WO2018114225A1 - Rotor for an electrical machine - Google Patents

Rotor for an electrical machine Download PDF

Info

Publication number
WO2018114225A1
WO2018114225A1 PCT/EP2017/080402 EP2017080402W WO2018114225A1 WO 2018114225 A1 WO2018114225 A1 WO 2018114225A1 EP 2017080402 W EP2017080402 W EP 2017080402W WO 2018114225 A1 WO2018114225 A1 WO 2018114225A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated core
rotor
face
angle
core segment
Prior art date
Application number
PCT/EP2017/080402
Other languages
German (de)
French (fr)
Inventor
Paul Kainzinger
Alexandru Munteanu
Original Assignee
Magna powertrain gmbh & co kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magna powertrain gmbh & co kg filed Critical Magna powertrain gmbh & co kg
Priority to CN201780079356.0A priority Critical patent/CN110100374B/en
Publication of WO2018114225A1 publication Critical patent/WO2018114225A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/09Magnetic cores comprising laminations characterised by being fastened by caulking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/12Machines characterised by the modularity of some components

Definitions

  • the present invention relates to a rotor for an electric machine, which has seen in the longitudinal direction laminated core segments, the mechanical composition, viewed in the circumferential direction to each other angularly offset the rotor yield, wherein the combination of the laminated core segments each forms magnetic poles.
  • the not completely symmetrical arrangement of rotor causes harmonics in the torque.
  • These harmonics are unintentional and have a negative effect on the NHV (noise, harshness, vibration behavior as well as on the life of the electrical machine)
  • rotors are bevelled sequentially or continuously, ie the rotor is made of several mechanically assembled Sheet metal packet segments each comprising permanent magnets forming magnetic poles, wherein the individual magnetic poles of the laminated core segments are offset by a defined angular offset from one another., For example, by means of grooves offset by the skew for receiving the permanent magnets
  • the disadvantage that for each laminated core segment in the production of a different punching tool must be created and thus result in a high logistical effort and high production costs wise by twisting of the assembled rotor before it is pressed onto the shaft. This results in the disadvantage that between the magnet and the laminated core, a larger gap is formed and thus a poorer utilization of the material takes
  • a rotor for an electric machine having longitudinally considered a plurality of laminated core segments, the mechanical composition, viewed in the circumferential direction to each other angularly offset from the rotor, wherein the laminated core segments each form magnetic poles, characterized in that a plurality of depressions are formed on a first end face of each of a laminated core segment and a plurality of recesses for receiving a respective studs are formed on a second end face of a laminated core segment, wherein the number of nubs is not an integer multiple of the number of magnetic poles.
  • the rotor comprises a plurality of laminated core segments viewed in the longitudinal direction.
  • the laminated core segments are mechanically assembled in the circumferential direction to each other angularly offset the rotor.
  • the longitudinal direction corresponds to a direction along a rotation axis of the rotor.
  • the circumferential direction corresponds to a direction along the circumference of the rotor.
  • Each of the laminated core segments forms magnetic poles.
  • a plurality of depressions are formed on a first end face of each of a laminated core segment and a plurality of depressions are formed on a second end face of a laminated core segment for receiving one nub each, wherein the number of nubs is not an integer multiple of the number of magnetic poles.
  • the nubs are on a first end face of a respective laminated core segment and the recesses for receiving a respective nubs on a second end face of a respective laminated core segment in the circumferential direction evenly distributed radially inwardly or radially outwardly formed.
  • axial describes a direction along or parallel to the axis of rotation of the rotor
  • radial describes a direction normal to the axis of rotation of the rotor.
  • radially inward is to be understood as meaning a point located radially closer to the axis of rotation of the rotor than a “radially outward” point.
