JP2000346686A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter

Info

Publication number
JP2000346686A
JP2000346686A JP11160389A JP16038999A JP2000346686A JP 2000346686 A JP2000346686 A JP 2000346686A JP 11160389 A JP11160389 A JP 11160389A JP 16038999 A JP16038999 A JP 16038999A JP 2000346686 A JP2000346686 A JP 2000346686A
Authority
JP
Japan
Prior art keywords
ultrasonic
time
signal
ultrasonic sensor
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11160389A
Other languages
Japanese (ja)
Inventor
Yasuyuki Masunaga
靖行 増永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11160389A priority Critical patent/JP2000346686A/en
Publication of JP2000346686A publication Critical patent/JP2000346686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter in which the bypass means of an ultrasonic signal is installed and in which a circuit-delay-time measuring means and a flow-velocity correction and computing means are provided. SOLUTION: This flowmeter is provided with an ultrasonic sensor 1A and an ultrasonic sensor 1B which are tilted with reference to the flow direction of a fluid and which are arranged in such a way that their transmission side faces their reception side. The flowmeter is provided with a transmission means 2 which excites the ultrasonic sensor 1A (1B) on one side and which transmits an ultrasonic signal 1a from the upstream side or the downstraem side. The flowmeter is provided with a time measuring means 3 in which the ultrasonic signal 1a propagated in the fluid is detected by the ultrasonic sensor 1B (1A) on the other side and by which the propagation time of the ultrasonic signal 1a to the downstream direction and the upstream direction is measured. The flowmeter is provided with a flow-rate computing means 4 by which the flow velocity F or the flow rate of the fluid is computed on the basis of the propatation time. Then, a bypass means 5 which bypasses a part between the transmission-side ultrasonic sensor 1A (1B) and the reception-side ultrasonic sensor 1B (1A) and which transfers an electric signal to the time measuring means 3 from the transmission means 2 is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超音波方式による流
体の流量を測定する超音波流量計に関わり、特に、超音
波信号の送信から伝搬時間検出までの回路間の遅延時間
を補正する超音波流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flowmeter for measuring a flow rate of a fluid by an ultrasonic method, and more particularly to an ultrasonic flowmeter for correcting a delay time between circuits from transmission of an ultrasonic signal to detection of a propagation time. It relates to a flow meter.

【0002】[0002]

【従来の技術】図4は従来技術および本発明の超音波流
量計に係わる一般的な超音波センサ配置図である。尚、
説明の簡潔さのため、以下超音波信号1aは上流側から下
流側方向を主体に説明し、その逆方向は必要に応じて括
弧付き符号で併記する。超音波流量計は、超音波振動子
11と音響整合層12とからなる超音波センサ1A,1B を流体
14の流れ方向に沿って, あるいは, 図4に図示される測
定管13内の流体14の流れ方向に対して角度θ傾斜し測定
管13内を距離Lだけ離して送信側と受信側とを対向して
配備して構成される。
2. Description of the Related Art FIG. 4 is a layout diagram of a general ultrasonic sensor relating to an ultrasonic flowmeter of the prior art and the present invention. still,
For simplicity of description, the ultrasonic signal 1a will be mainly described below in the direction from the upstream side to the downstream side, and the reverse direction will be indicated by parenthesized signs as necessary. Ultrasonic flow meter is an ultrasonic transducer
The ultrasonic sensors 1A and 1B consisting of
The angle between the flow direction of the fluid 14 and the flow direction of the fluid 14 in the measuring pipe 13 shown in FIG. It is configured to be deployed facing.

【0003】また、図5において、一方の超音波セン
サ、例えば、超音波センサ1A(1B)を励振し, 流体14の流
れに対して上流側(下流側)から超音波信号1aを送信す
る図示例では送信部21で代表される送信手段2と、他方
の超音波センサ1B(1A)で流体14中を伝搬する超音波信号
1aを検出し, この超音波信号1aの伝搬時間T3を検出し,
下流方向(上流方向)への超音波信号1aの伝搬時間T3d,
(T3u)(以下、伝搬方向を含めて区分するときd,u の添え
字で区分する) を計測する図示例では受信部31/32 と時
間計測部33とからなる時間計測手段3と、これらの伝搬
時間T3d,T3u から流体14の流速Fあるいは流量を演算す
るマイコンなどの演算装置41からなる流量演算手段4
と、を備えて構成される。
In FIG. 5, one ultrasonic sensor, for example, an ultrasonic sensor 1A (1B) is excited, and an ultrasonic signal 1a is transmitted from the upstream side (downstream side) to the flow of the fluid 14. In the illustrated example, the transmitting unit 2 represented by the transmitting unit 21 and the ultrasonic signal propagating in the fluid 14 by the other ultrasonic sensor 1B (1A)
1a, and the propagation time T3 of the ultrasonic signal 1a is detected.
Propagation time T3d of the ultrasonic signal 1a in the downstream direction (upstream direction),
In the illustrated example for measuring (T3u) (hereinafter, when the division is performed including the propagation direction, the division is made by the subscripts of d and u), the time measuring means 3 including the receiving unit 31/32 and the time measuring unit 33, Flow rate calculation means 4 comprising a calculation device 41 such as a microcomputer for calculating the flow velocity F or flow rate of the fluid 14 from the propagation times T3d, T3u of the
And is provided.

【0004】かかる構成によって、流体14の流速Fは以
下に述べる様にして検出・演算することができる。図5
において、送信手段2は、予め定められた一定の間隔で
タイミング信号2aを発し、送信部21で超音波センサ1へ
の励振パルス2bを生成し、図示省略されたスイッチSW1
で選択される上流側センサ1Aを励振する。この励振パル
ス2bで励振された上流側センサ1Aは、超音波センサ1の
電気−機械系で定まる固有振動数の超音波信号1aを発生
し、この超音波信号1aは、測定管13内の流体14を伝搬し
て、下流側センサ1Bで受信され電気信号3aに変換され
る。この受信された電気信号3aは、図示省略されたスイ
ッチSW2 を経由して受信部31で増幅され、帯域通過フィ
ルタ32で超音波センサ1が発生する固有振動数のメイン
周波数成分を通過し、受信信号3aに含まれる電気的・音
響的ノイズ成分を除去する。このノイズ成分が除去され
た帯域通過フィルタ32の出力3bを時間計測部33で予め定
められた基準値と比較して、超音波信号1aを受信した時
刻t3として受信信号3cを出力する。
With this configuration, the flow velocity F of the fluid 14 can be detected and calculated as described below. FIG.
, The transmission means 2 emits a timing signal 2a at a predetermined constant interval, generates an excitation pulse 2b for the ultrasonic sensor 1 in the transmission unit 21, and generates a switch SW1 (not shown).
Excites the upstream sensor 1A selected in step (1). The upstream sensor 1A excited by the excitation pulse 2b generates an ultrasonic signal 1a having a natural frequency determined by the electro-mechanical system of the ultrasonic sensor 1, and this ultrasonic signal 1a Propagating through 14 and received by the downstream sensor 1B and converted into an electric signal 3a. The received electric signal 3a is amplified by the receiving unit 31 via a switch SW2 (not shown), passes through the band-pass filter 32, passes the main frequency component of the natural frequency generated by the ultrasonic sensor 1, and receives the signal. The electrical and acoustic noise components included in the signal 3a are removed. The output 3b of the band-pass filter 32 from which the noise component has been removed is compared with a predetermined reference value by the time measurement unit 33, and the reception signal 3c is output as the time t3 when the ultrasonic signal 1a was received.

【0005】時間計測部33は、上記送信手段2が超音波
センサ1Aを励振する時刻t1(タイミング信号2a) と時間
計測部33が基準値と比較しコンパレートして超音波信号
1aを検出する時刻t3とから上流側から下流側(以下、下
流方向と略称する)への超音波信号1aの伝搬時間T3(T3
d) を演算することができる。
The time measuring section 33 compares the time t1 (timing signal 2a) at which the transmitting means 2 excites the ultrasonic sensor 1A with the reference value, and compares the time t1 with the reference value to generate an ultrasonic signal.
Propagation time T3 (T3 (T3) of the ultrasonic signal 1a from the upstream side to the downstream
d) can be calculated.

【0006】次に、この超音波信号1aの伝搬時間T3の計
測は、次のタイミング信号2aでスイッチSW1,SW2 を切り
換えて、下流側センサ1Bから上流側センサ1Aへ超音波信
号1aを伝搬させて、下流側から上流側(上流方向)への
超音波信号1aの伝搬時間T3(T3u) を演算する。そしてこ
れらのスイッチSW1,SW2 を交互に切り換えることによ
り、下流方向への超音波信号1aの伝搬時間T3d および上
流方向への超音波信号1aの伝搬時間T3u を計測すること
ができ、この伝搬時間データT3d,T3u をマイコンなどか
ら構成される演算装置41で演算処理して流体14の流速F
あるいは流量を求めることができる。
Next, in measuring the propagation time T3 of the ultrasonic signal 1a, the switches SW1 and SW2 are switched by the next timing signal 2a to propagate the ultrasonic signal 1a from the downstream sensor 1B to the upstream sensor 1A. Then, the propagation time T3 (T3u) of the ultrasonic signal 1a from the downstream side to the upstream side (upstream direction) is calculated. By alternately switching these switches SW1 and SW2, the propagation time T3d of the ultrasonic signal 1a in the downstream direction and the propagation time T3u of the ultrasonic signal 1a in the upstream direction can be measured. T3d and T3u are subjected to arithmetic processing by an arithmetic unit 41 composed of a microcomputer or the like, and the flow rate F of the fluid 14 is calculated.
Alternatively, the flow rate can be determined.

【0007】図4において、流体14中の音速をV,流体
14の流速をFとすると、測定管13内の超音波信号1aの下
流方向および上流方向への伝搬時間T1をそれぞれ(T1d,T
1u)とすると、(1),(2) 式の関係から、流速Fは(3) 式
で表すことができる。
In FIG. 4, the speed of sound in the fluid 14 is V,
Assuming that the flow velocity of F is F, the propagation times T1 of the ultrasonic signal 1a in the measurement tube 13 in the downstream and upstream directions are respectively (T1d, T1
1u), the flow velocity F can be expressed by equation (3) from the relation of equations (1) and (2).

【0008】[0008]

【数1】(V+F cosθ)T1d =L ・・・(1)## EQU1 ## (V + F cos θ) T1d = L (1)

【0009】[0009]

【数2】(V−F cosθ)T1u =L ・・・(2)(2) (VF cos θ) T1u = L (2)

【0010】[0010]

【数3】 従来技術では、図5に図示される様に、(3) 式で表され
る流速Fは、測定管13内を伝搬する超音波信号1aの伝搬
時間T1であるが、実測され流速(流量)演算に利用され
るのは伝搬時間T3である。この伝搬時間T3には、送受信
回路部の回路遅延時間(τ1+τ2)や、超音波センサ1A,1
B の音響整合層における遅延時間および測定管13の肉厚
による遅延時間(Ts+Tr) があり、このため流速(流量)
の計測演算に誤差が生じる。
(Equation 3) In the prior art, as shown in FIG. 5, the flow velocity F expressed by the equation (3) is the propagation time T1 of the ultrasonic signal 1a propagating in the measuring tube 13, but is measured and measured. The propagation time T3 is used for the calculation. The propagation time T3 includes the circuit delay time (τ1 + τ2) of the transmission / reception circuit unit and the ultrasonic sensors 1A and 1A.
There is a delay time (Ts + Tr) due to the delay time in the acoustic matching layer of B and the thickness of the measuring tube 13, and therefore, the flow velocity (flow rate)
An error occurs in the measurement calculation of.

【0011】このため従来技術では、例えば、 (1) 出荷時の実流校正試験により、流速補償データを予
め記憶しておき、このデータで流速補償演算処理を行
う。
For this reason, in the prior art, for example, (1) flow velocity compensation data is stored in advance by an actual flow calibration test at the time of shipment, and flow velocity compensation calculation processing is performed using this data.

【0012】(2) メーカの社内試験などの何らかの手段
により、予め回路遅延時間(τ1+τ2)などを測定し、こ
のデータを記憶保持して、超音波信号1aの伝搬時間T3を
補正して流速演算処理を行う。
(2) The circuit delay time (τ1 + τ2) or the like is measured in advance by some means such as a manufacturer's in-house test, and this data is stored and corrected to correct the propagation time T3 of the ultrasonic signal 1a. A flow velocity calculation process is performed.

【0013】[0013]

【発明が解決しようとする課題】この様に、従来技術に
よる超音波流量計の流速演算処理方法では、(1) 出荷時
の実流校正試験による方法では、実流校正試験が必要に
なり、計測する流量対象によっては大規模の試験設備を
必要とし、また、個別機器毎の出荷テストに実流校正試
験が必要となる。また、(2) 社内試験などで予め回路遅
延時間を測定し、このデータで補正して流速演算処理す
る方法では、回路特性の経時変化や周囲温度などの影響
による回路遅延時間の変化に対応することができない。
As described above, in the flow velocity calculation processing method of the ultrasonic flow meter according to the prior art, (1) the method using the actual flow calibration test at the time of shipment requires the actual flow calibration test, Depending on the flow rate to be measured, a large-scale test facility is required, and a real-time calibration test is required for a shipping test for each individual device. In addition, (2) the method of measuring the circuit delay time in advance in an in-house test, etc., and correcting it with this data to calculate the flow velocity responds to changes in circuit delay time due to changes in circuit characteristics over time and the influence of ambient temperature, etc. Can not do.

【0014】本発明は上記の点にかんがみてなされたも
のであり、その目的は前記した課題を解決して、超音波
信号のバイパス手段を設けることにより、少なくとも、
回路遅延時間測定手段を賦与し、このデータで補正して
流速演算処理することにより、個別機器毎の実流校正試
験から解放され、回路特性の経時変化や周囲温度などの
影響による変化に対応できる超音波流量計を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has as its object to solve the above-mentioned problems and to provide at least ultrasonic signal bypass means,
By providing circuit delay time measurement means, correcting with this data and performing flow velocity calculation processing, it is released from the actual flow calibration test for each individual device, and it can respond to changes over time of circuit characteristics and changes due to the influence of ambient temperature etc. An object of the present invention is to provide an ultrasonic flowmeter.

【0015】[0015]

【課題を解決するための手段】上記課題は本発明によれ
ば、超音波流量計は、流体の流れ方向に沿って, あるい
はこの流れ方向に対して傾斜して, 送信側と受信側とを
対向して配備する超音波振動子と音響整合層とからなる
超音波センサと、一方の超音波センサを励振し, 流体の
流れに対して上流側あるいは下流側から超音波信号を切
り換えて送信する送信手段と、他方の超音波センサで流
体中を伝搬する超音波信号を検出し, 受信部で受信処理
をし、流体中を伝搬する超音波信号の伝搬時間を検出
し, 下流方向あるいは上流方向への超音波信号の伝搬時
間を計測する時間計測手段と、これらの伝搬時間から流
体の流速あるいは流量を演算する流量演算手段と、を備
えてなる超音波流量計において、送信側超音波センサと
受信側超音波センサとの間をバイパスして、送信手段か
ら時間計測手段の受信部に電気信号を授受するバイパス
手段を備えるものとする。
According to the present invention, there is provided an ultrasonic flowmeter which comprises a transmitter and a receiver which are arranged along or inclining with respect to a flow direction of a fluid. An ultrasonic sensor consisting of an ultrasonic transducer and an acoustic matching layer arranged facing each other and one of the ultrasonic sensors are excited, and an ultrasonic signal is switched from the upstream side or the downstream side to the fluid flow and transmitted. The transmitting means and the other ultrasonic sensor detect the ultrasonic signal propagating in the fluid, the receiving section performs reception processing, detects the propagation time of the ultrasonic signal propagating in the fluid, and the downstream or upstream direction A time measuring means for measuring the propagation time of the ultrasonic signal to the, and a flow rate calculating means for calculating the flow velocity or the flow rate of the fluid from these propagation times, in the ultrasonic flowmeter comprising, the transmitting ultrasonic sensor, With the receiving side ultrasonic sensor It is assumed that a bypass unit is provided for transmitting and receiving an electric signal from the transmitting unit to the receiving unit of the time measuring unit, bypassing the interval.

【0016】また、バイパス手段は、送信手段が送信側
超音波センサを励振するパルス信号を分圧する減衰器と
スイッチとを備え、この減衰器による減衰されたパルス
信号をバイパススイッチを介して時間計測手段の受信部
に接続することができる。
The bypass means includes an attenuator and a switch for dividing the pulse signal for exciting the transmitting ultrasonic sensor by the transmission means, and measures the pulse signal attenuated by the attenuator via the bypass switch. It can be connected to the receiving part of the means.

【0017】かかる構成により、バイパス手段をバイパ
ス状態に切り換え、送信側超音波センサと受信側超音波
センサとの間をバイパスし、送信手段からの励振パルス
信号を分圧して時間計測手段の受信部へ接続することに
より、送信手段の一定の間隔で発せられるタイミング信
号から時間計測手段の受信部でこのタイミング信号から
のパルスを検出するまでの時間を計測し、送受信回路部
の回路遅延時間を計測することができる。
With this configuration, the bypass unit is switched to the bypass state, the bypass between the transmission-side ultrasonic sensor and the reception-side ultrasonic sensor is bypassed, the excitation pulse signal from the transmission unit is divided, and the reception unit of the time measuring unit is divided. By connecting to, the time from the timing signal emitted at a fixed interval of the transmission means to the detection of the pulse from this timing signal at the reception unit of the time measurement means is measured, and the circuit delay time of the transmission / reception circuit unit is measured. can do.

【0018】また、バイパス手段は、送信側超音波セン
サを励振するパルス信号に代わって、超音波センサのメ
イン周波数と同じ周波数の正弦波信号をテスト信号とし
て時間計測手段の受信部に接続することができる。かか
る構成により、テスト信号の周波数を変えることによ
り、送受信回路部の遅延特性を周波数特性を含めて考察
することができる。
Further, the bypass means may connect a sine wave signal having the same frequency as the main frequency of the ultrasonic sensor as a test signal to the receiving section of the time measuring means instead of the pulse signal for exciting the transmitting ultrasonic sensor. Can be. With such a configuration, by changing the frequency of the test signal, the delay characteristics of the transmission / reception circuit unit can be considered including the frequency characteristics.

【0019】また、バイパス手段は、送信側超音波セン
サが有する機械−電気系による振動回路と等価な電気的
等価回路と、受信側超音波センサの該電気的等価回路
と、両等価回路間を開閉するスイッチと、を備えること
ができる。
Also, the bypass means connects an electric equivalent circuit equivalent to a vibration circuit by a mechanical-electrical system included in the transmission-side ultrasonic sensor, an electric equivalent circuit of the reception-side ultrasonic sensor, and a circuit between the two equivalent circuits. And a switch for opening and closing.

【0020】かかる構成により、等価的に送受信の超音
波振動子の遅延時間特性まで含めて計測することができ
る。この結果、超音波センサの音響整合層における遅延
時間および測定管の肉厚による遅延時間を予め求めてお
くことにより、正確な流速補正演算処理を行うことがで
きる。
With this configuration, measurement can be equivalently performed including the delay time characteristics of the transmitting and receiving ultrasonic transducers. As a result, the delay time in the acoustic matching layer of the ultrasonic sensor and the delay time due to the thickness of the measurement tube are obtained in advance, so that the accurate flow velocity correction calculation processing can be performed.

【0021】また、超音波流量計は、定期点検時あるい
はその他の必要時、超音波流量計を流量測定状態からバ
イパス手段によってバイパス状態に切り換え、バイパス
状態での下流方向への遅延時間および上流方向への遅延
時間を測定し、このデータを記憶保持し、流量測定状態
でこのデータを基に補正演算処理を行うものとする。か
かる校正により、随時、バイパス状態に切り換えて遅延
時間を測定して流量の補正演算処理を行うことができ
る。
Also, the ultrasonic flowmeter switches the ultrasonic flowmeter from the flow measurement state to the bypass state by the bypass means at the time of periodic inspection or other necessity, and the delay time in the downstream direction and the upstream direction in the bypass state. It is assumed that the delay time is measured, the data is stored and held, and the correction operation is performed based on the data in the flow rate measurement state. By such a calibration, it is possible to switch to the bypass state at any time, measure the delay time, and perform the flow rate correction calculation processing.

【0022】[0022]

【発明の実施の形態】図1は本発明の一実施例による超
音波流量計の構成と伝搬時間遅れの説明図、図2は他の
実施例による超音波流量計の構成と伝搬時間遅れの説明
図、図3は超音波振動子の等価回路図、図4は一般的な
超音波センサの配置図であり、図5に対応する同一部材
には同じ符号が付してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory diagram of the configuration of an ultrasonic flowmeter according to one embodiment of the present invention and the propagation time delay, and FIG. 2 is the configuration of an ultrasonic flowmeter according to another embodiment and the description of the propagation time delay. FIG. 3 is an equivalent circuit diagram of the ultrasonic transducer, and FIG. 4 is a layout diagram of a general ultrasonic sensor. The same members corresponding to FIG. 5 are denoted by the same reference numerals.

【0023】本発明による超音波流量計は、超音波振動
子11と音響整合層12とからなる超音波センサ1A,1B を流
体14の流れ方向に沿って, あるいは, 図4に図示される
測定管13内の流体14の流れ方向に対して角度θ傾斜し測
定管13内を距離Lだけ離して送信側と受信側とを対向し
て配備して構成される。
The ultrasonic flowmeter according to the present invention is configured to control the ultrasonic sensors 1A and 1B comprising an ultrasonic transducer 11 and an acoustic matching layer 12 along the flow direction of the fluid 14 or the measurement shown in FIG. The transmitting side and the receiving side are arranged so as to be inclined at an angle θ with respect to the flow direction of the fluid 14 in the tube 13 and separated from the inside of the measuring tube 13 by a distance L to face each other.

【0024】また、図1において、一方の超音波セン
サ、例えば、超音波センサ1A(1B)を励振し, 流体14の流
れに対して上流側(下流側)から超音波信号1aを送信す
る図示例では送信部21で代表される送信手段2と、他方
の超音波センサ1B(1A)で流体14中を伝搬する超音波信号
1aを検出し, 下流方向(上流方向)への超音波信号1aの
伝搬時間T3(T3d,(T3u)) を計測する図示例では受信部31
/32 と時間計測部33とからなる時間計測手段3と、これ
らの伝搬時間T3(T3d,T3u) から流体14の流速Fあるいは
流量を演算するマイコンなどの演算装置41からなる流量
演算手段4と、を備え、送信側超音波センサ1A(1B)と受
信側超音波センサ1B(1A)との間をバイパスして、送信手
段2から時間計測手段3の受信部31に電気信号を授受す
るバイパス手段5を備え、このバイパス手段5は、図示
例では、送信手段2が送信側超音波センサ1A(1B)を励振
するパルス信号2bを分圧する減衰器53と、スイッチ51
と、を備えて構成され、この減衰器53による減衰された
パルス信号をスイッチ51を介して時間計測手段の受信部
に接続することができる。
In FIG. 1, one ultrasonic sensor, for example, an ultrasonic sensor 1A (1B) is excited, and an ultrasonic signal 1a is transmitted from the upstream side (downstream side) to the flow of the fluid 14. In the illustrated example, the transmitting unit 2 represented by the transmitting unit 21 and the ultrasonic signal propagating in the fluid 14 by the other ultrasonic sensor 1B (1A)
In the example shown in FIG. 1, the receiving unit 31a detects the transmission time T3 (T3d, (T3u)) of the ultrasonic signal 1a in the downstream direction (upstream direction).
/ 32 and a time measuring unit 33, and a flow rate calculating means 4 including a calculating device 41 such as a microcomputer for calculating the flow rate F or the flow rate of the fluid 14 from the propagation times T3 (T3d, T3u). A bypass for transmitting and receiving an electric signal from the transmitting means 2 to the receiving section 31 of the time measuring means 3 by bypassing between the transmitting ultrasonic sensor 1A (1B) and the receiving ultrasonic sensor 1B (1A). In the example shown in the figure, the bypass means 5 includes an attenuator 53 for dividing the pulse signal 2b by which the transmitting means 2 excites the transmitting ultrasonic sensor 1A (1B), and a switch 51.
And the pulse signal attenuated by the attenuator 53 can be connected to the receiving section of the time measuring means via the switch 51.

【0025】かかる構成により、バイパス手段5をバイ
パス状態に切り換え、送信側超音波センサ1A(1B)と受信
側超音波センサ1B(1A)との間をバイパスして信号を授受
することにより、即ち、送信手段2からの励振パルス信
号2bを分圧して時間計測手段3の受信部31へ信号を接続
することにより、送信手段2の一定の間隔で発せられる
タイミング信号2aから時間計測手段3でこのタイミング
信号2aからのパルスを検出するまでの時間を計測するこ
とにより、送受信回路部21,31,32および33の一部の回路
遅延時間を計測することができる。
With this configuration, the bypass unit 5 is switched to the bypass state, and signals are transmitted and received by bypassing the transmission-side ultrasonic sensor 1A (1B) and the reception-side ultrasonic sensor 1B (1A). By dividing the excitation pulse signal 2b from the transmitting means 2 and connecting the signal to the receiving section 31 of the time measuring means 3, the timing signal 2a emitted from the transmitting means 2 at a constant interval can be used by the time measuring means 3. By measuring the time until the detection of the pulse from the timing signal 2a, the circuit delay time of a part of the transmission / reception circuit units 21, 31, 32, and 33 can be measured.

【0026】[0026]

【実施例】(実施例1)上述の実施形態1で述べた構成
において、まず、バイパス手段5のスイッチ51が開路さ
れ、超音波信号1aによる流速F(流量)の測定状態の場
合を説明する。図1において、送信手段2は、予め定め
られた一定の間隔で、時刻t1のタイミングでパルス信号
2aを発し、送信部21で超音波センサ1への励振パルス2b
を生成し、ここでは図示省略されたスイッチSW1 で選択
される上流側センサ1Aを励振する。この励振パルス2bで
励振された上流側センサ1Aは、図1の下部に図示例され
る、超音波センサ1の電気−機械系で定まる固有振動数
を有する数サイクルから十数サイクルの超音波信号1aを
時刻t2で発生する。
(Embodiment 1) In the configuration described in the first embodiment, first, a case will be described in which the switch 51 of the bypass means 5 is opened and the flow velocity F (flow rate) is measured by the ultrasonic signal 1a. . In FIG. 1, a transmitting means 2 transmits a pulse signal at a time t1 at a predetermined constant interval.
2a, and the transmitting unit 21 generates an excitation pulse 2b to the ultrasonic sensor 1.
Is generated, and the upstream sensor 1A selected by a switch SW1 not shown is excited here. The upstream sensor 1A excited by the excitation pulse 2b is an ultrasonic signal having a natural frequency determined by the electro-mechanical system of the ultrasonic sensor 1 and having several cycles to several tens of cycles as illustrated in the lower part of FIG. 1a occurs at time t2.

【0027】この超音波信号1aは、測定管13内の流体14
を伝搬して、下流側センサ1Bで受信され、電気信号3aに
変換される。この受信された電気信号3aは、図示省略さ
れたスイッチSW2 を経由して受信部31の増幅器で増幅さ
れ、帯域通過フィルタ32で超音波センサ1が発生する固
有振動数のメイン周波数成分を通過し、受信信号3aに含
まれる電気的・音響的ノイズ成分を除去する。このノイ
ズ成分が除去された帯域通過フィルタ32の出力3bを時間
計測部33で検出して、時刻t1から時刻t3までの時間T3を
例えばカウンタで計測して受信信号3cを出力する。
This ultrasonic signal 1a is transmitted to the fluid 14 in the measuring tube 13
, Is received by the downstream sensor 1B, and is converted into an electric signal 3a. The received electric signal 3a is amplified by the amplifier of the receiving unit 31 via a switch SW2 (not shown), and passes through the band-pass filter 32 through the main frequency component of the natural frequency generated by the ultrasonic sensor 1. And removes electrical and acoustic noise components included in the received signal 3a. The output 3b of the band-pass filter 32 from which the noise component has been removed is detected by the time measurement unit 33, and the time T3 from time t1 to time t3 is measured by, for example, a counter, and the reception signal 3c is output.

【0028】この時間計測部33で帯域通過フィルタ32の
出力3bから超音波信号1aの伝搬時間の検出方法は、主
に、次の2通りがある。 (1) 図1の下部に図示例されるレベル比較法を用い、予
め定められた基準値hと帯域通過フィルタ32の出力3bと
を比較し、信号波形3bがこの基準値hを越える最初の時
刻をもって時刻t3として、時刻t1から時刻t3までの時間
T3を例えばカウンタで計測して伝搬時間T3の出力3cを出
力する。
There are mainly two methods for detecting the propagation time of the ultrasonic signal 1a from the output 3b of the band-pass filter 32 in the time measuring section 33 as follows. (1) The predetermined reference value h is compared with the output 3b of the band-pass filter 32 using the level comparison method illustrated in the lower part of FIG. 1, and the first signal waveform 3b exceeding the reference value h Time from time t1 to time t3 as time t3
T3 is measured by a counter, for example, and an output 3c of the propagation time T3 is output.

【0029】(2) 図示省略されているが、例えば、ノイ
ズの影響が比較的少なくてすむゼロクロス法を用い、一
方で帯域通過フィルタ32の出力3bをコンパレータで比較
してゼロクロス点を検出し、他方で受信部31の増幅器で
増幅された超音波受信信号を予め定められた基準値
(h) とレベル比較して超音波信号1aの固有振動数で振
動する振動波形の予め定められた波形位置(何番目か)
のゼロクロス点を検出し、この検出時刻をもって時刻t3
として、時刻t1から時刻t3までの時間T3を例えばカウン
タで計測して伝搬時間T3の出力3cを出力する。この(2)
の方法では、超音波信号1aの受信信号3aに振幅の脈動が
あり、上述の(1) でレベル比較が困難な場合や、あるい
は、レベル比較はできるが、同一伝搬時間であっても信
号波形3bの比較されるレベルによる時刻t3の変動を除去
できる利点がある。
(2) Although not shown in the figure, for example, a zero-crossing method is used in which the influence of noise is relatively small, and the output 3b of the band-pass filter 32 is compared with a comparator to detect a zero-crossing point. On the other hand, the ultrasonic receiving signal amplified by the amplifier of the receiving unit 31 is set to a predetermined reference value.
a predetermined waveform position of the vibration waveform that oscillates at the natural frequency of the ultrasonic signal 1a by comparing the level with (h) (an order)
At the time t3
For example, a time T3 from time t1 to time t3 is measured by a counter, for example, and an output 3c of the propagation time T3 is output. This (2)
In the method of (1), when the received signal 3a of the ultrasonic signal 1a has a pulsation of the amplitude, and the level comparison is difficult in the above (1), or the level comparison can be performed, but even if the propagation time is the same, the signal waveform There is an advantage that the fluctuation of the time t3 due to the compared level of 3b can be eliminated.

【0030】いずれの方法によっても、時間計測部33が
検出する伝搬時間T3は、上記送信手段2が超音波センサ
1Aを励振する時刻t1(タイミング信号2a) と、時間計測
部33が (1)または (2)の方法によって検出する時刻t3
と、から下流方向への超音波信号1aの伝搬時間T3(T3d)
を演算することができる。
In any case, the transmission time T3 detected by the time measuring unit 33 is determined by the transmission
The time t1 (timing signal 2a) at which 1A is excited and the time t3 detected by the time measuring unit 33 by the method (1) or (2)
And the propagation time T3 (T3d) of the ultrasonic signal 1a in the downstream direction from
Can be calculated.

【0031】次に、この超音波信号1aの伝搬時間T3の計
測は、次のタイミング信号2aでスイッチSW1,SW2 を切り
換えて、下流側センサ1Bから上流側センサ1Aへ超音波信
号1aを伝搬させて、上流方向への超音波信号1aを伝搬さ
せたときの伝搬時間T3(T3u)を演算する。そしてこれら
のスイッチSW1,SW2 を交互に切り換えることにより、下
流方向への超音波信号1aの伝搬時間T3d および上流方向
への超音波信号1aの伝搬時間T3u を計測することがで
き、この伝搬時間データT3(T3d,T3u) をマイコンなどか
ら構成される演算装置41で演算処理して流体14の流速F
あるいは流量を求めることができる。
Next, to measure the propagation time T3 of the ultrasonic signal 1a, the switches SW1 and SW2 are switched by the next timing signal 2a to propagate the ultrasonic signal 1a from the downstream sensor 1B to the upstream sensor 1A. Then, a propagation time T3 (T3u) when the ultrasonic signal 1a is propagated in the upstream direction is calculated. By alternately switching these switches SW1 and SW2, the propagation time T3d of the ultrasonic signal 1a in the downstream direction and the propagation time T3u of the ultrasonic signal 1a in the upstream direction can be measured. T3 (T3d, T3u) is subjected to arithmetic processing by an arithmetic unit 41 composed of a microcomputer or the like, and the flow rate F of the fluid 14 is calculated.
Alternatively, the flow rate can be determined.

【0032】上述の時間計測部33が検出する伝搬時間T3
は、送信手段2が超音波センサ1Aを励振する時刻t1(タ
イミング信号2a) から、時間計測部33が検出する時刻t3
までの時間であり、 (1)または (2)のいずれの方法によ
っても測定管13内を伝搬する伝搬時間T1ではない。従っ
て、正確な流速Fあるいは流量は、送受信回路部の回路
遅延時間(τ1+τ2)および超音波センサ1A,1B の音響整
合層における遅延時間と測定管13の肉厚による遅延時間
(Ts+Tr) を補正する(4) 式で求めることができる。
The propagation time T3 detected by the time measuring unit 33
From time t1 (timing signal 2a) at which the transmitting means 2 excites the ultrasonic sensor 1A to time t3 detected by the time measuring unit 33
This is not the propagation time T1 for propagating in the measurement tube 13 by any of the methods (1) and (2). Therefore, the accurate flow velocity F or flow rate is determined by the circuit delay time (τ1 + τ2) of the transmission / reception circuit section, the delay time in the acoustic matching layer of the ultrasonic sensors 1A and 1B, and the delay time due to the thickness of the measuring tube 13.
(Ts + Tr) can be obtained by Equation (4).

【0033】[0033]

【数4】 但し、τd,τu =τ1+Ts+Tr+τ2 次に、図1に図示されるバイパス手段5をバイパス状態
に切り換えた場合を説明する。送信側超音波センサ1A(1
B)と受信側超音波センサ1B(1A)との間がバイパス状態の
ときは、送信手段2からの励振パルス信号2bを分圧して
時間計測手段3の受信部31に接続することにより、送信
手段2の一定の間隔で発せられるタイミング信号2aの時
刻t1から時間計測手段3でこの超音波信号1aの信号検出
する時刻t3までの時間(T3−T2=τ1+τ2-τ3)を計測す
ることにより、送受信回路部の回路遅延時間(τ1+τ2-
τ3 ) を計測することができる。
(Equation 4) However, τd, τu = τ1 + Ts + Tr + τ2 Next, a case where the bypass unit 5 shown in FIG. 1 is switched to the bypass state will be described. Transmitting ultrasonic sensor 1A (1
When the path between B) and the receiving-side ultrasonic sensor 1B (1A) is in the bypass state, the excitation pulse signal 2b from the transmitting unit 2 is divided and connected to the receiving unit 31 of the time measuring unit 3 to transmit. The time (T3-T2 = τ1 + τ2-τ3) from the time t1 of the timing signal 2a emitted at regular intervals of the means 2 to the time t3 at which the ultrasonic signal 1a is detected by the time measuring means 3 The circuit delay time (τ1 + τ2-
τ3) can be measured.

【0034】ここで時間τ3 について説明する。時刻t2
で送信側超音波センサ1A(1B)が発振し、超音波信号1aが
流体14を伝搬し、送信側超音波センサ1B(1A)で受信さ
れ、時間計測部33が超音波信号1aを受信したことを検出
する時刻t3は、送信側超音波センサ1A(1B)が発振を開始
した時点に較べて時間τ3 だけズレている。一方、(実
施例1)の方法による送受信回路部の回路遅延時間τの
測定では、T2で図示例される時間間隔がバイパス手段5
によって短縮されて時間T3が測定されるので、測定され
る回路遅延時間τ=T3−T2であるが、時間計測部33は
(実施例1)のパルスのバイパス法では、バイパスされ
て入力されるパルスはレベルhを越えているので、時間
τ3 だけズレて検出することなく直ちに検出される。
Here, the time τ3 will be described. Time t2
The transmission-side ultrasonic sensor 1A (1B) oscillates, the ultrasonic signal 1a propagates through the fluid 14, is received by the transmission-side ultrasonic sensor 1B (1A), and the time measurement unit 33 receives the ultrasonic signal 1a. The time t3 at which this is detected is shifted by a time τ3 as compared with the time when the transmission-side ultrasonic sensor 1A (1B) starts oscillating. On the other hand, in the measurement of the circuit delay time τ of the transmission / reception circuit unit according to the method of the first embodiment, the time interval illustrated in T2
Therefore, the measured circuit delay time τ = T3−T2, but the time measurement unit 33 is bypassed and input in the pulse bypass method of the first embodiment. Since the pulse has exceeded the level h, it is detected immediately without being shifted by the time .tau.3.

【0035】従って、実施例1の方法による補正演算で
は、(4) 式の演算式で、超音波信号を上流方向あるいは
下流方向に送信したときに測定される遅延時間(τd1、
τu1)に超音波センサ1A,1B の音響整合層における遅延
時間と測定管13の肉厚による遅延時間(Ts+Tr) と、時間
計測部33の検出ズレτ3 とを補正した値(Ts+Tr+τ3)で
補正する必要がある。即ち、(4) 式のτd,τu は(5),
(6) 式に置き換えて演算する必要がある。
Therefore, in the correction calculation according to the method of the first embodiment, the delay time (τd1, τd1) measured when the ultrasonic signal is transmitted in the upstream or downstream direction is calculated by the calculation expression (4).
τu1) is a value (Ts + Tr + τ3) obtained by correcting the delay time in the acoustic matching layers of the ultrasonic sensors 1A and 1B, the delay time (Ts + Tr) due to the thickness of the measuring tube 13, and the detection deviation τ3 of the time measuring unit 33. ) Must be corrected. That is, τd and τu in equation (4) are (5),
(6) It is necessary to replace the expression with the calculation.

【0036】[0036]

【数5】τd =τd1+(Ts+Tr+τ3)・・・・・・(5)Τd = τd1 + (Ts + Tr + τ3) (5)

【0037】[0037]

【数6】τu =τu1+(Ts+Tr+τ3)・・・・・・(6) ここで、音響整合層の遅延時間と測定管13の肉厚による
遅延時間(Ts+Tr) と、時間計測部33の検出ズレ時間τ3
はそれぞれ設計値あるいはメーカ試験データ値を用いて
補正することができる。 (実施例2)また、バイパス手段5への送信手段2の送
信部21からは、送信側超音波センサ1A(1B)を励振するパ
ルス信号2bに代わって、超音波センサ1A(1B)のメイン周
波数(通常100kHz〜200kHz程度で動作)と同じ周波数の
正弦波信号をテスト信号として試験することができる。
この様にテスト信号の周波数を変えることにより、送受
信回路部の位相特性を調べることができる。 (実施例3)また、図2において、バイパス手段5は、
送信側超音波センサ1A(1B)が有する機械−電気系による
振動回路と等価な図3で図示するLCRの電気的等価回
路52と、受信側超音波センサ1B(1A)の該電気的等価回路
52と、両等価回路52間を開閉するスイッチと、を備えて
構成することができる。
Τu = τu1 + (Ts + Tr + τ3) (6) Here, the delay time of the acoustic matching layer and the delay time (Ts + Tr) due to the thickness of the measuring tube 13 and the time measuring unit 33 detection shift time τ3
Can be corrected using design values or manufacturer test data values. (Embodiment 2) In addition to the pulse signal 2b that excites the transmission-side ultrasonic sensor 1A (1B) from the transmission unit 21 of the transmission unit 2 to the bypass unit 5, the main unit of the ultrasonic sensor 1A (1B) is used. A sine wave signal having the same frequency as the frequency (usually operating at about 100 kHz to 200 kHz) can be tested as a test signal.
By changing the frequency of the test signal in this way, the phase characteristics of the transmission / reception circuit can be checked. (Embodiment 3) Also, in FIG.
The electrical equivalent circuit 52 of the LCR shown in FIG. 3 which is equivalent to the vibration circuit by the mechanical-electrical system of the transmitting ultrasonic sensor 1A (1B), and the electric equivalent circuit of the receiving ultrasonic sensor 1B (1A)
52, and a switch that opens and closes between the two equivalent circuits 52.

【0038】かかる構成により、等価的に送受信の超音
波振動子11の遅延時間特性まで含めて計測することがで
きる。この結果、超音波センサ1A(1B)の音響整合層12に
おける遅延時間および測定管の肉厚による遅延時間を設
計データなどで予め求めておくことにより、正確な流速
補正演算処理を行うことができる。特に、実施例3の方
法では、時間計測部33が(1) のレベル比較法あるいは
(2) のゼロクロス法のいずれの方法でも、下流方向ある
いは上流方向に送信したときに測定される遅延時間(τ
d2、τu2)は、図1における時間計測部33の検出ズレτ
3 を含めて超音波信号1aの遅延時間として測定を行うこ
とができる。従って、実施例3の方法による補正演算で
は、(4) 式の演算式で、超音波信号を下流方向あるいは
上流方向に送信したときに測定される遅延時間(τd2、
τu2)に超音波センサ1A,1B の音響整合層における遅延
時間と測定管13の肉厚による遅延時間(Ts'+Tr') を補正
した値で補正を行えばよい。即ち、(4) 式のτd,τu は
(7),(8) 式に置き換えて演算を行えばよい。
With this configuration, measurement can be equivalently performed including the delay time characteristics of the transmitting and receiving ultrasonic transducers 11. As a result, by determining in advance the delay time in the acoustic matching layer 12 of the ultrasonic sensor 1A (1B) and the delay time due to the thickness of the measurement tube using design data or the like, accurate flow velocity correction calculation processing can be performed. . In particular, in the method of the third embodiment, the time measuring unit 33 uses the level comparison method of (1) or
In any of the zero-cross methods of (2), the delay time (τ) measured when transmitting in the downstream or upstream direction
d2, τu2) is the detection deviation τ of the time measurement unit 33 in FIG.
3 can be measured as the delay time of the ultrasonic signal 1a. Therefore, in the correction calculation by the method of the third embodiment, the delay time (τd2, τd2,
τu2) may be corrected by a value obtained by correcting the delay time in the acoustic matching layer of the ultrasonic sensors 1A and 1B and the delay time (Ts '+ Tr') due to the thickness of the measuring tube 13. That is, τd and τu in equation (4) are
The operation may be performed by replacing the expressions (7) and (8).

【0039】[0039]

【数7】τd =τd2+(Ts'+Tr') ・・・・・・(7)Τd = τd2 + (Ts '+ Tr') (7)

【0040】[0040]

【数8】τu =τu2+(Ts'+Tr') ・・・・・・(8) ここで、音響整合層の遅延時間と測定管13の肉厚による
遅延時間(Ts'+Tr') はそれぞれ設計値あるいはメーカ試
験データ値を用いて補正することができる。 (実施例4)また、定期点検時あるいはその他の必要
時、超音波流量計を流量測定状態からバイパス手段5に
よってバイパス状態に切り換え、バイパス状態での下流
方向への遅延時間(τd,τd1, τd2) および上流方向
(τu,τu1, τu2) への遅延時間を測定し、このデータ
を記憶保持し、流量測定状態でこのデータを基に補正演
算処理を行うことができる。
Τu = τu2 + (Ts ′ + Tr ′) (8) where the delay time of the acoustic matching layer and the delay time (Ts ′ + Tr ′) due to the thickness of the measuring tube 13 are Each of them can be corrected using the design value or the manufacturer test data value. (Embodiment 4) Also, at the time of periodic inspection or other necessity, the ultrasonic flowmeter is switched from the flow measurement state to the bypass state by the bypass means 5, and the downstream delay time (τd, τd1, τd2) in the bypass state is obtained. ) And the delay time in the upstream direction (τu, τu1, τu2) are measured, the data is stored and held, and the correction operation can be performed based on the data in the flow rate measurement state.

【0041】かかる校正により、随時、バイパス状態に
切り換えて遅延時間(τd,τd1, τd2),(τu,τu1, τ
u2)を測定することにより、より正確な流速Fあるいは
流量の補正演算処理を行うことができる。
By such calibration, the state is switched to the bypass state at any time, and the delay time (τd, τd1, τd2), (τu, τu1, τ
By measuring u2), the flow rate F or the flow rate correction calculation processing can be performed more accurately.

【0042】[0042]

【発明の効果】以上述べたように本発明による超音波流
量計を用いることにより、超音波信号のバイパス手段を
設けることにより、少なくとも、回路遅延時間測定手段
を賦与し、この回路遅延時間測定手段による測定データ
を記憶・保持することにより、この測定データで流速あ
るいは流量の演算処理を補正して実行することにより、
個別機器毎の実流校正試験を解放し、回路特性の経時変
化や周囲温度などの影響による変化に対応できる超音波
流量計を提供することができる。
As described above, by using the ultrasonic flowmeter according to the present invention, by providing the ultrasonic signal bypass means, at least the circuit delay time measuring means is provided, and the circuit delay time measuring means is provided. By storing and holding the measurement data by the above, the calculation process of the flow velocity or the flow rate is corrected and executed by this measurement data,
It is possible to provide an ultrasonic flowmeter that can release a real-flow calibration test for each individual device and can cope with a change over time in circuit characteristics or a change due to the influence of an ambient temperature or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による超音波流量計の構成と
伝搬時間遅れの説明図
FIG. 1 is an explanatory diagram of a configuration of an ultrasonic flowmeter according to an embodiment of the present invention and a propagation time delay.

【図2】他の実施例による超音波流量計の構成と伝搬時
間遅れの説明図
FIG. 2 is an explanatory diagram of a configuration of an ultrasonic flowmeter according to another embodiment and a propagation time delay.

【図3】超音波振動子の等価回路図FIG. 3 is an equivalent circuit diagram of an ultrasonic transducer.

【図4】一般的な超音波センサの配置図FIG. 4 is a layout diagram of a general ultrasonic sensor.

【図5】従来技術による超音波流量計の構成と伝搬時間
遅れの説明図
FIG. 5 is an explanatory diagram of a configuration of a conventional ultrasonic flowmeter and a propagation time delay.

【符号の説明】[Explanation of symbols]

11 超音波振動子 12 音響整合層 13 測定管 14 流体 1A,1B 超音波センサ 1a 超音波信号 2 送信手段 21 送信部 2a タイミング信号 2b 励振パルス 3 時間計測手段 31 受信部 32 帯域通過フィルタ 33 時間計測部 3a 電気信号 3b,3c,4a 出力 4 流量演算手段 41 演算装置 5 バイパス手段 51 スイッチ L 距離 F 流速 h レベル T1,T2,T3 伝搬時間 Ts,Tr 遅延時間 t1,t2,t3 時刻 τ1,τ2,τ3 遅延時間 τ1d, τ2d, τ3d 下流方向遅延時間 τ1u, τ2u, τ3u 上流方向遅延時間 11 Ultrasonic transducer 12 Acoustic matching layer 13 Measurement tube 14 Fluid 1A, 1B Ultrasonic sensor 1a Ultrasonic signal 2 Transmitting means 21 Transmitting unit 2a Timing signal 2b Excitation pulse 3 Time measuring means 31 Receiving unit 32 Bandpass filter 33 Time measuring Part 3a Electric signal 3b, 3c, 4a Output 4 Flow rate calculating means 41 Computing device 5 Bypass means 51 Switch L Distance F Flow rate h Level T1, T2, T3 Propagation time Ts, Tr Delay time t1, t2, t3 Time τ1, τ2, τ3 delay time τ1d, τ2d, τ3d Downstream delay time τ1u, τ2u, τ3u Upstream delay time

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】流体の流れ方向に沿って, あるいはこの流
れ方向に対して傾斜して, 送信側と受信側とを対向して
配備する超音波振動子と音響整合層とからなる超音波セ
ンサと、一方の超音波センサを励振し, 流体の流れに対
して上流側あるいは下流側から超音波信号を切り換えて
送信する送信手段と、他方の超音波センサで流体中を伝
搬する超音波信号を検出し, 受信部で受信処理をし、流
体中を伝搬する超音波信号の伝搬時間を検出し, 下流方
向あるいは上流方向への超音波信号の伝搬時間を計測す
る時間計測手段と、これらの伝搬時間から流体の流速あ
るいは流量を演算する流量演算手段と、を備えてなる超
音波流量計において、 送信側超音波センサと受信側超音波センサとの間をバイ
パスして、送信手段から時間計測手段の受信部に電気信
号を授受するバイパス手段を備える、 ことを特徴とする超音波流量計。
1. An ultrasonic sensor comprising an ultrasonic vibrator and an acoustic matching layer which are provided along a flow direction of a fluid or inclined with respect to the flow direction and have a transmitting side and a receiving side opposed to each other. And a transmitting means for exciting one ultrasonic sensor and switching and transmitting an ultrasonic signal from the upstream side or the downstream side with respect to the flow of the fluid, and transmitting the ultrasonic signal propagating in the fluid with the other ultrasonic sensor. A time measuring means for detecting the propagation time of the ultrasonic signal propagating in the fluid, detecting the propagation time of the ultrasonic signal propagating in the fluid, and measuring the propagation time of the ultrasonic signal in the downstream or upstream direction; and A flow rate calculating means for calculating a flow rate or a flow rate of a fluid from time, wherein a time measuring means is transmitted from the transmitting means by bypassing between the transmitting ultrasonic sensor and the receiving ultrasonic sensor. The receiving part of electricity Ultrasonic flowmeter comprising bypass means, characterized by exchanging items.
【請求項2】請求項1に記載の超音波流量計において、 バイパス手段は、送信手段が送信側超音波センサを励振
するパルス信号を分圧する減衰器と、スイッチと、を備
え、この減衰器による減衰されたパルス信号をバイパス
スイッチを介して時間計測手段の受信部に接続する、 ことを特徴とする超音波流量計。
2. The ultrasonic flowmeter according to claim 1, wherein the bypass means includes an attenuator for dividing the pulse signal for exciting the transmitting ultrasonic sensor by the transmitting means, and a switch. An ultrasonic flowmeter, wherein the pulse signal attenuated by the above is connected to a receiving section of a time measuring means via a bypass switch.
【請求項3】請求項1に記載の超音波流量計において、 バイパス手段は、送信側超音波センサを励振するパルス
信号に代わって、超音波センサのメイン周波数と同じ周
波数の正弦波信号をテスト信号として時間計測手段の受
信部に接続する、 ことを特徴とする超音波流量計。
3. The ultrasonic flowmeter according to claim 1, wherein the bypass unit tests a sine wave signal having the same frequency as the main frequency of the ultrasonic sensor instead of the pulse signal for exciting the transmitting ultrasonic sensor. An ultrasonic flowmeter, which is connected as a signal to a receiving section of a time measuring means.
【請求項4】請求項1に記載の超音波流量計において、 バイパス手段は、送信側超音波センサが有する機械−電
気系による振動回路と等価な電気的等価回路と、受信側
超音波センサの当該電気的等価回路と、両等価回路間を
開閉するスイッチと、を備える、 ことを特徴とする超音波流量計。
4. An ultrasonic flowmeter according to claim 1, wherein said bypass means comprises: an electrical equivalent circuit equivalent to a vibration circuit based on a mechanical-electrical system of said transmitting ultrasonic sensor; An ultrasonic flowmeter comprising: the electrical equivalent circuit; and a switch that opens and closes between the two equivalent circuits.
【請求項5】請求項1ないし請求項3のいずれかの項に
記載の超音波流量計において、定期点検時あるいはその
他の必要時、超音波流量計を流量測定状態からバイパス
手段によってバイパス状態に切り換え、バイパス状態で
の下流方向への遅延時間および上流方向への遅延時間を
測定し、このデータを記憶保持し、流量測定状態でこの
データを基に補正演算処理を行う、 ことを特徴とする超音波流量計。
5. The ultrasonic flowmeter according to claim 1, wherein the ultrasonic flowmeter is changed from a flow measurement state to a bypass state by a bypass means at a time of periodic inspection or other necessary time. Switching, measuring the delay time in the downstream direction and the delay time in the upstream direction in the bypass state, storing and holding this data, and performing the correction arithmetic processing based on the data in the flow rate measurement state. Ultrasonic flow meter.
JP11160389A 1999-06-08 1999-06-08 Ultrasonic flowmeter Pending JP2000346686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11160389A JP2000346686A (en) 1999-06-08 1999-06-08 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11160389A JP2000346686A (en) 1999-06-08 1999-06-08 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2000346686A true JP2000346686A (en) 2000-12-15

Family

ID=15713913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11160389A Pending JP2000346686A (en) 1999-06-08 1999-06-08 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2000346686A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005172556A (en) * 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2005351695A (en) * 2004-06-09 2005-12-22 Ricoh Elemex Corp Ultrasound flowmeter
JP2006292370A (en) * 2005-04-05 2006-10-26 Ricoh Elemex Corp Ultrasonic flowmeter
JP2008507693A (en) * 2004-07-21 2008-03-13 ホリバ インストルメンツ インク Acoustic flow meter calibration method
WO2011020143A1 (en) * 2009-08-18 2011-02-24 Rubicon Research Pty Ltd Flow meter assembly, gate assemblies and methods of flow measurement
CN104316120A (en) * 2014-10-28 2015-01-28 姜跃炜 Flow detection method and system for high-precision ultrasonic flow meter
CN104330121A (en) * 2014-10-28 2015-02-04 姜跃炜 Timing pulse width division method for flow rate detection system and circuit
JP2015222188A (en) * 2014-05-22 2015-12-10 横河電機株式会社 Ultrasonic flowmeter
WO2022059540A1 (en) * 2020-09-15 2022-03-24 オムロン株式会社 Propagation time measurement device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561088B2 (en) * 2003-12-10 2010-10-13 パナソニック株式会社 Ultrasonic flow meter
JP2005172556A (en) * 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2005351695A (en) * 2004-06-09 2005-12-22 Ricoh Elemex Corp Ultrasound flowmeter
JP4646107B2 (en) * 2004-06-09 2011-03-09 リコーエレメックス株式会社 Ultrasonic flow meter
JP4724714B2 (en) * 2004-07-21 2011-07-13 株式会社堀場製作所 Acoustic flow meter calibration method
JP2008507693A (en) * 2004-07-21 2008-03-13 ホリバ インストルメンツ インク Acoustic flow meter calibration method
JP2006292370A (en) * 2005-04-05 2006-10-26 Ricoh Elemex Corp Ultrasonic flowmeter
US8474327B2 (en) 2009-08-18 2013-07-02 Rubicon Research Pty Ltd. Flow meter assembly, gate assemblies and methods of flow measurement
WO2011020143A1 (en) * 2009-08-18 2011-02-24 Rubicon Research Pty Ltd Flow meter assembly, gate assemblies and methods of flow measurement
US8893560B2 (en) 2009-08-18 2014-11-25 Rubicon Research Pty Ltd. Flow meter assembly, gate assemblies and methods of flow measurement
US9261390B2 (en) 2009-08-18 2016-02-16 Rubicon Research Pty Ltd. Flow meter assembly, gate assemblies and methods of flow measurement
US9593972B2 (en) 2009-08-18 2017-03-14 Rubicon Research Pty Ltd. Flow meter assembly, gate assemblies and methods of flow measurement
US9804008B2 (en) 2009-08-18 2017-10-31 Rubicon Research Pty Ltd. Flow meter assembly, gate assemblies and methods of flow measurement
JP2015222188A (en) * 2014-05-22 2015-12-10 横河電機株式会社 Ultrasonic flowmeter
CN104316120A (en) * 2014-10-28 2015-01-28 姜跃炜 Flow detection method and system for high-precision ultrasonic flow meter
CN104330121A (en) * 2014-10-28 2015-02-04 姜跃炜 Timing pulse width division method for flow rate detection system and circuit
WO2022059540A1 (en) * 2020-09-15 2022-03-24 オムロン株式会社 Propagation time measurement device

Similar Documents

Publication Publication Date Title
JP4979838B2 (en) Method and apparatus for calibrating a measurement transducer of an ultrasonic flow measurement unit
JP3716274B2 (en) Ultrasonic flow meter and ultrasonic flow measurement method
KR20010024888A (en) System for validating calibration of a coriolis flowmeter
US4527433A (en) Method and apparatus for measuring fluid flow
US20170328751A1 (en) Method for detection of pipeline vibrations and measuring instrument
US9625305B2 (en) Ultrasonic transit-time flowmeter and method for detecting a failure in an ultrasonic transit-time flowmeter
JP4739333B2 (en) Coriolis flow meter and method for determining cabling and signal difference at first and second pickoff sensors
JP2000346686A (en) Ultrasonic flowmeter
JP2007187506A (en) Ultrasonic flowmeter
EP2339301A1 (en) Ultrasonic flowmeter with simultaneously driven ultrasonic transducers
US20090211347A1 (en) Method and Apparatus for Ascertaining and/or Monitoring a Process Variable
JP5965292B2 (en) Ultrasonic flow meter
JP4153721B2 (en) Ultrasonic flowmeter and self-diagnosis method of ultrasonic flowmeter
JP2010223855A (en) Ultrasonic flowmeter
JPH11304559A (en) Flow rate measuring apparatus
JP3624743B2 (en) Ultrasonic flow meter
JP5663288B2 (en) Ultrasonic measuring device
JP2007064792A (en) Ultrasonic flow measuring instrument
JP6767628B2 (en) Flow measuring device
JP2000329597A5 (en)
JPH088417Y2 (en) Ultrasonic flowmeter calibration device
JP2007064988A5 (en)
JP5092413B2 (en) Flow velocity or flow rate measuring device
JPS6242015A (en) Temperature correcting method for ultrasonic flow meter
JP3958124B2 (en) Ultrasonic receiver and ultrasonic flow meter