JP2000353004A - 三次元加工方法及び三次元加工用制御プログラムを記録した媒体 - Google Patents

三次元加工方法及び三次元加工用制御プログラムを記録した媒体

Info

Publication number
JP2000353004A
JP2000353004A JP11164823A JP16482399A JP2000353004A JP 2000353004 A JP2000353004 A JP 2000353004A JP 11164823 A JP11164823 A JP 11164823A JP 16482399 A JP16482399 A JP 16482399A JP 2000353004 A JP2000353004 A JP 2000353004A
Authority
JP
Japan
Prior art keywords
curve
curved surface
expression
solution
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11164823A
Other languages
English (en)
Other versions
JP3201751B2 (ja
Inventor
Kenichi Honda
研一 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FA LAB KK
Lab Kk Fa
Original Assignee
FA LAB KK
Lab Kk Fa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FA LAB KK, Lab Kk Fa filed Critical FA LAB KK
Priority to JP16482399A priority Critical patent/JP3201751B2/ja
Priority to US09/568,513 priority patent/US6542785B1/en
Priority to EP00110723A priority patent/EP1061424B1/en
Priority to DE60006899T priority patent/DE60006899T2/de
Publication of JP2000353004A publication Critical patent/JP2000353004A/ja
Application granted granted Critical
Publication of JP3201751B2 publication Critical patent/JP3201751B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

(57)【要約】 【課題】 プログラムされたコンピュータによってフラ
イス盤等を用いて行う三次元加工において、他のシステ
ムで作成された型の異なる曲面定義式であっても取り込
んで一つの曲面式に統合し、曲面加工を可能とするこ
と。 【解決手段】 有理式又は非有理式の種々の型の複数の
曲面定義式を代数的方法又は解析的方法で変数u,vに
関する一つの統一式で定義し、切削に必要な曲面上の交
点計算を行い、切削走行を算出する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、フライス等の工作
機械で工作物に三次元加工を行うための加工方法、詳し
くは切削工具による切削曲面及び切削工具の切削移動中
心軌跡の演算制御に関する。
【0002】
【従来の技術】近年、コンピュータを利用して金属材料
に三次元加工を行う試みが種々開発され、実用に供され
ている。この種の三次元加工においては、切削工具の走
行によって切削される曲面(切削走行)を基準とする3
軸切削と、切削工具の移動中心軌跡(中心走行)を基準
とする2.5軸切削とに大別される。
【0003】いずれの切削方法においても、従来、切削
曲面は個別に張られ、乗り移り切削することによって異
なる曲面を連続的に削り出していた。例えば、図7に示
すように、三つの曲面#i,#j,#kを個別に定義し
(曲面#iに関するu,v、曲面#jに関するu,v、
曲面#kに関するu,v)、曲面#i、曲面#k、曲面
#jへと順次乗り移りつつ切削していた。このとき、曲
面の特性(座標系)に関係しない切削方向γによって一
連の軌跡の算出がなされた。この場合、曲面の特性によ
らない切削がなされ、曲面の起伏によっては切削が粗く
なったり、あるいは必要以上に細かくなって無駄な切削
を生じていた。さらには、曲面の乗り移り時における工
具の干渉を回避するためのチェック計算が多くなされ、
計算時間が多くなるという問題点を有していた。
【0004】この点に鑑みて、本出願人は特公平8−1
5701号公報に記載されているように、特性の異なる
複数の曲面を4次以下の多項式で定義して切削曲面を算
出する三次元加工方法を提案した。この方法によれば、
四則計算で簡単に根を求めることができ、変数u,vか
ら曲面上の点の決定、逆に曲面上の直交座標値(x,
y,z)からu,vの決定を高速で処理することができ
る。しかし、他のシステムで作られた曲面式を前記方法
を実行するコンピュータに取り込んで演算制御する場
合、曲面は通常、Spline、B−spline、N
urbus、Bezier等によって定義されており、
必ずしも多項式で表わされているとは限らず、何らかの
変換が必要である。
【0005】この点に鑑みて、本出願人は、さらに、特
許第2824424号公報に記載されているように、種
々の複数の曲面定義式を一つの有理式で定義し、切削に
必要な曲面上の交点S(u,v)を算出する三次元加工
方法を提案した。この方法は有理式の根を得ることに帰
し、種々の型の曲面定義式を変数u,vに関する一つの
曲面式に統合でき、切削走行の計算に関する時間の短
縮、加工精度の向上を図ることができた。
【0006】しかしながら、現在では、さらに種々の型
の曲面定義式が採用されており、算式では表わすことが
できない解析関数で表わされるものもあり、一つの有理
式で統合できない事態が生じている。
【0007】
【発明の目的、要旨及び効果】そこで、本発明の目的
は、広域な関数で作成された型の異なる曲面定義式であ
っても取り込んで一つの曲面式に統合し、迅速な演算で
好ましい形状の曲面加工を実行できる三次元加工方法及
び三次元加工用制御プログラムを記録した媒体を提供す
ることにある。
【0008】以上の目的を達成するため、本発明に係る
三次元加工方法では、曲面、曲線を表わす複数の型の異
なる定義式が代数的方法で解が求まるか、又は解析的方
法で解が求まるかを判別し、この判別結果に基づいて代
数的方法又は解析的方法で複数の定義式を基礎とする複
数の曲面を変数u,vに関する統一式で定義する。
【0009】即ち、曲面はu,vに関する連続関数によ
って、曲線はS(u,v)に関する連続関数によって定
義される。この定義式のなかには、多項式のように算式
で表わされるものもあれば、算式で表わすことができず
に一つの基準(u,v)を与えることで定義されるもの
もある。本発明は何らかの基準、 S(u,v)=f(u,v) が定義されたとき、これによって表わされる曲面、曲線
の交点、接点及び交線等の計算を直接行って計算精度の
向上を図る。勿論、これには一般的な連続関数に対して
なされるから、算式で表わされている曲面、曲線も含む
ことになる。
【0010】さて、交わりを求めることは、方程式の解
を得ることに帰する。解析関数で表わされる方程式の解
は、代数的方法又は解析的方法のいずれかで得ることが
できる。即ち、方程式の形式から代数的方法で解が得ら
れるときは代数的方法による。4次以下の多項式はこの
方法で解が得られる。一方、代数的方法で解が得られな
い場合は、解析的方法によることになり、いずれにして
も、広域な関数を扱うことが可能になる。
【0011】以上の結果、現在、様々な形式で表わされ
ている曲面、曲線が存在するが、本発明ではこれらを直
接的に相互に扱うことが可能になる。従来一般的には、
何れか一つの形式(Nurbus、Spline等)に
変換して計算がなされており、精度の低下は不可避であ
った。しかし、本発明では直接的に総合して計算を行う
ため、型の異なる複数の定義式から得られた曲面、曲線
は高精度となる。
【0012】前記特許第2824424号によって、N
urbus、Spline、Bezier等が有理式に
よって統一され、一つの関数として計算されることにな
った。本発明は一般連続関数を対象とし、前記特許発明
をさらに拡張して実用可能とするものである。
【0013】
【発明の実施の形態】以下、本発明に係る三次元加工方
法の実施形態について添付図面を参照して説明する。
【0014】(装置の説明)図1は本発明の加工方法を
実施するための装置の概略構成を示し、工作機械本体1
はベース2上にテーブル3を備え、コラム4上に切削工
具6を有する加工ヘッド5を取り付けたものである。テ
ーブル3はX軸DCモータ10及びY軸DCモータ11
にてX軸方向及びY軸方向に移動される。加工ヘッド5
はZ軸DCモータ12にてZ軸方向に駆動される。速度
制御は各モータ10,11,12へ各制御ユニット1
5,16,17から制御信号が出力されることで行われ
る。
【0015】一方、図形の入力/制御系は、16ビット
ないし32ビットのコンピュータ20、テープリーダ2
1、制御盤22にて構成されている。テープリーダ21
はJIS(日本工業規格)で定めたNCデータ、特に、
プログラムフォーマットとしてのGコードを読み出す。
コンピュータ20にはユーザによって3画面あるいは斜
視図として切削すべき図形情報が入力される。コンピュ
ータ20は記録媒体としてのフロピーディスク20aに
格納されている制御プログラムをCPU24に転送し、
以下に説明する演算を行う。
【0016】制御盤22は機械操作パネル23を備える
と共に、CPU24を内蔵し、このCPU24の入力ポ
ートaにはコンピュータ20及びテープリーダ21から
の図形情報等が転送される。CPU24は入力された図
形情報から切削データを生成し、その出力ポートb,
c,dから制御信号として前記制御ユニット15,1
6,17へ出力する。
【0017】以下、CPU24による切削データの生成
について詳述する。 (曲面)図2に示すように、曲面は直交座標系に関して
独立した二つの変数u,vに対して定義される。つま
り、0≦u≦1、0≦v≦1なるu,vに対して、空間
の一点を確定すべき基準(関数)Sが定められる。
【0018】この基準Sが微分可能(滑らか)であると
き、Sは曲面である。即ち、u,vに関する微分可能な
関数x,y,zによって、 x=x(u,v) y=y(u,v) z=z(u,v) とするとき、 S(u,v)=(x,y,z) とすることによって定義されるSが曲面であり、微分可
能であることにより、法線ベクトルに関して、 ηS/ηu ηS/ηv が存在する。さらに、本発明においては、トウィストベ
クトル η2S/ηuηv が存在するものとする。
【0019】切削工具を走行させて曲面を切削する本実
施形態において、工具の先端は一定の半径Rを有する球
である。従って、工具切削部の中心は曲面に対して、法
線方向に半径Rだけ離れた位置となる。即ち、工具の中
心走行を求めるには、法線ベクトルを定めなければなら
ない。曲面#s上の一点S(u,v)において、
【0020】
【数1】
【0021】とするとき、S(u,v)を通ってRu,
Rvを含む平面を接平面(図2中斜線を付した平面)と
いい、法線ベクトルNは、 N=Ru×Rv として定められる。この法線ベクトルNに対して、工具
中心走行点Pは、以下の式で定められる。 P=S(u,v)+ε・R・N … 但し、ε2=1(+1を表側、−1を裏側とする) R:工具半径
【0022】ところで、曲面#sはu,vに関する微分
可能な関数であるため、ここで必要なところまで微分可
能と考えられるならば、この関数はu,vに関する有理
式として、あるいは解析的対応関係として統一的に表現
することができる。これにより、u,vに対して曲面#
s上の点を求めるのに代数的方法又は解析的方法で根を
得ることができる。
【0023】例えば、ある曲面#aが三次spline
曲面として下式で定義され、
【0024】
【数2】
【0025】いまひとつの曲面#bが下式で定義され
ているとすると、
【0026】
【数3】
【0027】前式、は以下の一つの有理式で統合
される。
【0028】
【数4】
【0029】前記有理式を図形で例示すると、図3に
示すように表わされ、[a,b]内に根を求めることに
なる。この場合、解析的に収束される方法を採用する。
即ち、有理式の極値や変曲点を求め、これらの間の一点
に初期値を設定することによって根を求める。以上のプ
ロセスによって、どのような型の曲面定義式も変数u,
vに関する一つの曲面式に統合でき、計算速度が高速化
され、切削精度が向上することになる。
【0030】曲面が有理式として表されるが、これは一
つの曲面に関してなされる。従って、複数の曲面につい
ては、それぞれ固有のu,vに対して定義される有理式
となる。つまり、たとえ同型の有理式であるとしても、
それらの基準となるu,vが異なるため、全く異なった
ものとなる。しかし、本発明においては、これらの連続
する複数曲面に関して、同一のu,vに対する有理式と
して定義することによって複数の曲面を一つの曲面とし
て簡約することができる。例えば、図4に示すように、
同型の有理式で定義されている曲面#a,#bがあれ
ば、一つの有理式で曲面#cに簡約する。これにて、曲
面数が減少し、切削走行の算出に関する計算時間が減少
する。
【0031】ところで、交差曲線は、曲面と曲面との交
わりを求めることである。つまり、曲面と曲面とによる
連立方程式の解を得ることになる。そこで、 曲面a fa(u,v) 曲面b fb(u,v) とするとき、方程式 fa(u,v)=fb(u,v) の解が交差曲線になる。
【0032】fa(u,v)、fb(u,v)が共に有
理式のときは、前記方法による。少なくとも一方が有理
式でないときは、解析関数として、u,vに対して面上
点が与えられるという規準から解を解析的に得るのであ
る。一つの値から順次解に収束させていく方法により、
欲する所まで解に近づき得る。
【0033】(曲面定義)曲面は、設計者によって与え
られる3面図あるいは斜視図での図面記載事項が基本と
なり、これらを厳守しつつ定義される。図面には曲面の
輪郭となる曲線、断面曲線等が記されている。これらを
基本にして曲面の基本となる曲面定義ネットを作成す
る。曲面定義ネットとは設計者が意図する曲面であり、
曲面を創成する多数の格子点(パッチ)で構成され、こ
の曲面定義ネットによって曲面が必要な領域(パッチ)
に分割される。まず、それぞれのパッチに関する有理式
又は対応関係を決定し、曲面全体に関する統一式(有理
式又は解析関数)を決定する。
【0034】連続曲面に関しては、それぞれの曲面を表
現する統一式によって一つの曲面定義ネットを作成す
る。この曲面定義ネットによって連続曲面を一体面とし
て同一の特性に対して統一式で表現する。
【0035】具体的には、図5に示すように、ステップ
S1で他のCADデータ、CAMデータによる曲面、曲
線を入力し、ステップS2で曲面、曲線を表わす関係を
判別する。即ち、入力された全ての曲面、曲線が有理式
で表されており、代数的方法で解が求まるか、又は少な
くとも一つの曲面、曲線が有理式で表されておらず、解
析的方法で解が求まるかを判別する。全てが有理式で表
されていればステップS3で代数的方法を用いて解を求
める。有理式でない曲面、曲線が含まれていればステッ
プS4で解析的方法を用いて解を求める。ステップS3
又はS4で求めた解は変数u,vに関する統一式で定義
されており、次に、ステップS5で交点、交線を計算
し、ステップS6で工具の中心走行点を求め、NCデー
タを生成する。
【0036】(1.曲面定義ネット)曲面は図面記載事
項である曲線から設計者の意図するように定義される。
その曲面の形状を確定するために、曲面定義ネットを多
数の格子点(パッチ)によって定義する。曲面の特性に
従って、u方向及びv方向の曲線(u−曲線、v−曲
線)で曲面を分割し、この分割点の数をそれぞれm,n
とする。このとき、列 u0=0<u1<……<um=1 v0=0<v1<……<vn=1 に関して、u,vの組(uj,vi)に対して、 S(uj,vi) Su(uj,vi) Sv(uj,vi) Suv(uj,vi) を定義する。ここで、 Su(u,v)=ηS/ηu Sv(u,v)=ηS/ηv Suv(u,v)=η2S/ηuηv
【0037】このような曲面定義ネットを定めるには、
u,vから空間の一点Pへの微分可能な対応基準(関
数)を定義することになる。図6に示すように、曲面は
u−曲線に沿ってv−曲線が移動変化するという把え方
をする。与えられた図面に断面曲線が記されているとき
には、その曲線がv−曲線となる。このとき、v−曲線
がu−曲線に沿って微分可能な変化をしつつ移動するな
らば、u,vに対して定められる曲面上の一点Pへの対
応S(u,v)は、u,vに関して微分可能で、Su,
Sv,Suvは存在する。v−曲線の変化は形状とu−
曲線に対する位置が変化することになる。つまり、形状
と位置を決定する行列(方向)とが微分可能な変化をす
ることになる。この対応は、0≦u≦1、0≦v≦1で
あれば、u,vに対して定義されるから、uj,viに対
して、曲面定義ネットS(uj,vi)が作成される。
【0038】(2.曲面統一式)曲面定義ネットによっ
て切削すべき領域が定められる。ここで、領域 uj-1≦u≦uji-1≦v≦vi において、u,vに関する統一式Sjiを定義し、これら
jiの結合によって曲面を定義する。ここで定められる
統一式は次の条件(1)、(2)に従わなければならな
い。
【0039】(1)図面記載事項を厳守する。即ち、統
一式が図面において制約されている曲線、数値(寸法、
角等)を表現するものでなければならない。 (2)曲面定義ネットを作成するときの設計者の意図を
十分に反映したものでなければならない。設計者は自ら
意図する起伏を考えて曲面を設計する。統一式はこの設
計に合致するものでなければならない。
【0040】さて、領域における統一式の結合として曲
面を定義するとき、領域ごとに別々に定義された統一式
の結合がそれらの領域の境界において微分可能とならな
ければならない。本発明においては、(uj,vi)にお
ける S(uj,vi) Su(uj,vi) Sv(uj,vi) Suv(uj,vi) によって統一式を定義する。これらの値は意匠面(切削
面)の方程式(対応基準)から直ちに得られる。これら
を制約条件として統一式を定義すれば、設計者の意図す
る形状を保持する曲面が定義できる。本発明において
は、これらの格子点(パッチ)におけるS,Su,S
v,Suvを制約することによって全体を微分可能なら
しめることができる。
【0041】図面によっては通過点のみが記されている
場合がある。このような場合は、設計者の意図する形状
からSu,Sv,Suvが得られない。この場合は、各
領域に対して隣接する領域を関係しないで統一式を定め
ることができない。つまり、全ての領域の相互関係によ
って統一式を定義する。
【0042】(3.曲面連結)曲面はその特性(座標
系)を生かして定義される。従来において、特性の異な
る曲面は別の曲面として定義されていた。このため、切
削面が複雑な形状になればなる程、定義する曲面の数が
多くなり、計算が複雑となる。本発明においては、特性
の異なる曲面を連結し、改めて一つの曲面として同一の
特性に対する解析関数によって表現する。
【0043】曲面S,S’がそれぞれ特性に従ってある
関数によって表現されているとする。曲面Sに関するu
−曲線と曲面S’との交点Pを0≦uとする。このと
き、曲面Sに関して、u’,v’が存在して、P=S’
(u’,v’)となる。ここで、 {Su(u,v),
S’u(u’,v’)}≧{Su(u,v),S’v
(u’,v’)} としても一般性を失わない。このとき、u=0からu=
uまでは曲面Sのu−曲線をとり、u=u’からu=1
までは曲線S’のu’−曲線をとることにより、改めて
曲線が定義される。このような曲線をn本定義し、それ
ぞれの曲線をm分割することによって、曲面S,S’に
わたる曲面定義ネットが張られる。この曲面定義ネット
によって一つの曲面を定義すれば、曲面S,S’を結合
した一体的な曲面になる。しかも、この結合された曲面
はそれぞれの曲面S,S’の特性を維持している。
【0044】(工具走行)曲面が定義されると、その上
を工具が走行して切削を行う。工具の先端は一定の半径
Rを有する球であり、工具中心の位置は曲面から垂直に
Rだけ離れた点となる。つまり、曲面Sに関して、工具
中心走行点Pは前記式で定められている。
【0045】曲面S上の曲線に沿って工具が走行すると
き、その曲線上の点に対して点Pを求めることによって
工具中心走行位置が決定する。この方法は、曲面に対し
てR離れた点を定めることであり、従来では切削点の全
てにわたって法線ベクトルN(図2参照)を算出してい
た。法線ベクトルNの計算は曲面が数式で表現されてい
ないときは、近傍の点を少なくとも2点求めなければな
らず、そのために計算が煩雑となり時間を要する。
【0046】これに対して、本発明においては、曲面定
義ネットを定める(uj,vi)に対して前記式を用い
て点Pを決定し、これらの点に基づいて中心走行曲面と
しての曲面定義ネットを生成する。この曲面定義ネット
が定められると、このネットによって曲面を統一式によ
って定義することができる。このようにして定義された
曲面を※Sとすると、0≦u≦1、0≦v≦1なる全て
のu,vに対して、 ※S(u,v)=S(u,v)+ε・R・N … なるように、曲面統一式を定める。本発明における統一
式は十分小なる誤差以内でこの関係を成立させる。この
結果、工具の中心は曲面Sから求める必要がなくなり、
曲面※Sにおいてu,vに対する※S(u,v)を求め
ることになる。これは統一式のu,vに対する値を求め
る計算になり、従来の方法に比べて極めて簡単で、計算
速度は比較にならない程高速となる。
【図面の簡単な説明】
【図1】本発明を実施するための切削装置の概略構成
図。
【図2】曲面定義の説明図。
【図3】有理式の根を求める解析手法を説明するグラ
フ。
【図4】複数曲面の簡約の説明図。
【図5】制御手順の概略を示すフローチャート図。
【図6】曲面の把え方の説明図。
【図7】従来の三次元加工方法における複数曲面の切削
の説明図。
【符号の説明】
1…工作機械本体 3…テーブル 5…加工ヘッド 6…切削工具 15,16,17…制御ユニット 20…コンピュータ 20a…フロピーディスク 22…制御盤 24…CPU

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】 プログラムされたコンピュータによっ
    て、工作物に対して互いに直交するx軸、y軸、z軸を
    含む三次元加工を行う加工方法において、 曲面、曲線を表す複数の型の異なる定義式を入力する工
    程と、 入力された定義式が代数的方法で解が求まるか、又は解
    析的方法で解が求まるかを判別する工程と、 前記判別工程での判別に基づいて代数的方法又は解析的
    方法で複数の定義式を基礎とする複数の曲面を変数u,
    vに関する統一式で定義する工程と、 前記統一式を用いて求めた一点S(u,v)での法線ベ
    クトルNに対して、先端半径Rを有する切削工具の中心
    走行点Pを下式で求める工程と、 P=S(u,v)+ε・R・N 但し、ε2=1(+1を表側、−1を裏側とする) 前記中心走行点Pに従って切削工具を走行させ、工作物
    を加工する加工工程と、 を備えたことを特徴とする三次元加工方法。
  2. 【請求項2】 コンピュータによって工作物に対して三
    次元加工を行うためのプログラムを記録した媒体であっ
    て、 入力された曲面、曲線を表す複数の型の異なる定義式が
    代数的方法で解が求まるか、又は解析的方法で解が求ま
    るかを判別し、 前記判別結果に基づいて代数的方法又は解析的方法で複
    数の定義式を基礎とする複数の曲面を変数u,vに関す
    る統一式で定義し、 前記統一式を用いて求めた一点S(u,v)での法線ベ
    クトルNに対して、先端半径Rを有する切削工具の中心
    走行点Pを下式で求め、 P=S(u,v)+ε・R・N 但し、ε2=1(+1を表側、−1を裏側とする) 前記切削工具による切削に必要な交点を算出すること、 を特徴とする三次元加工用制御プログラムを記録した媒
    体。
JP16482399A 1999-06-11 1999-06-11 三次元加工方法及び三次元加工用制御プログラムを記録した媒体 Expired - Lifetime JP3201751B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16482399A JP3201751B2 (ja) 1999-06-11 1999-06-11 三次元加工方法及び三次元加工用制御プログラムを記録した媒体
US09/568,513 US6542785B1 (en) 1999-06-11 2000-05-11 Method for determining whether solutions of three-dimensional machining functions can be figured out by an algebraic method or an analytic method
EP00110723A EP1061424B1 (en) 1999-06-11 2000-05-19 Three-dimensional machining method
DE60006899T DE60006899T2 (de) 1999-06-11 2000-05-19 Dreidimensionales Bearbeitungsverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16482399A JP3201751B2 (ja) 1999-06-11 1999-06-11 三次元加工方法及び三次元加工用制御プログラムを記録した媒体

Publications (2)

Publication Number Publication Date
JP2000353004A true JP2000353004A (ja) 2000-12-19
JP3201751B2 JP3201751B2 (ja) 2001-08-27

Family

ID=15800604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16482399A Expired - Lifetime JP3201751B2 (ja) 1999-06-11 1999-06-11 三次元加工方法及び三次元加工用制御プログラムを記録した媒体

Country Status (4)

Country Link
US (1) US6542785B1 (ja)
EP (1) EP1061424B1 (ja)
JP (1) JP3201751B2 (ja)
DE (1) DE60006899T2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10065422A1 (de) * 2000-12-27 2002-07-18 Siemens Ag Verfahren und Steuerung zur Erstellung und Optimierung flexibler, hochwertiger Kurvenscheibenfunktionen direkt über das Steuerungsprogramm / Anwenderprogramm
US7377037B2 (en) * 2004-05-25 2008-05-27 General Electric Company Fillet machining method without adaptive probing
JP5845228B2 (ja) * 2013-10-23 2016-01-20 ファナック株式会社 工具経路曲線化装置
JP6956138B2 (ja) * 2019-04-25 2021-10-27 ファナック株式会社 波形表示装置、及び波形表示方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183304A (ja) 1989-01-10 1990-07-17 Fanuc Ltd 複合曲面切削における複合曲面生成方法
JP2800861B2 (ja) * 1991-11-19 1998-09-21 株式会社 エフ・エーラボ 三次元加工方法
EP0707252B1 (en) 1994-10-13 1998-06-03 Kabushiki Kaisha F A Labo Three-dimensional machining method
JP2824424B2 (ja) 1996-11-07 1998-11-11 株式会社エフ・エーラボ 三次元加工方法

Also Published As

Publication number Publication date
US6542785B1 (en) 2003-04-01
EP1061424A3 (en) 2001-01-03
DE60006899T2 (de) 2004-10-28
EP1061424A2 (en) 2000-12-20
EP1061424B1 (en) 2003-12-03
JP3201751B2 (ja) 2001-08-27
DE60006899D1 (de) 2004-01-15

Similar Documents

Publication Publication Date Title
JP2824424B2 (ja) 三次元加工方法
Xu et al. A mapping-based approach to eliminating self-intersection of offset paths on mesh surfaces for CNC machining
Lasemi et al. A freeform surface manufacturing approach by integration of inspection and tool path generation
Ye et al. Geometric parameter optimization in multi-axis machining
Tapie et al. Topological model for machining of parts with complex shapes
JPH07311858A (ja) 自由曲面作成方法及び自由曲面作成装置
JP3201751B2 (ja) 三次元加工方法及び三次元加工用制御プログラムを記録した媒体
Fleisig et al. Techniques for accelerating B-rep based parallel machining simulation
JP4981313B2 (ja) 3次元形状処理装置及び曲面作成プログラム並びに曲面作成方法
JP2003181745A (ja) 三次元加工方法
Nie et al. Integrated and efficient cutter-workpiece engagement determination in three-axis milling via voxel modeling
JP6896144B2 (ja) 工具経路生成方法
JP2001142516A (ja) 三次元加工方法
JPH0815701B2 (ja) 三次元加工方法
JP2005157777A (ja) Cadデータ作成装置および方法
JPH0619992A (ja) Cadシステム
Kumazawa Generating efficient milling tool paths according to a preferred feed direction field
JP2007286858A (ja) 面モデルの作成装置と作成方法
JPS63123658A (ja) 形状加工用工具経路デ−タ作成方法
JP2001134311A (ja) 加工データ作成方法及び加工データ作成装置並びに記録媒体
Luo et al. Free form surface representation and machining for complex parts
JPH07334221A (ja) 自由曲面加工データ作成方法及び自由曲面加工データ作成装置
Abbas et al. Automatic Tool Path Generation for Parametric Surfaces
Tahseen Automatic Tool Path Generation for Parametric Surfaces
Bey et al. A new approach for finishing free-form surfaces based on local shapes

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3201751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term