  • the angular offset between two sheet metal segments is equal to the product of the angle between two mutually adjacent knobs and the integer number of knobs around which the laminated core segments are rotated relative to each other minus the angle between between two adjacent poles.
  • the integer number of knobs to which the laminated core segments are rotated relative to each other equal to the rounded or rounded quotient of the angle between two adjacent poles and the angle between two adjacent knobs.
  • the inventive design of the rotor it is possible in a simple manner to realize a precise angular offset between the magnetic poles of the rotor.
  • Fig. 1 shows a transverse view of a laminated core segment.
  • Fig. 2 shows an exploded view of a sequentially beveled rotor
  • Fig. 3 shows a transverse view of a sequentially beveled rotor.
  • 4 shows graphically the relationship between a minimum angular offset about a rotational axis of a rotor between at least two laminated core segments and the number of nubs (recesses) formed on a first end face.
  • Fig. 1 shows a cross-sectional view of a laminated core segment 2.
  • the laminated core segment 2 is formed as a hollow cylinder, i. its basic structure corresponds to a cylinder with a central opening 8.
  • the central opening 8 serves to arrange the rotor 1 on a rotor shaft.
  • the laminated core segment 2 forms with permanent magnets 3 magnetic poles 3 '.
  • the permanent magnets 3 are arranged in the receptacles provided in the laminated core segment 2 radially outward.
  • a plurality of knobs 5 are formed at a first end face 4 of the laminated core segment 2 .
  • the nubs 5 are viewed at the first end face 4 of the laminated core segment 2 in the circumferential direction uniformly distributed radially inwardly.
  • the number of radially inwardly formed nubs 5 is not an integer multiple of the number of magnetic poles 3 'of the laminated core segment second
  • a plurality of recesses 7 are formed for receiving a respective nubs 5.
  • the recesses 7 for receiving in each case one pimple 5 on the second end face 6 of the laminated core segment 2 are evenly distributed radially inwardly.
  • the number of nubs 5 formed on the first end face 4 of the laminated core segment 2 corresponds to the number of recesses 7 formed on the second end face 6 of the laminated core segment 2.
  • axial describes a direction along or parallel to a rotation axis 9 of the rotor 1.
  • radial describes a direction normal to the axis of rotation 9 of the rotor 1.
  • radially inward is to be understood as meaning any arbitrary point located radially closer to the axis of rotation 9 of the rotor 1 in comparison with a “radially outside” arbitrary point.
  • the exemplary rotor 1 according to the invention shown in FIG. 2 and FIG. 3 comprises five laminated core segments 2 when viewed in the longitudinal direction.
  • the five laminated core segments 2 result mechanically assembled, the rotor 1 offset angularly relative to one another in the circumferential direction.
  • a nub 5 on the first end face 4 of a laminated core segment 2 engages in a recess on the second end face 6, viewed in the longitudinal direction, following the laminated core segment 2.
  • the longitudinal direction corresponds to a direction along the axis of rotation 9 of the rotor 1.
  • the circumferential direction corresponds to a direction along the circumference of the rotor 1.
  • Viewed in the circumferential direction is the angular offset aversatz between two sheet segments 2 equal to the product of the angle CXN between two adjacent knobs 5 and the integer number ⁇ of the studs 5 by which the laminated core segments 2 are rotated to each other minus the angle ap between two mutually adjacent magnetic poles 3 '.
  • aversatz aN * nN-ap.
  • the laminated core segments 2 can be rotated by any integer number of nubs 5.
  • the integer number ⁇ of the dimples 5 around which the laminated core segments 2 are rotated relative to each other corresponds to the rounded or rounded quotient of the angle ap between two adjacent poles 3 'and the angle CIN between two adjacent knobs 5.
  • ⁇ ⁇ / ⁇ I
  • the angle offset ⁇ offset achieved is minimal for a given number ⁇ of nubs 5 and given number np of poles 3 '.
  • Fig. 3 is a transverse view of the rotor 1 is shown, which shows the angular offset aversatz the individual laminated core segments 2 to each other schematically.
  • Fig. 4 graphically shows the relationship between a minimum angular offset aversatz about the rotational axis of the rotor between two longitudinally consecutive laminated core segments (" ⁇ '' - axis) and the number of formed on a first end face 4 nubs 5 and, accordingly, the number of on a second end face 6 formed recesses 7 ("X" axis).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

A rotor (1) for an electrical machine, said rotor having a plurality of laminated core segments (2) as viewed in the longitudinal direction, which, mechanically assembled and offset at an angle to one another as viewed in the circumferential direction, produce the rotor (1), the laminated core segments (2) each forming magnetic poles (3'), characterised in that a plurality of knobs (5) are formed on a first end face (4) of a laminated core segment (2) in each case and a plurality of depressions (7) are formed on a second end face (6) of a laminated core segment (2) to receive a knob (5) in each case, wherein the number of knobs (5) is not an integer multiple of the number of magnetic poles (3').

Description

Rotor für eine elektrische Maschine  Rotor for an electric machine
Gebiet der Erfindung Field of the invention
Die vorliegende Erfindung betrifft einen Rotor für eine elektrische Maschine, der in Längsrichtung betrachtet Blechpaketsegmente aufweist, die mechanisch zusammengesetzt, in Umfangsrichtung betrachtet zueinander winkel versetzt den Rotor ergeben, wobei die Kombination der Blechpaketsegmente jeweils magnetische Pole ausbildet. The present invention relates to a rotor for an electric machine, which has seen in the longitudinal direction laminated core segments, the mechanical composition, viewed in the circumferential direction to each other angularly offset the rotor yield, wherein the combination of the laminated core segments each forms magnetic poles.
Stand der Technik State of the art
Im Betrieb einer elektrischen Maschine entstehen durch die nicht vollständig symmetrische Anordnung von Rotor Oberwellen im Drehmoment. Diese Oberwellen sind ungewollt und wirken sich negativ auf das NHV (Noise, Harshness, Vibration-Verhalten sowie auf die Lebensdauer der elektrischen Maschine aus. Um diesen Oberwellen entgegen zu wirken werden beispielsweise Rotoren sequentiell oder kontinuierlich geschrägt, d.h. der Rotor ist aus mehreren mechanisch zusammengesetzten Blechpaketsegmenten gefertigt, die jeweils Permanentmagnete umfassen, die magnetische Pole ausbilden, wobei die einzelnen magnetischen Pole der Blechpaketsegmente um einen definierten Winkelversatz zueinander versetzt werden. Eine sequentielle Schrägung erfolgt beispielsweise mittels um die Schrägung versetzter Nuten zur Aufnahme der Permanentmagnete. Bei dieser konstruktiven Lösung ergibt sich jedoch der Nachteil, dass für jedes Blechpaketsegment in der Herstellung ein anderes Stanzwerkzeug erstellt werden muss und sich so ein hoher logistischer Aufwand sowie hohe Produktionskosten ergeben. Eine kontinuierliche Schrägung des Rotors erfolgt beispielsweise durch Verdrehen des fertig zusammengesetzten Rotors bevor er auf die Welle aufgepresst wird. Daraus ergibt sich der Nachteil, dass zwischen dem Magneten und dem Blechpaket ein größerer Spalt entsteht und so eine schlechtere Ausnutzung des Materials erfolgt. During operation of an electric machine, the not completely symmetrical arrangement of rotor causes harmonics in the torque. These harmonics are unintentional and have a negative effect on the NHV (noise, harshness, vibration behavior as well as on the life of the electrical machine) To counteract these harmonics, for example rotors are bevelled sequentially or continuously, ie the rotor is made of several mechanically assembled Sheet metal packet segments each comprising permanent magnets forming magnetic poles, wherein the individual magnetic poles of the laminated core segments are offset by a defined angular offset from one another., For example, by means of grooves offset by the skew for receiving the permanent magnets However, the disadvantage that for each laminated core segment in the production of a different punching tool must be created and thus result in a high logistical effort and high production costs wise by twisting of the assembled rotor before it is pressed onto the shaft. This results in the disadvantage that between the magnet and the laminated core, a larger gap is formed and thus a poorer utilization of the material takes place.
Bei beiden Varianten der Schrägung ist es schwierig präzise einen geringen Winkelversatz zwischen den magnetischen Polen zu realisieren. In both variants of the skew, it is difficult to precisely realize a small angular offset between the magnetic poles.
Zusammenfassung der Erfindung Summary of the invention
Es ist eine Aufgabe der Erfindung einen Rotor für eine elektrische Maschine anzugeben, der es ermöglicht auf präzise Art und Weise einen Winkelversatz zwischen magnetischen Polen zu realisieren. It is an object of the invention to provide a rotor for an electric machine, which makes it possible to realize in a precise manner an angular offset between magnetic poles.
Die Lösung des ersten Aspekts der Aufgabe erfolgt durch einen Rotor für eine elektrische Maschine, der in Längsrichtung betrachtet mehrere Blechpaketsegmente aufweist, die mechanisch zusammengesetzt, in Umfangsrichtung betrachtet zueinander winkel versetzt den Rotor ergeben, wobei die Blechpaketsegmente jeweils magnetische Pole ausbilden, dadurch gekennzeichnet, dass an einer ersten Stirnseite jeweils eines Blechpaketsegments mehrere Noppen ausgebildet sind und an einer zweiten Stirnseite eines Blechpaketsegments mehrere Vertiefungen zur Aufnahme jeweils eines Noppen ausgebildet sind, wobei die Anzahl der Noppen kein ganzzahliges Vielfaches der Anzahl der magnetischen Pole ist. The solution of the first aspect of the object is achieved by a rotor for an electric machine having longitudinally considered a plurality of laminated core segments, the mechanical composition, viewed in the circumferential direction to each other angularly offset from the rotor, wherein the laminated core segments each form magnetic poles, characterized in that a plurality of depressions are formed on a first end face of each of a laminated core segment and a plurality of recesses for receiving a respective studs are formed on a second end face of a laminated core segment, wherein the number of nubs is not an integer multiple of the number of magnetic poles.
Erfindungsgemäß umfasst der Rotor in Längsrichtung betrachtet mehrere Blechpaketsegmente. Die Blechpaketsegmente ergeben mechanisch zusammengesetzt, in Umfangsrichtung zueinander winkel versetzt den Rotor. Die Längsrichtung entspricht einer Richtung entlang einer Rotationsachse des Rotors. Die Umfangsrichtung entspricht einer Richtung entlang des Umfangs des Rotors. Jedes der Blechpaketsegmente bildet magnetische Pole aus. According to the invention, the rotor comprises a plurality of laminated core segments viewed in the longitudinal direction. The laminated core segments are mechanically assembled in the circumferential direction to each other angularly offset the rotor. The longitudinal direction corresponds to a direction along a rotation axis of the rotor. The circumferential direction corresponds to a direction along the circumference of the rotor. Each of the laminated core segments forms magnetic poles.
Erfindungsgemäß sind an einer ersten Stirnseite jeweils eines Blechpaketsegments mehrere Noppen ausgebildet und an einer zweiten Stirnseite eines Blechpaketsegments mehrere Vertiefungen zur Aufnahme jeweils eines Noppen ausge- bildet, wobei die Anzahl der Noppen kein ganzzahliges Vielfaches der Anzahl der magnetischen Pole ist. According to the invention, a plurality of depressions are formed on a first end face of each of a laminated core segment and a plurality of depressions are formed on a second end face of a laminated core segment for receiving one nub each, wherein the number of nubs is not an integer multiple of the number of magnetic poles.
Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen, der Beschreibung sowie den beigefügten Zeichnungen angegeben. Further developments of the invention are specified in the dependent claims, the description and the accompanying drawings.
Bevorzugt sind die Noppen an einer ersten Stirnseite eines jeweiligen Blechpaketsegments und die Vertiefungen zur Aufnahme jeweils eines Noppen an einer zweiten Stirnseite eines jeweiligen Blechpaketsegments in Umfangsrichtung betrachtet gleichmäßig verteilt radial innen oder radial außen ausgebildet. Preferably, the nubs are on a first end face of a respective laminated core segment and the recesses for receiving a respective nubs on a second end face of a respective laminated core segment in the circumferential direction evenly distributed radially inwardly or radially outwardly formed.
Die Begrifflichkeit„axial" beschreibt eine Richtung entlang oder parallel zu der Rotationsachse des Rotors. Die Begrifflichkeit„radial" beschreibt eine Richtung normal auf die Rotationsachse des Rotors. Unter dem Begrifflichkeit„radial innen" ist ein im Vergleich zu einem„radial außen" liegenden Punkt radial näher an der Rotationsachse des Rotors liegender Punkt zu verstehen. The term "axial" describes a direction along or parallel to the axis of rotation of the rotor The term "radial" describes a direction normal to the axis of rotation of the rotor. The term "radially inward" is to be understood as meaning a point located radially closer to the axis of rotation of the rotor than a "radially outward" point.
Vorzugsweise ist in Umfangsrichtung betrachtet der Winkelversatz zwischen zwei Blechsegmenten gleich dem Produkt aus dem Winkel zwischen zwei zueinander benachbarten Noppen und der ganzzahligen Anzahl der Noppen um die die Blechpaketsegmente zueinander verdreht werden abzüglich des Winkels zwi- schen zwei zueinander benachbarter Pole. Vorzugsweise ist dabei die ganzzahlige Anzahl der Noppen um die die Blechpaketsegmente zueinander verdreht werden gleich dem aufgerundeten oder abgerundeten Quotienten des Winkels zwischen zwei benachbarten Polen und des Winkels zwischen zwei benachbarten Noppen. Preferably, viewed in the circumferential direction, the angular offset between two sheet metal segments is equal to the product of the angle between two mutually adjacent knobs and the integer number of knobs around which the laminated core segments are rotated relative to each other minus the angle between between two adjacent poles. Preferably, the integer number of knobs to which the laminated core segments are rotated relative to each other equal to the rounded or rounded quotient of the angle between two adjacent poles and the angle between two adjacent knobs.
Durch die erfindungsgemäße Ausbildung des Rotors ist es möglich auf einfache Art und Weise einen präzisen Winkelversatz zwischen den magnetischen Polen des Rotors zu realisieren. Zudem können durch die identische Herstellung der einzelnen Blechpaketsegmente der Herstellungsaufwand und somit die Herstellungskosten des Rotors reduziert werden. The inventive design of the rotor, it is possible in a simple manner to realize a precise angular offset between the magnetic poles of the rotor. In addition, by the identical production of the individual laminated core segments of the production cost and thus the manufacturing cost of the rotor can be reduced.
Kurzbeschreibung der Zeichnungen Brief description of the drawings
Die Erfindung wird im Folgenden beispielhaft unter Bezugnahme auf die Zeichnungen beschrieben. The invention will now be described by way of example with reference to the drawings.
Fig. 1 zeigt eine Queransicht eines Blechpaketsegments. Fig. 1 shows a transverse view of a laminated core segment.
Fig. 2 zeigt eine Explosionsdarstellung eines sequentiell geschrägten Rotors Fig. 2 shows an exploded view of a sequentially beveled rotor
Fig. 3 zeigt eine Queransicht eines sequentiell geschrägten Rotors. Fig. 4 zeigt graphisch den Zusammenhang zwischen einem minimalen Winkelversatz um eine Rotationsachse eines Rotors zwischen zumindest zwei Blechpaketsegmenten und der Anzahl von auf einer ersten Stirnseite ausgebildeten Noppen (Vertiefungen). Fig. 3 shows a transverse view of a sequentially beveled rotor. 4 shows graphically the relationship between a minimum angular offset about a rotational axis of a rotor between at least two laminated core segments and the number of nubs (recesses) formed on a first end face.
Detaillierte Beschreibung der Erfindung Detailed description of the invention
Fig. 1 zeigt eine Querschnittsdarstellung eines Blechpaketsegments 2. Das Blechpaketsegment 2 ist hohlzylindrisch ausgebildet, d.h. seine Grundstruktur entspricht einem Zylinder mit einer zentralen Öffnung 8. Die zentrale Öffnung 8 dient der Anordnung des Rotors 1 auf einer Rotorwelle. Fig. 1 shows a cross-sectional view of a laminated core segment 2. The laminated core segment 2 is formed as a hollow cylinder, i. its basic structure corresponds to a cylinder with a central opening 8. The central opening 8 serves to arrange the rotor 1 on a rotor shaft.
Das Blechpaketsegment 2 bildet mit Permanentmagneten 3 magnetische Pole 3' aus. Die Permanentmagnete 3 sind in dafür vorgesehenen Aufnahmen in dem Blechpaketsegment 2 radial außen angeordnet. The laminated core segment 2 forms with permanent magnets 3 magnetic poles 3 '. The permanent magnets 3 are arranged in the receptacles provided in the laminated core segment 2 radially outward.
An einer ersten Stirnseite 4 des Blechpaketsegments 2 sind mehrere Noppen 5 ausgebildet. Die Noppen 5 sind an der ersten Stirnseite 4 des Blechpaketsegments 2 in Umfangsrichtung betrachtet gleichmäßig verteilt radial innen ausgebildet. Die Anzahl der radial innen ausgebildeten Noppen 5 ist kein ganzzahliges Vielfaches der Anzahl der magnetischen Pole 3' des Blechpaketsegments 2. At a first end face 4 of the laminated core segment 2 a plurality of knobs 5 are formed. The nubs 5 are viewed at the first end face 4 of the laminated core segment 2 in the circumferential direction uniformly distributed radially inwardly. The number of radially inwardly formed nubs 5 is not an integer multiple of the number of magnetic poles 3 'of the laminated core segment second
An einer zweiten Stirnseite 6 des Blechpaketsegments 2 sind mehrere Vertiefungen 7 zur Aufnahme jeweils eines Noppen 5 ausgebildet. Die Vertiefungen 7 zur Aufnahme jeweils eines Noppens 5 an der zweiten Stirnseite 6 des Blechpaketsegments 2 in Umfangsrichtung betrachtet gleichmäßig verteilt radial innen aus- gebildet. Die Anzahl der an der ersten Stirnseite 4 des Blechpaketsegments 2 ausgebildeten Noppen 5 entspricht der Anzahl der an der zweiten Stirnseite 6 des Blechpaketsegments 2 ausgebildeten Anzahl an Vertiefungen 7. At a second end face 6 of the laminated core segment 2 a plurality of recesses 7 are formed for receiving a respective nubs 5. Viewed in the circumferential direction, the recesses 7 for receiving in each case one pimple 5 on the second end face 6 of the laminated core segment 2 are evenly distributed radially inwardly. The number of nubs 5 formed on the first end face 4 of the laminated core segment 2 corresponds to the number of recesses 7 formed on the second end face 6 of the laminated core segment 2.
Die Begrifflichkeit„axial" beschreibt eine Richtung entlang oder parallel zu einer Rotationsachse 9 des Rotors 1 . Die Begrifflichkeit„radial" beschreibt eine Richtung normal auf die Rotationsachse 9 des Rotors 1 . Unter dem Begrifflichkeit„radial innen" ist ein im Vergleich zu einem„radial außen" liegenden beliebigen Punkt radial näher an der Rotationsachse 9 des Rotors 1 liegender beliebiger Punkt zu verstehen. The term "axial" describes a direction along or parallel to a rotation axis 9 of the rotor 1. The term "radial" describes a direction normal to the axis of rotation 9 of the rotor 1. The term "radially inward" is to be understood as meaning any arbitrary point located radially closer to the axis of rotation 9 of the rotor 1 in comparison with a "radially outside" arbitrary point.
Der in Fig. 2 und Fig. 3 dargestellte beispielhafte erfindungsgemäße Rotor 1 um- fasst in Längsrichtung betrachtet fünf Blechpaketsegmente 2. Die fünf Blechpaket- Segmente 2 ergeben mechanisch zusammengesetzt, in Umfangsrichtung zueinander winkel versetzt den Rotor 1 . Im Zusammenbau greift jeweils ein Noppen 5 an der ersten Stirnseite 4 eines Blechpaketsegments 2 in eine Vertiefung an der zweiten Stirnseite 6 in Längsrichtung betrachtet darauffolgenden Blechpaketsegments 2 ein. The exemplary rotor 1 according to the invention shown in FIG. 2 and FIG. 3 comprises five laminated core segments 2 when viewed in the longitudinal direction. The five laminated core segments 2 result mechanically assembled, the rotor 1 offset angularly relative to one another in the circumferential direction. In the assembly, in each case a nub 5 on the first end face 4 of a laminated core segment 2 engages in a recess on the second end face 6, viewed in the longitudinal direction, following the laminated core segment 2.
Die Längsrichtung entspricht einer Richtung entlang der Rotationsachse 9 des Rotors 1 . Die Umfangsrichtung entspricht einer Richtung entlang des Umfangs des Rotors 1 . In Umfangsrichtung betrachtet ist der Winkelversatz aversatz zwischen zwei Blechsegmenten 2 gleich dem Produkt aus dem Winkel CXN zwischen zwei zueinander benachbarten Noppen 5 und der ganzzahligen Anzahl ΠΝ der Noppen 5 um die die Blechpaketsegmente 2 zueinander verdreht werden abzüglich des Winkels ap zwischen zwei zueinander benachbarter magnetischer Pole 3'. In einer mathema- tischen Formel ausgedrückt: aversatz=aN*nN-ap. Die Blechpaketsegmente 2 können dabei um eine beliebige ganzzahlige Anzahl von Noppen 5 verdreht werden. Vorzugsweise entspricht dabei die ganzzahlige Anzahl ΠΝ der Noppen 5 um die die Blechpaketsegmente 2 zueinander verdreht werden dem auf- oder abgerundeten Quotienten des Winkels ap zwischen zwei benachbarten Polen 3' und des Winkels CIN zwischen zwei benachbarten Noppen 5. In einer mathematischen Formel ausgedrückt: ΠΝ=Ι αρ/αΝ I The longitudinal direction corresponds to a direction along the axis of rotation 9 of the rotor 1. The circumferential direction corresponds to a direction along the circumference of the rotor 1. Viewed in the circumferential direction is the angular offset aversatz between two sheet segments 2 equal to the product of the angle CXN between two adjacent knobs 5 and the integer number ΠΝ of the studs 5 by which the laminated core segments 2 are rotated to each other minus the angle ap between two mutually adjacent magnetic poles 3 '. Expressed in a mathematical formula: aversatz = aN * nN-ap. The laminated core segments 2 can be rotated by any integer number of nubs 5. Preferably, the integer number ΠΝ of the dimples 5 around which the laminated core segments 2 are rotated relative to each other corresponds to the rounded or rounded quotient of the angle ap between two adjacent poles 3 'and the angle CIN between two adjacent knobs 5. Expressed in a mathematical formula: ΠΝ = Ι αρ / αΝ I
In diesem Fall ist der erreichte Winkelversatz aversatz bei gegebener Anzahl ΠΝ von Noppen 5 und gegebener Anzahl np von Polen 3' minimal. In this case, the angle offset α offset achieved is minimal for a given number ΠΝ of nubs 5 and given number np of poles 3 '.
In Fig. 3 ist eine Queransicht des Rotors 1 dargestellt, die den Winkelversatz aversatz der einzelnen Blechpaketsegmente 2 zueinander schematisch zeigt. Fig. 4 zeigt graphisch den Zusammenhang zwischen einem minimalen Winkelversatz aversatz um die Rotationsachse des Rotors zwischen zwei in Längsrichtung aufeinanderfolgenden Blechpaketsegmenten (,,Υ''-Achse) und der Anzahl von auf einer ersten Stirnseite 4 ausgebildeten Noppen 5 und dementsprechend der Anzahl von auf einer zweiten Stirnseite 6 ausgebildeten Vertiefungen 7 (,,X"-Achse). In Fig. 3 is a transverse view of the rotor 1 is shown, which shows the angular offset aversatz the individual laminated core segments 2 to each other schematically. Fig. 4 graphically shows the relationship between a minimum angular offset aversatz about the rotational axis of the rotor between two longitudinally consecutive laminated core segments ("Υ '' - axis) and the number of formed on a first end face 4 nubs 5 and, accordingly, the number of on a second end face 6 formed recesses 7 ("X" axis).
Bezuqszeichenliste LIST OF REFERENCES
1 Rotor 1 rotor
2 Blechpaketsegment 2 laminated core segment
3 Permanentmagnet  3 permanent magnet
3' Magnetischer Pol  3 'magnetic pole
4 Erste Stirnseite  4 First face
5 Noppe  5 knob
6 Zweite Stirnseite 6 Second end face
7 Vertiefung  7 deepening
8 Zentrale Öffnung  8 Central opening
9 Rotationsachse aversatz Winkel zwischen zwei Blechsegmenten  9 rotation axis aversatz angle between two sheet metal segments
<3N Winkel zwischen zwei zueinander benachbarten Noppen dp Winkel zwischen zwei zueinander benachbarten Polen  <3N angle between two adjacent pebbles dp angle between two mutually adjacent poles
ΠΝ Ganzzahlige Anzahl der Noppen um die die Blechpaketsegmente zueinander verdreht werden  ΠΝ Integer number of pimples around which the laminated core segments are twisted
np Anzahl von Polen np number of poles
X „X"-Achse X "X" axis
Y „Y"-Achse Y "Y" axis

Claims

Patentansprüche claims
Rotor (1 ) für eine elektrische Maschine, der in Längsrichtung betrachtet mehrere Blechpaketsegmente (2) aufweist, die mechanisch zusammengesetzt, in Umfangsrichtung betrachtet zueinander winkelversetzt den Rotor (1 ) ergeben, wobei die Blechpaketsegmente (2) jeweils magnetische Pole (3') ausbilden, dadurch gekennzeichnet, dass an einer ersten Stirnseite (4) jeweils eines Blechpaketsegments (2) mehrere Noppen (5) ausgebildet sind und an einer zweiten Stirnseite (6) eines Blechpaketsegments (2) mehrere Vertiefungen (7) zur Aufnahme jeweils eines Noppen (5) ausgebildet sind, wobei die Anzahl der Noppen (5) kein ganzzahliges Vielfaches der Anzahl der magnetischen Pole (3') ist. Rotor (1) for an electrical machine, viewed in the longitudinal direction of a plurality of laminated core segments (2), the mechanically assembled, viewed in the circumferential direction to each other angularly offset the rotor (1), wherein the laminated core segments (2) each form magnetic poles (3 ') , in that a plurality of depressions (5) are formed on a first end face (4) of each of a laminated core segment (2) and a plurality of depressions (7) for receiving in each case a nub (5) on a second end face (6) of a laminated core segment (2) ), wherein the number of nubs (5) is not an integer multiple of the number of magnetic poles (3 ').
Rotor (1 ) für eine elektrische Maschine nach Anspruch 1 , Rotor (1) for an electric machine according to claim 1,
d a d u r c h g e k e n n z e i c h n e t , dass die Noppen (5) an einer ersten Stirnseite (4) eines jeweiligen Blechpaketsegments (2) und die Vertiefungen (7) an einer zweiten Stirnseite (6) eines jeweiligen Blechpaketsegments (2) in Umfangsrichtung betrachtet gleichmäßig verteilt radial innen oder radial außen ausgebildet sind. characterized in that the nubs (5) on a first end face (4) of a respective laminated core segment (2) and the recesses (7) on a second end face (6) of a respective laminated core segment (2) in the circumferential direction evenly distributed radially inside or radially outside are formed.
Rotor (1) für eine elektrische Maschine nach Anspruch 1 oder 2, Rotor (1) for an electric machine according to claim 1 or 2,
d a d u r c h g e k e n n z e i c h n e t , dass in Umfangs- richtung betrachtet der Winkelversatz (aversatz) zwischen zwei Blechsegmenten (2) gleich dem Produkt aus dem Winkel (CXN) zwischen zwei zueinander benachbarten Noppen (5) und der ganzzahligen Anzahl (ΠΝ) der Noppen (5) um die die Blechpaketsegmente (2) zueinander verdreht werden abzüglich des Winkels (ap) zwischen zwei zueinander benachbarten Polen (3') ist. characterized in that viewed in the circumferential direction of the angle offset (aversatz) between two sheet segments (2) equal to the product of the angle (CXN) between two adjacent knobs (5) and the integer number (ΠΝ) of the knobs (5) to the the laminated core segments (2) are rotated relative to each other minus the angle (ap) between two mutually adjacent poles (3 ').
Rotor (1 für eine elektrische Maschine nach Anspruch 3, Rotor (1 for an electric machine according to claim 3,
d a d u r c h g e k e n n z e i c h n e t , dass die ganzzahlige Anzahl (ΠΝ) der Noppen (5) um die die Blechpaketsegmente (2) zueinander verdreht werden gleich dem aufgerundeten oder abgerundeten Quotienten des Winkels (ap) zwischen zwei zueinander benachbarten Polen (3') und des Winkels (CXN) zwischen zwei zueinander benachbarten Noppen (5) ist. characterized in that the integer number (ΠΝ) of the knobs (5) around which the laminated core segments (2) are rotated to each other equal to the rounded or rounded quotient of the angle (ap) between two mutually adjacent poles (3 ') and the angle (CXN) between two adjacent knobs (5).
PCT/EP2017/080402 2016-12-21 2017-11-24 Rotor for an electrical machine WO2018114225A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780079356.0A CN110100374B (en) 2016-12-21 2017-11-24 Rotor for an electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016225890.7 2016-12-21
DE102016225890.7A DE102016225890B3 (en) 2016-12-21 2016-12-21 Rotor for an electric machine

Publications (1)

Publication Number Publication Date
WO2018114225A1 true WO2018114225A1 (en) 2018-06-28

Family

ID=60515373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/080402 WO2018114225A1 (en) 2016-12-21 2017-11-24 Rotor for an electrical machine

Country Status (3)

Country Link
CN (1) CN110100374B (en)
DE (1) DE102016225890B3 (en)
WO (1) WO2018114225A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321951B (en) 2018-03-16 2019-12-27 珠海格力电器股份有限公司 Rotor structure, permanent magnet auxiliary synchronous reluctance motor and electric automobile
CN112865368A (en) * 2021-02-26 2021-05-28 合肥巨一动力系统有限公司 Rotor punching sheet structure
CN112968560A (en) * 2021-03-26 2021-06-15 合肥巨一动力系统有限公司 Rotary motor punching sheet and rotor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354341A (en) * 1999-06-08 2000-12-19 Yukio Kinoshita Rotating electric machine using magnet and electromagnetic equipment
DE102012022084A1 (en) * 2012-11-09 2014-05-15 Volkswagen Aktiengesellschaft Rotor assembly for electrical machine, has laminated plate stacks having positioning units positioned at axial end surfaces in juxtaposition at joining of two axially adjacent laminated plate stacks
DE102014019217A1 (en) * 2014-12-19 2016-06-23 Daimler Ag Method of punching a laminated core

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921267A (en) 1982-07-28 1984-02-03 Dai Ichi Seiko Co Ltd Rotor for electromagnetic motor
JP2695952B2 (en) 1989-12-28 1998-01-14 株式会社東芝 Cage rotor
JPH04304132A (en) 1991-04-02 1992-10-27 Fanuc Ltd Rotor structure for synchronous motor
US5894182A (en) 1997-08-19 1999-04-13 General Electric Company Motor with rotor and stator core paired interlocks
IT243439Y1 (en) * 1997-10-31 2002-03-04 Zanussi Elettromecc PERFECTED ROTORIC PACK
JP2004248422A (en) 2003-02-14 2004-09-02 Moric Co Ltd Field magnet type rotary electric equipment
EP2451049A1 (en) 2010-11-03 2012-05-09 Brusa Elektronik AG Rotor with lamination stack for an electric machine, in particular for a synchronous machines
CN102412646A (en) * 2011-12-29 2012-04-11 江苏上骐集团有限公司 Rotor punching sheet of permanent magnet servo motor
JP2014180094A (en) * 2013-03-14 2014-09-25 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet rotary electric machine and elevator driving winch
CN105262302A (en) * 2015-11-19 2016-01-20 迪百仕电机科技(苏州)有限公司 Rotor skewed pole structure for permanent magnet synchronous motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354341A (en) * 1999-06-08 2000-12-19 Yukio Kinoshita Rotating electric machine using magnet and electromagnetic equipment
DE102012022084A1 (en) * 2012-11-09 2014-05-15 Volkswagen Aktiengesellschaft Rotor assembly for electrical machine, has laminated plate stacks having positioning units positioned at axial end surfaces in juxtaposition at joining of two axially adjacent laminated plate stacks
DE102014019217A1 (en) * 2014-12-19 2016-06-23 Daimler Ag Method of punching a laminated core

Also Published As

Publication number Publication date
DE102016225890B3 (en) 2018-05-30
CN110100374A (en) 2019-08-06
CN110100374B (en) 2021-06-15

Similar Documents

Publication Publication Date Title
DE102016115560A1 (en) Single-phase brushless motor and power tool using it
WO2018114225A1 (en) Rotor for an electrical machine
DE102013002354A1 (en) ROTOR OF AN ELECTRIC ENGINE THAT HAS A CONSTRUCTION FOR THE SAFE APPLICATION OF MAGNETS TO AN EXTERNAL CIRCULAR SURFACE OF A ROTOR CORE, AND METHOD OF MANUFACTURING THEREOF
DE112014007129T5 (en) A stator core for a rotary electric machine, a rotary electric machine, and a method of manufacturing a rotary electric machine
DE102014101221A1 (en) Rotor for a permanent magnet motor, method for manufacturing a rotor for a permanent magnet motor and permanent magnet motor
DE102015103698A1 (en) Brushless permanent magnet motor
DE102011116396A1 (en) electric motor
DE102014115563A1 (en) Rotor and motor
EP3451502A1 (en) Multipolar rotor with loaf-shaped or pie segment permanent magnets
DE202016102217U1 (en) Single-phase external rotor motor and stator of the same
DE202016102374U1 (en) Single-phase external rotor motor and rotor of it
DE102019126373A1 (en) ROTOR CORE
EP3479458A1 (en) Rotor, method for producing a rotor, reluctance machine and working machine
DE102016008686A1 (en) Core body for stators and / or rotors of electric machines, stator / rotor with such a core body and electrical machine with such a core body
DE102010018145A1 (en) Claw pole type dynamo-electric machine e.g. three-phase claw pole motor, has pole plates comprising teeth corresponding to number of claws that have extension, which is larger along radial direction than circumferential direction
EP2903139B1 (en) Rotor lamination stack, in particular for an electric motor
DE102016108430A1 (en) Single-phase external rotor motor and rotor thereof
DE102018132529A1 (en) Electric motor with asymmetric configuration for generating an unbalanced force
DE102015001313A1 (en) Electric machine, in particular LSPM
DE102011089058A1 (en) Rotor for brushless permanent magnet electric machine, has two annular portions that are separated by lining structure in which recesses and ridges are provided
DE102018132060A1 (en) engine
CH641602A5 (en) DIRECTIONAL, SELF-STARTING SYNCHRONOUS MOTOR WITH PERMANENT MAGNETIC ROTOR.
DE602004005068T2 (en) ELECTRIC TURNING MACHINE WITH PERMANENT MAGNET ROTOR
DE102015219488A1 (en) Electric drive motor
EP2681827B1 (en) Electrical machine with a rotor with reduced cogging torque

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17807814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17807814

Country of ref document: EP

Kind code of ref document: A1