JP3555016B2 - Rotating electric machines and electromagnetic devices using magnets - Google Patents

Rotating electric machines and electromagnetic devices using magnets Download PDF

Info

Publication number
JP3555016B2
JP3555016B2 JP19640399A JP19640399A JP3555016B2 JP 3555016 B2 JP3555016 B2 JP 3555016B2 JP 19640399 A JP19640399 A JP 19640399A JP 19640399 A JP19640399 A JP 19640399A JP 3555016 B2 JP3555016 B2 JP 3555016B2
Authority
JP
Japan
Prior art keywords
skew
core
rotor
electric machine
rotating electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19640399A
Other languages
Japanese (ja)
Other versions
JP2000354341A (en
Inventor
幸雄 木下
Original Assignee
幸雄 木下
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 幸雄 木下 filed Critical 幸雄 木下
Priority to JP19640399A priority Critical patent/JP3555016B2/en
Priority to EP00303718A priority patent/EP1052761A3/en
Priority to KR1020000024002A priority patent/KR100676237B1/en
Priority to US09/564,807 priority patent/US6617739B1/en
Publication of JP2000354341A publication Critical patent/JP2000354341A/en
Application granted granted Critical
Publication of JP3555016B2 publication Critical patent/JP3555016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

[0001]
[発明の属する技術分野]
この発明は、磁石単独や電磁石と併用して用いる回転子を有する電動機や発電機及び電磁機器において、起動トルクやコギングを軽減するため、固定子と対峙する鉄心間に設けたスリットにスキューを設けた磁極構造に関する。
[0002]
【従来の技術】従来の発電機や電動機の回転子は通常円筒状の磁石を用い、それに着磁時に磁極間の境界にスキューしたスペースを設けて行っている。この場合着磁設備に膨大な費用がかかり中少量生産には適さなかった。又円筒状の磁石では磁界形成に限界があり、高出力や高効率の機器には適さなかった。
[0003]
【発明が解決しようとする課題】
そこで本発明は交流発電機や電動機等の回転子のスキュー溝を有する鉄心構造及びその構成等により、高出力や高効率電機達成のための放射型磁極配置での▲1▼スキュー形成により起動改善やコギング低減の実現、それに▲2▼生産性の向上等を解決することを課題とする。
[0004]
【課題を解決するための手段】
▲1▼スキュー形成により起動改善やコギング低減の実現であるが、放射配置の直方体形状の磁石は通常用いられている積層鉄心のスキュー溝には、同じ形状の鉄板の積層では、ねじれ状の溝になるため隙間無しには挿入出来ない。さらにねじれ状の溝にぴったりした磁石を作ることは非常にコストが高くなり経済的ではない。そこで、鉄心の形状に工夫を凝らし、直方体形状の磁石でも隙間無しに挿入出来るようにし、鉄心の保持やシャフトとの隔離を目的とした多角形の非磁性体の辺にそってスキュー溝を形成するようにする。この場合スキュー幅Wをかえる場合(a)同じ多角形の非磁性体の場合に辺の長さをLとした場合、0≦W≦1/2Lの範囲でかえる。(b)多角形の非磁性体の辺の長さLを変えてW=1/2Lによりかえる。(c)(a),(b)にてもスキュー幅Wが不足の場合は、鉄心を軸方向に分割し、分割した鉄心の多角形の非磁性体の辺長Lによるスキュー幅Wの限界(1/2L)内で最大分割数kの倍数のスキュー幅 W=1/2kLを形成できる。又軸方向にn分割にしたストレートな(スキュー無)鉄心に,n分割した磁石を軸に平行に挿入後スキュー角によってn個の鉄心を隣接する鉄心相互に回転配置してジグザグ溝をまず形成し、その外部に(外転型回転子の場合は内部に)ストレートなスキュー溝を施した円筒状の鉄心を配置してスキュー効果を持たせて実現する。円筒状の鉄心を用いる場合ジグザグ溝による磁気特性の改善やスキュー幅を微調整するため鉄心の厚さを厚くする必要がある場合、工作上複数の鉄心で行う。この場合に生産性を上げるため、磁石鉄心や外周配置の円筒状の鉄心に積層鉄心をもちいてもよい。
又、回転子鉄心を一体の積層鉄心にて行う場合は、磁石を挿入した際に鉄心との隙間が生じない程度に、磁石をスキュー溝に挿入可能な数に分割することにより、生産性を飛躍的に向上できる。さらに、電機の特性を強さの異なる磁石の組み合せなどにより特性の変更や改善が容易に出来るようになる。
▲2▼生産性の向上ついてであるが、鉄ブロックによる鉄心形成は中量産には不向きである。理想的には固定子コアと回転子コアを一体で作るのが望ましい。そこでいくつかの積層鉄心を部分又は全体に使えるように磁石鉄心にスキュー形成用の等ピッチ孔を設けたり、その構成を工夫して実現した。
[0005]
[実施の形態]
以下、この発明の実施の形態を図面を参照して内転型発電機を例に説明する。
図1は内転型の発電機で図1aが本発明のスキュー構造を有し、磁石1単独や電磁石10との組み合せにて構成した回転子3を有する発電機の断面構造を示し、図1bは従来の円筒型磁石回転子3′を用いた発電機の断面構造を示す。回転子は動力源により外から駆動されると固定子2、2’に巻き込んでいるコイル5等に回転数に応じた電圧が発生し、電気取り出しコード9、9’に抵抗等負荷をつなげば電流が流れ電力を供給する。コイルの発生電圧は固定子と回転子との空隙の磁束密度に比例し、又回転数にも比例する。本発明は回転子に放射状に配した磁石にて形成した磁石式回転子の起動トルクやコギングを軽減するためスキューを形成し、さらにその生産性を考慮したいくつかの例を示めす。
【0006】次に本発明の磁石式スキュード回転子についてその鉄心構造・材質・構成、非磁性体スペーサーの構造等について以下図面に基づき説明する。図2は内転型四極の電機に用いるスキューを施した磁石式回転子の鉄心構造を示し、図2aは内転型電機に用いる分割鉄心12で平面図と両側の側面図を示している。この場合スキュー幅Wを形成すると同時に四角形非磁性体14の稜線を跨ぎ幅Wにて跨ぐように係合する内径部分を形成(この図では直角の切り欠き部分dを形成)するとともに、鉄心の回り止め機能の同時に持たせるようにしている。図2bは図2aの分割鉄心12を四個組み合わせ四極電機のスキューを施した磁石式回転子を構成したもので平面図と両側面図を示している。この場合形成出来るスキュー幅Wは鉄心外徑、磁石寸法(特に放射方向寸法)、多角形非磁性体の辺の長さ等により自ずと限界があり、四角形非磁性体14の一辺の長さLとした時W=1/2Lを最大として0から1/2Lまでスキュー可能となる。そこで、さらに大きなスキューを行う場合は、図2cに示す例は鉄心12を軸方向に四分割にした場合で、各鉄心にて最大のスキュー幅W=1/2Lを施し、それらのスキューを総合して図2bでのスキューの約四倍のスキュー幅4Wを実現した例を示している。12cの場合、シャフト8に圧入等で固着した非磁性体14’も四分割し、しかもシャフトに固着する時スキュー形成が直線状やジグザグ状など、目的に応じてうまく出来るように適切な角度を相互にずらしたりすることがポイントとなる。これにより、スキュー幅や形を目的に応じて自由自在に変えて形成出来るようになる。
[0007]
図3は図2で示した四極の回転子に対し、六極と8極の例を示しており、図3aは6極の構成例を示し、スキュー幅W′はW′≦1/2L′で形成出来、図3bは八極の構成例を示し、スキュー幅W″はW″≦1/2L″で形成出来ている。
図4はスキュー幅をかえる場合に非磁性体14c、14d、14eの外徑を変えて行う例を八極の回転子を例に示している。非磁性体は外徑が14e>14d>14cとなっており、スキュー幅も外徑の大きさに比例して大きくなっていて、W1∠W2∠W3となっている。この場合磁界の強さを維持するため、磁石13d、eは13cに比べ放射方向の長さの減少を磁石の幅の増加で補っている。これら多極の回転子も図2cで示した鉄心の軸方向の分割にて同様にスキュー幅を自由自在に変えうることは言うまでもない。
[0008]
図5、6、7は回転子の鉄心を分割し、放射状及び軸方向に平行に挿入した磁石をスキューに応じてある角度軸心に対しずらしてジグザグにスキューを形成した、鉄心部の外周にスキュー溝を有する円筒状の鉄心を配置したスキュード磁石式回転子を示している。この場合磁石挿入鉄心23、23aは単一の鉄のブロック材は勿論、積層鉄板でも製作可能で、低コストで生産性抜群の構造となっている。鉄心に開けている孔22、22a,22bは同一円周上に位置し、スキュー角に合せて同一ピッチで複数個設けていて、分割した鉄心間での結合組み立てがスムーズに行えるようになっている。図5は円筒状鉄心24が一重の場合で、磁石21a,21b,21cをそれぞれ挿入した鉄心を孔22を用いてジグザグにスキューさせた後、円筒状鉄心24を外周に配置した構造となっている。スキューを大きくする場合は磁石21a,b,cの幅やスキュー溝20gなどの幅を大きくして、鉄心間の孔22を大きくずらすことにより達成できる。鉄心部分を積層鉄心にした場合は固定子の鉄心と同一製作工具で同時抜きで製作出来るのでコスト、生産性は非常に優れたものとなる。
図6は図5の磁石鉄心の外周に配置した円筒状鉄心24の代わりに複数の円筒状鉄心24a,b,cに置き換えたもので、図5の円筒状鉄心24が厚くなった場合に生産性を上げるために厚さ方向を分割して目的を達成するもので、さらに分割した円筒状鉄心のスキューを外部のものほど大きくして固定子と対峙する空隙でのスキュー幅の微調整や鉄心空隙部の磁気特性の改善が出来る特徴がある。
図7は円筒状鉄心の材質に積層鉄心26にし、誘導電動機等の駕籠型回転子などで通常行われているスキューを施した円筒状鉄心でジグザグスキュー磁石鉄心の外周に配置した例である。この場合鉄心類は全て積層材で出来るようになり、生産コスト、生産性抜群の量産に適した磁石式スキュード回転子を提供可能となる。
[0009]
図8は回転子鉄心を一体の積層鉄心25にて製作しスキュー後、鉄心とのギャップが最少になるように分割した複数の磁石(特性を調節出来るようにするため特性の異なるものでもよい)を外周より挿入して形成した磁石式スキュード回転子の例をしめす。この場合に鉄心スロットより磁石の飛び出しを防止するために別途かしめ、圧入、溶接あるいは別部品のリングなどで固着するようにしている。この例は一体の積層鉄心となっているため、前述の実施例に比べ、生産性抜群で量産に適した磁石式スキュード回転子を提供可能となる。
[0010]
以上内転型回転電機について説明してきたが、外転型回転電機にも反転構造になっているので内転型同様適用出来るのはいうまでもない。また、発電機について説明を行ってきたが、これらの技術は他の磁石を用いるあらゆる電機や電磁機器に適用出来ることはいうまでもない。例えば放射状以外の磁石を有する回転子、パンケーキタイプ電機、リニアーモータ、電磁石機器等。
【発明の効果】
以上説明したように、本発明は磁石式スキュード回転子を有する電動機や発電機の鉄心構造、材質や構成などを見直し、スキュー幅を自由自在に変化出来る構造を考案して、電機の起動トルクやコギングを低減出来、しかもコスト的に安く、設備費のかからない電機を実現できる。特にブロック回転子鉄心の分割・分離構造でのスキュー形成と同時に転りどめ多角形非磁性体の稜線またぎ構造、多角形非磁性体の一辺の長さを変えてスキュー角を変化させる方法、磁石鉄心を複数分割してスキュー幅を自由自在に変えうるようにしたものなど画期的な考案が多々含まれている。また、量産時の生産性を上げるため、鉄心に積層鉄板を使用可能にした鉄心構造の数々もコストパフオーマンスに優れたもので有効性大といえる。
【図面の簡単な説明】
[図1]本発明の磁石式スキュード回転子にて構成した回転子を有する内転型発電機の一実施例を示す構造図と従来型発電機の構造説明図
[図2]四極の分割、分離磁石鉄心を正方形の非磁性体に配した磁石式スキュード回転子の構造の例を示す図
[図3]六極及び八極の分割、分離磁石鉄心を正六及び八角形の非磁性体に配した磁石式スキュード回転子の例を示す説明図
[図4]外徑の異なる三種類の正八角形の非磁性体に配した磁石鉄心を有する磁石式スキュード回転子の例を示す説明図
[図5]積層鉄心等を用いたジグザグ磁石鉄心とスキュー溝つき円筒鉄心を組み合わせた磁石式スキュード回転子の例を示す説明図
[図6]積層鉄心等を用いたジグザグ磁石鉄心と複数のスキュー溝つき円筒鉄心を組み合わせた磁石式スキュード回転子の例を示す説明図
[図7]積層板を用いた鉄心等を用いたジグザグ磁石鉄心とスキュー溝つき積層板円筒鉄心を組み合わせた磁石式スキュード回転子の例を示す説明図
[図8]スキューした積層板鉄心に複数に分割した特性が同一又は異なる磁石を配した磁石式スキュード回転子の例を示す説明図
【符号の説明】
1’ : 磁石
2、 2’ : 固定子
3 : 磁石式スキュード回転子
3’ : 円筒型磁石回転子
4、4’ : ハウジング
5、5’ : コイル
6、6’ : エンドブラケット
7、7’ : 軸受け
8、8’、8a,8b ,8c,8d,8e: シャフト
9、9’ : 電源コード
10 : 電磁石
11、11’: ベース
12、12a,12b,12c,12d,12e、 : 分割鉄心
13 ,13a ,13b,13c,13d,13e,21a,21b,21c ,21d,21e,21f,21g,21h,21i ,31,32,33: 磁 石
14,14’、14a,14b,14c,14d,14e : 非磁性体
20a,20a’,20b,20c,20d,20e,20f ,20g 、20h 、20i ,20j : スキュー溝
d : 鉄心内徑切り欠き部
N,S : 磁石の極性
w,w’,w“,w,w,w,w,w,w,w7、4w: スキュー幅
L,L’,L“,L,L,L : 非磁性体の辺の幅
22,22a,22b : 孔
23,23a,25,26 : 積層鉄心
24 ,24a,24b,24c : 円筒状スキュー溝付き鉄心
[0001]
[Technical field to which the invention belongs]
The present invention provides a skew in a slit provided between an iron core facing a stator in an electric motor, a generator, and an electromagnetic device having a rotor used alone or in combination with an electromagnet in order to reduce starting torque and cogging. Magnetic pole structure.
[0002]
2. Description of the Related Art A rotor of a conventional generator or electric motor usually uses a cylindrical magnet, and a skewed space is provided at a boundary between magnetic poles when the magnet is magnetized. In this case, the magnetizing equipment required enormous cost and was not suitable for medium-to-low-volume production. Further, a cylindrical magnet has a limit in forming a magnetic field, and is not suitable for a device with high output and high efficiency.
[0003]
[Problems to be solved by the invention]
Therefore, the present invention improves the start-up by forming a skew in (1) skew in a radiation type magnetic pole arrangement to achieve a high output and a high efficiency electric machine by using an iron core structure having a skew groove of a rotor such as an alternator or an electric motor and its configuration. And cogging reduction, and (2) improvement of productivity.
[0004]
[Means for Solving the Problems]
(1) Improving start-up and reducing cogging by forming skew. A cuboid magnet with a radial arrangement is usually used in a skew groove of a laminated iron core, and a twisted groove is formed by laminating iron plates of the same shape. Can not be inserted without a gap. Furthermore, making magnets that fit into the twisted grooves is very costly and not economical. Therefore, we devised the shape of the iron core so that even rectangular magnets can be inserted without gaps, and formed skew grooves along the sides of the polygonal non-magnetic material for the purpose of holding the iron core and isolating it from the shaft. To do. In this case, when the skew width W is changed (a) When the length of the side is L in the case of a non-magnetic material having the same polygon, the width is changed in the range of 0 ≦ W ≦ 1 / L. (B) Change the length L of the side of the polygonal non-magnetic material to W = に よ り L. (C) If the skew width W is insufficient even in (a) and (b), the iron core is divided in the axial direction, and the skew width W is limited by the side length L of the polygonal nonmagnetic material of the iron core. A skew width W = 1/2 kL which is a multiple of the maximum division number k within (1 / 2L) can be formed. Also, a zigzag groove is first formed by inserting a magnet divided into n parallel to the axis into a straight (no skew) iron core divided into n in the axial direction, and then rotating the n iron cores relative to the adjacent iron cores according to the skew angle. A skew effect is realized by arranging a cylindrical iron core having a straight skew groove on the outside thereof (in the case of an abduction type rotor). When a cylindrical iron core is used When it is necessary to increase the thickness of the iron core in order to improve the magnetic characteristics by the zigzag groove and finely adjust the skew width, the work is performed with a plurality of iron cores on the work. In this case, in order to increase the productivity, a laminated core may be used as the magnet core or the cylindrical core arranged on the outer periphery.
Also, when the rotor core is made of an integral laminated core, productivity is increased by dividing the magnet into a number that can be inserted into the skew groove to the extent that no gap is created between the magnet and the core. It can be dramatically improved. Further, the characteristics of the electric machine can be easily changed or improved by combining magnets having different strengths.
▲ 2 ▼ although about the improved productivity, the iron core formed by iron block is not suitable for medium volume production. Ideally, it is desirable to make the stator core and the rotor core integrally. Therefore, the magnet core is provided with equal pitch holes for skew so that some of the laminated cores can be used partially or entirely, or by devising the configuration.
[0005]
[Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the drawings, taking an adduction type generator as an example.
FIG. 1 shows an adduction type generator. FIG. 1a shows a cross-sectional structure of a generator having a skew structure of the present invention, and having a rotor 3 constituted by a magnet 1 alone or in combination with an electromagnet 10. FIG. Shows a sectional structure of a generator using a conventional cylindrical magnet rotor 3 '. When the rotor is driven from the outside by a power source, a voltage corresponding to the number of revolutions is generated in the coil 5 and the like wound on the stators 2 and 2 ', and a load such as a resistor is connected to the electric extraction cords 9 and 9'. Current flows and supplies power. The voltage generated by the coil is proportional to the magnetic flux density in the air gap between the stator and the rotor, and is also proportional to the number of revolutions. The present invention shows several examples in which a skew is formed in order to reduce the starting torque and cogging of a magnet type rotor formed by magnets radially arranged on the rotor, and further considering its productivity.
Next, the structure, material, and configuration of the iron core of the magnetic skewed rotor of the present invention, the structure of the nonmagnetic spacer, and the like will be described below with reference to the drawings. FIG. 2 shows a core structure of a skewed magnet type rotor used for an adduction type quadrupole electric machine, and FIG. 2a shows a plan view and side views of a split core 12 used for an adduction type electric machine. In this case, at the same time as forming the skew width W, an inner diameter portion is formed so as to straddle the ridge line of the quadrangular non-magnetic member 14 so as to straddle with the width W (in this figure, a cutout portion d at a right angle is formed), and the iron core is formed. It has a detent function at the same time. FIG. 2B is a plan view and side views showing a skewed magnet rotor of a quadrupole electric machine constructed by combining four split cores 12 of FIG. 2A. In this case, the skew width W that can be formed is naturally limited by the outer diameter of the iron core, the size of the magnet (particularly the size in the radial direction), the length of the side of the polygonal non-magnetic material, and the like. Then, skew can be performed from 0 to 1 / 2L with W = 1 / 2L as the maximum. Therefore, when an even larger skew is performed, the example shown in FIG. 2C is a case where the iron core 12 is divided into four in the axial direction, and a maximum skew width W = 1 / L is applied to each iron core, and the skew is integrated. FIG. 2B shows an example in which a skew width 4 W which is about four times the skew in FIG. 2B is realized. In the case of 12c, the nonmagnetic material 14 'fixed to the shaft 8 by press fitting or the like is also divided into four parts, and when it is fixed to the shaft, an appropriate angle such as a straight line or a zigzag shape can be formed according to the purpose. The point is to shift each other. As a result, the skew width and shape can be changed freely according to the purpose.
[0007]
FIG. 3 shows an example of six poles and eight poles with respect to the quadrupole rotor shown in FIG. 2, FIG. 3a shows a configuration example of six poles, and the skew width W 'is W'≤1 / 2L'. FIG. 3B shows an example of an eight-pole configuration, and the skew width W ″ can be formed with W ″ ≦ 1 / L ″.
FIG. 4 shows an example in which the skew width is changed by changing the outer diameter of the non-magnetic members 14c, 14d, and 14e, using an octupole rotor as an example. The non-magnetic material has an outer diameter of 14e>14d> 14c, and the skew width also increases in proportion to the outer diameter, ie, W1∠W2∠W3. In this case, in order to maintain the strength of the magnetic field, the magnets 13d and 13e compensate for the decrease in the length in the radial direction compared to the magnet 13c by increasing the width of the magnet. Needless to say, the skew width of these multi-pole rotors can also be freely changed by dividing the iron core in the axial direction shown in FIG. 2C.
[0008]
FIGS. 5, 6, and 7 show the rotor core in which the rotor core is divided, and the magnets inserted radially and in parallel to the axial direction are shifted with respect to an angle axis in accordance with the skew to form a zigzag skew. 2 shows a skewed magnet type rotor in which a cylindrical iron core having a skew groove is arranged. In this case, the magnet insertion cores 23 and 23a can be manufactured not only from a single iron block material but also from a laminated iron plate, and have a low cost and excellent productivity. The holes 22, 22a and 22b formed in the iron core are located on the same circumference and are provided at the same pitch in accordance with the skew angle, so that the assembling between the divided iron cores can be performed smoothly. I have. FIG. 5 shows a case where the cylindrical iron core 24 is single. The iron core into which the magnets 21a, 21b, 21c are inserted is skewed in a zigzag manner using the holes 22, and the cylindrical iron core 24 is arranged on the outer periphery. I have. The skew can be increased by increasing the width of the magnets 21a, b, and c and the width of the skew groove 20g to largely shift the hole 22 between the iron cores. When the core is made of a laminated core, it can be manufactured simultaneously with the same manufacturing tool as the stator core, so that the cost and productivity are extremely excellent.
FIG. 6 shows a case where a plurality of cylindrical cores 24a, 24b, and 24c are used in place of the cylindrical core 24 arranged on the outer periphery of the magnet core shown in FIG. 5. When the cylindrical core 24 shown in FIG. In order to improve the performance, the purpose is achieved by dividing the thickness direction, and the skew of the divided cylindrical iron core is made larger as the outer one, and fine adjustment of the skew width in the gap facing the stator and iron core There is a feature that the magnetic properties of the gap can be improved.
FIG. 7 shows an example in which a laminated iron core 26 is used as the material of the cylindrical iron core, and a skewed cylindrical iron core that is usually used in a peg-shaped rotor such as an induction motor is disposed around the zigzag skew magnet iron core. . In this case, all the iron cores can be made of laminated materials, and it is possible to provide a magnet type skewed rotor suitable for mass production excellent in production cost and productivity.
[0009]
FIG. 8 shows a plurality of magnets in which a rotor core is made of an integrated laminated core 25, and after skew, is divided into a plurality of magnets so as to minimize the gap with the iron core (the magnets may have different characteristics in order to adjust the characteristics). An example of a magnet-type skewed rotor formed by inserting from the outer periphery is shown. In this case, the magnet is separately caulked in order to prevent the magnet from protruding from the iron core slot, and is fixed by press fitting, welding, or a ring of another component. In this example, since it is an integral laminated iron core, it is possible to provide a magnet type skewed rotor excellent in productivity and suitable for mass production as compared with the above-described embodiment.
[0010]
The internal rotation type rotary electric machine has been described above, but it is needless to say that the internal rotation type rotary electric machine can be applied similarly to the internal rotation type since the external rotation type rotary electric machine also has an inverted structure. Although the description has been given of the generator, it goes without saying that these techniques can be applied to any electric or electromagnetic device using other magnets. For example , a rotor having a non-radial magnet, a pancake type electric machine, a linear motor, an electromagnet device, and the like.
【The invention's effect】
As described above, the present invention reviews the iron core structure of a motor or a generator having a magnet type skewed rotor, the material and configuration, etc., devises a structure that can freely change the skew width, and reduces the starting torque of the electric machine. It is possible to realize an electric machine which can reduce cogging, is inexpensive, and does not require equipment costs. In particular, the skew is formed simultaneously with the division / separation structure of the block rotor core, and the skew angle is changed by changing the length of one side of the polygonal non-magnetic material by changing the length of one side of the polygonal non-magnetic material. There are many groundbreaking ideas, such as one in which the magnet core is divided into multiple parts so that the skew width can be freely changed. Also, in order to increase productivity during mass production, many iron core structures that can use laminated iron plates for the iron core have excellent cost performance and can be said to be highly effective.
[Brief description of the drawings]
FIG. 1 is a structural view showing an embodiment of an adduction type generator having a rotor constituted by a magnet type skewed rotor according to the present invention, and a structural explanatory view of a conventional type generator. FIG. Fig. 3 shows an example of the structure of a magnet type skewed rotor in which a separated magnet core is arranged on a square non-magnetic body. [Fig. 3] Divided into six poles and eight poles, and separated magnet cores are arranged on regular hexagonal and octagonal non-magnetic bodies. FIG. 4 is an explanatory view showing an example of a magnet type skewed rotor shown in FIG. 4. FIG. 5 is an explanatory view showing an example of a magnet type skewed rotor having magnet cores arranged on three types of regular octagonal non-magnetic materials having different outer diameters. FIG. 6 is an explanatory view showing an example of a magnet type skewed rotor combining a zigzag magnet core using a laminated iron core and a cylindrical iron core with a skew groove [FIG. 6] Magnet skewed rotation combined with iron core [FIG. 7] An explanatory diagram showing an example of a magnet type skewed rotor combining a zigzag magnet core using a core using a laminated plate or the like and a laminated plate cylindrical core with skew grooves [FIG. 8]. Diagram showing an example of a magnet-type skewed rotor in which a plurality of magnets having the same or different characteristics are arranged in a plurality of laminated cores.
1 ': Magnet 2, 2': Stator 3: Magnetic skewed rotor 3 ': Cylindrical magnet rotor 4, 4': Housing 5, 5 ': Coil 6, 6': End bracket 7, 7 ': Bearings 8, 8 ', 8a, 8b, 8c, 8d, 8e: Shafts 9, 9': Power cord 10: Electromagnets 11, 11 ': Bases 12, 12a, 12b, 12c, 12d, 12e, Split iron cores 13, 13a, 13b, 13c, 13d, 13e, 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h, 21i, 31, 32, 33: magnets 14, 14 ', 14a, 14b, 14c, 14d, 14e. : Non-magnetic material 20a, 20a ', 20b, 20c, 20d, 20e, 20f, 20g, 20h, 20i, 20j: Skew groove d: Notched portion N, S of core inner diameter: Magnet polarity w w ', w ", w 1 , w 2, w 3, w 4, w 5, w 6, w 7, 4w: skew width L, L', L", L 1, L 2, L 3: a non-magnetic Body side widths 22, 22a, 22b: Holes 23, 23a, 25, 26: Laminated cores 24, 24a, 24b, 24c: Cores with cylindrical skew grooves

Claims (10)

永久磁石単独又は電磁石と併用して回転子を形成するN極の回転電機において、起動トルクやコギングを少なくするための回転子のスキュー形成において、回転子軸と回転鉄心との間に設けられた正N角形の非磁性体スペーサの軸方向稜線を跨いでスペーサ外面に接する分割回転鉄心内面の跨ぎ幅の割合を軸方向に漸次変化させることによって、回転鉄心とスペーサとで形成されるスロット形状が長い直方体の永久磁石でもスロットとのギャップを生ずることなく挿入できるようにしたことを特徴とする回転電機。In a rotating electric machine of N pole which forms a rotor by using a permanent magnet alone or in combination with an electromagnet, the rotor is provided between a rotor shaft and a rotating core in forming a skew of a rotor to reduce starting torque and cogging. By gradually changing, in the axial direction, the ratio of the bridging width of the divided rotating core inner surface that is in contact with the spacer outer surface across the axial ridge line of the regular N-gonal nonmagnetic spacer, the slot shape formed by the rotating core and the spacer is changed. A rotating electric machine characterized in that a long rectangular parallelepiped permanent magnet can be inserted without generating a gap with a slot. 請求項1の回転電機において、回転鉄心内面の跨ぎ幅を0を超えスペーサの多角形一辺の1/2まで変化させることにより、スキュー量をスペーサの多角形一辺の1/2まで任意に変化させることが出来ることを特徴とする回転電機。2. The rotating electric machine according to claim 1, wherein the skew amount is arbitrarily changed to 1/2 of one side of the polygon of the spacer by changing the bridging width of the inner surface of the rotating core beyond 0 to 1/2 of one side of the polygon of the spacer. A rotating electric machine characterized by being able to do so. 請求項2の回転電機において、スペーサの多角形一辺の長さを変えることにより、スキュー量を変化させることが出来ることを特徴とする回転電機。3. The rotating electric machine according to claim 2, wherein a skew amount can be changed by changing a length of one side of the polygon of the spacer. 請求項1の回転電機において、回転鉄心及び非磁性体スペーサを回転子軸方向にK分割し、それぞれを請求項1による構成でスキューを形成したものを回転子軸上に直列に配置し、分割したそれぞれのスペーサを回転させて順次それぞれのスキュー量づつ回転方向にずらすことによって、分割された回転鉄心のスキュー量のK倍のスキュー量を形成することを特徴とする回転電機。The rotating electric machine according to claim 1, wherein the rotating core and the non-magnetic spacer are K-divided in the direction of the rotor axis, and skews formed by the configuration according to claim 1 are arranged in series on the rotor axis, and divided. A rotating electric machine characterized by forming a skew amount that is K times the skew amount of a divided rotating core by rotating each of the divided spacers and sequentially shifting the respective skew amounts in the rotation direction. 請求項1の回転電機において、N分割した回転鉄心を結合部材によって結合して回転子を形成する構造とすることによって、分割した回転鉄心がスペーサと接する面を開放された平面の組合せによる単純形状にすることにより加工を容易とし生産性及び精度の向上を図ることができるようにしたことを特徴とする回転電機。2. The rotary electric machine according to claim 1, wherein the rotor core formed by combining the N divided rotor cores with a coupling member forms a rotor, so that the divided rotor core has a simple shape formed by a combination of open planes in contact with a spacer. A rotating electric machine characterized by being capable of facilitating machining and improving productivity and accuracy. 永久磁石単独又は電磁石と併用して回転子を形成する回転電機において、起動トルクやコギングを少なくするため、固定子との空隙部のスキュー形成において、回転子鉄心に放射状に永久磁石を挿入するスロットを設け、回転子のシャフトに装着され、磁極がN極の場合にN角形の非磁性体でできたスペーサの辺に沿うように回転子鉄心の対峙面を形成し、軸方向にK等分に分割した積層鉄心に直方体の磁石でもスロットのギャップを生じることなくストレートに挿入できるようにしたそれぞれの回転子鉄心及びスペーサをそれぞれのスキュー量づつ角度をずらしてジグザグにスキューを形成し、更に回転子鉄心の外周に、ジグザグスキューによる磁気短絡や磁束の漏洩を極力少なくするようにスリット巾調整をした筒状磁極を形成してスキュー効果を持たせたことを特徴とする回転電機。In a rotating electric machine that forms a rotor by using a permanent magnet alone or in combination with an electromagnet, a slot for radially inserting a permanent magnet into a rotor core in forming a skew in a gap with a stator to reduce starting torque and cogging. Is mounted on the rotor shaft, and when the magnetic pole is the N pole, the opposing surface of the rotor core is formed along the side of the spacer made of N-sided non-magnetic material, and K equal in the axial direction The skew is formed in a zigzag manner by shifting the angle of each rotor core and spacer by each skew amount so that even a rectangular parallelepiped magnet can be inserted straight into the laminated iron core without generating a slot gap. A skew is formed by forming a cylindrical magnetic pole whose slit width is adjusted to minimize magnetic short-circuit and magnetic flux leakage due to zigzag skew around the outer core. Rotating electric machine, characterized in that which gave results. 請求項6において、ジグザグにスキューを形成するため同一鉄心にて形成できるようにジグザグのずらし角度のピッチに合わせて結合穴を形成した積層鉄心を用いた回転電機。7. The rotating electric machine according to claim 6, wherein a laminated core is formed with coupling holes in accordance with the pitch of the zigzag shift angle so that the zigzag skew can be formed with the same iron core. 請求項6において、磁気短絡や磁束の漏洩を極力少なくするようにしたスリットを形成した積層鋼板にて形成した筒状磁極にてスキュー効果を持たせたことを特徴とする回転電機。7. The rotating electric machine according to claim 6, wherein a skew effect is provided by a cylindrical magnetic pole formed of a laminated steel sheet having a slit formed so as to minimize magnetic short-circuit and magnetic flux leakage. 請求項6において、外部の筒状磁極ほどスキュー幅を大きくした複数の筒状磁極にてスキュー効果をより強くするように持たせたことを特徴とする回転電機。7. The rotating electric machine according to claim 6, wherein a plurality of cylindrical magnetic poles whose skew widths are increased as the external cylindrical magnetic poles are provided so as to further enhance the skew effect. 請求項6において、磁気短絡や磁束の漏洩を極力少なくするようにしたスリットを形成した筒状磁極と積層鉄心とを組み合わせて、回転子鉄心の外周部に筒状鉄心を配し、その外周部に積層鉄心を配したり、その逆の配置にて形成したりして、より効果的なスキュー効果を持たせたことを特徴とする回転電機。According to claim 6, a cylindrical magnetic pole having a slit formed to minimize magnetic short-circuit and magnetic flux leakage and a laminated iron core are combined, and a cylindrical iron core is arranged on an outer peripheral portion of a rotor core, and an outer peripheral portion thereof is provided. A rotating electric machine characterized by providing a more effective skew effect by arranging laminated iron cores on the other side or forming them in the reverse arrangement.
JP19640399A 1999-05-06 1999-06-08 Rotating electric machines and electromagnetic devices using magnets Expired - Fee Related JP3555016B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19640399A JP3555016B2 (en) 1999-06-08 1999-06-08 Rotating electric machines and electromagnetic devices using magnets
EP00303718A EP1052761A3 (en) 1999-05-06 2000-05-03 A rotary electric machine
KR1020000024002A KR100676237B1 (en) 1999-05-06 2000-05-04 A rotary electric machine
US09/564,807 US6617739B1 (en) 1999-05-06 2000-05-05 Rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19640399A JP3555016B2 (en) 1999-06-08 1999-06-08 Rotating electric machines and electromagnetic devices using magnets

Publications (2)

Publication Number Publication Date
JP2000354341A JP2000354341A (en) 2000-12-19
JP3555016B2 true JP3555016B2 (en) 2004-08-18

Family

ID=16357293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19640399A Expired - Fee Related JP3555016B2 (en) 1999-05-06 1999-06-08 Rotating electric machines and electromagnetic devices using magnets

Country Status (1)

Country Link
JP (1) JP3555016B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1289097A3 (en) * 2001-08-30 2003-05-21 Yukio Kinoshita Electric machine with toroidal coils
ATE369652T1 (en) * 2004-11-12 2007-08-15 Grundfos As PERMANENT MAGNET ROTOR
JP2009050099A (en) * 2007-08-21 2009-03-05 Yaskawa Electric Corp Rotor core, permanent magnet rotor, and permanent magnet synchronous electric rotating machine
JP5877777B2 (en) * 2012-09-26 2016-03-08 日立オートモティブシステムズ株式会社 Rotating electric machine, magnetic pole piece manufacturing method
JP6396648B2 (en) 2013-08-19 2018-09-26 Ntn株式会社 Generator
DE102016225890B3 (en) * 2016-12-21 2018-05-30 Magna powertrain gmbh & co kg Rotor for an electric machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140645A (en) * 1986-12-03 1988-06-13 Fuji Electric Co Ltd Rotor with permanent magnet
JPH0237553U (en) * 1988-08-30 1990-03-13
JP3028669B2 (en) * 1992-02-20 2000-04-04 ダイキン工業株式会社 Brushless DC motor
JPH089599A (en) * 1994-06-17 1996-01-12 Yaskawa Electric Corp Permanent magnet type rotor
JP3619885B2 (en) * 1995-02-15 2005-02-16 株式会社日立製作所 Permanent magnet rotor
JPH08298735A (en) * 1995-04-25 1996-11-12 Fuji Electric Co Ltd Cylindrical-permanent-magnet synchronous motor

Also Published As

Publication number Publication date
JP2000354341A (en) 2000-12-19

Similar Documents

Publication Publication Date Title
US6707209B2 (en) Reduced cogging torque permanent magnet electric machine with rotor having offset sections
US7595575B2 (en) Motor/generator to reduce cogging torque
US9143024B2 (en) Double-stator motor having various configurations for inner and outer windings
EP2190103B1 (en) Axial gap type coreless rotating machine
US5345131A (en) Electric motor with combined permanent and electromagnets
JP5502571B2 (en) Permanent magnet rotating electric machine
KR100676237B1 (en) A rotary electric machine
US8937417B2 (en) Rotating electric machine and wind power generation system
JP2000156947A (en) Magnet-type motor and power generator
WO2013061397A1 (en) Rotor of interior permanent magnet motor, compressor, and refrigeration and air-conditioning device
WO1989002670A1 (en) Armature for dc motor
KR20130066528A (en) Permanent magnet rotor and electric motor incorporating the rotor
JP5589418B2 (en) Method for manufacturing permanent magnet rotating machine
WO2018037529A1 (en) Rotary electric machine
CN109687610B (en) Switched reluctance motor
JP3555016B2 (en) Rotating electric machines and electromagnetic devices using magnets
CN113273057B (en) Interior permanent magnet electric machine with flux distribution gap
KR19990065127A (en) Rotor of embedded permanent magnet synchronous motor
JP2004336999A (en) Permanent magnet motor
WO2017212575A1 (en) Permanent magnet motor
JP2005051929A (en) Motor
JP4080273B2 (en) Permanent magnet embedded motor
JP5041415B2 (en) Axial gap type motor
US20220368183A1 (en) Rotor for a synchronous machine
KR20200085125A (en) Rotor for motor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees