JP2000351093A - Soldering material, and electronic parts using it - Google Patents

Soldering material, and electronic parts using it

Info

Publication number
JP2000351093A
JP2000351093A JP11162888A JP16288899A JP2000351093A JP 2000351093 A JP2000351093 A JP 2000351093A JP 11162888 A JP11162888 A JP 11162888A JP 16288899 A JP16288899 A JP 16288899A JP 2000351093 A JP2000351093 A JP 2000351093A
Authority
JP
Japan
Prior art keywords
weight
chip
content
soldering
solder material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11162888A
Other languages
Japanese (ja)
Inventor
Toshinori Kogashiwa
俊典 小柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP11162888A priority Critical patent/JP2000351093A/en
Publication of JP2000351093A publication Critical patent/JP2000351093A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soldering material which is small in initial void generation ratio, excellent in heat fatigue resistance in soldering parts largely different in coefficient of thermal expansion from each other, and capable of improving the level in die bonding an IC chip by specifying the Pb content and the Bi and Sb contents in the soldering material having the composition consisting of Sn, In and Ag of specified ratio and the balance Pb with inevitable impurities. SOLUTION: The soldering material has the composition consisting of, by weight, 2.0-3.0% Sn, 0.001-0.2% In, 0-2.0% Ag, and the balance Pb with inevitable impurities, and the Pb content is 95.5-97.99%, and the Bi and Sb contents are <=0.005%. In addition, metallic or non-metallic particles of high melting point are preferably contained by 0.001 to 5.0%, and the soldering material is suitable for soldering the IC chip to a substrate having a Ni or Cu surface. The particles of high melting point include metallic particles such as Cu and Ni, and non-metallic particles of oxide such as SiO2 and carbide such as SiC.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はPbを主成分とした
高温半田材料に関し、特に、半導体装置用ICチップの
ダイボンディングの接続に用いて好適な半田材料、およ
びそれを用いた電子部品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature solder material containing Pb as a main component, and more particularly to a solder material suitable for die bonding of an IC chip for a semiconductor device and an electronic component using the same.

【0002】[0002]

【従来の技術】従来、電子部品の半田付けにはSn−P
bを基本組成とした半田材料が用いられているが、特に
63Sn−37Pb近傍組成の半田は融点が183℃前後と
低いため、電子部品への熱影響が少ないとして幅広く使
用されている。一方、半田接合部分は、電子部品の動作
状態における温度上昇と非動作状態における常温との繰
り返し温度変化を受けるが、特に接合部品同士の熱膨張
係数の差異に起因する繰り返し歪みの疲労から、半田接
合部分にクラックが発生し進展して、接合強度ならびに
電気的接続の信頼性を低下させる虞れがある。
2. Description of the Related Art Conventionally, when soldering electronic parts, Sn-P
A solder material having a basic composition of b is used.
Since the melting point of 63Sn-37Pb composition is as low as about 183 ° C., it is widely used because it has little thermal effect on electronic components. On the other hand, the solder joints are subject to repeated temperature changes between a temperature rise in an operating state of the electronic component and a normal temperature in a non-operating state. There is a concern that cracks may occur at the joints and develop to reduce the joint strength and the reliability of the electrical connection.

【0003】この為、耐熱疲労性能を向上させるため
に、Sn−Pb半田をベースとしこれにBi,Ga,I
n,Sb等の微量元素を添加して耐熱疲労性能を改善し
た提案がなされている。例えば、特開平7−19519
1号にはPb主成分にBiを1重量%以上、Snを2重
量%以上、それぞれPbに対して室温で固溶限以内添加
すると共に、更にTe,Ge,Ni,Ga,Cu,I
n,Agの何れか1種以上をPbに対して室温で固溶限
以内添加した高温半田が提案されている。また特開平1
1−5189号には、ボールまたはバンプ形状を有する
はんだの耐疲労性を高める為に、Pb−Sn半田をベー
スとしてこれにBi,Sb等を添加した半田材料が提案
されている。しかしながら、最近の高密度実装化の流れ
の中で、電子部品の動作状態における温度変化はより過
酷になってきており、クラック発生速度をさらに抑制し
得る半田材料が要求されている。
[0003] Therefore, in order to improve the thermal fatigue resistance, Sn-Pb solder is used as a base, and Bi, Ga, I
Proposals have been made to improve the thermal fatigue resistance by adding trace elements such as n and Sb. For example, JP-A-7-19519
In No. 1, Bi was added to Pb as a main component in an amount of 1% by weight or more and Sn was added in an amount of 2% by weight or more to Pb at room temperature within a solid solubility limit.
A high-temperature solder in which at least one of n and Ag is added to Pb at room temperature within a solid solubility limit has been proposed. Also, JP
No. 1-5189 proposes a solder material in which Bi, Sb or the like is added to a Pb-Sn solder as a base in order to enhance the fatigue resistance of a solder having a ball or bump shape. However, in the recent flow of high-density mounting, the temperature change in the operating state of electronic components has become more severe, and a solder material that can further suppress the crack generation speed is required.

【0004】[0004]

【発明が解決しようとする課題】前述の要求に加えて、
ICチップを基板に接続する際には、半田付けしたIC
チップの水平度が要求される為、高さ方向の均質性を保
持しながら拡がる半田材料が要求されている。例えば、
図1に示すICチップの電極と外部リードを配線した状
態を参照して説明すれば、図中の符号1はダイ、2は半
田、3はNiめっき、4はICチップ、5は電極、6は
配線(金線)、7は外部リードである。この時、ICチ
ップ4をダイ1にダイボンディングするに際し、ICチ
ップ4が傾斜して接続されると、配線6の高さが高いも
のが発生し、半導体装置の薄型化を阻害することになっ
たり、十分に樹脂封止がなされない配線が発生してトラ
ブルが生じたりする可能性がある。
SUMMARY OF THE INVENTION In addition to the above requirements,
When connecting the IC chip to the board, the soldered IC
Since the horizontality of the chip is required, a solder material that spreads while maintaining homogeneity in the height direction is required. For example,
Referring to the state in which the electrodes and external leads of the IC chip shown in FIG. 1 are wired, reference numeral 1 in the figure indicates a die, 2 indicates solder, 3 indicates Ni plating, 4 indicates an IC chip, 5 indicates an electrode, 6 Is a wiring (gold wire), and 7 is an external lead. At this time, when the IC chip 4 is die-bonded to the die 1, if the IC chip 4 is connected at an angle, the wiring 6 may have a high height, which hinders the thinning of the semiconductor device. Also, there is a possibility that a trouble occurs due to the occurrence of wiring that is not sufficiently sealed with resin.

【0005】本発明は上記したような問題点を解決する
ために提案されたものであって、半田材料の初期ボイド
発生率が小さいと共に、Siを用いたICチップのダイ
ボンドのように熱膨張係数が大きく異なる部品を半田接
合した際、接合した半田材料の耐熱疲労性に優れてお
り、さらにICチップをダイボンディングした際の水平
度を向上することが出来る半田材料、およびその半田材
料を用いてなる電子部品を提供することを目的とする。
The present invention has been proposed in order to solve the above-mentioned problems, and has a low initial void generation rate of a solder material and a thermal expansion coefficient such as die bonding of an IC chip using Si. When soldering components that differ greatly from each other, using a solder material that excels in thermal fatigue resistance of the joined solder material and that can improve the levelness when IC chips are die-bonded, and using that solder material It is an object to provide an electronic component.

【0006】[0006]

【課題を解決するための手段】以上の目的を達成するた
めに、本願発明者等は鋭意研究を重ねた結果、所定量の
Sn,In,Pb及び選択的なAgの共存と、Bi,S
bの含有量を所定以下とすることで、前述の課題を達成
できることを知見し、本発明に至った。すなわち本発明
は請求項1記載のように、2.0〜3.0重量%Sn、
0.001〜0.2重量%In、0〜2.0重量%A
g、及び残部がPbと不可避不純物からなり、前記Pb
含有量が95.5〜97.99重量%で、且つBi,S
b含有量が各々0.005重量%以下である半田材料で
ある。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted intensive studies and as a result, have found that the coexistence of a predetermined amount of Sn, In, Pb and selective Ag, Bi, S
The inventors have found that the above-mentioned object can be achieved by setting the content of b to a predetermined value or less, and have reached the present invention. That is, the present invention provides, as described in claim 1, 2.0 to 3.0% by weight of Sn,
0.001 to 0.2% by weight In, 0 to 2.0% by weight A
g and the remainder consist of Pb and unavoidable impurities.
When the content is 95.5 to 97.9% by weight and Bi, S
The solder material has a b content of 0.005% by weight or less.

【0007】また本発明は請求項2記載のように、2.
0〜3.0重量%Sn、0.05〜0.2重量%In、
0.5〜2.0重量%Ag、及び残部がPbと不可避不
純物からなり、前記Pb含有量が95.5〜97.45
重量%で、且つBi,Sb含有量が各々0.005重量
%以下である半田材料である。
According to the present invention, there is provided the present invention as described in claim 2.
0-3.0 wt% Sn, 0.05-0.2 wt% In,
0.5 to 2.0% by weight of Ag, and the balance is composed of Pb and unavoidable impurities, and the Pb content is 95.5 to 97.45.
It is a solder material having a content of Bi and Sb of 0.005% by weight or less, respectively.

【0008】請求項1又は2記載の半田材料において、
金属または非金属の粒子を0.001〜5.0重量%を
さらに含有すると良い。
[0008] The solder material according to claim 1 or 2,
It is preferable to further contain 0.001 to 5.0% by weight of metal or nonmetal particles.

【0009】本発明に係る電子部品は、Ni又はCu表
面を有する基板にICチップを半田付けしてなり、該半
田付けに用いる材料が、2.0〜3.0重量%Sn、
0.001〜0.2重量%In、0〜2.0重量%A
g、及び残部がPbと不可避不純物からなる半田材料で
あって、該半田材料中のPb含有量が95.5〜97.
99重量%で、且つBi,Sb含有量が各々0.005
重量%以下であることを特徴とする。
The electronic component according to the present invention is obtained by soldering an IC chip to a substrate having a Ni or Cu surface, and the material used for the soldering is 2.0 to 3.0% by weight of Sn,
0.001 to 0.2% by weight In, 0 to 2.0% by weight A
g, and the balance is a solder material comprising Pb and unavoidable impurities, and the Pb content in the solder material is 95.5 to 97.
99% by weight and the content of Bi and Sb is 0.005 each.
% By weight or less.

【0010】[0010]

【発明の実施の形態】以下、実施の形態に基づいて本発
明をさらに説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be further described based on embodiments.

【0011】本発明に係る半田材料の組成において、原
料としてのPbは99.9重量%以上の高純度Pbを用
いることが好ましい。さらに好ましくは99.99重量
%以上である。Pb原料が高純度である程、不可避不純
物中に、前述した本発明の課題に対する有害元素である
Sb,Bi等の混入を避けることができるためである。
In the composition of the solder material according to the present invention, Pb as a raw material is preferably high purity Pb of 99.9% by weight or more. More preferably, it is 99.99% by weight or more. This is because the higher the purity of the Pb raw material, the more unavoidable impurities can be prevented from being mixed with Sb, Bi, and the like, which are harmful elements to the problems of the present invention.

【0012】所定量のSn,In又はそれに加えてAg
との共存において、Pb含有量は95.5〜97.99
重量%であることが必要である。Pb含有量が95.5
重量%未満の場合及び97.99重量%を越えた場合、
耐熱疲労サイクル数(耐熱疲労性)の向上が不十分であ
ると共に、ICチップをダイボンドした時の傾斜が大き
くなってくる。また、耐熱疲労サイクル数の向上の為の
さらに好ましいPb含有量は、95.5〜97.45重
量%である。
A predetermined amount of Sn, In or in addition to Ag
In the presence of Pb, the Pb content was 95.5 to 97.9.
It must be in weight percent. Pb content is 95.5
If it is less than 9% by weight or more than 97.9% by weight,
The improvement in the number of heat-resistant fatigue cycles (heat-resistant fatigue resistance) is insufficient, and the inclination when the IC chip is die-bonded becomes large. Further, a more preferable Pb content for improving the number of heat-resistant fatigue cycles is 95.5 to 97.45% by weight.

【0013】所定量のPb,In又はそれに加えてAg
との共存において、Sn含有量は2.0〜3.0重量%
であることが必要である。Sn含有量が2.0重量%未
満の場合及び3.0重量%を越えた場合、耐熱疲労サイ
クル数の向上が不十分であと共に、ICチップをダイボ
ンドした時の傾斜が大きくなってくる。
[0013] Predetermined amount of Pb, In or in addition to Ag
And Sn content is 2.0 to 3.0% by weight.
It is necessary to be. If the Sn content is less than 2.0% by weight or exceeds 3.0% by weight, the number of cycles of heat-resistant fatigue is insufficiently improved, and the inclination when the IC chip is die-bonded becomes large.

【0014】所定量のPb,Sn又はそれに加えてAg
との共存において、In含有量は0.001〜0.2重
量%であることが必要である。In含有量が0.001
重量%未満の場合及び0.2重量%を越えた場合、耐熱
疲労サイクル数の向上が不十分であると共に、ICチッ
プをダイボンドした時の傾斜が大きくなってくる。ま
た、0.2重量%を越えた場合、初期ボイドの発生が大
きいという欠点を有している。また、耐熱疲労サイクル
数の向上の為にさらに好ましいIn含有量は、0.05
〜0.2重量%である。
A predetermined amount of Pb, Sn or, in addition, Ag
, The In content needs to be 0.001 to 0.2% by weight. In content 0.001
If the amount is less than 0.2% by weight or more than 0.2% by weight, the number of thermal fatigue cycles is insufficiently improved, and the inclination when the IC chip is die-bonded becomes large. In addition, when the content exceeds 0.2% by weight, there is a disadvantage that initial voids are largely generated. Further, the more preferable In content for improving the number of heat-resistant fatigue cycles is 0.05%.
~ 0.2% by weight.

【0015】所定量のPb,Sn及びInとの共存にお
いて、Agを0〜2.0重量%含有することが出来る。
Ag含有量が2.0重量%を越えると、耐熱疲労サイク
ル数の向上が不十分であると共に、ICチップをダイボ
ンドした時の傾斜が大きくなってくる。耐熱疲労サイク
ル数の向上の為のさらに好ましいAg含有量は、0.5
〜2.0重量%である。
Ag can be contained in an amount of 0 to 2.0% by weight in the presence of a predetermined amount of Pb, Sn and In.
If the Ag content exceeds 2.0% by weight, the improvement in the number of thermal fatigue cycles is insufficient, and the inclination when the IC chip is die-bonded becomes large. A more preferable Ag content for improving the number of heat-resistant fatigue cycles is 0.5
~ 2.0% by weight.

【0016】本発明において、半田材料中のBi及びS
bの含有量は、各々0.005重量%以下であることが
必要である。Bi,Sbのうち、少なくとも何れか一方
を0.005重量%を越えて含有すると、耐熱疲労サイ
クル数の向上が不十分であると共に、ICチップをダイ
ボンドした時の傾斜が大きくなってくる。また初期ボイ
ドの発生が大きくなってくる。
In the present invention, Bi and S in the solder material
The content of b must be 0.005% by weight or less. If at least one of Bi and Sb is contained in excess of 0.005% by weight, the improvement in the number of heat-resistant fatigue cycles will be insufficient, and the inclination when the IC chip is die-bonded will increase. Also, the generation of initial voids increases.

【0017】本発明に係る半田材料は、テープ,ワイ
ヤ,ペレット等に加工して用いる事が出来る。また、高
融点粒子を混入させた複合材料として使用することも出
来る。テープ,ワイヤの加工方法としては次の方法が例
示出来る。テープの場合、インゴットに鋳造した後、圧
延、スリッター加工を施して所定寸法のテープ形状に仕
上げる。テープ寸法としては厚さ0.05〜0.5m
m、幅0.5〜5.0mmの範囲が選ばれる。ワイヤの
場合は、インゴットの押出し又は溶湯を水中へ噴出する
急冷方法により素線を得た後、伸線加工により所定寸法
のワイヤ状に仕上げる。ワイヤ寸法としては、直径0.
05〜5.0mmの範囲が選ばれる。ペレットは、テー
プをプレス加工したり、剪断加工して製造する。
The solder material according to the present invention can be used after being processed into tapes, wires, pellets and the like. It can also be used as a composite material mixed with high melting point particles. The following method can be exemplified as a method of processing a tape or a wire. In the case of a tape, it is cast into an ingot, and then subjected to rolling and slitting to finish it into a tape shape having a predetermined dimension. The tape size is 0.05-0.5m in thickness
m and a range of 0.5 to 5.0 mm in width are selected. In the case of a wire, a strand is obtained by extrusion of an ingot or a quenching method in which a molten metal is jetted into water, and then finished into a wire having a predetermined dimension by wire drawing. As the wire size, a diameter of 0.
A range of from 0.05 to 5.0 mm is selected. Pellets are produced by pressing or shearing tape.

【0018】本発明になる半田材料を、ICチップを基
板に接合するダイボンディング用に用いる際、ICチッ
プと基板の水平度をより向上させるために、本発明組成
の半田材料に高融点粒子を混入させた複合材料として用
いることができる。高融点粒子の融点は400℃以上、
その含有量は0.001〜5.0重量%、粒子の径辺寸
法は5〜100μmであることが好ましい。高融点粒子
の材質としては、Cu,Ni等の金属粒子、SiO2 等
の酸化物、SiC等の炭化物等の非金属粒子が例示でき
る。
When the solder material according to the present invention is used for die bonding for joining an IC chip to a substrate, high melting point particles are added to the solder material of the composition of the present invention in order to further improve the horizontality between the IC chip and the substrate. It can be used as a mixed composite material. The melting point of the high melting point particles is 400 ° C. or higher,
The content is preferably 0.001 to 5.0% by weight, and the diameter of the particles is preferably 5 to 100 μm. Examples of the material of the high melting point particles include metal particles such as Cu and Ni, oxides such as SiO2, and nonmetal particles such as carbides such as SiC.

【0019】本発明になる半田材料は、半田付け被接合
材がNi、Cu又は被接合材基材にNi被膜が施されて
いる場合に好ましく用いられる。Ni被膜の形成方法は
めっき、蒸着等の方法が用いられる。蒸着によるNi被
膜の厚さは1000〜3000オングストロームが好ま
しい。
The solder material according to the present invention is preferably used when the material to be soldered is Ni, Cu or a material to be bonded is coated with a Ni film. As a method for forming the Ni film, a method such as plating or vapor deposition is used. The thickness of the Ni film formed by vapor deposition is preferably 1000 to 3000 Å.

【0020】[0020]

【実施例】[実施例1]99.99重量%以上の高純度P
bに、Sn,Inを表1に示す含有量となるように添加
して溶解、鋳造し、得られたインゴットを圧延、プレス
加工して0.1mm厚さ×5mm×4mmの半田ペレッ
トを作成した。この半田ペレットを用いて、測定試験に
用いる試料を図2の通り作成した。図中の符号1は銅製
ダイ、2は前記半田ペレットになる半田、4はSi製I
Cチップ(0.4mm厚さ×5mm×4mm)、3はI
Cチップ上のNi膜である。前述の半田ペレットを図2
の半田2の位置にセットして試料を組み立て、350℃
の炉中でダイボンドして試料を作成し、初期ボイド発生
率、耐熱疲労サイクル数、ICチップの傾斜について測
定した。以下にその測定方法を説明する。
[Example 1] High purity P of 99.99% by weight or more
b, Sn and In were added so as to have the contents shown in Table 1, melted and cast, and the obtained ingot was rolled and pressed to prepare a solder pellet having a thickness of 0.1 mm × 5 mm × 4 mm. did. Using this solder pellet, a sample used for a measurement test was prepared as shown in FIG. In the drawing, reference numeral 1 denotes a copper die, 2 denotes solder that becomes the solder pellet, and 4 denotes an Si I
C chip (0.4mm thickness x 5mm x 4mm), 3 is I
This is a Ni film on the C chip. Fig. 2
Set at the position of the solder 2 of the above, and assemble the sample.
A sample was prepared by die bonding in a furnace of No. 1, and the initial void generation rate, the number of thermal fatigue cycles, and the inclination of the IC chip were measured. The measurement method will be described below.

【0021】図2に示すダイボンディングした試料の上
部から軟X線を照射して透過像を作成し、透過像の濃淡
を画像解析して平面でみた淡色部分の比率を測定し、初
期ボイド発生率(%)とした。その結果を表2に示す。
A transmission image is created by irradiating soft X-rays from above the die-bonded sample shown in FIG. 2, and the density of the transmission image is analyzed by analyzing the density of the transmission image to measure the ratio of the light-colored portion viewed on a plane, and the initial void generation is performed. Rate (%). Table 2 shows the results.

【0022】図2に示すダイボンディングした試料を−
65℃〜+150℃を繰り返す雰囲気中に晒した後、前
記試料の上部から軟X線を照射して透過像を作成し、透
過像の濃淡を画像解析して平面でみた淡色部分の比率を
測定し、クラック発生率(%)とした。クラック発生率
40%になるまでのサイクル数を測定し、耐熱疲労サイ
クル数とした。その測定結果を表2に示す。
The die-bonded sample shown in FIG.
After being exposed to an atmosphere of 65 ° C to + 150 ° C repeatedly, a soft X-ray is irradiated from the top of the sample to form a transmission image, and the density of the transmission image is analyzed to measure the ratio of the light-colored portion viewed on a plane. And the crack occurrence rate (%). The number of cycles until the crack occurrence rate reached 40% was measured and defined as the number of heat-resistant fatigue cycles. Table 2 shows the measurement results.

【0023】図2に示すダイボンディングした試料断面
の顕微鏡写真(100倍)から、ICチップ4と基板1
間の半田厚さ(図2に於けるh1,h2)を測定した。
h1,h2のうち小さい方を基準に比率を求め(例:h
2/h1)、ICチップの傾斜とした。10個の試料に
ついて測定し、その平均値をICチップの傾斜とした。
その測定結果を表2に示す。
From the micrograph (100 times) of the cross section of the die-bonded sample shown in FIG.
The thickness of the solder between them (h1, h2 in FIG. 2) was measured.
The ratio is calculated based on the smaller one of h1 and h2 (example: h
2 / h1), the inclination of the IC chip. The measurement was performed on ten samples, and the average value was defined as the inclination of the IC chip.
Table 2 shows the measurement results.

【0024】[実施例2〜22、比較例1〜10]9
9.99重量%以上の高純度PbにSn,In,Ag,
Sb,Biを、表1,表3に示す含有量となるように添
加したこと以外は実施例1と同様に試料を作成して測定
を行った。その結果を表2,表4に示す。
[Examples 2 to 22, Comparative Examples 1 to 10] 9
High purity Pb of 9.99% by weight or more is added to Sn, In, Ag,
A sample was prepared and measured in the same manner as in Example 1 except that Sb and Bi were added so as to have the contents shown in Tables 1 and 3. The results are shown in Tables 2 and 4.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】以上の測定結果から、以下のことが確認で
きた。本発明の半田組成を有する実施例1〜22のもの
(請求項1の実施例)は、耐熱疲労サイクル数が100
0以上、初期ボイド発生率が5〜10%、ICチップの
傾斜が1.5以下と、優れたものであった。さらに、S
n,In,Agの含有量が2.0〜3.0重量%Sn、
0.05〜0.2重量%In、0.5〜2.0重量%A
gである実施例7〜21のもの(請求項2の実施例)
は、耐熱疲労サイクル数が1250以上、初期ボイド発
生率が5%と、さらに優れたものであった。
From the above measurement results, the following was confirmed. In Examples 1 to 22 having the solder composition of the present invention (Example of Claim 1), the number of heat-resistant fatigue cycles was 100%.
0 or more, the initial void generation rate was 5 to 10%, and the inclination of the IC chip was 1.5 or less, which was excellent. Furthermore, S
the content of n, In, and Ag is 2.0 to 3.0% by weight Sn;
0.05-0.2% by weight In, 0.5-2.0% by weight A
g of Examples 7 to 21 (Example of Claim 2)
Was more excellent, with the number of thermal fatigue cycles being 1250 or more and the initial void generation rate being 5%.

【0030】これに対し、Sn以外は本発明の組成範囲
にありながら、Sn含有量が2.0重量%未満である比
較例1,2及びSn含有量が3.0重量%を越える比較
例3のものは、耐熱疲労サイクル数が750、ICチッ
プの傾斜が2.0と、本発明の課題に対し不十分なもの
であった。また、In以外は本発明の組成範囲にありな
がら、Inを含有しない比較例4のものは、耐熱疲労サ
イクル数が750、ICチップの傾斜が2.0と、本発
明の課題に対し不十分なものであった。In以外は本発
明の組成範囲にありながら、In含有量が0.2重量%
を越える比較例5のものは、耐熱疲労サイクル数が50
0、初期ボイド発生率が20%、ICチップの傾斜が
2.5と、本発明の課題に対し不十分なものであった。
Ag以外は本発明の組成範囲にありながら、Ag含有量
が2.2重量%を越える比較例6のものは、耐熱疲労サ
イクル数が750、ICチップの傾斜が2.5と、本発
明の課題に対し不十分なものであった。Pb以外は本発
明の組成範囲にありながら、Pb含有量が95.5重量
%未満である比較例7のものは、耐熱疲労サイクル数が
850、ICチップの傾斜が2.5と、本発明の課題に
対し不十分なものであった。Sb,Bi以外は本発明の
組成範囲にありながら、Sb,Bi含有量が1.0〜
2.0重量%である比較例8〜10のものは、耐熱疲労
サイクル数が250、初期ボイド発生率が20〜30
%、ICチップの傾斜が2.5と、本発明の課題に対し
不十分なものであった。
On the other hand, Comparative Examples 1 and 2 in which the Sn content is less than 2.0% by weight and Comparative Examples in which the Sn content exceeds 3.0% by weight, except for the composition range of the present invention except for Sn. Sample No. 3 was insufficient for the object of the present invention, with the number of heat-resistant fatigue cycles being 750 and the slope of the IC chip being 2.0. In addition, the composition of Comparative Example 4 containing no In except for In was in the composition range of the present invention, but the number of heat-resistant fatigue cycles was 750 and the slope of the IC chip was 2.0, which was insufficient for the object of the present invention. It was something. Except for In, the content of In is 0.2% by weight while being within the composition range of the present invention.
In Comparative Example 5, the number of thermal fatigue cycles was 50 or more.
0, the initial void generation rate was 20%, and the inclination of the IC chip was 2.5, which was insufficient for the object of the present invention.
Comparative Example 6 having an Ag content exceeding 2.2% by weight while having a composition other than Ag within the composition range of the present invention has a heat-resistant fatigue cycle number of 750 and an IC chip inclination of 2.5. It was insufficient for the task. Comparative Example 7 having a Pb content of less than 95.5% by weight, except for Pb, which is within the composition range of the present invention, has a heat-resistant fatigue cycle number of 850 and an IC chip inclination of 2.5. Was insufficient for the task of Except for Sb and Bi, the Sb and Bi content is 1.0 to 1.0 while being within the composition range of the present invention.
In Comparative Examples 8 to 10 which are 2.0% by weight, the number of thermal fatigue cycles is 250 and the initial void generation rate is 20 to 30.
%, The inclination of the IC chip was 2.5, which was insufficient for the object of the present invention.

【0031】[0031]

【発明の効果】本発明は以下の効果を奏する。 (請求項1)2.0〜3.0重量%Sn、0.001〜
0.2重量%In、0〜2.0重量%Ag、及び残部が
Pbと不可避不純物からなり、前記半田材料中のPb含
有量が95.5〜97.99重量%、Bi,Sb含有量
が各々0.005重量%以下である半田材料としたの
で、半田付けにおける初期ボイド発生率が小さく、また
熱膨張係数が大きく異なる部品の半田接合における半田
付け部分の耐熱疲労性に優れており、さらにICチップ
をダイボンディングした際の水平度を向上することが出
来るという効果を奏する。 (請求項2)前記半田材料の組成を2.0〜3.0重量
%Sn、0.05〜0.2重量%In、0.5〜2.0
重量%Ag、及び残部がPbと不可避不純物からなり、
前記Pb含有量を95.5〜97.45重量%、Bi,
Sb含有量を各々0.005重量%以下とした場合は、
前述の効果をより実効あるものとし得る。 (請求項3)上記組成に金属または非金属の粒子を0.
001〜5.0重量%さらに含有した半田材料としたの
で、ICチップを基板に接合するダイボンディング用な
どに用いる際、ICチップと基板の水平度をより向上さ
せることができる。 (請求項4)本発明の組成になる半田材料を用いて、N
i又はCu表面を有する基板にICチップを半田付けし
てなる電子部品としたので、半田付け部分の初期ボイド
発生率,耐熱疲労性,ICチップの水平度などに優れた
特性を発揮し、近年における半導体装置の高密度実装化
に適した電子部品を提供できた。
The present invention has the following effects. (Claim 1) 2.0 to 3.0% by weight Sn, 0.001 to
0.2% by weight of In, 0 to 2.0% by weight of Ag, and the balance is composed of Pb and unavoidable impurities. The Pb content in the solder material is 95.5 to 97.9% by weight, and the Bi and Sb content is Are 0.005% by weight or less in each case, so that the initial void generation rate in soldering is small, and the soldering portion in the solder joint of components having a significantly different coefficient of thermal expansion is excellent in heat fatigue resistance. Further, there is an effect that the horizontality when the IC chip is die-bonded can be improved. (Claim 2) The composition of the solder material is 2.0 to 3.0% by weight Sn, 0.05 to 0.2% by weight In, 0.5 to 2.0%.
Weight% Ag, and the balance consisting of Pb and unavoidable impurities,
When the Pb content is 95.5 to 97.45% by weight, Bi,
When the Sb content is 0.005% by weight or less,
The above effects can be made more effective. (Claim 3) In the above composition, metal or non-metal particles are added in an amount of 0.1.
Since the solder material further contains 001 to 5.0% by weight, the horizontality between the IC chip and the substrate can be further improved when the IC chip is used for die bonding for bonding the IC chip to the substrate. (Claim 4) Using a solder material having the composition of the present invention,
Since the electronic component is obtained by soldering an IC chip to a substrate having an i or Cu surface, it exhibits excellent characteristics such as initial void generation rate, heat fatigue resistance, and levelness of the IC chip at the soldered portion. The electronic component suitable for high-density mounting of the semiconductor device in the above was provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ICチップの電極と外部リードを配線した状態
を簡略して示す半導体装置の部分拡大図。
FIG. 1 is a partially enlarged view of a semiconductor device schematically showing a state in which electrodes of an IC chip and external leads are wired.

【図2】測定試験に用いる試料の簡略図。FIG. 2 is a simplified diagram of a sample used for a measurement test.

【符号の説明】[Explanation of symbols]

1:ダイ 2:半田 3:Niめっき 4:ICチップ 5:電極 6:配線 7:外部リード 1: die 2: solder 3: Ni plating 4: IC chip 5: electrode 6: wiring 7: external lead

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 2.0〜3.0重量%Sn、0.001
〜0.2重量%In、0〜2.0重量%Ag、及び残部
がPbと不可避不純物からなる半田材料であって、前記
半田材料中のPb含有量が95.5〜97.99重量
%、Bi,Sb含有量が各々0.005重量%以下であ
る半田材料。
1. 2.0 to 3.0% by weight of Sn, 0.001
0.2% by weight of In, 0 to 2.0% by weight of Ag, and the balance being Pb and inevitable impurities, wherein the Pb content in the solder material is 95.5 to 97.9% by weight. , Bi and Sb contents are each 0.005% by weight or less.
【請求項2】 2.0〜3.0重量%Sn、0.05〜
0.2重量%In、0.5〜2.0重量%Ag、及び残
部がPbと不可避不純物からなる半田材料であって、前
記半田材料中のPb含有量が95.5〜97.45重量
%、Bi,Sb含有量が各々0.005重量%以下であ
る半田材料。
2. 2.0 to 3.0% by weight of Sn, 0.05 to
0.2% by weight of In, 0.5 to 2.0% by weight of Ag, and the balance being Pb and unavoidable impurities, wherein the Pb content in the solder material is 95.5 to 97.45% by weight. %, Bi and Sb contents are each 0.005% by weight or less.
【請求項3】 さらに、金属または非金属の粒子を0.
001〜5.0重量%含有した請求項1又は請求項2記
載の半田材料。
3. The method according to claim 1, further comprising the step of:
The solder material according to claim 1, wherein the content is 001 to 5.0% by weight.
【請求項4】 ICチップを、Ni又はCu表面を有す
る基板に半田付けした電子部品において、半田付けに用
いる材料が2.0〜3.0重量%Sn、0.001〜
0.2重量%In、0〜2.0重量%Ag、及び残部が
Pbと不可避不純物からなる半田材料であって、前記半
田材料中のPb含有量が95.5〜97.99重量%、
Bi,Sbが各々0.005重量%以下である半田材料
であることを特徴とする電子部品。
4. An electronic component in which an IC chip is soldered to a substrate having a Ni or Cu surface, wherein the material used for soldering is 2.0 to 3.0 wt% Sn, 0.001 to
0.2% by weight of In, 0 to 2.0% by weight of Ag, and the balance being Pb and unavoidable impurities, wherein the Pb content in the solder material is 95.5 to 97.9% by weight,
An electronic component, wherein Bi and Sb are each a solder material of 0.005% by weight or less.
JP11162888A 1999-06-09 1999-06-09 Soldering material, and electronic parts using it Pending JP2000351093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11162888A JP2000351093A (en) 1999-06-09 1999-06-09 Soldering material, and electronic parts using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11162888A JP2000351093A (en) 1999-06-09 1999-06-09 Soldering material, and electronic parts using it

Publications (1)

Publication Number Publication Date
JP2000351093A true JP2000351093A (en) 2000-12-19

Family

ID=15763171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11162888A Pending JP2000351093A (en) 1999-06-09 1999-06-09 Soldering material, and electronic parts using it

Country Status (1)

Country Link
JP (1) JP2000351093A (en)

Similar Documents

Publication Publication Date Title
EP1889684B1 (en) Lead-free solder alloy
KR100867871B1 (en) Solder paste and electronic device
CN1076998C (en) Soft solder and electronic component using the same
JP4453612B2 (en) Lead-free solder alloy
JP5403011B2 (en) Electronic components bonded by die bonding
JPH10144718A (en) Tin group lead free solder wire and ball
JP3796181B2 (en) Electronic member having lead-free solder alloy, solder ball and solder bump
JP2001284792A (en) Solder material and method for manufacturing semiconductor device using the same
KR20180130002A (en) Method for soldering surface-mount component and surface-mount component
WO2014203425A1 (en) Zn-based lead-free solder and semiconductor power module
JP2007142271A (en) Bump material and bonding structure
JP2018079480A (en) Bi-In-Sn TYPE SOLDER ALLOY FOR LOW TEMPERATURE, ELECTRONIC PART IMPLEMENTATION SUBSTRATE USING THE ALLOY, AND APPARATUS MOUNTING THE IMPLEMENTATION SUBSTRATE
WO2019069788A1 (en) Solder alloy, solder junction material, and electronic circuit substrate
JP5227427B2 (en) Bonding structure and bonding material
JP2001246493A (en) Soldering material, device or apparatus using same and its producing method
JPH07121467B2 (en) Method for soldering Si semiconductor element to Cu-based alloy lead frame with little residual thermal strain
JP2005052869A (en) Brazing material for high temperature soldering and semiconductor device using it
JPH10180480A (en) Lead-free soldering material and electronic parts using the material
JP2000351093A (en) Soldering material, and electronic parts using it
WO2019151130A1 (en) Bonding wire
JPH05345941A (en) Lead frame material made of cu alloy for resin sealed semiconductor device
JP7032687B1 (en) Solder alloys, solder pastes, solder balls, solder preforms, and solder fittings
JP3635185B2 (en) Gold alloy balls for bumps
JPH03291340A (en) Copper alloy extra fine wire for semiconductor device and semiconductor device
JP7100283B1 (en) Solder alloys, solder balls, and solder fittings

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees