skew length determined by the length of the side of the spacer.
【請求項5】磁石及び電磁石を用いて回転子を形成する
回転電機において、起動トルクやコギングを少なくする
ため、固定子との空隙部のスキュー形成において、回転
子鉄心に放射状に磁石を挿入するスロットを設け、磁極
数がnの場合にn角形の非磁性体でできたスペーサーの
辺に沿うように回転子コアの対峙面を形成し、n角形ス
ペーサーの稜線を跨ぐようにスキューを形成し、長い直
方体の磁石でもスロットとのギャップを生ずることなく
挿入できるようにした磁極鉄心において、スキュー幅W
を変える場合に、非磁性体でできたスペーサーの辺の長
さLを変えて,スキュー幅WをW=1/2Lにて行うよ
うにしたことを特徴とする回転電機。
5. In a rotating electric machine in which a rotor is formed using magnets and electromagnets, in order to reduce starting torque and cogging, magnets are radially inserted into a rotor core when forming a skew in a gap with a stator. A slot is provided, and when the number of magnetic poles is n, the facing surface of the rotor core is formed along the side of the spacer made of an n-sided nonmagnetic material, and a skew is formed so as to straddle the ridge of the n-sided spacer. The skew width W of the magnetic pole core is such that even a long rectangular parallelepiped magnet can be inserted without generating a gap with the slot.
A rotating electric machine characterized by changing the length L of a spacer made of a non-magnetic material and changing the skew width W to W = 1 / 2L.
【請求項6】磁石及び電磁石を用いて回転子を形成する
回転電機において、起動トルクやコギングを少なくする
ため、固定子との空隙部のスキュー形成において、回転
子鉄心に放射状に磁石を挿入するスロットを設け、磁極
数がnの場合にn角形の非磁性体でできたスペーサーの
辺に沿うように回転子コアの対峙面を形成し、軸方向に
n等分に分轄した積層鉄心に直方体の磁石でもスロット
とのギャップを生ずることなくストレートに挿入できる
ようにしてジグザグにスキューを形成し、回転子外周に
スキュースロットをジグザグスキューにたいして、磁気
短絡や磁束の漏洩を極力少なくなるようにしたスリット
を形成した筒状磁極にてスキュー効果を持たせたことを
特徴とする回転電機。
6. In a rotating electric machine in which a rotor is formed using magnets and electromagnets, in order to reduce starting torque and cogging, a magnet is radially inserted into a rotor iron core in forming a skew in a gap with a stator. When the number of magnetic poles is n, the opposing surface of the rotor core is formed along the side of the spacer made of n-sided non-magnetic material when the number of magnetic poles is n, and the rectangular parallelepiped is formed in the laminated core divided into n equally in the axial direction. Slits are formed in zigzag so that even magnets can be inserted straight without creating a gap with the slot, and a skew slot is formed on the outer periphery of the rotor to minimize magnetic short circuits and magnetic flux leakage. A rotating electric machine characterized in that a skew effect is provided by a cylindrical magnetic pole formed with (1).
【請求項7】磁石及び電磁石を用いて回転子を形成する
回転電機において、起動トルクやコギングを少なくする
ため、固定子との空隙部のスキュー形成において、回転
子鉄心に放射状に磁石を挿入するスロットを設け、磁極
数がnの場合にn角形の非磁性体でできたスペーサーの
辺に沿うように回転子コアの対峙面を形成し、軸方向に
n等分に分轄した積層鉄心に直方体の磁石でもスロット
とのギャップを生ずることなくストレートに挿入できる
ようにし、ジグザグにスキューを形成するため同一コア
にて形成できるようにジグザグのずらし角度のピッチに
合せて結合穴を形成した積層鉄心。
7. In a rotating electric machine that forms a rotor using magnets and electromagnets, in order to reduce starting torque and cogging, a magnet is radially inserted into a rotor core when forming a skew in a gap with a stator. When the number of magnetic poles is n, the opposing surface of the rotor core is formed along the side of the spacer made of n-sided non-magnetic material when the number of magnetic poles is n, and the rectangular parallelepiped is formed in the laminated core divided into n equally in the axial direction. A laminated iron core with a coupling hole formed in accordance with the pitch of the zigzag shift angle so that the magnet can be inserted straight without forming a gap with the slot, and a zigzag skew can be formed with the same core.
【請求項8】磁石及び電磁石を用いて回転子を形成する
回転電機において、起動トルクやコギングを少なくする
ため、固定子との空隙部のスキュー形成において、回転
子鉄心に放射状に磁石を挿入するスロットを設け、磁極
数がnの場合にn角形の非磁性体でできたスペーサーの
辺に沿うように回転子コアの対峙面を形成し、軸方向に
n等分に分轄した積層鉄心に直方体の磁石でもスロット
とのギャップを生ずることなくストレートに挿入できる
ようにしてジグザグにスキューを形成し、回転子外周に
スキュースロットをジグザグスキューにたいして、磁気
短絡や磁束の漏洩を極力少なくなるようにしたスリット
を形成した積層鋼板にて形成した筒状磁極にてスキュー
効果を持たせたことを特徴とする回転電機。
8. In a rotating electric machine in which a rotor is formed using magnets and electromagnets, in order to reduce starting torque and cogging, magnets are radially inserted into a rotor core when forming a skew in a gap with a stator. When the number of magnetic poles is n, the opposing surface of the rotor core is formed along the side of the spacer made of n-sided non-magnetic material when the number of magnetic poles is n, and the rectangular parallelepiped is formed in the laminated core divided into n equally in the axial direction. Slits are formed in zigzag so that even magnets can be inserted straight without creating a gap with the slot, and a skew slot is formed on the outer periphery of the rotor to minimize magnetic short circuits and magnetic flux leakage. A rotary electric machine characterized in that a skew effect is provided by a cylindrical magnetic pole formed of a laminated steel sheet formed with a layer.
【請求項9】磁石及び電磁石を用いて回転子を形成する
回転電機において、起動トルクやコギングを少なくする
ため、固定子との空隙部のスキュー形成において、回転
子鉄心に放射状に磁石を挿入するスロットを設け、磁極
数がnの場合にn角形の非磁性体でできたスペーサーの
辺に沿うように回転子コアの対峙面を形成し、軸方向に
n等分に分轄した積層鉄心に直方体の磁石でもスロット
とのギャップを生ずることなくストレートに挿入できる
ようにしてジグザグにスキューを形成し、回転子外周に
スキュースロットをジグザグスキューにたいして、磁気
短絡や磁束の漏洩を極力少なくなるようにしたスリット
を形成し、外部の筒状磁極ほどスキュー幅を大きくした
複数の筒状磁極にてスキュー効果をより強くするように
持たせたことを特徴とする回転電機。
9. In a rotating electric machine that forms a rotor using magnets and electromagnets, in order to reduce starting torque and cogging, magnets are radially inserted into the rotor core when forming a skew in a gap with the stator. When the number of magnetic poles is n, the opposing surface of the rotor core is formed along the side of the spacer made of n-sided non-magnetic material when the number of magnetic poles is n, and the rectangular parallelepiped is formed in the laminated core divided into n equally in the axial direction. Slits are formed in zigzag so that even magnets can be inserted straight without creating a gap with the slot, and a skew slot is formed on the outer periphery of the rotor to minimize magnetic short circuits and magnetic flux leakage. The skew effect is further enhanced by a plurality of cylindrical magnetic poles whose skew width is increased as the outer cylindrical magnetic pole is formed. Rotating electric machine to.
【請求項10】磁石及び電磁石を用いて回転子を形成す
る回転電機において、起動トルクやコギングを少なくす
るため、固定子との空隙部のスキュー形成において、回
転子鉄心に放射状に磁石を挿入するスロットを設け、磁
極数がnの場合にn角形の非磁性体でできたスペーサー
の辺に沿うように回転子コアの対峙面を形成し、軸方向
にn等分に分轄した積層鉄心に直方体の磁石でもスロッ
トとのギャップを生ずることなくストレートに挿入でき
るようにしてジグザグにスキューを形成し、回転子外周
にスキュースロットをジグザグスキューにたいして、磁
気短絡や磁束の漏洩を極力少なくなるようにしたスリッ
トを形成した筒状磁極と積層鉄心とをくみあわせて、よ
り効果的にスキュー効果を持たせたことを特徴とする回
転電機。
10. In a rotating electric machine that forms a rotor using magnets and electromagnets, in order to reduce starting torque and cogging, magnets are radially inserted into the rotor core when forming a skew in a gap with the stator. When the number of magnetic poles is n, the opposing surface of the rotor core is formed along the side of the spacer made of n-sided non-magnetic material when the number of magnetic poles is n, and the rectangular parallelepiped is formed in the laminated core divided into n equally in the axial direction. Slits are formed in zigzag so that even magnets can be inserted straight without creating a gap with the slot, and a skew slot is formed on the outer periphery of the rotor to minimize magnetic short circuits and magnetic flux leakage. A rotating electric machine characterized by combining a cylindrical magnetic pole formed with a core and a laminated iron core to more effectively provide a skew effect.
【請求項11】磁石及び電磁石を用いて回転子を形成す
る回転電機において、起動トルクやコギングを少なくす
るため、固定子との空隙部のスキュー形成において、回
転子鉄心に放射状に磁石を挿入するスロットを形成した
積層鉄心において、一体磁石では不可能であったスロッ
トへの挿入を、複数の磁石に分轄することにより挿入を
可能とし、スキュー効果を持たせたことを特徴とする回
転電機。
11. In a rotating electric machine that forms a rotor using magnets and electromagnets, in order to reduce starting torque and cogging, magnets are radially inserted into the rotor core when forming a skew in a gap with the stator. A rotating electric machine characterized in that in a laminated core having a slot, insertion into a slot, which was impossible with an integrated magnet, is made possible by dividing the slot into a plurality of magnets, thereby providing a skew effect.
【請求項12】磁極を側面及び平面的に展開して請求項
1から10までの技術的請求内容を応用したリニアーモ
ーターに代表される移動子、パンケーキ型電機及び磁石
や電磁石等の回転機以外の電磁機器。
12. A mover, a pancake-type electric machine, and a rotating machine such as a magnet and an electromagnet represented by a linear motor to which the magnetic poles are developed in a side and plane manner and the technical claims of the present invention are applied. Other than electromagnetic equipment.
JP19640399A 1999-05-06 1999-06-08 Rotating electric machines and electromagnetic devices using magnets Expired - Fee Related JP3555016B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19640399A JP3555016B2 (en) 1999-06-08 1999-06-08 Rotating electric machines and electromagnetic devices using magnets
EP00303718A EP1052761A3 (en) 1999-05-06 2000-05-03 A rotary electric machine
KR1020000024002A KR100676237B1 (en) 1999-05-06 2000-05-04 A rotary electric machine
US09/564,807 US6617739B1 (en) 1999-05-06 2000-05-05 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19640399A JP3555016B2 (en) 1999-06-08 1999-06-08 Rotating electric machines and electromagnetic devices using magnets

Publications (2)

Publication Number Publication Date
JP2000354341A true JP2000354341A (en) 2000-12-19
JP3555016B2 JP3555016B2 (en) 2004-08-18

Family

ID=16357293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19640399A Expired - Fee Related JP3555016B2 (en) 1999-05-06 1999-06-08 Rotating electric machines and electromagnetic devices using magnets

Country Status (1)

Country Link
JP (1) JP3555016B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520175A (en) * 2004-11-12 2008-06-12 グロンドフォス アー/エス Permanent magnet rotor
JP2009050099A (en) * 2007-08-21 2009-03-05 Yaskawa Electric Corp Rotor core, permanent magnet rotor, and permanent magnet synchronous electric rotating machine
KR100904027B1 (en) * 2001-08-30 2009-06-22 유키오 기노시타 Electric rotating mechine
JP2014068472A (en) * 2012-09-26 2014-04-17 Hitachi Automotive Systems Ltd Rotary electric machine and process of manufacturing magnetic pole piece
WO2015025669A1 (en) 2013-08-19 2015-02-26 Ntn株式会社 Power generator
WO2018114225A1 (en) * 2016-12-21 2018-06-28 Magna powertrain gmbh & co kg Rotor for an electrical machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140645A (en) * 1986-12-03 1988-06-13 Fuji Electric Co Ltd Rotor with permanent magnet
JPH0237553U (en) * 1988-08-30 1990-03-13
JPH05236687A (en) * 1992-02-20 1993-09-10 Daikin Ind Ltd Brushless dc motor
JPH089599A (en) * 1994-06-17 1996-01-12 Yaskawa Electric Corp Permanent magnet type rotor
JPH08223832A (en) * 1995-02-15 1996-08-30 Hitachi Ltd Premanent-magnet rotor
JPH08298735A (en) * 1995-04-25 1996-11-12 Fuji Electric Co Ltd Cylindrical-permanent-magnet synchronous motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140645A (en) * 1986-12-03 1988-06-13 Fuji Electric Co Ltd Rotor with permanent magnet
JPH0237553U (en) * 1988-08-30 1990-03-13
JPH05236687A (en) * 1992-02-20 1993-09-10 Daikin Ind Ltd Brushless dc motor
JPH089599A (en) * 1994-06-17 1996-01-12 Yaskawa Electric Corp Permanent magnet type rotor
JPH08223832A (en) * 1995-02-15 1996-08-30 Hitachi Ltd Premanent-magnet rotor
JPH08298735A (en) * 1995-04-25 1996-11-12 Fuji Electric Co Ltd Cylindrical-permanent-magnet synchronous motor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100904027B1 (en) * 2001-08-30 2009-06-22 유키오 기노시타 Electric rotating mechine
JP2008520175A (en) * 2004-11-12 2008-06-12 グロンドフォス アー/エス Permanent magnet rotor
JP2009050099A (en) * 2007-08-21 2009-03-05 Yaskawa Electric Corp Rotor core, permanent magnet rotor, and permanent magnet synchronous electric rotating machine
JP2014068472A (en) * 2012-09-26 2014-04-17 Hitachi Automotive Systems Ltd Rotary electric machine and process of manufacturing magnetic pole piece
WO2015025669A1 (en) 2013-08-19 2015-02-26 Ntn株式会社 Power generator
US10965174B2 (en) 2013-08-19 2021-03-30 Ntn Corporation Power generator
WO2018114225A1 (en) * 2016-12-21 2018-06-28 Magna powertrain gmbh & co kg Rotor for an electrical machine
CN110100374A (en) * 2016-12-21 2019-08-06 麦格纳动力系有限两合公司 Rotor for motor
CN110100374B (en) * 2016-12-21 2021-06-15 麦格纳动力系有限两合公司 Rotor for an electric machine

Also Published As

Publication number Publication date
JP3555016B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
KR101880377B1 (en) Interior permanent magnet rotating electric machine
KR100676237B1 (en) A rotary electric machine
EP1598920A2 (en) Permanent magnet rotary electric motor
US8937417B2 (en) Rotating electric machine and wind power generation system
JP2000156947A (en) Magnet-type motor and power generator
KR100624381B1 (en) Rotor for interior permanent magnet synchronous motor and method for manufacturing the rotor
JP2008193778A (en) Stator and enclosed compressor and rotating machine
JP2007274869A (en) Slot-less permanent magnet type rotary electric machine
US10749385B2 (en) Dual magnetic phase material rings for AC electric machines
JP2014155373A (en) Multi-gap rotary electric machine
WO2018037529A1 (en) Rotary electric machine
JP2011166951A (en) Method for manufacturing permanent magnet rotary machine
JP3555016B2 (en) Rotating electric machines and electromagnetic devices using magnets
CN113273057B (en) Interior permanent magnet electric machine with flux distribution gap
US10374474B2 (en) Permanent magnet motor
JP2004336999A (en) Permanent magnet motor
WO2014069288A1 (en) Inner rotor motor
WO2017212575A1 (en) Permanent magnet motor
US20220368183A1 (en) Rotor for a synchronous machine
US20220190659A1 (en) Motor
JP2022157963A (en) Rotary electric machine
JP2021122163A (en) Rotary electric machine
EP3309931B1 (en) Permanent magnet-embedded motor and compressor
WO2023218743A1 (en) Rotor and ipm motor having same
JP2019097258A (en) Magnetic wedge for rotating electrical machine, manufacturing method of magnetic wedge for rotating electrical machine, and rotating electrical machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees