JP4646107B2 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP4646107B2
JP4646107B2 JP2004170945A JP2004170945A JP4646107B2 JP 4646107 B2 JP4646107 B2 JP 4646107B2 JP 2004170945 A JP2004170945 A JP 2004170945A JP 2004170945 A JP2004170945 A JP 2004170945A JP 4646107 B2 JP4646107 B2 JP 4646107B2
Authority
JP
Japan
Prior art keywords
propagation time
frequency
measurement
ultrasonic
time difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004170945A
Other languages
Japanese (ja)
Other versions
JP2005351695A (en
Inventor
良浩 関根
幸生 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Original Assignee
Ricoh Elemex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp filed Critical Ricoh Elemex Corp
Priority to JP2004170945A priority Critical patent/JP4646107B2/en
Publication of JP2005351695A publication Critical patent/JP2005351695A/en
Application granted granted Critical
Publication of JP4646107B2 publication Critical patent/JP4646107B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超音波流量計に関し、詳しくは超音波を利用して流体の流速や流量を計測する超音波流量計に関する。具体的には、ガスメータ,水道メータ,ガス流量計等の分野で、流体の流量の管理および制御に使用される超音波流量計に関する。 The present invention relates to an ultrasonic flowmeter, and more particularly to an ultrasonic flowmeter that measures the flow velocity and flow rate of a fluid using ultrasonic waves. More specifically, the present invention relates to an ultrasonic flow meter used for management and control of fluid flow rate in the fields of a gas meter, a water meter, a gas flow meter, and the like.

従来、都市ガス,LPG,水などの流体の流量を計測する流量計として、超音波を利用して流速や流量を計測する超音波流量計が知られている。その計測原理として、一般には「伝搬時間差法」が用いられる。これは、流路の流体流れ方向上手側および下手側に一対の超音波トランスジューサを設け、超音波の送受信を交互に切り替えて、流れ方向上手側の超音波トランスジューサから発射された超音波が流れ方向下手側の超音波トランスジューサに到達するまでの時間(以下、順方向伝搬時間という)と、流れ方向下手側の超音波トランスジューサから発射された超音波が流れ方向上手側の超音波トランスジューサに到達するまでの時間(以下、逆方向伝搬時間という)とを計測して、両者の差から流路を流れる流体の平均流速と、平均流速に流路断面積を乗算することで流量とを求める方法である(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, as a flow meter that measures the flow rate of a fluid such as city gas, LPG, and water, an ultrasonic flow meter that measures flow velocity and flow rate using ultrasonic waves is known. As the measurement principle, the “propagation time difference method” is generally used. This is because a pair of ultrasonic transducers are provided on the upper and lower sides of the fluid flow direction of the flow path, and the ultrasonic waves emitted from the ultrasonic transducer on the upper side of the flow direction are switched by alternately switching the transmission and reception of ultrasonic waves. Time to reach the ultrasonic transducer on the lower side (hereinafter referred to as forward propagation time) and until the ultrasonic wave emitted from the ultrasonic transducer on the lower side in the flow direction reaches the ultrasonic transducer on the upper side in the flow direction This is a method of measuring the time (hereinafter referred to as the reverse propagation time) and obtaining the flow rate by multiplying the average flow velocity of the fluid flowing through the flow path by the difference between the two and the cross-sectional area of the flow velocity by the average flow speed. (For example, refer to Patent Document 1).

いま、順方向伝搬時間をT、逆方向伝搬時間をT、静止流体中の音速をC、計測流体の流速をV、超音波の伝搬距離(一対の超音波トランスジューサ間距離)をLとすると、下式(1)および(2)が得られる。 Now, T j is the forward propagation time, T g is the backward propagation time, C is the velocity of sound in the static fluid, V is the flow velocity of the measurement fluid, and L is the propagation distance of ultrasonic waves (distance between a pair of ultrasonic transducers). Then, the following formulas (1) and (2) are obtained.

=L/(C+V) ・・・(1)
=L/(C−V) ・・・(2)
T j = L / (C + V) (1)
T g = L / (C−V) (2)

式(1)および(2)より、流速Vが下式(3)のように求められる。 From equations (1) and (2), the flow velocity V is obtained as in the following equation (3).

V=L{(1/T)−(1/T)}/2 ・・・(3) V = L {(1 / T j ) − (1 / T g )} / 2 (3)

そして、流量Q1が、流路の断面積S、計測時間間隔等を考慮した補正係数Hを用いて、下式(4)で求められる。 Then, the flow rate Q1 is obtained by the following equation (4) using a correction coefficient H considering the cross-sectional area S of the flow path, the measurement time interval, and the like.

Q1=V・S・H ・・・(4) Q1 = V · S · H (4)

また、前回までの積算流量Q0を用いれば、積算流量Qは、Q=Q0+Q1で求められる。
特許第2828615号公報
If the integrated flow rate Q0 up to the previous time is used, the integrated flow rate Q can be obtained by Q = Q0 + Q1.
Japanese Patent No. 2828615

従来、この種の超音波流量計は、工場出荷時に、流体の遮断弁を閉じた状態(流量0の状態)で一対の超音波トランスジューサ間における順方向伝搬時間および逆方向伝搬時間を計測し、同じ伝搬時間が得られるかどうかに基づいて校正(キャリブレーション)を行なう必要があるかどうかを検出し、必要がある場合には校正を行なっていた。 Conventionally, this type of ultrasonic flowmeter measures the forward propagation time and the backward propagation time between a pair of ultrasonic transducers with the fluid shut-off valve closed (flow rate 0 state) at the time of factory shipment. Based on whether or not the same propagation time can be obtained, it is detected whether or not calibration (calibration) needs to be performed, and calibration is performed when necessary.

しかし、超音波トランスジューサは、送受信時の遅延特性、即ち、電気−機械・機械−電気変換特性の経年的な遅延特性変動(ドリフト)が生じることが知られている。すなわち、超音波トランスジューサは、圧電セラミック,音響整合層,支持体,ダンパ等が接着剤で接合されて構成されているので、接着剤が経年変化で劣化したり、圧電セラミックや音響整合層が使用劣化したりすると、送受信時の遅延特性が劣化していた。 However, it is known that an ultrasonic transducer has a delay characteristic at the time of transmission / reception, that is, a delay characteristic fluctuation (drift) with time of an electro-mechanical / mechanical-electrical conversion characteristic. In other words, ultrasonic transducers are composed of piezoelectric ceramics, acoustic matching layers, supports, dampers, etc. joined with adhesives, so that the adhesives deteriorate over time, and piezoelectric ceramics and acoustic matching layers are used. When it deteriorates, the delay characteristic at the time of transmission / reception deteriorates.

このため、超音波流量計が工場から出荷され、フィールドに取り付けられてから時間が経過すると、一対の超音波トランスジューサの遅延特性が経年変化により変動し、互いの遅延特性が規定の範囲から外れてしまう経年的な遅延特性変動(ドリフト)が発生していた。特に、微少流量の計測時のように一対の超音波トランスジューサ間の遅延特性差による影響が無視できない場合、一対の超音波トランスジューサ間の遅延特性のズレ量を何らかの手段により補正しなければならなかったが、従来は、経年的な遅延特性変動の影響を十分に補正する良い手法が無かったため、一対の超音波トランスジューサの経年的な遅延特性変動に対する補正は行なわれていなかった。この結果、計測精度が低下してしまい、超音波流量計の信頼性を低下させてしまうことが懸念されていた。 For this reason, when the time has elapsed since the ultrasonic flowmeter was shipped from the factory and installed in the field, the delay characteristics of the pair of ultrasonic transducers fluctuated due to aging, and the delay characteristics of each pair deviated from the specified range. As a result, a delay characteristic fluctuation (drift) occurred over time. In particular, when the influence of the delay characteristic difference between a pair of ultrasonic transducers cannot be ignored, as in the case of measuring a minute flow rate, the amount of delay characteristic deviation between the pair of ultrasonic transducers must be corrected by some means. However, conventionally, there has been no good technique for sufficiently correcting the influence of the variation in delay characteristics over time, and therefore, correction for the variation in delay characteristics of the pair of ultrasonic transducers has not been performed. As a result, there has been a concern that the measurement accuracy is lowered and the reliability of the ultrasonic flowmeter is lowered.

そこで、本発明の課題は、計測周波数の変化は、流速には影響しないが、超音波の伝搬時間に影響することに着目し、流体の流れを完全に停止させなくても(流量があっても)、計測周波数を変化させて順方向伝搬時間および逆方向伝搬時間を計測することによって、超音波トランスジューサの経年的な遅延特性変動を補正できるようにした超音波流量計を提供することにある。 Therefore, the problem of the present invention is that the change in the measurement frequency does not affect the flow velocity, but affects the propagation time of the ultrasonic wave, and the fluid flow is not completely stopped (there is a flow rate). Another object is to provide an ultrasonic flowmeter capable of correcting the aging delay characteristic fluctuation of an ultrasonic transducer by measuring the forward propagation time and the backward propagation time by changing the measurement frequency. .

また、本発明の課題は、工場出荷後に、即ちフィールド上で、一定期間毎に補正検査を自動的に行なう超音波流量計を提供することにある。 Another object of the present invention is to provide an ultrasonic flowmeter that automatically performs a correction inspection every predetermined period after shipment from the factory, that is, on the field.

さらに、本発明の課題は、計測周波数を変化させて、計測周波数間の順方向伝搬時間差および逆方向伝搬時間差に基づいて補正の必要の有無を判断し、必要がある場合に補正を行なうようにした超音波流量計を提供することにある。 Furthermore, an object of the present invention is to change the measurement frequency, determine whether correction is necessary based on the forward propagation time difference and the reverse propagation time difference between the measurement frequencies, and perform correction when necessary. It is in providing an ultrasonic flowmeter.

さらにまた、本発明の課題は、高精度の補正を行なうことが可能であり、長期的にも極めて計測精度が高く、計測における信頼性も著しく向上させることができる超音波流量計を提供することにある。 Furthermore, an object of the present invention is to provide an ultrasonic flowmeter capable of performing high-precision correction, having extremely high measurement accuracy in the long term and capable of significantly improving the reliability in measurement. It is in.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明の超音波流量計は、流路の流体流れ方向上手側および下手側に一対の超音波トランスジューサを設け、超音波の送受信を交互に切り替えて、流れ方向上手側の超音波トランスジューサから発射された超音波が流れ方向下手側の超音波トランスジューサに到達するまでの順方向伝搬時間と、流れ方向下手側の超音波トランスジューサから発射された超音波が流れ方向上手側の超音波トランスジューサに到達するまでの逆方向伝搬時間とを計測して、両者の差から流路を流れる流体の平均流速を求め、平均流速に流路断面積を乗算することで流量を求める超音波流量計において、前記一対の超音波トランスジューサが設置された時において、複数の計測周波数を定めて、前記一対の超音波トランスジューサ間の順方向伝搬時間および逆方向伝搬時間の計測を行い、前記複数の計測周波数の間における順方向伝搬時間の差、および前記複数の計測周波数の間における逆方向伝搬時間の差を求め、その初期順方向伝搬時間差および初期逆方向伝搬時間差を記憶する周波数−伝搬時間差記憶部と、一定期間毎に、前記複数の計測周波数によって、前記超音波トランスジューサ間の順方向伝搬時間および逆方向伝搬時間の計測を行ない、前記複数の計測周波数における順方向伝搬時間および前記複数の計測周波数の間における逆方向伝搬時間を求めその順方向伝搬時間差と前記周波数−伝搬時間差記憶部に記憶された前記順方向伝搬時間を計測した温度での初期順方向伝搬時間差およびその逆方向伝搬時間差と前記周波数−伝搬時間差記憶部に記憶された前記逆方向伝搬時間を計測した温度での初期逆方向伝搬時間差比較する周波数−伝搬時間差比較部とを有し、前記周波数−伝搬時間差比較部の比較結果に基づく初期順方向伝搬時間差および初期逆方向伝搬時間差との間のズレ量に応じて通常計測補正値をマイナスの値またはプラスの値に変更することで、超音波トランスジューサによる通常計測値を通常計測補正値によって遅延特性の変化分に応じた変更を行い、前記一対の超音波トランスジューサの遅延特性が、計測流体の流速によらず、計測周波数によって変化することを利用し、前記一対の超音波トランスジューサの経年的な遅延特性変動に対する流量補正を行なうことを特徴とする。本発明の超音波流量計によれば、計測周波数間の初期順方向伝搬時間差および初期逆方向伝搬時間差を予め記憶させ、一定期間毎に複数の計測周波数での順方向伝搬時間および逆方向伝搬時間を計測し、計測周波数間の順方向伝搬時間差および逆方向伝搬時間差を求めて、予め記憶されている同計測周波数間の初期順方向伝搬時間差および初期逆方向伝搬時間差と比較し、比較結果に基づいて一対の超音波トランスジューサの経年的な遅延特性変動を補正するようにしたので、経年的な遅延特性変動が定期的に補正され計測誤差の少ない超音波流量計を提供できる。 The ultrasonic flowmeter of the present invention is provided with a pair of ultrasonic transducers on the upper and lower sides of the fluid flow direction of the flow path, and is alternately emitted and sent from the ultrasonic transducer on the upper side in the flow direction. Until the ultrasonic wave reaches the ultrasonic transducer on the lower side in the flow direction and until the ultrasonic wave emitted from the ultrasonic transducer on the lower side in the flow direction reaches the ultrasonic transducer on the upper side in the flow direction. In the ultrasonic flowmeter, the average flow velocity of the fluid flowing through the flow path is calculated from the difference between the two, and the flow rate is obtained by multiplying the average flow velocity by the cross-sectional area of the flow path . When an ultrasonic transducer is installed, a plurality of measurement frequencies are determined, and a forward propagation time and a reverse direction between the pair of ultrasonic transducers. The transport time is measured, the difference in forward propagation time between the plurality of measurement frequencies and the difference in reverse propagation time between the plurality of measurement frequencies are obtained, and the initial forward propagation time difference and the initial reverse direction are obtained. frequency storing transit time - the propagation time difference storage unit, at regular intervals, by the plurality of measurement frequencies, performs forward propagation time and the measurement of the backward propagation time between the ultrasonic transducers, said plurality of measurement frequencies the forward propagation time stored in the propagation time difference storage unit - the frequency difference of the forward propagation time, and obtains a difference between the backward propagation time between said plurality of measurement frequencies, and its forward propagation time difference between the initial forward transit time at temperatures were measured, and its backward propagation time difference between the frequency - the reverse Den stored in transit time storage unit Frequency comparing initial backward propagation time difference at the measured temperature time - transit time and a comparison unit, the frequency - Comparison of the propagation time difference comparison unit results based rather initial forward transit time and initial backward propagating By changing the normal measurement correction value to a negative value or a positive value according to the amount of deviation from the time difference, the normal measurement value by the ultrasonic transducer is changed according to the change in delay characteristics by the normal measurement correction value. was carried out, delay characteristics of the pair of ultrasonic transducers, regardless of the flow velocity of the fluid being measured, by utilizing the change by the measurement frequency, the flow rate correction for aging delay characteristic variation of the pair of ultrasonic transducers It is characterized by that. According to the ultrasonic flowmeter of the present invention , the initial forward propagation time difference and the initial reverse propagation time difference between the measurement frequencies are stored in advance, and the forward propagation time and the reverse propagation time at a plurality of measurement frequencies are set for each fixed period. The difference between the forward propagation time and the reverse propagation time between the measured frequencies is obtained and compared with the initial forward propagation time difference and the initial reverse propagation time difference between the same measurement frequencies stored in advance. Thus, the variation of the delay characteristics with time of the pair of ultrasonic transducers is corrected, so that it is possible to provide an ultrasonic flowmeter with less measurement errors by periodically correcting the delay characteristics fluctuation with time.

本発明の超音波流量計は、前記超音波トランスジューサが、低Q型で、不要スプリアスの少ない、単一共振特性を有する超音波トランスジューサで形成されていて、該超音波トランスジューサの周波数帯域を利用することを特徴とする。本発明の超音波流量計によれば、ある程度低いQ値により、計測流体が空気やガスのような音響インピーダンスの極めて小さい流体(超音波トランスジューサの音響整合層と比べて6桁以上の差)に対して、比較的少ない消費電流での超音波の送受信計測が可能である。また、広域な流量レンジに対応させるためにも、周波数帯域内での不要スプリアスが少ない単一共振特性を有し、Q値がある程度低いことから、周波数帯域内における周波数を利用し、この周波数を計測周波数として超音波を送信した結果、計測周波数に応じた受信周波数となる特性が確保できる(広域な流量レンジが計測でき、受信波が計測周波数に応じた周波数となるため、計測精度が向上する)。さらに、Q値がある程度低いことで、できるだけ少ない駆動パルス数により、計測周波数に応じた受信特性が得られ、受信波の周波数追従特性が向上する結果、計測精度が向上し、さらに消費電流を比較的少なく抑えられる。 Ultrasonic flow meter of the present invention, prior Symbol ultrasonic transducer, with a low Q type, little unwanted spurious, be formed by ultrasonic transducer having a single resonance characteristic, using the frequency band of the ultrasonic transducer It is characterized by doing. According to the ultrasonic flowmeter of the present invention , the measurement fluid becomes a fluid with extremely low acoustic impedance such as air or gas (difference of 6 digits or more compared to the acoustic matching layer of the ultrasonic transducer) due to a somewhat low Q value. On the other hand, ultrasonic transmission / reception measurement with a relatively small current consumption is possible. Also, in order to cope with a wide flow range, since it has a single resonance characteristic with less unwanted spurious in the frequency band and the Q value is low to some extent, the frequency in the frequency band is used, and this frequency is As a result of transmitting the ultrasonic wave as the measurement frequency, the characteristic that becomes the reception frequency according to the measurement frequency can be secured (the wide flow rate range can be measured, and the reception wave becomes the frequency according to the measurement frequency, so the measurement accuracy is improved. ). Furthermore, the Q value is low to some extent, so that the reception characteristics corresponding to the measurement frequency can be obtained with as few drive pulses as possible, and the frequency tracking characteristics of the received waves are improved. As a result, the measurement accuracy is improved and the current consumption is compared. Less.

本発明の超音波流量計は、補正検査時の計測周波数が、前記超音波トランスジューサの周波数帯域内の共振点周波数またはその近傍の周波数と、前記周波数帯域内の共振点周波数から離れた周波数とを使用し、これらの周波数の駆動パルスにより前記超音波トランスジューサを駆動し、順方向伝搬時間および逆方向伝搬時間の計測を行なうことを特徴とする。本発明の超音波流量計によれば、超音波トランスジューサはQ値が低い特性なので、補正検査時に計測する計測周波数の1つを共振点周波数またはその近傍の周波数にすることで、送信側の超音波トランスジューサの計測周波数や環境の影響が少ない安定な基準となる計測周波数となり、また受信波の周波数追従性が得られる。また、残りの計測周波数を共振点周波数から離れた、超音波トランスジューサの周波数帯域の境界近傍の周波数とすることで、共振点周波数の影響を受けづらくなり、受信波が計測周波数に応じた周波数として得られる。 Ultrasonic flow meter of the present invention, compensation during inspection of the measurement frequency, the frequency of the resonance point frequency or near the frequency band of the ultrasonic transducer, the frequency away from the resonance point frequency within the frequency band And the ultrasonic transducer is driven by drive pulses of these frequencies, and the forward propagation time and the backward propagation time are measured. According to the ultrasonic flowmeter of the present invention , since the ultrasonic transducer has a low Q value, one of the measurement frequencies measured during the correction inspection is set to the resonance point frequency or a frequency near the resonance point frequency, so that The measurement frequency becomes a stable reference with little influence from the measurement frequency of the acoustic transducer and the environment, and the frequency tracking of the received wave can be obtained. In addition, by making the remaining measurement frequency near the boundary of the ultrasonic transducer frequency band away from the resonance point frequency, it becomes difficult to be affected by the resonance point frequency, and the received wave is a frequency according to the measurement frequency. can get.

本発明の超音波流量計は、送信波の駆動パルス数Nの制御されたバースト駆動による強制振動で、送信波の駆動パルス数Nに対して最大N+2〜3以内の受信パルス数、できれば、最大N以内の受信パルス数のゼロクロスポイントを受信波の検出ポイントとすることを特徴とする。本発明の超音波流量計によれば、超音波トランスジューサに送信波の駆動パルス数Nによって強制振動と成りうる駆動を与え、その依存度の高い受信エリアを検出ポイントとすることにより、補正するための計測精度を向上させることができる。 Ultrasonic flow meter of the present invention, transmission in forced vibration by controlled burst drive signal wave drive pulse number N, the maximum N + 2 to 3 within the number of received pulses to the drive pulse number N of the transmission wave, if possible, A zero cross point of the number of received pulses within the maximum N is set as a detection point of a received wave. According to the ultrasonic flowmeter of the present invention, the ultrasonic transducer is corrected by giving a drive that can be a forced vibration depending on the number of drive pulses N of the transmission wave, and setting the reception area having a high dependency as a detection point. Measurement accuracy can be improved.

本発明の超音波流量計は、計測周波数に応じて送信波の駆動パルス数および受信波の検出ポイントを変更することを特徴とする。本発明の超音波流量計によれば、計測周波数に応じて送信波の駆動パルス数および受信波の検出ポイントを変更することによって、計測周波数の減衰による計測精度の低下を防止することが可能となる。 Ultrasonic flow meter of the present invention is characterized by changing the detection point of the driving pulse number and received wave of the transmission wave in accordance with the total measurement frequency. According to the ultrasonic flowmeter of the present invention , it is possible to prevent a decrease in measurement accuracy due to attenuation of the measurement frequency by changing the number of drive pulses of the transmission wave and the detection point of the reception wave according to the measurement frequency. Become.

本発明の超音波流量計は、計測周波数に応じた送信波の駆動パルス数および受信波の検出ポイントを調整・記憶することが想定される。かかる超音波流量計によれば、初期順方向伝搬時間差および初期逆方向伝搬時間差からの経年的な遅延特性変動に対する流量補正を行なうので、超音波流量計が設置されたその環境下で初期状態を学習(初期順方向伝搬時間差および初期逆方向伝搬時間差を取得)することで、より補正精度の向上が可能となる。 Ultrasonic flow meter of the present invention, it is Ru is assumed to be adjusted and stored detection point of the driving pulse number and received wave of the transmission wave in accordance with the total measurement frequency. According to such an ultrasonic flow meter, since the flow rate correction is performed for the delay characteristic variation over time from the initial forward propagation time difference and the initial reverse propagation time difference, the initial state is maintained in the environment where the ultrasonic flow meter is installed. By performing learning (acquiring an initial forward propagation time difference and an initial reverse propagation time difference), it is possible to further improve the correction accuracy.

本発明の超音波流量計は、フィールドに設置された超音波流量計を、一定期間で、予め決められた温度になった時、しかもできるだけ計測流体の流量の少ないタイミングを見計らって、計測周波数に対する順方向伝搬時間および逆方向伝搬時間の計測を行なうことが想定される。本発明の超音波流量計によれば、流量変動の少ない期間に補正検査を行なうことで、補正精度の向上が可能となる。 Ultrasonic flow meter of the present invention, the ultrasonic flow meter installed in the field, at a certain period, when it becomes a predetermined temperature, yet are sure to allow flow less time as possible measurement fluid, the measurement frequency it Ru is assumed to perform measurement of the forward propagation time and the backward propagation time for. According to the ultrasonic flowmeter of the present invention , it is possible to improve the correction accuracy by performing the correction inspection in a period in which the flow rate fluctuation is small.

本発明の超音波流量計は、複数の計測周波数での順方向伝搬時間の計測を計測周波数を異ならしめながら連続的に行ない、しかる後に複数の計測周波数での逆方向伝搬時間の計測を計測周波数を異ならしめながら連続的に行なうことを特徴とする。本発明の超音波流量計によれば、同じ計測周波数での順方向伝搬時間の計測および逆方向伝搬時間の計測を、計測周波数を異ならしめながら連続的に行なう場合に比べて、順/逆の切替を頻繁に繰り返さなくても済むので、その分、計測時間間隔が短くなり、流量変動の影響が低減できて、高精度に計測補正が可能となる。 Ultrasonic flow meter of the present invention, while made different measurement frequency measurement of the forward propagation time in the multiple measurement frequencies continuously performed, measures the measurement of the backward propagation time at a plurality of measurement frequencies thereafter It is characterized in that it is carried out continuously with different frequencies. According to the ultrasonic flowmeter of the present invention , forward / reverse propagation time measurement at the same measurement frequency and reverse propagation time measurement are performed in a forward / reverse manner compared to a case where measurement is performed continuously with different measurement frequencies. Since switching does not need to be repeated frequently, the measurement time interval is shortened accordingly, the influence of flow rate fluctuations can be reduced, and measurement correction can be performed with high accuracy.

本発明の超音波流量計は、ある計測周波数での順方向伝搬時間または逆方向伝搬時間の計測のための駆動パルスを印加して、それに対応した受信パルスが伝搬して来る前に、次の計測周波数での順方向伝搬時間または逆方向伝搬時間の計測のための駆動パルスを印加することを特徴とする。本発明の超音波流量計によれば、ある計測周波数の駆動パルスを印加して、それに対応した受信パルスが伝搬して来る前に、次の計測周波数の駆動パルスを印加するので、ある計測周波数での順方向伝搬時間または逆方向伝搬時間の計測と次の計測周波数での順方向伝搬時間または逆方向伝搬時間の計測との計測時間間隔が短くなり、ある計測周波数の駆動パルスを印加し、それに対応した受信パルスが伝搬して来るのを待って、次の計測周波数の駆動パルスを印加する場合に比べて、計測時間間隔がより短くなり、流量変動の影響がより低減できて、より高精度な計測補正が可能となる。 Ultrasonic flow meter of the present invention applies a drive pulse for the forward propagation time or back propagation time measurement in Oh Ru measurement frequency, before the received pulse propagated through corresponding thereto, the following A drive pulse for measuring the forward propagation time or the backward propagation time at the measurement frequency is applied. According to the ultrasonic flowmeter of the present invention , a drive pulse of a certain measurement frequency is applied, and a drive pulse of the next measurement frequency is applied before the corresponding received pulse propagates. The measurement time interval between the measurement of forward propagation time or reverse propagation time at and the measurement of forward propagation time or reverse propagation time at the next measurement frequency is shortened, and a drive pulse of a certain measurement frequency is applied, Compared to applying the drive pulse of the next measurement frequency after waiting for the reception pulse corresponding to it to propagate, the measurement time interval becomes shorter, the influence of flow rate fluctuations can be further reduced, and higher Accurate measurement correction is possible.

本発明に関連する超音波流量計は、流路の流体流れ方向上手側および下手側に一対の超音波トランスジューサを設け、超音波の送受信を交互に切り替えて、流れ方向上手側の超音波トランスジューサから発射された超音波が流れ方向下手側の超音波トランスジューサに到達するまでの順方向伝搬時間と、流れ方向下手側の超音波トランスジューサから発射された超音波が流れ方向上手側の超音波トランスジューサに到達するまでの逆方向伝搬時間とを計測して、両者の差から流路を流れる流体の平均流速を求め、平均流速に流路断面積を乗算することで流量を求める超音波流量計において、複数の温度での計測周波数間の初期順方向伝搬時間差および初期逆方向伝搬時間差を予め記憶している周波数−伝搬時間差記憶部と、各計測周波数で計測された順方向伝搬時間および逆方向伝搬時間から演算された計測周波数間の順方向伝搬時間差および逆方向伝搬時間差を、前記周波数−伝搬時間差記憶部に記憶されている現温度での計測周波数間の初期順方向伝搬時間差および初期逆方向伝搬時間差と比較する周波数−伝搬時間差比較部と、一対の超音波トランスジューサに印加する駆動信号の駆動パルス数を計測周波数に応じて可変に制御する駆動パルス数管理部と、受信側の超音波トランスジューサの固有応答性により強制振動による依存度が低いエリアでは計測せずに送信波の駆動パルス数Nの制御されたバースト駆動による強制振動で送信波の駆動パルス数Nに対して最大N+2〜3以内の受信パルス数、できれば、最大N以内の受信パルス数のゼロクロスポイントを受信波の検出ポイントとする受信パルス数管理部と、フィールドに設置された超音波流量計を、一定期間毎に、予め決められた温度になった時、しかもできるだけ計測流体の流量の少ない夜間等のタイミングを見計らって、検査期間であるかどうかを判断する検査期間判定部と、一対の超音波トランスジューサの経年的な遅延特性変動を判定し、通常計測補正値を変更する特性変動判定・補正部とを有することが想定される。かかる超音波流量計によれば、計測周波数間の初期順方向伝搬時間差および初期逆方向伝搬時間差を予め記憶させ、一定期間毎に複数の計測周波数での順方向伝搬時間および逆方向伝搬時間を計測し、計測周波数間の順方向伝搬時間差および逆方向伝搬時間差を取得して、予め記憶されている同計測周波数間の初期順方向伝搬時間差および初期逆方向伝搬時間差と比較し、比較結果に基づいて一対の超音波トランスジューサの経年的な遅延特性変動を補正するようにしたので、経年的な遅延特性変動が定期的に補正され計測誤差の少ない超音波流量計を提供できる。 The ultrasonic flowmeter related to the present invention is provided with a pair of ultrasonic transducers on the upper and lower sides of the fluid flow direction of the flow path, and alternately switching the transmission and reception of ultrasonic waves from the ultrasonic transducer on the upper side in the flow direction. The forward propagation time until the emitted ultrasonic wave reaches the ultrasonic transducer on the lower side in the flow direction, and the ultrasonic wave emitted from the ultrasonic transducer on the lower side in the flow direction reaches the ultrasonic transducer on the upper side in the flow direction. In an ultrasonic flowmeter that measures the reverse propagation time until the flow rate is obtained, finds the average flow velocity of the fluid flowing through the flow path from the difference between the two, and obtains the flow rate by multiplying the average flow velocity by the cross-sectional area of the flow passage. A frequency-propagation time difference storage unit that stores in advance an initial forward propagation time difference and an initial reverse propagation time difference between measurement frequencies at different temperatures, and a measurement at each measurement frequency. The forward propagation time difference and the backward propagation time difference between the measured frequencies calculated from the measured forward propagation time and backward propagation time are calculated between the measured frequencies at the current temperature stored in the frequency-propagation time difference storage unit. Frequency-propagation time difference comparison unit that compares initial forward propagation time difference and initial reverse propagation time difference, and drive pulse number management that variably controls the number of drive pulses applied to a pair of ultrasonic transducers according to the measurement frequency And the number of drive pulses of the transmission wave by the forced vibration by the burst driving in which the drive wave number N of the transmission wave is not measured in an area where the dependence by the forced vibration is low due to the inherent response of the ultrasonic transducer on the receiving side The number of received pulses within a maximum of N + 2 to 3 with respect to N, preferably the zero cross point of the maximum number of received pulses within N is detected. When the number of received pulse number management units and the ultrasonic flowmeter installed in the field reach a predetermined temperature at regular intervals, the timing of the measurement fluid flow rate is as low as possible. And an inspection period determination unit that determines whether or not it is an inspection period, and a characteristic variation determination / correction unit that determines a time-dependent delay characteristic variation of a pair of ultrasonic transducers and changes a normal measurement correction value. but Ru is assumed. According to such an ultrasonic flowmeter, the initial forward propagation time difference and the initial reverse propagation time difference between the measurement frequencies are stored in advance, and the forward propagation time and the reverse propagation time at a plurality of measurement frequencies are measured every predetermined period. Then, the forward propagation time difference and the reverse propagation time difference between the measurement frequencies are obtained and compared with the initial forward propagation time difference and the initial reverse propagation time difference between the measurement frequencies stored in advance, and based on the comparison result. Since the aging delay characteristic fluctuation of the pair of ultrasonic transducers is corrected, the aging delay characteristic fluctuation is periodically corrected, and an ultrasonic flowmeter with little measurement error can be provided.

一対の超音波トランスジューサの経年的な遅延特性変動(送信遅延特性変動,受信遅延特性変動等)が、計測流体の流速によらず、計測周波数によって変化することを利用することにより、一定期間毎(例えば1年毎)に、複数の温度での、複数の計測周波数で超音波トランスジューサ間の順方向伝搬時間および逆方向伝搬時間の計測を行ない、計測周波数間の順方向伝搬時間差および逆方向伝搬時間差を、予め記憶されている同温度での同計測周波数間の初期順方向伝搬時間差および初期逆方向伝搬時間差と比較し、経年的な遅延特性変動に対する流量補正を行なう。 By using the fact that the delay characteristics fluctuation (transmission delay characteristic fluctuation, reception delay characteristic fluctuation, etc.) of a pair of ultrasonic transducers changes with the measurement frequency regardless of the flow velocity of the measurement fluid, For example, every year, the forward propagation time and the backward propagation time between the ultrasonic transducers are measured at a plurality of temperatures at a plurality of measurement frequencies, and the forward propagation time difference and the backward propagation time difference between the measurement frequencies are measured. Is compared with the initial forward propagation time difference and the initial reverse propagation time difference between the measurement frequencies at the same temperature stored in advance, and the flow rate correction for the delay characteristic variation with time is performed.

以下、本発明の実施例について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施例1に係る超音波流量計の構成を示すブロック図である。本実施例1に係る超音波流量計は、一対の超音波トランスジューサ1a,1bと、送受切替部2と、駆動部3と、周波数可変部4と、増幅部5と、受信部6と、伝搬時間計測部7と、マイクロコンピュータ8と、温度計9とから、その主要部が構成されている。 FIG. 1 is a block diagram illustrating the configuration of the ultrasonic flowmeter according to the first embodiment of the present invention. The ultrasonic flowmeter according to the first embodiment includes a pair of ultrasonic transducers 1a and 1b, a transmission / reception switching unit 2, a drive unit 3, a frequency variable unit 4, an amplification unit 5, a reception unit 6, and a propagation. The time measuring unit 7, the microcomputer 8, and the thermometer 9 constitute the main part.

一対の超音波トランスジューサ1a,1bは、機械的共振尖鋭度を表すQ値が低い(Q=2〜10、望ましくはQ=2.5〜5)型で、不要スプリアスの少ない、単一共振特性を有する超音波トランスジューサで形成されていて、該超音波トランスジューサの周波数帯域が利用される。これにより、安定した計測周波数および遅延特性の計測が可能となり、より高精度な経年的な遅延特性変動の補正が可能になる。 The pair of ultrasonic transducers 1a and 1b has a low Q value (Q = 2 to 10, preferably Q = 2.5 to 5) indicating mechanical resonance sharpness, and has a single resonance characteristic with less unnecessary spurious. The frequency band of the ultrasonic transducer is used. As a result, stable measurement frequency and delay characteristics can be measured, and more accurate delay characteristic fluctuations can be corrected over time.

以下、図2に示すように、計測周波数fを、超音波トランスジューサ1a,1bの周波数帯域内での共振周波数またはその近傍の周波数であるものとし、計測周波数fを、超音波トランスジューサ1a,1bの周波数帯域内で、計測周波数fに対して変位させた周波数であるものとする。計測周波数f,fに比例した安定な超音波パルスである受信波が受信可能であることと、使用する周波数帯域での応答性において、不要な振動モードによる遅延特性の相関性が損なわれないように、低Q型で、しかも周波数帯域内の不要スプリアスが小さい、単一共振特性を有する超音波トランスジューサ1a,1bにより、安定した計測周波数および遅延特性を実現し、計測周波数f,f間の順方向伝搬時間差Δ(f,f)および逆方向伝搬時間差Δ(f,f)を保証する。 Hereinafter, as shown in FIG. 2, it is assumed that the measurement frequency f 0 is the resonance frequency in the frequency band of the ultrasonic transducers 1a and 1b or a frequency in the vicinity thereof, and the measurement frequency f 1 is the ultrasonic transducer 1a, within the frequency band 1b, the assumed to be a frequency that is displaced relative to the measuring frequency f 0. The correlation between delay characteristics due to unnecessary vibration modes is impaired in the ability to receive a received wave, which is a stable ultrasonic pulse proportional to the measurement frequencies f 1 and f 0 , and the responsiveness in the frequency band to be used. The ultrasonic transducers 1a and 1b having a single resonance characteristic with a low Q type and a small unnecessary spurious in the frequency band realize a stable measurement frequency and delay characteristic, and the measurement frequencies f 1 and f ensuring the forward transit time between 0 Δ j (f 1, f 0) and reverse transit time Δ g (f 1, f 0 ).

送受切替部2は、送信手段21と、受信手段22とを含んで構成されており、超音波トランスジューサ1a,1bを、流れ方向上手側の超音波トランスジューサ1aから超音波を発射させて流れ方向下手側の超音波トランスジューサ1bで受信するのか、流れ方向下手側の超音波トランスジューサ1bから超音波を発射させて流れ方向上手側の超音波トランスジューサ1aで受信するのかを、マイクロコンピュータ8からの制御で切り替える。 The transmission / reception switching unit 2 includes a transmission unit 21 and a reception unit 22, and causes the ultrasonic transducers 1a and 1b to emit ultrasonic waves from the ultrasonic transducer 1a on the upper side in the flow direction to lower the flow direction. The control from the microcomputer 8 switches between reception by the ultrasonic transducer 1b on the side and emission of ultrasonic waves from the ultrasonic transducer 1b on the lower side in the flow direction and reception by the ultrasonic transducer 1a on the upper side in the flow direction. .

駆動部3は、周波数可変部4の制御による計測周波数で、マイクロコンピュータ8からの制御による駆動パルス数Nの駆動信号を、超音波を発射するための印加電圧として送受切替部2を介して超音波トランスジューサ1a,1bに印加する。また、駆動部3は、伝搬開始信号を伝搬時間計測部7に送信して、伝搬時間の計測を開始させる。 The drive unit 3 supervises the drive signal of the drive pulse number N controlled by the microcomputer 8 at the measurement frequency controlled by the frequency variable unit 4 via the transmission / reception switching unit 2 as an applied voltage for emitting ultrasonic waves. Applied to the sonic transducers 1a, 1b. In addition, the drive unit 3 transmits a propagation start signal to the propagation time measurement unit 7 to start measurement of the propagation time.

周波数可変部4は、マイクロコンピュータ8からの制御により、補正検査を行なう際に、超音波トランスジューサ1a,1bに印加する駆動信号の周波数を、決められた計測周波数f,fに変更する。 The frequency variable unit 4 changes the frequency of the drive signal applied to the ultrasonic transducers 1a and 1b to the determined measurement frequencies f 1 and f 0 when performing a correction inspection under the control of the microcomputer 8.

増幅部5は、超音波トランスジューサ1a,1bで受信された受信波を電圧増幅する(AGC(Automatic Gain Control)アンプが望ましい)。 The amplifier 5 amplifies the voltage of the received waves received by the ultrasonic transducers 1a and 1b (an AGC (Automatic Gain Control) amplifier is desirable).

受信部6は、マイクロコンピュータ8からの制御により、増幅部5で電圧増幅された受信信号を伝搬時間計測部7に送信して、伝搬時間を計測させる。また、受信部6は、マイクロコンピュータ8からの制御により、受信波の検出ポイントを最適検出ポイントとなるように制御する。 Under the control of the microcomputer 8, the reception unit 6 transmits the reception signal voltage amplified by the amplification unit 5 to the propagation time measurement unit 7 to measure the propagation time. Further, the receiving unit 6 controls the detection point of the received wave to be the optimum detection point by the control from the microcomputer 8.

伝搬時間計測部7は、伝搬開始信号から受信信号までの時間を計測して、伝搬時間としてマイクロコンピュータ8へ送信する。 The propagation time measuring unit 7 measures the time from the propagation start signal to the received signal and transmits it to the microcomputer 8 as the propagation time.

マイクロコンピュータ8は、周波数−伝搬時間差記憶部81と、周波数−伝搬時間差比較部82と、駆動パルス数管理部83と、受信パルス数管理部84と、検査期間判定部85と、特性変動判定・補正部86とを含んで構成されている。 The microcomputer 8 includes a frequency-propagation time difference storage unit 81, a frequency-propagation time difference comparison unit 82, a drive pulse number management unit 83, a received pulse number management unit 84, an inspection period determination unit 85, a characteristic variation determination / And a correction unit 86.

周波数−伝搬時間差記憶部81は、複数の温度t,t,t,…における、計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)を予め記憶している。詳しくは、図2および図3に示すように、計測周波数fでの初期順方向伝搬時間Tj0(f)と計測周波数fでの初期順方向伝搬時間Tj0(f)との差である初期順方向伝搬時間差Δj0(f,f)と、計測周波数fでの初期逆方向伝搬時間Tg0(f)と計測周波数fでの初期逆方向伝搬時間Tg0(f)との差である初期逆方向伝搬時間差Δg0(f,f)とを、複数の温度t,t,t,…毎に予め記憶している。 The frequency-propagation time difference storage unit 81 has an initial forward propagation time difference Δ j0 (f 1 , f 0 ) and an initial inverse between the measurement frequencies f 1 , f 0 at a plurality of temperatures t 1 , t 2 , t 3 ,. The direction propagation time difference Δ g0 (f 1 , f 0 ) is stored in advance. Specifically, as shown in FIGS. 2 and 3, the initial forward propagation time by measuring the frequency f 1 T j0 (f 1) and the measurement frequency f initial forward propagation time T j0 (f 0) at 0 the initial forward transit time delta j0 is the difference (f 1, f 0), the measurement frequency initial backward propagation time in the f 1 T g0 (f 1) and the initial back propagation time of the measurement frequency f 0 T g0 An initial reverse propagation time difference Δ g0 (f 1 , f 0 ), which is a difference from (f 0 ), is stored in advance for each of a plurality of temperatures t 1 , t 2 , t 3 ,.

Δj0(f,f)=Tj0(f)−Tj0(f),
Δg0(f,f)=Tg0(f)−Tg0(f
Δ j0 (f 1 , f 0 ) = T j0 (f 1 ) −T j0 (f 0 ),
Δ g0 (f 1 , f 0 ) = T g0 (f 1 ) −T g0 (f 0 )

なお、計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)は、例えば、工場出荷時やフィールド設置時にマイクロコンピュータ8により周波数−伝搬時間差記憶部81に記憶される。 Note that the initial forward propagation time difference Δ j0 (f 1 , f 0 ) and the initial reverse propagation time difference Δ g0 (f 1 , f 0 ) between the measurement frequencies f 1 and f 0 are, for example, factory shipment or field installation. Sometimes it is stored in the frequency-propagation time difference storage unit 81 by the microcomputer 8.

いま、超音波トランスジューサ1a,1b間の基準順方向伝搬時間をTとし、計測周波数fでの周波数依存順方向伝搬時間項をτj0(f)、計測周波数fでの周波数依存順方向伝搬時間項をτj0(f)とすると、計測周波数fでの順方向伝搬時間Tj0(f)は、基準順方向伝搬時間Tと周波数依存順方向伝搬時間項τj0(f)との和として、計測周波数fでの順方向伝搬時間Tj0(f)は、基準順方向伝搬時間Tと周波数依存順方向伝搬時間項τj0(f)との和として表される。 Now, ultrasonic transducers 1a, the reference forward propagation time between 1b and T j, the frequency dependent forward propagation time term at the measurement frequency f 0 τ j0 (f 0) , frequency-dependent order of the measurement frequencies f 1 Assuming that the direction propagation time term is τ j0 (f 1 ), the forward propagation time T j0 (f 0 ) at the measurement frequency f 0 is the reference forward propagation time T j and the frequency-dependent forward propagation time term τ j0 ( As the sum of f 0 ), the forward propagation time T j0 (f 1 ) at the measurement frequency f 1 is the sum of the reference forward propagation time T j and the frequency-dependent forward propagation time term τ j0 (f 1 ). Represented as:

j0(f)=T+τj0(f),
j0(f)=T+τj0(f
T j0 (f 0 ) = T j + τ j0 (f 0 ),
T j0 (f 1 ) = T j + τ j0 (f 1 )

また、超音波トランスジューサ1a,1b間の基準逆方向伝搬時間をTとし、計測周波数fでの周波数依存逆方向伝搬時間項をτg0(f)、計測周波数fでの周波数依存逆方向伝搬時間項をτg0(f)とすると、計測周波数fでの逆方向伝搬時間Tg0(f)は、基準逆方向伝搬時間Tと周波数依存逆方向伝搬時間項τg0(f)との和として、計測周波数fでの逆方向伝搬時間Tg0(f)は、基準逆方向伝搬時間Tと周波数依存逆方向伝搬時間項τg0(f)との和として表される。 The ultrasonic transducer 1a, the reference backward propagation time between 1b and T g, (0 f) τ g0 frequency dependence backward propagation time section at the measurement frequency f 0, a frequency-dependent reverse at the measurement frequency f 1 If the direction propagation time term is τ g0 (f 1 ), the backward propagation time T g0 (f 0 ) at the measurement frequency f 0 is the reference backward propagation time T g and the frequency dependent backward propagation time term τ g0 ( As the sum of f 0 ), the backward propagation time T g0 (f 1 ) at the measurement frequency f 1 is the sum of the reference backward propagation time T g and the frequency-dependent backward propagation time term τ g0 (f 1 ). Represented as:

g0(f)=T+τg0(f),
g0(f)=T+τg0(f
T g0 (f 0 ) = T g + τ g0 (f 0 ),
T g0 (f 1 ) = T g + τ g0 (f 1 )

よって、周波数−伝搬時間差記憶部81に記憶される計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)は、以下のようになる。 Therefore, the initial forward propagation time difference Δ j0 (f 1 , f 0 ) and the initial reverse propagation time difference Δ g0 (f 1 , f 0 ) between the measurement frequencies f 1 and f 0 stored in the frequency-propagation time difference storage unit 81. ) Is as follows.

Δj0(f,f)=Tj0(f)−Tj0(f)=τj0(f)−τj0(f),
Δg0(f,f)=Tg0(f)−Tg0(f)=τg0(f)−τg0(f
Δ j0 (f 1 , f 0 ) = T j0 (f 1 ) −T j0 (f 0 ) = τ j0 (f 1 ) −τ j0 (f 0 ),
Δ g0 (f 1 , f 0 ) = T g0 (f 1 ) −T g0 (f 0 ) = τ g0 (f 1 ) −τ g0 (f 0 )

周波数−伝搬時間差比較部82は、各計測周波数f,fで計測された順方向伝搬時間Tj0(f),Tj0(f)および逆方向伝搬時間Tg0(f),Tg0(f)から演算された計測周波数f,f間の順方向伝搬時間差Δ(f,f)および逆方向伝搬時間差Δ(f,f)を、周波数−伝搬時間差記憶部81に記憶されている現温度(計測する時の温度)tでの計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)と比較する。 The frequency-propagation time difference comparison unit 82 includes forward propagation times T j0 (f 1 ), T j0 (f 0 ) and backward propagation times T g0 (f 1 ), which are measured at the measurement frequencies f 1 and f 0 . A forward propagation time difference Δ j (f 1 , f 0 ) and a backward propagation time difference Δ g (f 1 , f 0 ) between the measurement frequencies f 1 and f 0 calculated from T g0 (f 0 ) are expressed as frequency − Initial forward propagation time difference Δ j0 (f 1 , f 0 ) and initial reverse direction between the measured frequencies f 1 and f 0 at the current temperature (temperature when measured) t 1 stored in the propagation time difference storage unit 81 Compared with the propagation time difference Δ g0 (f 1 , f 0 ).

駆動パルス数管理部83は、超音波トランスジューサ1a,1bに印加する駆動信号の駆動パルス数Nを、計測周波数に応じた変更制御を行なう。これにより、計測周波数に応じた超音波トランスジューサ1a,1bの受信周波数特性が確保され、少ない駆動パルス数Nで伝搬時間の計測が可能となるため、計測精度を向上させながら、低消費電力化が可能となる。 The drive pulse number management unit 83 performs change control on the drive pulse number N of the drive signal applied to the ultrasonic transducers 1a and 1b according to the measurement frequency. As a result, the reception frequency characteristics of the ultrasonic transducers 1a and 1b corresponding to the measurement frequency are ensured, and the propagation time can be measured with a small number of drive pulses N. Therefore, the power consumption can be reduced while improving the measurement accuracy. It becomes possible.

受信パルス数管理部84は、受信側の超音波トランスジューサ1a,1bの固有応答性により強制振動による依存度が低いエリアでは、計測せずに、送信波の駆動パルス数Nの制御されたバースト駆動による強制振動で、送信波の駆動パルス数Nに対して最大N+2〜3以内の受信パルス数、できれば、最大N以内の受信パルス数のゼロクロスポイントを受信波の検出ポイントとする。 The reception pulse number management unit 84 does not perform measurement in the area where the dependence due to forced vibration is low due to the inherent responsiveness of the ultrasonic transducers 1a and 1b on the reception side, and the burst driving in which the drive pulse number N of the transmission wave is controlled. As a result of the forced vibration, the number of received pulses within a maximum of N + 2 to 3 with respect to the number of drive pulses N of the transmitted wave, and preferably the zero cross point of the number of received pulses within the maximum N is taken as the detection point of the received wave.

例えば、図4(a)では、駆動パルス数が5で検出ポイントが第7ゼロクロスポイントとなっているが、図4(b)では、駆動パルス数が3に変更されることにより検出ポイントが第7ゼロクロスポイントから第5ゼロクロスポイントに変更されている。 For example, in FIG. 4A, the number of drive pulses is 5 and the detection point is the seventh zero cross point. In FIG. 4B, the detection point is changed to 3 by changing the drive pulse number to 3. The seventh zero cross point is changed to the fifth zero cross point.

検査期間判定部85は、フィールドに設置された超音波流量計を、一定期間毎(例えば、マイクロコンピュータ8に保有させたカレンダまたは時計機能にて1年毎)に、予め決められた温度になった時、しかもできるだけ計測流体の流量の少ない夜間等のタイミングを見計らって、検査期間であるかどうかを判断する。 The inspection period determination unit 85 causes the ultrasonic flowmeter installed in the field to reach a predetermined temperature every predetermined period (for example, every year by a calendar or clock function held in the microcomputer 8). In addition, it is determined whether or not it is the inspection period by measuring the timing at night when the flow rate of the measurement fluid is as low as possible.

特性変動判定・補正部86は、周波数−伝搬時間差比較部82により計測周波数f,f間の順方向伝搬時間差Δ(f,f)および逆方向伝搬時間差Δ(f,f)と、周波数−伝搬時間差記憶部81に記憶されている現温度tでの計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)との間のズレ量が一定値以上であれば、そのズレ量に応じて通常計測補正値を変更する。具体的には、特性変動判定・補正部86は、補正検査を行なうために、周波数可変部4や駆動部3および受信手段22を制御して、予め決められた計測周波数および駆動パルス数Nを可変させ、その条件に合った検出ポイントで受信するように、計測周波数fでの順方向伝搬時間T(f)および逆方向伝搬時間T(f)、ならびに計測周波数fでの順方向伝搬時間T(f)および逆方向伝搬時間T(f)の計測が行なわれるようにする。 The characteristic variation determination / correction unit 86 uses the frequency-propagation time difference comparison unit 82 to perform the forward propagation time difference Δ j (f 1 , f 0 ) and the backward propagation time difference Δ g (f 1 , f 1 , f 0 ) between the measurement frequencies f 1 and f 0 . f 0 ), initial forward propagation time difference Δ j0 (f 1 , f 0 ) and initial reverse direction between the measured frequencies f 1 and f 0 at the current temperature t 1 stored in the frequency-propagation time difference storage unit 81 If the amount of deviation from the propagation time difference Δ g0 (f 1 , f 0 ) is greater than or equal to a certain value, the normal measurement correction value is changed according to the amount of deviation. Specifically, the characteristic variation determination / correction unit 86 controls the frequency variable unit 4, the drive unit 3, and the reception unit 22 to perform a correction inspection, and sets a predetermined measurement frequency and drive pulse number N. is varied, to receive the detection point according its condition, the forward propagation time T j (f 1) and reverse transmission time at the measurement frequency f 1 T g (f 1) , and the measurement frequency f 0 The forward propagation time T j (f 0 ) and the backward propagation time T g (f 0 ) are measured.

温度計9は、計測する時の温度(現温度)tを取得する。なお、現温度tは、超音波の伝搬時間から演算によって取得することもできる。例えば、前記(1),(2)式より音速Cを求めることで、簡易式C=331.68+0.61tから現温度tを求める。 The thermometer 9 acquires a temperature (current temperature) t 1 at the time of measurement. Incidentally, the current temperature t 1 can also be obtained by calculating from the propagation time of the ultrasonic wave. For example, the current temperature t 1 is obtained from the simple equation C = 331.68 + 0.61t 1 by obtaining the sound velocity C from the equations (1) and (2).

次に、このように構成された実施例1に係る超音波流量計の動作について、図5に示すフローチャートを参照して説明する。 Next, the operation of the ultrasonic flowmeter according to the first embodiment configured as described above will be described with reference to the flowchart shown in FIG.

工場出荷時または超音波流量計がフィールドに設置されたときに、マイクロコンピュータ8は、所定時間内に、複数の温度t,t,t,…での複数の計測周波数f,fでの初期順方向伝搬時間Tj0(f),Tj0(f)および初期逆方向伝搬時間Tg0(f),Tg0(f)を計測し、計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)を求めて、周波数−伝搬時間差記憶部81に記憶させる。また、マイクロコンピュータ8は、駆動パルス数管理部83における計測周波数f,fに応じた送信波の駆動パルス数Nと、受信パルス数管理部84における受信波の検出ポイントとを調整・記憶する。 At the time of factory shipment or when the ultrasonic flowmeter is installed in the field, the microcomputer 8 has a plurality of measurement frequencies f 1 , f 3 at a plurality of temperatures t 1 , t 2 , t 3 ,. initial forward propagation time at 0 T j0 (f 1), T j0 (f 0) and the initial backward propagation time T g0 (f 1), to measure the T g0 (f 0), the measuring frequency f 1, f seeking initial forward transit time between 0 Δ j0 (f 1, f 0) and the initial reverse transit time Δ g0 (f 1, f 0 ), the frequency - is stored in the transit time storage unit 81. Further, the microcomputer 8 adjusts and stores the drive pulse number N of the transmission wave according to the measurement frequencies f 1 and f 0 in the drive pulse number management unit 83 and the detection point of the reception wave in the reception pulse number management unit 84. To do.

超音波流量計のフィールド設置後、マイクロコンピュータ8は、検査期間判定部85により、検査期間であるかどうかを定期的に判定する(ステップS101)。検査期間判定部85は、一定期間毎(例えば、1年毎)に、予め決められた温度になった時(温度計9により測れる任意の温度において、例えば温度t=20℃)、しかもできるだけ計測流体の流量の少ない夜間等のタイミングを見計らって、検査期間であることを判定する。 After the field setting of the ultrasonic flowmeter, the microcomputer 8 periodically determines whether or not it is the inspection period by the inspection period determination unit 85 (step S101). The inspection period determination unit 85 is set to a predetermined temperature (for example, temperature t 1 = 20 ° C. at any temperature measurable by the thermometer 9) every predetermined period (for example, every year), and as much as possible. It is determined that it is the inspection period by measuring the timing at night when the flow rate of the measurement fluid is low.

検査期間でなければ、マイクロコンピュータ8は、通常の流量計測を行ない(ステップS102)、ステップS101に制御を戻す。 If it is not the inspection period, the microcomputer 8 performs normal flow rate measurement (step S102), and returns control to step S101.

検査期間であれば、マイクロコンピュータ8は、計測周波数fでの順方向伝搬時間T(f)を、流量変動の影響が無視できる短い間に計測する(ステップS103)。 If it is the inspection period, the microcomputer 8 measures the forward propagation time T j (f 0 ) at the measurement frequency f 0 while the influence of the flow rate fluctuation is negligible (step S103).

詳しくは、マイクロコンピュータ8は、まず、送受切替信号を送受切替部2に出力する。 Specifically, the microcomputer 8 first outputs a transmission / reception switching signal to the transmission / reception switching unit 2.

送受切替部2は、送受切替信号を受けると、流れ方向上手側の超音波トランスジューサ1aを送信側とし、流れ方向下手側の超音波トランスジューサ1bを受信側とするように切り替える。換言すれば、超音波トランスジューサ1aを送信手段21に接続し、超音波トランスジューサ1bを受信手段22に接続する。 When the transmission / reception switching unit 2 receives the transmission / reception switching signal, the transmission / reception switching unit 2 switches the ultrasonic transducer 1a on the upper side in the flow direction to the transmission side and the ultrasonic transducer 1b on the lower side in the flow direction to the reception side. In other words, the ultrasonic transducer 1 a is connected to the transmission means 21, and the ultrasonic transducer 1 b is connected to the reception means 22.

また、マイクロコンピュータ8は、計測周波数をfに切り替える計測周波数切替信号を周波数可変部4に出力する。 Further, the microcomputer 8 outputs a measurement frequency switching signal for switching the measurement frequency to f 0 to the frequency variable unit 4.

周波数可変部4は、計測周波数切替信号を受けると、計測周波数をfに切り替える。 Frequency controller 4 receives the measurement frequency switching signal, switches the measurement frequency f 0.

次に、マイクロコンピュータ8は、駆動開始信号を駆動部3に出力する。 Next, the microcomputer 8 outputs a drive start signal to the drive unit 3.

駆動部3は、駆動開始信号を受信すると、周波数可変部4により設定された計測周波数fの駆動信号を、駆動パルス数管理部83により設定された駆動パルス数Nだけ、送受切替部2の送信手段21を介して送信側の超音波トランスジューサ1aに印加して送信波を発射させる。これと同時に、駆動部3は、伝搬開始信号を伝搬時間計測部7に出力する。 When the drive unit 3 receives the drive start signal, the drive unit 3 receives the drive signal of the measurement frequency f 0 set by the frequency variable unit 4 by the drive pulse number N set by the drive pulse number management unit 83. A transmission wave is emitted by being applied to the ultrasonic transducer 1a on the transmission side via the transmission means 21. At the same time, the driving unit 3 outputs a propagation start signal to the propagation time measuring unit 7.

伝搬時間計測部7は、駆動部3からの伝搬開始信号を受けると、計測周波数fでの順方向伝搬時間T(f)の計測を開始する。 When the propagation time measuring unit 7 receives the propagation start signal from the driving unit 3, the propagation time measuring unit 7 starts measuring the forward propagation time T j (f 0 ) at the measurement frequency f 0 .

流れ方向上手側の超音波トランスジューサ1aから発射された送信波が計測流体を伝搬して流れ方向下手側の超音波トランスジューサ1bで受信されると、増幅部5は、送受切替部2の受信手段22を介して入力された受信波を電圧増幅して受信信号を受信部6に入力する。 When the transmission wave emitted from the ultrasonic transducer 1a on the upper side in the flow direction propagates through the measurement fluid and is received by the ultrasonic transducer 1b on the lower side in the flow direction, the amplifying unit 5 receives the receiving means 22 of the transmission / reception switching unit 2. The received wave input via the voltage is amplified and the received signal is input to the receiving unit 6.

受信部6は、受信パルス数管理部84により設定された受信パルス数のゼロクロスポイントを受信波の検出ポイントとして検出すると、伝搬検出信号を伝搬時間計測部7に伝える。 When the reception unit 6 detects the zero cross point of the reception pulse number set by the reception pulse number management unit 84 as a detection point of the reception wave, it transmits a propagation detection signal to the propagation time measurement unit 7.

伝搬時間計測部7は、受信部6からの伝搬検出信号を受けると、計測周波数fでの順方向伝搬時間T(f)の計測を終了し、計測周波数fでの順方向伝搬時間T(f)をマイクロコンピュータ8に送信する。 Propagation time measuring unit 7 receives the propagation detection signal from the receiving unit 6, and ends the measurement of the forward propagation time by measuring the frequency f 0 T j (f 0), the forward propagation in the measurement frequency f 0 The time T j (f 0 ) is transmitted to the microcomputer 8.

計測周波数fでの順方向伝搬時間T(f)の計測が完了すると、マイクロコンピュータ8は、計測周波数をfからfに切り替える計測周波数切替信号を周波数可変部4に出力する。 When the measurement of the forward propagation time T j (f 0 ) at the measurement frequency f 0 is completed, the microcomputer 8 outputs a measurement frequency switching signal for switching the measurement frequency from f 0 to f 1 to the frequency variable unit 4.

周波数可変部4は、計測周波数切替信号を受けると、計測周波数をfからfに切り替える。 When receiving the measurement frequency switching signal, the frequency variable unit 4 switches the measurement frequency from f 0 to f 1 .

マイクロコンピュータ8は、以下、ステップS103と同様にして、計測周波数fでの順方向伝搬時間T(f)を、流量変動の影響が無視できる短い間に計測する(ステップS104)。 Thereafter, the microcomputer 8 measures the forward propagation time T j (f 1 ) at the measurement frequency f 1 while the influence of the flow rate fluctuation is negligible in the same manner as in step S103 (step S104).

なお、ステップS103とステップS104とを同時並列的に実行することもできる。すなわち、順方向伝搬時間T(f)の計測のための駆動パルスを印加してそれに対応した受信パルスが伝搬して来る前に、順方向伝搬時間T(f)の計測のための駆動パルスを印加するようにし、その後に順方向伝搬時間T(f)の計測に対応した受信パルスを受信し、続いて順方向伝搬時間T(f)の計測に対応した受信パルスを受信するようにしてもよい。このようにすれば、順方向伝搬時間T(f)と順方向伝搬時間T(f)との計測時間間隔がより短くなり、流量変動の影響がより低減できて、より高精度な計測補正が可能となる。 Note that step S103 and step S104 can also be executed simultaneously in parallel. That is, before applying the drive pulse for measuring the forward propagation time T j (f 0 ) and the reception pulse corresponding to it is propagated, the forward propagation time T j (f 1 ) is measured. And then receiving a reception pulse corresponding to the measurement of the forward propagation time T j (f 0 ), and subsequently receiving the measurement corresponding to the measurement of the forward propagation time T j (f 1 ). You may make it receive a pulse. In this way, the measurement time interval between the forward propagation time T j (f 0 ) and the forward propagation time T j (f 1 ) becomes shorter, the influence of the flow rate fluctuation can be further reduced, and higher accuracy is achieved. Measurement correction is possible.

計測周波数fでの順方向伝搬時間T(f)および計測周波数fでの順方向伝搬時間T(f)の計測が完了すると、マイクロコンピュータ8は、送受切替信号を送受切替部2に出力する。 When the measurement of the forward propagation time by measuring the frequency f 0 T j (f 0) and the forward propagation time by measuring the frequency f 1 T j (f 1) is completed, the microcomputer 8, duplexer transmission and reception switching signal Output to part 2.

送受切替部2は、送受切替信号を受けると、流れ方向上手側の超音波トランスジューサ1aを受信側とし、流れ方向下手側の超音波トランスジューサ1bを送信側とするように切り替える。換言すれば、超音波トランスジューサ1aを受信手段22に接続し、超音波トランスジューサ1bを送信手段21に接続する。 When the transmission / reception switching unit 2 receives the transmission / reception switching signal, the transmission / reception switching unit 2 switches the ultrasonic transducer 1a on the upper side in the flow direction to the reception side and the ultrasonic transducer 1b on the lower side in the flow direction to the transmission side. In other words, the ultrasonic transducer 1 a is connected to the receiving means 22, and the ultrasonic transducer 1 b is connected to the transmitting means 21.

また、マイクロコンピュータ8は、計測周波数をfからfに切り替える計測周波数切替信号を周波数可変部4に出力する。 Further, the microcomputer 8 outputs a measurement frequency switching signal for switching the measurement frequency from f 1 to f 0 to the frequency variable unit 4.

周波数可変部4は、計測周波数切替信号を受けると、計測周波数をfからfに切り替える。 When receiving the measurement frequency switching signal, the frequency variable unit 4 switches the measurement frequency from f 1 to f 0 .

以下、マイクロコンピュータ8は、ステップS103と同様にして、計測周波数fでの逆方向伝搬時間T(f)を、流量変動の影響が無視できる短い間に計測する(ステップS105)。 Thereafter, the microcomputer 8 measures the backward propagation time T g (f 0 ) at the measurement frequency f 0 while the influence of the flow rate fluctuation is negligible in the same manner as in step S103 (step S105).

詳しくは、マイクロコンピュータ8は、駆動開始信号を駆動部3に出力する。 Specifically, the microcomputer 8 outputs a drive start signal to the drive unit 3.

駆動部3は、駆動開始信号を受信すると、周波数可変部4により設定された計測周波数fの駆動信号を、駆動パルス数管理部83により設定された駆動パルス数Nだけ、送受切替部2の送信手段21を介して送信側の超音波トランスジューサ1bに印加して送信波を発射させる。これと同時に、駆動部3は、伝搬開始信号を伝搬時間計測部7に出力する。 When the drive unit 3 receives the drive start signal, the drive unit 3 receives the drive signal of the measurement frequency f 0 set by the frequency variable unit 4 by the drive pulse number N set by the drive pulse number management unit 83. A transmission wave is emitted by being applied to the ultrasonic transducer 1b on the transmission side via the transmission means 21. At the same time, the driving unit 3 outputs a propagation start signal to the propagation time measuring unit 7.

伝搬時間計測部7は、駆動部3からの伝搬開始信号を受けると、計測周波数fでの逆方向伝搬時間T(f)の計測を開始する。 When the propagation time measuring unit 7 receives the propagation start signal from the driving unit 3, the propagation time measuring unit 7 starts measuring the backward propagation time T g (f 0 ) at the measurement frequency f 0 .

流れ方向下手側の超音波トランスジューサ1bから発射された送信波が計測流体を伝搬して流れ方向上手側の超音波トランスジューサ1aで受信されると、増幅部5は、送受切替部2の受信手段22を介して入力された受信波を増幅して受信信号を受信部6に入力する。 When the transmission wave emitted from the ultrasonic transducer 1b on the lower side in the flow direction propagates through the measurement fluid and is received by the ultrasonic transducer 1a on the upper side in the flow direction, the amplifying unit 5 receives the receiving means 22 of the transmission / reception switching unit 2. The received wave input via the signal is amplified and the received signal is input to the receiving unit 6.

受信部6は、受信パルス数管理部84により設定された受信パルス数の受信信号を受信すると(ゼロクロスポイントを検出すると)、伝搬検出信号を伝搬時間計測部7に伝える。 When receiving the reception signal having the number of reception pulses set by the reception pulse number management unit 84 (detecting a zero cross point), the reception unit 6 transmits the propagation detection signal to the propagation time measurement unit 7.

伝搬時間計測部7は、受信部6からの伝搬検出信号を受けると、計測周波数fでの逆方向伝搬時間T(f)の計測を終了し、計測周波数fでの逆方向伝搬時間T(f)をマイクロコンピュータ8に送信する。 Propagation time measuring unit 7 receives the propagation detection signal from the receiving unit 6, and ends the measurement of the backward propagation time of the measurement frequency f 0 T g (f 0), the backward-propagation at the measurement frequency f 0 The time T g (f 0 ) is transmitted to the microcomputer 8.

計測周波数fでの逆方向伝搬時間T(f)の計測が完了すると、マイクロコンピュータ8は、計測周波数をfからfに切り替える計測周波数切替信号を周波数可変部4に出力する。 When the measurement of the backward propagation time T g (f 0 ) at the measurement frequency f 0 is completed, the microcomputer 8 outputs a measurement frequency switching signal for switching the measurement frequency from f 0 to f 1 to the frequency variable unit 4.

周波数可変部4は、計測周波数切替信号を受けると、計測周波数をfからfに切り替える。 When receiving the measurement frequency switching signal, the frequency variable unit 4 switches the measurement frequency from f 0 to f 1 .

以下、ステップS105と同様にして、マイクロコンピュータ8は、計測周波数fでの逆方向伝搬時間T(f)を、流量変動の影響が無視できる短い間に計測する(ステップS106)。 Thereafter, similarly to step S105, the microcomputer 8 measures the backward propagation time T j (f 1 ) at the measurement frequency f 1 while the influence of the flow rate fluctuation is negligible (step S106).

なお、ステップS103およびステップS104と同様に、ステップS105およびステップS106も同時並列的に実行することもできる。すなわち、逆方向伝搬時間T(f)の計測のための駆動パルスを印加してそれに対応した受信パルスが伝搬して来る前に、逆方向伝搬時間T(f)の計測のための駆動パルスを印加するようにし、その後に逆方向伝搬時間T(f)の計測に対応した受信パルスを受信し、続いて逆方向伝搬時間T(f)の計測に対応した受信パルスを受信するようにしてもよい。このようにすれば、逆方向伝搬時間T(f)と逆方向伝搬時間T(f)との計測時間間隔がより短くなり、流量変動の影響がより低減できて、より高精度な計測補正が可能となる。 Note that, similarly to step S103 and step S104, step S105 and step S106 can also be executed simultaneously in parallel. That is, before applying the driving pulse for measuring the backward propagation time T g (f 0 ) and receiving the corresponding reception pulse, the backward propagation time T g (f 1 ) is measured. And then receiving a reception pulse corresponding to the measurement of the reverse propagation time T g (f 0 ), and subsequently receiving the measurement corresponding to the measurement of the reverse propagation time T g (f 1 ). You may make it receive a pulse. In this way, the measurement time interval between the backward propagation time T g (f 0 ) and the backward propagation time T g (f 1 ) becomes shorter, the influence of flow rate fluctuation can be further reduced, and higher accuracy can be achieved. Measurement correction is possible.

次に、マイクロコンピュータ8は、計測周波数fでの順方向伝搬時間T(f)から計測周波数fでの順方向伝搬時間T(f)を引いて、計測周波数f,f間の順方向伝搬時間差Δ(f,f)を算出する(ステップS107)。 Next, the microcomputer 8 subtracts the forward propagation time by measuring the frequency f 1 T j (f 1) forward propagation time by measuring the frequency f 0 from T j (f 0), the measuring frequency f 1, forward propagation time difference between f 0 Δ j (f 1, f 0) is calculated (step S107).

Δ(f,f)=T(f)−T(f)=τ(f)−τ(fΔ j (f 1 , f 0 ) = T j (f 1 ) −T j (f 0 ) = τ j (f 1 ) −τ j (f 0 )

同様に、マイクロコンピュータ8は、計測周波数fでの逆方向伝搬時間T(f)から計測周波数fでの逆方向伝搬時間T(f)を引いて、計測周波数f,f間の逆方向伝搬時間差Δ(f,f)を算出する(ステップS108)。 Similarly, the microcomputer 8 subtracts the backward propagation time of the measurement frequency f 1 T g (f 1) back propagation time of the measurement frequency f 0 from T g (f 0), the measuring frequency f 1, backward propagation time difference between f 0 Δ g (f 1, f 0) is calculated (step S108).

Δ(f,f)=T(f)−T(f)=τ(f)−τ(f Δ g (f 1, f 0 ) = T g (f 1) -T g (f 0) = τ g (f 1) -τ g (f 0)

ここで、計測周波数f,f間の順方向伝搬時間差Δ(f,f)および逆方向伝搬時間差Δ(f,f)は、流速Vによらず一定である。即ち、規定の温度条件下であれば、計測周波数f,f間の順方向伝搬時間差Δ(f,f)および逆方向伝搬時間差Δ(f,f)は、各計測周波数f,fでの超音波トランスジューサ1a,1bの遅延特性を意味する。換言すれば、計測周波数f,f間の順方向伝搬時間差Δ(f,f)および逆方向伝搬時間差Δ(f,f)は、計測流体の媒質や速度Vのパラメータで変化しない値である。 Here, the forward propagation time difference Δ j (f 1 , f 0 ) and the reverse propagation time difference Δ g (f 1 , f 0 ) between the measurement frequencies f 1 and f 0 are constant regardless of the flow velocity V. That is, under the specified temperature condition, the forward propagation time difference Δ j (f 1 , f 0 ) and the reverse propagation time difference Δ g (f 1 , f 0 ) between the measurement frequencies f 1 and f 0 are It means the delay characteristics of the ultrasonic transducers 1a and 1b at the measurement frequencies f 1 and f 0 . In other words, the forward propagation time difference Δ j (f 1 , f 0 ) and the reverse propagation time difference Δ g (f 1 , f 0 ) between the measurement frequencies f 1 and f 0 are determined by the medium and velocity V of the measurement fluid. The value does not change with the parameter.

続いて、マイクロコンピュータ8は、周波数−伝搬時間差比較部82により、計測周波数f,f間の順方向伝搬時間差Δ(f,f)を、周波数−伝搬時間差記憶部81に記憶された、現温度tでの、計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)と比較する(ステップS109)。 Subsequently, in the microcomputer 8, the frequency-propagation time difference comparison unit 82 stores the forward-direction propagation time difference Δ j (f 1 , f 0 ) between the measurement frequencies f 1 and f 0 in the frequency-propagation time difference storage unit 81. Compared with the initial forward propagation time difference Δ j0 (f 1 , f 0 ) between the measured frequencies f 1 and f 0 at the current temperature t 1 (step S109).

同様に、マイクロコンピュータ8は、周波数−伝搬時間差比較部82により、計測周波数f,f間の逆方向伝搬時間差Δ(f,f)を、周波数−伝搬時間差記憶部81に記憶された、現温度tでの、計測周波数f,f間の初期逆方向伝搬時間差Δg0(f,f)と比較する(ステップS110)。 Similarly, the microcomputer 8 stores the reverse propagation time difference Δ g (f 1 , f 0 ) between the measurement frequencies f 1 and f 0 in the frequency-propagation time difference storage unit 81 by the frequency-propagation time difference comparison unit 82. Compared with the initial reverse propagation time difference Δ g0 (f 1 , f 0 ) between the measured frequencies f 1 and f 0 at the current temperature t 1 (step S110).

比較の結果、計測周波数f,f間の順方向伝搬時間差Δ(f,f)と計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)とのズレ量が一定値以上あれば(ステップS111でイエス)、マイクロコンピュータ8は、特性変動判定・補正部86により、このズレ量が一定値未満となるように、通常計測時に使用する補正値(通常計測補正値)を変更する(ステップS112)。 As a result of the comparison, the measurement frequency f 1, the forward propagation time difference between f 0 Δ j (f 1, f 0) and the measurement frequency f 1, the initial forward propagation time difference between f 0 Δ j0 (f 1, f 0) If the amount of deviation is greater than or equal to a certain value (Yes in step S111), the microcomputer 8 causes the characteristic variation determination / correction unit 86 to use the correction value used during normal measurement so that the amount of deviation is less than the certain value. (Normal measurement correction value) is changed (step S112).

詳しくは、
Δ(f,f)>Δj0(f,f)ならば、通常計測補正値をマイナス変更し、
Δ(f,f)≒Δj0(f,f)ならば、通常計測補正値を変更せず、
Δ(f,f)<Δj0(f,f)ならば、通常計測補正値をプラス変更する。
For more information,
If Δ j (f 1 , f 0 )> Δ j0 (f 1 , f 0 ), the normal measurement correction value is changed to minus,
If Δ j (f 1 , f 0 ) ≈Δ j0 (f 1 , f 0 ), the normal measurement correction value is not changed,
If Δ j (f 1 , f 0 ) <Δ j0 (f 1 , f 0 ), the normal measurement correction value is changed to plus.

また、
Δ(f,f)>Δg0(f,f)ならば、通常計測補正値をマイナス変更し、
Δ(f,f)≒Δg0(f,f)ならば、通常計測補正値を変更せず、
Δ(f,f)<Δg0(f,f)ならば、通常計測補正値をプラス変更する。
Also,
If Δ g (f 1 , f 0 )> Δ g 0 (f 1 , f 0 ), the normal measurement correction value is changed to minus,
If Δ g (f 1 , f 0 ) ≈Δ g 0 (f 1 , f 0 ), the normal measurement correction value is not changed,
If Δ g (f 1 , f 0 ) <Δ g 0 (f 1 , f 0 ), the normal measurement correction value is changed to plus.

ここでの変更は、Δ(f,f)−Δj0(f,f)=αとおくと、α<0およびα>0の場合に変更を行ない、αの初期値に対する大小分、すなわち遅延特性の変化分を通常計測時に考慮して、流量演算時に加減算して変更することを意味する。具体的には、特性変動判定・補正部86は、補正検査を行なうために、周波数可変部4や駆動部3、および駆動パルス数管理部83や受信パルス数管理部84を制御して、予め決められた計測周波数および駆動パルス数Nや受信パルス数を可変させ、その条件に合った検出ポイントで、計測周波数fでの順方向伝搬時間T(f)および逆方向伝搬時間T(f)、ならびに計測周波数fでの順方向伝搬時間T(f)および逆方向伝搬時間T(f)の計測が行なわれるようにする。 In this case, if Δ j (f 1 , f 0 ) −Δ j0 (f 1 , f 0 ) = α, the change is made when α <0 and α> 0, and the initial value of α is changed. This means that the magnitude of the change, that is, the change in the delay characteristic is taken into account during normal measurement, and is changed by adding or subtracting when calculating the flow rate. Specifically, the characteristic variation determination / correction unit 86 controls the frequency variable unit 4, the drive unit 3, the drive pulse number management unit 83, and the received pulse number management unit 84 in advance in order to perform a correction inspection. The determined measurement frequency, the drive pulse number N and the received pulse number are varied, and the forward propagation time T j (f 1 ) and the reverse propagation time T g at the measurement frequency f 1 are detected at a detection point that meets the conditions. (F 1 ), and the forward propagation time T j (f 0 ) and the backward propagation time T g (f 0 ) at the measurement frequency f 0 are measured.

このような補正を行なうことによって、超音波流量計は、長期にわたって高精度な流量の計測が可能になる。 By performing such correction, the ultrasonic flowmeter can measure the flow rate with high accuracy over a long period of time.

以上説明したように、実施例1によれば、計測周波数f,f間の順方向伝搬時間差Δ(f,f)および逆方向伝搬時間差Δ(f,f)は、温度が規定の温度条件で、かつ伝搬時間差を計測する間が同じ流速であれば、流速によらず一定となることを利用し、計測周波数f,f間の順方向伝搬時間差Δ(f,f)および逆方向伝搬時間差Δ(f,f)を元に経年的な遅延特性変動(ドリフト)を補正し、計測誤差の少ない超音波流量計を提供することができる。 As described above, according to the first embodiment, the forward propagation time difference Δ j (f 1 , f 0 ) and the backward propagation time difference Δ g (f 1 , f 0 ) between the measurement frequencies f 1 and f 0 are as follows. If the temperature is a specified temperature condition and the time during which the difference in propagation time is measured is the same flow velocity, the forward propagation time difference Δ j between the measurement frequencies f 1 and f 0 is utilized by utilizing that the flow velocity is constant regardless of the flow velocity. It is possible to provide an ultrasonic flowmeter with less measurement error by correcting aged delay characteristic fluctuation (drift) based on (f 1 , f 0 ) and reverse propagation time difference Δ g (f 1 , f 0 ). it can.

また、実施例1では、超音波トランスジューサ1a,1bとしては機械的共振尖鋭度を表すQ値が比較的低く、Q=2〜10程度(より実際的にはQ=2.5〜5程度)で、周波数帯域内で計測周波数f,fに比例した受信特性を得るため、周波数帯域内での不要スプリアスを低減させた単一共振に近い超音波トランスジューサ1a,1bの遅延特性を有するため、超音波トランスジューサ1a,1bの周波数帯域内での、2つの計測周波数f,fに対応して、順方向伝搬時間差Δ(f,f)および逆方向伝搬時間差Δ(f,f)が得られ、高精度な経年的な遅延特性変動(ドリフト)の補正が実現可能である。 In the first embodiment, the ultrasonic transducers 1a and 1b have a relatively low Q value representing the mechanical resonance sharpness, about Q = 2 to 10 (more practically, Q = about 2.5 to 5). In order to obtain reception characteristics proportional to the measurement frequencies f 1 and f 0 within the frequency band, the ultrasonic transducers 1a and 1b have a delay characteristic close to a single resonance with unnecessary spurious being reduced within the frequency band. Corresponding to the two measurement frequencies f 1 and f 0 in the frequency band of the ultrasonic transducers 1a and 1b, the forward propagation time difference Δ j (f 1 , f 0 ) and the reverse propagation time difference Δ g (f 1 , f 0 ) is obtained, and it is possible to correct the delay characteristics fluctuation (drift) over time with high accuracy.

また、超音波トランスジューサ1a,1bでは、低Q型の超音波トランスジューサf,fであっても共振点の無いQ≒0の超音波トランスジューサでは無いため、計測周波数の送信波による受信時の応答性が、超音波トランスジューサ1a,1bの共振の影響により、直ぐには計測周波数に成らない。このため、超音波トランスジューサ1a,1bのバースト駆動による強制振動を与え、強制振動が終わる近傍の計測周波数に比較的比例した受信特性が得られるゼロクロスポイントにて検出することにより、高精度化が実現できる。これと同時に、低Q型の超音波トランスジューサであるため、駆動パルス数Nを少なく抑えられるので、少ない消費電力で周波数可変が実現でき、電池寿命を満足できる。 Further, since the ultrasonic transducers 1a and 1b are not Q≈0 ultrasonic transducers having no resonance point even if they are low-Q type ultrasonic transducers f 1 and f 0 , the ultrasonic transducers 1a and 1b are not capable of receiving at the time of reception by a transmission wave of a measurement frequency. The responsiveness does not immediately become the measurement frequency due to the resonance effect of the ultrasonic transducers 1a and 1b. For this reason, high accuracy is achieved by applying forced vibration by burst driving of the ultrasonic transducers 1a and 1b and detecting at a zero cross point where a reception characteristic relatively proportional to the measurement frequency in the vicinity of the forced vibration is obtained. it can. At the same time, since it is a low Q type ultrasonic transducer, the number of drive pulses N can be reduced, so that the frequency can be varied with low power consumption and the battery life can be satisfied.

さらに、計測周波数による受信精度の低下を送信波の駆動パルス数Nを可変とすることで(例えば、高周波で計測するときほど、送信波の駆動パルス数Nを多くすることで)、安定した受信波を受信し、さらに、その送信波の駆動パルス数Nに応じた、安定した受信パルス数のゼロクロスポイント(強制振動の依存度が高い)に受信波の検出ポイントを切り替えて検出することによって、補正計測の精度が向上する。 Furthermore, by reducing the number N of drive pulses of the transmission wave to reduce the reception accuracy due to the measurement frequency (for example, by increasing the number of drive pulses N of the transmission wave as measured at a high frequency), stable reception is achieved. By receiving a wave and further detecting by switching the detection point of the received wave to the zero cross point of the number of stable received pulses according to the drive pulse number N of the transmitted wave (high dependency of forced vibration), The accuracy of correction measurement is improved.

なお、超音波流量計がフィールドに設置されたことを知らされた後、その環境下で所定時間内に複数の温度t,t,t,…での複数の計測周波数f,fでの初期順方向伝搬時間Tj0(f),Tj0(f)および初期逆方向伝搬時間Tg0(f),Tg0(f)を計測し、計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)を求めて記憶をすることで、より補正精度の向上が可能となる。超音波流量計がフィールドに設置されたことを知る方法としては、一定流量を検知することや、通信または外部スイッチ等で外部から知らせてもらう等の方法が考えられる。例えば、超音波流量計のフィールド設置前は流路内は空気であるが、設置後はガスとなった場合など、伝搬特性(伝搬時間,受信信号特性,減衰特性等)が異なり、さらに、工場等でのガス環境下で伝搬特性を記憶しても、現地で使用するガスと微妙な成分誤差があったときに補正誤差となりうるため、それらの補正誤差をも低減ができる。なお、この機能を使用して、長時間未使用になっていた超音波流量計を再度使用開始する時に、計測流体の違い等による補正も可能になることは容易に考えられる。 In addition, after being notified that the ultrasonic flowmeter is installed in the field, a plurality of measurement frequencies f 1 , f at a plurality of temperatures t 1 , t 2 , t 3 ,. initial forward propagation time at 0 T j0 (f 1), T j0 (f 0) and the initial backward propagation time T g0 (f 1), to measure the T g0 (f 0), the measuring frequency f 1, f By obtaining and storing the initial forward propagation time difference Δ j0 (f 1 , f 0 ) and the initial reverse propagation time difference Δ g0 (f 1 , f 0 ) between 0 , the correction accuracy can be further improved. . As a method of knowing that the ultrasonic flowmeter is installed in the field, a method of detecting a constant flow rate, a method of receiving notification from the outside by communication or an external switch, etc. can be considered. For example, when the ultrasonic flow meter is installed in the flow path before the field installation, the flow characteristics are changed to gas, but the propagation characteristics (propagation time, received signal characteristics, attenuation characteristics, etc.) are different. Even if the propagation characteristics are stored in a gas environment such as the above, if there is a subtle component error with the gas used in the field, it can be a correction error, so that the correction error can also be reduced. It should be noted that when this function is used and an ultrasonic flowmeter that has not been used for a long time is used again, correction due to a difference in measurement fluid or the like can be easily considered.

また、できるだけ、流量の少ない、かつ流量変動の少ない期間に補正検査を行なうことで、補正精度の向上が可能となる(できるだけ流量の少ない期間に補正検査を行なうことで、ノイズの影響を受けないため、計測精度が向上する)。 In addition, it is possible to improve the correction accuracy by performing a correction inspection in a period where the flow rate is as low as possible and in which the flow rate fluctuation is small. (By performing the correction inspection in a period where the flow rate is as low as possible, there is no influence of noise. Therefore, measurement accuracy is improved).

本発明の実施例2に係る超音波流量計は、図1ないし図5に示した実施例1に係る超音波流量計における計測周波数がfおよびfの2周波数であったのに対して、図6に例示するように、計測周波数をf,fおよびfの3周波数にしたことだけが異なっている。したがって、その他の構成は、実施例1に係る超音波流量計と同様に構成されているので、図1ないし図4を実施例2に係る超音波流量計にも流用して、相違する点を除く詳しい説明を省略する。 In the ultrasonic flowmeter according to the second embodiment of the present invention, the measurement frequency in the ultrasonic flowmeter according to the first embodiment shown in FIGS. 1 to 5 is two frequencies of f 0 and f 1 . As illustrated in FIG. 6, the only difference is that the measurement frequency is set to three frequencies f 0 , f 1, and f 2 . Therefore, the other configuration is the same as that of the ultrasonic flowmeter according to the first embodiment. Therefore, FIG. 1 to FIG. 4 are also applied to the ultrasonic flowmeter according to the second embodiment, and are different. Excluding the detailed explanation is omitted.

周波数−伝搬時間差記憶部81は、複数の温度t,t,t,…における、計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)と、計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)とを予め記憶している。詳しくは、図6および図3に示すように、計測周波数fでの初期順方向伝搬時間Tj0(f)と計測周波数fでの初期順方向伝搬時間Tj0(f)との差である初期順方向伝搬時間差Δj0(f,f)と、計測周波数fでの初期逆方向伝搬時間Tg0(f)と計測周波数fでの初期逆方向伝搬時間Tg0(f)との差である初期逆方向伝搬時間差Δg0(f,f)と、計測周波数fでの初期順方向伝搬時間Tj0(f)と計測周波数fでの初期順方向伝搬時間Tj0(f)との差である初期順方向伝搬時間差Δj0(f,f)と、計測周波数fでの初期逆方向伝搬時間Tg0(f)と計測周波数fでの初期逆方向伝搬時間Tg0(f)との差である初期逆方向伝搬時間差Δg0(f,f)とを、複数の温度t,t,t,…毎に予め記憶している。 The frequency-propagation time difference storage unit 81 has an initial forward propagation time difference Δ j0 (f 1 , f 0 ) and an initial inverse between the measurement frequencies f 1 , f 0 at a plurality of temperatures t 1 , t 2 , t 3 ,. The direction propagation time difference Δ g0 (f 1 , f 0 ), the initial forward propagation time difference Δ j0 (f 2 , f 0 ) and the initial reverse propagation time difference Δ g0 (f 2 , f 0 ) between the measurement frequencies f 2 and f 0. 0 ) is stored in advance. Specifically, as shown in FIGS. 6 and 3, the initial forward propagation time by measuring the frequency f 1 T j0 (f 1) and the measurement frequency f initial forward propagation time T j0 (f 0) at 0 the initial forward transit time delta j0 is the difference (f 1, f 0), the measurement frequency initial backward propagation time in the f 1 T g0 (f 1) and the initial back propagation time of the measurement frequency f 0 T g0 early in the initial reverse transit time delta g0 and (f 1, f 0), the initial forward propagation time by measuring the frequency f 2 T j0 (f 2) and the measuring frequency f 0 which is the difference between (f 0) An initial forward propagation time difference Δ j0 (f 2 , f 0 ) that is a difference from the forward propagation time T j0 (f 0 ), an initial reverse propagation time T g0 (f 2 ) at the measurement frequency f 2 , and a measurement The initial value which is the difference from the initial reverse propagation time T g0 (f 0 ) at the frequency f 0 The reverse propagation time difference Δ g0 (f 2 , f 0 ) is stored in advance for each of a plurality of temperatures t 1 , t 2 , t 3 ,.

Δj0(f,f)=Tj0(f)−Tj0(f),
Δg0(f,f)=Tg0(f)−Tg0(f),
Δj0(f,f)=Tj0(f)−Tj0(f),
Δg0(f,f)=Tg0(f)−Tg0(f
Δ j0 (f 1 , f 0 ) = T j0 (f 1 ) −T j0 (f 0 ),
Δ g0 (f 1 , f 0 ) = T g0 (f 1 ) −T g0 (f 0 ),
Δ j0 (f 2 , f 0 ) = T j0 (f 2 ) −T j0 (f 0 ),
Δ g0 (f 2 , f 0 ) = T g0 (f 2 ) −T g0 (f 0 )

なお、計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)、ならびに計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)は、例えば、工場出荷時やフィールド設置時にマイクロコンピュータ8により周波数−伝搬時間差記憶部81に記憶される。 The measurement frequency f 1, the initial forward transit time delta j0 between f 0 (f 1, f 0 ) and the initial reverse transit time Δ g0 (f 1, f 0 ), and the measurement frequency f 2, f 0 between The initial forward propagation time difference Δ j0 (f 2 , f 0 ) and the initial reverse propagation time difference Δ g0 (f 2 , f 0 ) are stored in the frequency-propagation time difference by the microcomputer 8 at the time of factory shipment or field installation, for example. Stored in the unit 81.

いま、超音波トランスジューサ1a,1b間の基準順方向伝搬時間をTとし、計測周波数f,f,fでの周波数依存順方向伝搬時間項をτj0(f),τj0(f),τj0(f)とすると、計測周波数f,f,fでの初期順方向伝搬時間Tj0(f),Tj0(f),Tj0(f)は、基準順方向伝搬時間Tと周波数依存順方向伝搬時間項τj0(f),τj0(f),τj0(f)との和で表される。 Now, let T j be the reference forward propagation time between the ultrasonic transducers 1a and 1b, and let the frequency-dependent forward propagation time terms at the measurement frequencies f 2 , f 1 , and f 0 be τ j0 (f 2 ), τ j0 ( If f 1 ) and τ j0 (f 0 ), initial forward propagation times T j0 (f 2 ), T j0 (f 1 ), T j0 (f 0 ) at the measurement frequencies f 2 , f 1 , f 0 Is represented by the sum of the reference forward propagation time T j and the frequency-dependent forward propagation time terms τ j0 (f 2 ), τ j0 (f 1 ), τ j0 (f 0 ).

j0(f)=T+τj0(f),
j0(f)=T+τj0(f),
j0(f)=T+τj0(f
T j0 (f 2 ) = T j + τ j0 (f 2 ),
T j0 (f 1 ) = T j + τ j0 (f 1 ),
T j0 (f 0 ) = T j + τ j0 (f 0 )

また、超音波トランスジューサ1a,1b間の基準逆方向伝搬時間をTとし、計測周波数f,f,fでの周波数依存逆方向伝搬時間項をτg0(f),τg0(f),τg0(f)とすると、計測周波数f,f,fでの初期順方向伝搬時間Tg0(f),Tg0(f),Tg0(f)は、基準順方向伝搬時間Tと周波数依存順方向伝搬時間項τg0(f),τg0(f),τg0(f)との和で表される。 Further, the reference reverse propagation time between the ultrasonic transducers 1a and 1b is T g, and the frequency dependent reverse propagation time terms at the measurement frequencies f 2 , f 1 and f 0 are τ g0 (f 2 ) and τ g0 ( Assuming that f 1 ) and τ g0 (f 0 ), initial forward propagation times T g0 (f 2 ), T g0 (f 1 ), T g0 (f 0 ) at the measurement frequencies f 2 , f 1 , f 0 Is represented by the sum of the reference forward propagation time T g and the frequency-dependent forward propagation time terms τ g0 (f 2 ), τ g0 (f 1 ), τ g0 (f 0 ).

g0(f)=T+τg0(f),
g0(f)=T+τg0(f),
g0(f)=T+τg0(f
T g0 (f 2 ) = T g + τ g0 (f 2 ),
T g0 (f 1 ) = T g + τ g0 (f 1 ),
T g0 (f 0 ) = T g + τ g0 (f 0 )

よって、周波数−伝搬時間差記憶部81は、複数の温度t,t,t,…での計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)と、計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)とを予め記憶する。 Therefore, the frequency-propagation time difference storage unit 81 stores the initial forward propagation time difference Δ j0 (f 1 , f 0 ) between the measurement frequencies f 1 , f 0 at a plurality of temperatures t 1 , t 2 , t 3 ,. The initial reverse propagation time difference Δ g0 (f 1 , f 0 ), the initial forward propagation time difference Δ j0 (f 2 , f 0 ) between the measurement frequencies f 2 and f 0 , and the initial reverse propagation time difference Δ g0 (f 2 , F 0 ) are stored in advance.

Δj0(f,f)=Tj0(f)−Tj0(f)=τj0(f)−τj0(f),
Δj0(f,f)=Tj0(f)−Tj0(f)=τj0(f)−τj0(f),
Δg0(f,f)=Tg0(f)−Tg0(f)=τg0(f)−τg0(f),
Δg0(f,f)=Tg0(f)−Tg0(f)=τg0(f)−τg0(f
Δ j0 (f 2 , f 0 ) = T j0 (f 2 ) −T j0 (f 0 ) = τ j0 (f 2 ) −τ j0 (f 0 ),
Δ j0 (f 1 , f 0 ) = T j0 (f 1 ) −T j0 (f 0 ) = τ j0 (f 1 ) −τ j0 (f 0 ),
Δ g0 (f 2 , f 0 ) = T g0 (f 2 ) −T g0 (f 0 ) = τ g0 (f 2 ) −τ g0 (f 0 ),
Δ g0 (f 1 , f 0 ) = T g0 (f 1 ) −T g0 (f 0 ) = τ g0 (f 1 ) −τ g0 (f 0 )

周波数−伝搬時間差比較部82は、各計測周波数f,f,fで計測された順方向伝搬時間Tj0(f),Tj0(f),Tj0(f)および逆方向伝搬時間Tg0(f),Tg0(f),Tg0(f)から演算された計測周波数f,f間の順方向伝搬時間差Δ(f,f)および逆方向伝搬時間差Δ(f,f)、ならびに計測周波数f,f間の順方向伝搬時間差Δ(f,f)および逆方向伝搬時間差Δ(f,f)を、周波数−伝搬時間差記憶部81に記憶されている現温度tでの計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)、ならびに現温度tでの計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)と比較する。 The frequency-propagation time difference comparison unit 82 performs forward propagation times T j0 (f 2 ), T j0 (f 1 ), T j0 (f 0 ) and the inverse measured at the measurement frequencies f 2 , f 1 , f 0. direction propagation time T g0 (f 2), T g0 (f 1), T g0 (f 0) measured frequency is calculated from f 1, the forward propagation time difference between f 0 Δ j (f 1, f 0) and backward propagation time difference Δ g (f 1, f 0 ), and the measurement frequency f 2, the forward propagation time difference between f 0 Δ j (f 2, f 0) and reverse transit time Δ g (f 2, f 0 ), The initial forward propagation time difference Δ j0 (f 1 , f 0 ) and the initial reverse propagation time difference between the measured frequencies f 1 and f 0 at the current temperature t 1 stored in the frequency-propagation time difference storage unit 81. Δ g0 (f 1 , f 0 ) and the measurement circumference at the current temperature t 1 The initial forward propagation time difference Δ j0 (f 2 , f 0 ) and the initial reverse propagation time difference Δ g0 (f 2 , f 0 ) between the wave numbers f 2 and f 0 are compared.

特性変動判定・補正部86は、周波数−伝搬時間差比較部82により計測周波数f,f間の順方向伝搬時間差Δ(f,f)および逆方向伝搬時間差Δ(f,f)と、周波数−伝搬時間差記憶部81に記憶されている現温度tでの計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)との間のズレ量が一定値以上であれば、そのズレ量に応じて通常計測補正値を変更する。また、特性変動判定・補正部86は、周波数−伝搬時間差比較部82により計測周波数f,f間の順方向伝搬時間差Δ(f,f)および逆方向伝搬時間差Δ(f,f)と、周波数−伝搬時間差記憶部81に記憶されている現温度tでの計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)および初期逆方向伝搬時間差Δg0(f,f)との間のズレ量が一定値以上であれば、そのズレ量に応じて通常計測補正値を変更する。 The characteristic variation determination / correction unit 86 uses the frequency-propagation time difference comparison unit 82 to perform the forward propagation time difference Δ j (f 1 , f 0 ) and the backward propagation time difference Δ g (f 1 , f 1 , f 0 ) between the measurement frequencies f 1 and f 0 . f 0 ), initial forward propagation time difference Δ j0 (f 1 , f 0 ) and initial reverse direction between the measured frequencies f 1 and f 0 at the current temperature t 1 stored in the frequency-propagation time difference storage unit 81 If the amount of deviation from the propagation time difference Δ g0 (f 1 , f 0 ) is greater than or equal to a certain value, the normal measurement correction value is changed according to the amount of deviation. Further, the characteristic variation determination / correction unit 86 uses the frequency-propagation time difference comparison unit 82 to perform the forward propagation time difference Δ j (f 2 , f 0 ) and the reverse propagation time difference Δ g (f (f) between the measurement frequencies f 2 and f 0. 2 , f 0 ), the initial forward propagation time difference Δ j0 (f 2 , f 0 ) between the measured frequencies f 2 and f 0 at the current temperature t 1 stored in the frequency-propagation time difference storage unit 81, and the initial value If the amount of deviation from the backward propagation time difference Δ g0 (f 2 , f 0 ) is equal to or greater than a certain value, the normal measurement correction value is changed according to the amount of deviation.

次に、このように構成された実施例2に係る超音波流量計の動作について、図7に示すフローチャートを参照して説明する。 Next, the operation of the ultrasonic flowmeter according to the second embodiment configured as described above will be described with reference to the flowchart shown in FIG.

なお、ステップS201〜S204までの処理は、実施例1に係る超音波流量計のステップS101〜S104までの処理(図5参照)と同様であるので、詳しい説明を省略する。 In addition, since the process to step S201-S204 is the same as the process (refer FIG. 5) to step S101-S104 of the ultrasonic flowmeter which concerns on Example 1, detailed description is abbreviate | omitted.

ステップS204の後、マイクロコンピュータ8は、計測周波数fでの順方向伝搬時間T(f)を受信すると、計測周波数をfからfに切り替える計測周波数切替信号を周波数可変部4に出力して計測周波数をfからfに切り替えた後、同様にして、計測周波数fでの順方向伝搬時間T(f)を計測する(ステップS205)。 After step S < b > 204, when the microcomputer 8 receives the forward propagation time T j (f 1 ) at the measurement frequency f 1 , the microcomputer 8 sends a measurement frequency switching signal for switching the measurement frequency from f 1 to f 2 to the frequency variable unit 4. After outputting and switching the measurement frequency from f 1 to f 2 , the forward propagation time T j (f 2 ) at the measurement frequency f 2 is similarly measured (step S 205).

次に、マイクロコンピュータ8は、送受切替信号を送受切替部2に出力して一対の超音波トランスジューサ1a,1bの送受を切り替えた後、計測周波数切替信号を周波数可変部4に出力して計測周波数をf,fからfと切り替えながら、計測周波数fでの逆方向伝搬時間T(f),計測周波数fでの逆方向伝搬時間T(f)および計測周波数fでの逆方向伝搬時間T(f)を順次計測する(ステップS206,S207,S208)。 Next, the microcomputer 8 outputs a transmission / reception switching signal to the transmission / reception switching unit 2 to switch transmission / reception of the pair of ultrasonic transducers 1a, 1b, and then outputs a measurement frequency switching signal to the frequency variable unit 4 to measure frequency. while switching and f 2 from f 0, f 1, backward propagation time T g (f 0) at the measurement frequency f 0, the back propagation time of the measurement frequency f 1 T g (f 1) and the measurement frequency f backward propagation time T g of the at 2 (f 2) are sequentially measured (step S206, S207, S208).

次に、マイクロコンピュータ8は、計測周波数fでの順方向伝搬時間T(f)から計測周波数fでの順方向伝搬時間T(f)を引いて、計測周波数f,f間の順方向伝搬時間差Δ(f,f)を算出する(ステップS209)。 Next, the microcomputer 8 subtracts the forward propagation time by measuring the frequency f 1 T j (f 1) forward propagation time by measuring the frequency f 0 from T j (f 0), the measuring frequency f 1, forward propagation time difference between f 0 Δ j (f 1, f 0) is calculated (step S209).

Δ(f,f)=T(f)−T(f)=τ(f)−τ(fΔ j (f 1 , f 0 ) = T j (f 1 ) −T j (f 0 ) = τ j (f 1 ) −τ j (f 0 )

また、マイクロコンピュータ8は、計測周波数fでの順方向伝搬時間T(f)から計測周波数fでの順方向伝搬時間T(f)を引いて、計測周波数f,f間の順方向伝搬時間差Δ(f,f)を算出する(ステップS210)。 The microcomputer 8 subtracts the forward propagation time by measuring the frequency f 2 T j (f 2) forward propagation time by measuring the frequency f 0 from T j (f 0), the measurement frequency f 2, f forward transit time between 0 Δ j (f 2, f 0) is calculated (step S210).

Δ(f,f)=T(f)−T(f)=τ(f)−τ(fΔ j (f 2 , f 0 ) = T j (f 2 ) −T j (f 0 ) = τ j (f 2 ) −τ j (f 0 )

同様に、マイクロコンピュータ8は、計測周波数fでの逆方向伝搬時間T(f)から計測周波数fでの逆方向伝搬時間T(f)を引いて、計測周波数f,f間の逆方向伝搬時間差Δ(f,f)を算出する(ステップS211)。 Similarly, the microcomputer 8 subtracts the backward propagation time of the measurement frequency f 1 T g (f 1) back propagation time of the measurement frequency f 0 from T g (f 0), the measuring frequency f 1, backward propagation time difference between f 0 Δ g (f 1, f 0) is calculated (step S211).

Δ(f,f)=T(f)−T(f)=τ(f)−τ(f Δ g (f 1, f 0 ) = T g (f 1) -T g (f 0) = τ g (f 1) -τ g (f 0)

また、マイクロコンピュータ8は、計測周波数fでの逆方向伝搬時間T(f)から計測周波数fでの逆方向伝搬時間T(f)を引いて、計測周波数f,f間の逆方向伝搬時間差Δ(f,f)を算出する(ステップS212)。 The microcomputer 8 subtracts the backward propagation time of the measurement frequency f 2 T g (f 2) back propagation time of the measurement frequency f 0 from T g (f 0), the measurement frequency f 2, f reverse transit time between 0 Δ g (f 2, f 0) is calculated (step S212).

Δ(f,f)=T(f)−T(f)=τ(f)−τ(f Δ g (f 2, f 0 ) = T g (f 2) -T g (f 0) = τ g (f 2) -τ g (f 0)

ここで、計測周波数f,f間の順方向伝搬時間差Δ(f,f)および計測周波数f,f間の順方向伝搬時間差Δ(f,f)、ならびに計測周波数f,f間の逆方向伝搬時間差Δ(f,f)および計測周波数f,f間の逆方向伝搬時間差Δ(f,f)は、流速Vによらず一定である。即ち、規定の温度条件下であれば、計測周波数f,f間の順方向伝搬時間差Δ(f,f)および計測周波数f,f間の順方向伝搬時間差Δ(f,f)、ならびに計測周波数f,f間の逆方向伝搬時間差Δ(f,f)および計測周波数f,f間の逆方向伝搬時間差Δ(f,f)は、各計測周波数f,f,fでの超音波トランスジューサ1a,1bの遅延特性を意味する。換言すれば、計測周波数f,f間の順方向伝搬時間差Δ(f,f)および計測周波数f,f間の順方向伝搬時間差Δ(f,f)、ならびに計測周波数f,f間の逆方向伝搬時間差Δ(f,f)および計測周波数f,f間の逆方向伝搬時間差Δ(f,f)は、計測流体の媒質や速度Vのパラメータで変化しない値である。 The measurement frequency f 1, the forward propagation time difference between f 0 Δ j (f 1, f 0) and the measurement frequency f 2, the forward propagation time difference between f 0 Δ j (f 2, f 0), and backward propagation time difference between the measured frequency f 1, f 0 Δ g ( f 1, f 0) and the measurement frequency f 2, backward propagation time difference between f 0 Δ g (f 2, f 0) is the flow velocity V It is constant regardless. That is, when the temperature under defined conditions, the measurement frequency f 1, f forward transit time delta j (f 1, f 0) between 0 and measurement frequency f 2, the forward propagation time difference between f 0 delta j ( f 2, f 0), and measuring the frequency f 1, backward propagation time difference between f 0 Δ g (f 1, f 0) and the measurement frequency f 2, f backward propagation time difference between 0 Δ g (f 2, f 0 ) means the delay characteristics of the ultrasonic transducers 1a and 1b at the respective measurement frequencies f 2 , f 1 and f 0 . In other words, the forward propagation time difference between the measured frequency f 1, f 0 Δ j ( f 1, f 0) and the measurement frequency f 2, the forward propagation time difference between f 0 Δ j (f 2, f 0), and backward propagation time difference between the measured frequency f 1, f 0 Δ g ( f 1, f 0) and the measurement frequency f 2, backward propagation time difference between f 0 Δ g (f 2, f 0) , the measurement fluid It is a value which does not change with the parameters of the medium and the velocity V

続いて、マイクロコンピュータ8は、周波数−伝搬時間差比較部82により、計測周波数f,f間の順方向伝搬時間差Δ(f,f)を、周波数−伝搬時間差記憶部81に記憶された、現温度tでの、計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)と比較する(ステップS213)。 Subsequently, in the microcomputer 8, the frequency-propagation time difference comparison unit 82 stores the forward-direction propagation time difference Δ j (f 1 , f 0 ) between the measurement frequencies f 1 and f 0 in the frequency-propagation time difference storage unit 81. Compared with the initial forward propagation time difference Δ j0 (f 1 , f 0 ) between the measured frequencies f 1 and f 0 at the current temperature t 1 (step S213).

また、マイクロコンピュータ8は、周波数−伝搬時間差比較部82により、計測周波数f,f間の順方向伝搬時間差Δ(f,f)を、周波数−伝搬時間差記憶部81に記憶された、現温度tでの、計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)と比較する(ステップS214)。 Further, in the microcomputer 8, the frequency-propagation time difference comparison unit 82 stores the forward-direction propagation time difference Δ j (f 2 , f 0 ) between the measurement frequencies f 2 and f 0 in the frequency-propagation time difference storage unit 81. Further, the initial forward propagation time difference Δ j0 (f 2 , f 0 ) between the measurement frequencies f 2 and f 0 at the current temperature t 1 is compared (step S214).

同様に、マイクロコンピュータ8は、周波数−伝搬時間差比較部82により、計測周波数f,f間の逆方向伝搬時間差Δ(f,f)を、周波数−伝搬時間差記憶部81に記憶された、現温度tでの、計測周波数f,f間の初期逆方向伝搬時間差Δg0(f,f)と比較する(ステップS215)。 Similarly, the microcomputer 8 stores the reverse propagation time difference Δ g (f 1 , f 0 ) between the measurement frequencies f 1 and f 0 in the frequency-propagation time difference storage unit 81 by the frequency-propagation time difference comparison unit 82. Compared with the initial reverse propagation time difference Δ g0 (f 1 , f 0 ) between the measured frequencies f 1 and f 0 at the current temperature t 1 (step S215).

また、マイクロコンピュータ8は、周波数−伝搬時間差比較部82により、計測周波数f,f間の逆方向伝搬時間差Δ(f,f)を、周波数−伝搬時間差記憶部81に記憶された、現温度tでの、計測周波数f,f間の初期逆方向伝搬時間差Δg0(f,f)と比較する(ステップS216)。 In the microcomputer 8, the reverse propagation time difference Δ g (f 2 , f 0 ) between the measurement frequencies f 2 and f 0 is stored in the frequency-propagation time difference storage unit 81 by the frequency-propagation time difference comparison unit 82. and is compared with at the present temperature t 1, the measurement frequency f 2, the initial backward propagation time difference between f 0 Δ g0 (f 2, f 0) ( step S216).

比較の結果、計測周波数f,f間の順方向伝搬時間差Δ(f,f)と計測周波数f,f間の初期順方向伝搬時間差Δj0(f,f)とのズレ量が一定値以上であれば(ステップS217でイエス)、マイクロコンピュータ8は、特性変動判定・補正部86により、このズレ量が一定値未満となるように、通常計測補正値を変更する(ステップS218)。 As a result of the comparison, the measurement frequency f 1, the forward propagation time difference between f 0 Δ j (f 1, f 0) and the measurement frequency f 1, the initial forward propagation time difference between f 0 Δ j0 (f 1, f 0) If the amount of deviation is greater than or equal to a certain value (Yes in step S217), the microcomputer 8 changes the normal measurement correction value by the characteristic variation determination / correction unit 86 so that the amount of deviation is less than the certain value. (Step S218).

詳しくは、
Δ(f,f)>Δj0(f,f)ならば、通常計測補正値をマイナス変更し、
Δ(f,f)≒Δj0(f,f)ならば、通常計測補正値を変更せず、
Δ(f,f)<Δj0(f,f)ならば、通常計測補正値をプラス変更する。
For more information,
If Δ j (f 1 , f 0 )> Δ j0 (f 1 , f 0 ), the normal measurement correction value is changed to minus,
If Δ j (f 1 , f 0 ) ≈Δ j0 (f 1 , f 0 ), the normal measurement correction value is not changed,
If Δ j (f 1 , f 0 ) <Δ j0 (f 1 , f 0 ), the normal measurement correction value is changed to plus.

また、
Δ(f,f)>Δg0(f,f)ならば、通常計測補正値をマイナス変更し、
Δ(f,f)≒Δg0(f,f)ならば、通常計測補正値を変更せず、
Δ(f,f)<Δg0(f,f)ならば、通常計測補正値をプラス変更する。
Also,
If Δ g (f 1 , f 0 )> Δ g 0 (f 1 , f 0 ), the normal measurement correction value is changed to minus,
If Δ g (f 1 , f 0 ) ≈Δ g 0 (f 1 , f 0 ), the normal measurement correction value is not changed,
If Δ g (f 1 , f 0 ) <Δ g 0 (f 1 , f 0 ), the normal measurement correction value is changed to plus.

具体的には、特性変動判定・補正部86は、補正検査を行なうために、周波数可変部4や駆動部3、および駆動パルス数管理部83や受信パルス数管理部84を制御して、予め決められた計測周波数および駆動パルス数Nや受信パルス数を可変させ、その条件に合った検出ポイントで、計測周波数fでの順方向伝搬時間T(f)および逆方向伝搬時間T(f)、ならびに計測周波数fでの順方向伝搬時間T(f)および逆方向伝搬時間T(f)の計測が行なわれるようにする。 Specifically, the characteristic variation determination / correction unit 86 controls the frequency variable unit 4, the drive unit 3, the drive pulse number management unit 83, and the received pulse number management unit 84 in advance in order to perform a correction inspection. The determined measurement frequency, the drive pulse number N and the received pulse number are varied, and the forward propagation time T j (f 1 ) and the reverse propagation time T g at the measurement frequency f 1 are detected at a detection point that meets the conditions. (F 1 ), and the forward propagation time T j (f 0 ) and the backward propagation time T g (f 0 ) at the measurement frequency f 0 are measured.

また、計測周波数f,f間の逆方向伝搬時間差Δ(f,f)と計測周波数f,f間の初期逆方向伝搬時間差Δg0(f,f)とのズレ量が一定値以上であれば(ステップS217でイエス)、マイクロコンピュータ8は、特性変動判定・補正部86により、このズレ量が一定値未満となるように、通常計測補正値を変更する(ステップS218)。 Further, the measurement frequency f 2, f 0 between the backward propagation time difference Δ g (f 2, f 0 ) and the measurement frequency f 2, f initial reverse transit time between 0 Δ g0 (f 2, f 0) If the amount of deviation is greater than or equal to a certain value (Yes in step S217), the microcomputer 8 changes the normal measurement correction value by the characteristic variation determination / correction unit 86 so that the amount of deviation is less than the certain value ( Step S218).

詳しくは、
Δ(f,f)>Δj0(f,f)ならば、通常計測補正値をマイナス変更し、
Δ(f,f)≒Δj0(f,f)ならば、通常計測補正値を変更せず、
Δ(f,f)<Δj0(f,f)ならば、通常計測補正値をプラス変更する。
For more information,
If Δ j (f 2 , f 0 )> Δ j0 (f 2 , f 0 ), the normal measurement correction value is changed to minus,
If Δ j (f 2 , f 0 ) ≈Δ j0 (f 2 , f 0 ), the normal measurement correction value is not changed,
If Δ j (f 2, f 0 ) <Δ j0 (f 2, f 0), plus change the normal measurement correction value.

また、
Δ(f,f)>Δg0(f,f)ならば、通常計測補正値をマイナス変更し、
Δ(f,f)≒Δg0(f,f)ならば、通常計測補正値を変更せず、
Δ(f,f)<Δg0(f,f)ならば、通常計測補正値をプラス変更する。
Also,
If Δ g (f 2 , f 0 )> Δ g 0 (f 2 , f 0 ), the normal measurement correction value is changed to minus,
If Δ g (f 2 , f 0 ) ≈Δ g 0 (f 2 , f 0 ), the normal measurement correction value is not changed,
If Δ g (f 2 , f 0 ) <Δ g 0 (f 2 , f 0 ), the normal measurement correction value is changed to a plus value.

具体的には、特性変動判定・補正部86は、補正検査を行なうために、周波数可変部4や駆動部3および受信手段22を制御して、予め決められた計測周波数および駆動パルス数Nを可変させ、その条件に合った検出ポイントで受信するように、計測周波数fでの順方向伝搬時間T(f)および逆方向伝搬時間T(f)、ならびに計測周波数fでの順方向伝搬時間T(f)および逆方向伝搬時間T(f)の計測が行なわれるようにする。 Specifically, the characteristic variation determination / correction unit 86 controls the frequency variable unit 4, the drive unit 3, and the reception unit 22 to perform a correction inspection, and sets a predetermined measurement frequency and drive pulse number N. is varied, to receive the detection point according its condition, measuring frequency f 2 in the forward propagation time T j (f 2) and reverse propagation time T g (f 2), and the measurement frequency f 0 The forward propagation time T j (f 0 ) and the backward propagation time T g (f 0 ) are measured.

このように、実施例2に係る超音波流量計によれば、実施例1に係る超音波流量計と同様の効果が得られるが、計測周波数を2周波数から3周波数にしたので、よりきめ細かな通常計測補正値の補正可能になり、さらに高精度な計測が実現可能となる。 As described above, according to the ultrasonic flow meter according to the second embodiment, the same effect as that of the ultrasonic flow meter according to the first embodiment can be obtained. However, since the measurement frequency is changed from two frequencies to three frequencies, finer details are obtained. The normal measurement correction value can be corrected, and more accurate measurement can be realized.

本発明の実施例1に係る超音波流量計の構成を示すブロック図。1 is a block diagram showing the configuration of an ultrasonic flow meter according to Embodiment 1 of the present invention. 実施例1に係る超音波流量計における計測周波数と順方向伝搬時間および逆方向伝搬時間との関係を示すグラフ。3 is a graph showing a relationship between a measurement frequency, a forward propagation time, and a backward propagation time in the ultrasonic flowmeter according to the first embodiment. 実施例1に係る超音波流量計における計測周波数と初期順方向伝搬時間差および初期逆方向伝搬時間差との関係を示すグラフ。3 is a graph showing a relationship between a measurement frequency and an initial forward propagation time difference and an initial reverse propagation time difference in the ultrasonic flowmeter according to the first embodiment. 実施例1に係る超音波流量計における駆動パルス数と検出ポイントとの関係を説明する波形図。FIG. 4 is a waveform diagram for explaining the relationship between the number of drive pulses and detection points in the ultrasonic flowmeter according to the first embodiment. 実施例1に係る超音波流量計の補正動作を表すフローチャート。3 is a flowchart illustrating a correction operation of the ultrasonic flowmeter according to the first embodiment. 本発明の実施例2に係る超音波流量計における計測周波数と順方向伝搬時間および逆方向伝搬時間との関係を具体的に示すグラフ。The graph which shows concretely the relationship between the measurement frequency in the ultrasonic flowmeter which concerns on Example 2 of this invention, and forward direction propagation time and reverse direction propagation time. 実施例2に係る超音波流量計の補正動作を表すフローチャート。10 is a flowchart illustrating a correction operation of the ultrasonic flowmeter according to the second embodiment.

符号の説明Explanation of symbols

1a,1b 超音波トランスジューサ
2 送受切替部
3 駆動部
4 周波数可変部
5 増幅部
6 受信部
7 伝搬時間計測部
8 マイクロコンピュータ
9 温度計
21 送信手段
16 受信手段
81 周波数−伝搬時間差記憶部
82 周波数−伝搬時間差比較部
83 駆動パルス数管理部
84 受信パルス数管理部
85 検査期間判定部
86 特性変動判定・補正部
DESCRIPTION OF SYMBOLS 1a, 1b Ultrasonic transducer 2 Transmission / reception switching part 3 Drive part 4 Frequency variable part 5 Amplifying part 6 Receiving part 7 Propagation time measuring part 8 Microcomputer 9 Thermometer 21 Transmitting means 16 Receiving means 81 Frequency-propagation time difference storage part 82 Frequency- Propagation time difference comparison unit 83 Drive pulse number management unit 84 Received pulse number management unit 85 Inspection period determination unit 86 Characteristic variation determination / correction unit

Claims (9)

流路の流体流れ方向上手側および下手側に一対の超音波トランスジューサを設け、超音波の送受信を交互に切り替えて、流れ方向上手側の超音波トランスジューサから発射された超音波が流れ方向下手側の超音波トランスジューサに到達するまでの順方向伝搬時間と、流れ方向下手側の超音波トランスジューサから発射された超音波が流れ方向上手側の超音波トランスジューサに到達するまでの逆方向伝搬時間とを計測して、両者の差から流路を流れる流体の平均流速を求め、平均流速に流路断面積を乗算することで流量を求める超音波流量計において、
前記一対の超音波トランスジューサが設置された時において、複数の計測周波数を定めて、前記一対の超音波トランスジューサ間の順方向伝搬時間および逆方向伝搬時間の計測を行い、前記複数の計測周波数の間における順方向伝搬時間の差、および前記複数の計測周波数の間における逆方向伝搬時間の差を求め、その初期順方向伝搬時間差および初期逆方向伝搬時間差を記憶する周波数−伝搬時間差記憶部と、
一定期間毎に、前記複数の計測周波数によって、前記超音波トランスジューサ間の順方向伝搬時間および逆方向伝搬時間の計測を行ない、前記複数の計測周波数における順方向伝搬時間および前記複数の計測周波数の間における逆方向伝搬時間を求めその順方向伝搬時間差と前記周波数−伝搬時間差記憶部に記憶された前記順方向伝搬時間を計測した温度での初期順方向伝搬時間差およびその逆方向伝搬時間差と前記周波数−伝搬時間差記憶部に記憶された前記逆方向伝搬時間を計測した温度での初期逆方向伝搬時間差比較する周波数−伝搬時間差比較部とを有し、
前記周波数−伝搬時間差比較部の比較結果に基づく初期順方向伝搬時間差および初期逆方向伝搬時間差との間のズレ量に応じて通常計測補正値をマイナスの値またはプラスの値に変更することで、超音波トランスジューサによる通常計測値を通常計測補正値によって遅延特性の変化分に応じた変更を行い、
前記一対の超音波トランスジューサの遅延特性が、計測流体の流速によらず、計測周波数によって変化することを利用し、前記一対の超音波トランスジューサの経年的な遅延特性変動に対する流量補正を行なうことを特徴とする超音波流量計。
A pair of ultrasonic transducers is provided on the upper and lower sides of the fluid flow direction of the flow path, and ultrasonic transmission / reception is alternately switched, so that the ultrasonic waves emitted from the ultrasonic transducer on the upper side of the flow direction are on the lower side of the flow direction. Measure the forward propagation time to reach the ultrasonic transducer and the reverse propagation time for the ultrasonic wave emitted from the ultrasonic transducer on the lower flow direction to reach the ultrasonic transducer on the upper flow direction. Then, in the ultrasonic flowmeter that obtains the average flow velocity of the fluid flowing through the flow path from the difference between them and obtains the flow rate by multiplying the average flow velocity by the cross-sectional area of the flow path
When the pair of ultrasonic transducers is installed, a plurality of measurement frequencies are determined, a forward propagation time and a reverse propagation time between the pair of ultrasonic transducers are measured, A frequency-propagation time difference storage unit that obtains a difference in forward propagation time in, and a difference in backward propagation time between the plurality of measurement frequencies, and stores the initial forward propagation time difference and the initial backward propagation time difference;
At regular intervals, by the plurality of measurement frequencies, the carried forward propagation time and the measurement of the backward propagation time between the ultrasonic transducers, the difference between the forward propagation time between said plurality of measurement frequencies, and the plurality of obtaining a difference of the backward propagation time between the measurement frequency, the forward transit time and the frequency - initial forward propagation time difference at the measured temperature of the forward propagation time stored in the transit time storage unit, and A frequency-propagation time difference comparison unit that compares the reverse propagation time difference and an initial reverse propagation time difference at a temperature at which the backward propagation time stored in the frequency-propagation time difference storage unit is measured ;
The frequency - changing a negative value or a positive value normal measurement correction value in accordance with the amount of deviation between the initial forward propagation time difference and the initial reverse transit time rather based on a comparison result of the propagation time difference comparison unit Then, the normal measurement value by the ultrasonic transducer is changed according to the change of the delay characteristic by the normal measurement correction value,
Characterized in that the delay characteristics of the pair of ultrasonic transducers, regardless of the flow velocity of the fluid being measured, by utilizing the change by the measurement frequency, the flow rate correction for aging delay characteristic variation of the pair of ultrasonic transducers Ultrasonic flow meter.
前記超音波トランスジューサが、低Q型で、不要スプリアスの少ない、単一共振特性を有する超音波トランスジューサで形成されていて、該超音波トランスジューサの周波数帯域を利用することを特徴とする請求項1に記載の超音波流量計。 2. The ultrasonic transducer according to claim 1, wherein the ultrasonic transducer is formed of an ultrasonic transducer having a single resonance characteristic, having a low Q-type, less unnecessary spurious, and using a frequency band of the ultrasonic transducer. The described ultrasonic flowmeter. 補正検査時の計測周波数は、前記超音波トランスジューサの周波数帯域内の共振点周波数またはその近傍の周波数と、前記周波数帯域内の共振点周波数から離れた周波数とを使用し、これらの周波数の駆動パルスにより前記超音波トランスジューサを駆動し、順方向伝搬時間および逆方向伝搬時間の計測を行なうことを特徴とする請求項1または請求項2に記載の超音波流量計。 The measurement frequency at the time of the correction inspection uses a resonance point frequency in the frequency band of the ultrasonic transducer or a frequency near the resonance point frequency and a frequency away from the resonance point frequency in the frequency band, and drive pulses of these frequencies. The ultrasonic flowmeter according to claim 1, wherein the ultrasonic transducer is driven to measure a forward propagation time and a backward propagation time. 送信波の駆動パルス数Nの制御されたバースト駆動による強制振動で、送信波の駆動パルス数Nに対して最大N+2〜3以内の受信パルス数、できれば、最大N以内の受信パルス数のゼロクロスポイントを受信波の検出ポイントとすることを特徴とする請求項1ないし請求項3のいずれか1項に記載の超音波流量計。 Zero-crossing point of the maximum number of received pulses within N + 2 to 3 with respect to the number of drive pulses N of the transmission wave, preferably, the maximum number of received pulses within the maximum N with the forced oscillation by the controlled burst driving of the drive pulse number N of the transmitted wave ultrasonic flowmeter according to any one of claims 1 to 3, characterized in that the detection point of the reception wave. 計測周波数に応じて送信波の駆動パルス数および受信波の検出ポイントを変更することを特徴とする請求項1ないし請求項4のいずれか1項に記載の超音波流量計。 Ultrasonic flowmeter according to any one of claims 1 to 4, characterized in that to change the detection point of the driving pulse number and received wave of the transmission wave in accordance with the measured frequency. 計測周波数に応じた送信波の駆動パルス数および受信波の検出ポイントを調整・記憶することを特徴とする請求項1ないし請求項5のいずれか1項に記載の超音波流量計。 Ultrasonic flowmeter according to any one of claims 1 to 5, characterized in that adjusting and storing the detection point of the driving pulse number and received wave of the transmission wave in accordance with the measured frequency. フィールドに設置された超音波流量計を、一定期間で、予め決められた温度になった時、しかもできるだけ計測流体の流量の少ないタイミングを見計らって、計測周波数に対する順方向伝搬時間および逆方向伝搬時間の計測を行なうことを特徴とする請求項1ないし請求項6のいずれか1項に記載の超音波流量計。 When the ultrasonic flowmeter installed in the field reaches a predetermined temperature for a certain period of time, and ascertains the timing when the flow rate of the measurement fluid is as low as possible, the forward propagation time and the reverse propagation time with respect to the measurement frequency ultrasonic flowmeter according to any one of claims 1 to 6, characterized in that for performing the measurement. 前記複数の計測周波数での順方向伝搬時間の計測を計測周波数を異ならしめながら連続的に行ない、しかる後に前記複数の計測周波数での逆方向伝搬時間の計測を計測周波数を異ならしめながら連続的に行なうことを特徴とする請求項1ないし請求項7のいずれか1項に記載の超音波流量計。 Wherein the plurality of forward propagation time of the measurement frequency measured continuously performed while made different measurement frequency, the plurality of back propagation time of the measurement frequency measured continuously while made different measurement frequencies thereafter ultrasonic flowmeter according to any one of claims 1 to 7, characterized in that to perform. ある計測周波数での順方向伝搬時間または逆方向伝搬時間の計測のための駆動パルスを印加して、それに対応した受信パルスが伝搬して来る前に、次の計測周波数での順方向伝搬時間または逆方向伝搬時間の計測のための駆動パルスを印加することを特徴とする請求項8に記載の超音波流量計。 Apply a drive pulse for measuring the forward or backward propagation time at one measurement frequency, and before the corresponding received pulse propagates, the forward propagation time at the next measurement frequency or The ultrasonic flowmeter according to claim 8, wherein a driving pulse for measuring the backward propagation time is applied.
JP2004170945A 2004-06-09 2004-06-09 Ultrasonic flow meter Expired - Fee Related JP4646107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004170945A JP4646107B2 (en) 2004-06-09 2004-06-09 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004170945A JP4646107B2 (en) 2004-06-09 2004-06-09 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2005351695A JP2005351695A (en) 2005-12-22
JP4646107B2 true JP4646107B2 (en) 2011-03-09

Family

ID=35586309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004170945A Expired - Fee Related JP4646107B2 (en) 2004-06-09 2004-06-09 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP4646107B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5345006B2 (en) * 2009-06-24 2013-11-20 東京計装株式会社 Ultrasonic flow meter
AT509641B1 (en) 2011-06-24 2012-08-15 Avl List Gmbh METHOD FOR DETERMINING FLUX FLOW AFTER ULTRASONIC TIME METHOD
JP6404844B2 (en) * 2016-02-10 2018-10-17 株式会社Soken Ultrasonic receiver
CN107621292B (en) * 2017-07-25 2021-04-09 辽宁航宇星物联仪表科技有限公司 Wave-missing compensation method for household ultrasonic water meter
CN117232593A (en) * 2023-11-16 2023-12-15 山东拙诚智能科技有限公司 Ultrasonic gas flowmeter and gas flow monitoring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249583A (en) * 1999-03-02 2000-09-14 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2000346686A (en) * 1999-06-08 2000-12-15 Fuji Electric Co Ltd Ultrasonic flowmeter
JP2004077446A (en) * 2002-08-22 2004-03-11 Osaka Gas Co Ltd Ultrasonic meter device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249583A (en) * 1999-03-02 2000-09-14 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2000346686A (en) * 1999-06-08 2000-12-15 Fuji Electric Co Ltd Ultrasonic flowmeter
JP2004077446A (en) * 2002-08-22 2004-03-11 Osaka Gas Co Ltd Ultrasonic meter device

Also Published As

Publication number Publication date
JP2005351695A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
US8253578B2 (en) Smoke sensor of the sound wave type including a smoke density estimation unit
WO2013172028A1 (en) Flow rate measurement device
JP3562712B2 (en) Flow measurement device
JP4646107B2 (en) Ultrasonic flow meter
JP4822731B2 (en) Ultrasonic flow meter
JP2007187506A (en) Ultrasonic flowmeter
JP2002318145A (en) Flow meter
JP2006343292A (en) Ultrasonic flowmeter
JP2003106882A (en) Flow measuring instrument
WO2017168480A1 (en) Flow rate measurement device
JP4153721B2 (en) Ultrasonic flowmeter and self-diagnosis method of ultrasonic flowmeter
JP5895148B2 (en) Flow measuring device
JP4949951B2 (en) Ultrasonic flow meter
JP4992890B2 (en) Flow velocity or flow rate measuring device
JP4992872B2 (en) Fluid flow measuring device
JP5884014B2 (en) Flow measuring device
JP2009031134A (en) Ultrasonic flowmeter
JP7246021B2 (en) ultrasonic flow meter
JP5034510B2 (en) Flow velocity or flow rate measuring device and its program
JP2005257359A (en) Flow measuring device for fluid
JP7320776B2 (en) ultrasonic flow meter
JP2000329597A5 (en)
JP2006275814A (en) Ultrasonic flowmeter
JP2019211267A (en) Ultrasonic gas flowmeter
JP4889253B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees