JP2000344507A - Powdery activated carbon, activated carbon sheet and electric double layer capacitor - Google Patents

Powdery activated carbon, activated carbon sheet and electric double layer capacitor

Info

Publication number
JP2000344507A
JP2000344507A JP11159244A JP15924499A JP2000344507A JP 2000344507 A JP2000344507 A JP 2000344507A JP 11159244 A JP11159244 A JP 11159244A JP 15924499 A JP15924499 A JP 15924499A JP 2000344507 A JP2000344507 A JP 2000344507A
Authority
JP
Japan
Prior art keywords
activated carbon
powdered activated
particles
particle size
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11159244A
Other languages
Japanese (ja)
Inventor
Kiyoto Otsuka
清人 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP11159244A priority Critical patent/JP2000344507A/en
Publication of JP2000344507A publication Critical patent/JP2000344507A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To obtain powdery activated carbon capable of achieving high packing density even when the activated carbon is molded with a small quantity of binder by specifying a median particle size and a ratio of particles having a particle size which is a specified ratio of the median particle size or below. SOLUTION: This activated carbon has a >=10 μm and <=50 μm median particle size and the ratio of particles having particle sizes which are 1/10 of the median particle size or below is 6% or above and 13% or below. The activated carbon used has >=300 m2/g specific surface area and shows high adsorptivity. Carbides of coconut shell, wood, phenolic resin or the like and coal are used as raw materials of the activated carbon. An electrode of activated carbon having >=0.65 g/cc density at the time of molding can be manufactured. In order to mold the activated carbon powder into a sheet, 100 pts.wt. activated carbon powder is mixed with 5-10 pts.wt. binder such as polyvinylidene fluoride and then compression molding is carried out utilizing a roll press or the like. This powdery activated carbon may be manufacture by repeating compression and mixing of the powdery activated carbon in high speed, though the method for manufacturing the same is not limited in particular.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粉末活性炭、活性
炭シート及び電気二重層キャパシタに関する。さらに詳
しくは、中心粒子径が10μm以上50μm以下であっ
て、中心粒子径の1/10以下の大きさの粒子の割合が
6%以上13%以下である粉末活性炭、該粉末活性炭及
びバインダーからなる混合物を成型せしめた活性炭シー
ト、及び該活性炭シートを電極とした電気二重層キャパ
シタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powdered activated carbon, an activated carbon sheet and an electric double layer capacitor. More specifically, the powdered activated carbon has a center particle diameter of 10 μm or more and 50 μm or less, and the ratio of particles having a size of 1/10 or less of the center particle diameter is 6% or more and 13% or less, and is made of the powdered activated carbon and a binder. The present invention relates to an activated carbon sheet formed by molding a mixture and an electric double layer capacitor using the activated carbon sheet as an electrode.

【0002】[0002]

【従来の技術】近年、分極性電極と電解質界面に生じる
電気二重層を利用してエネルギーを貯蔵する電気二重層
キャパシタの開発が広くなされている。電気二重層キャ
パシタ(以下、電気二重層キャパシタを単にキャパシタ
と略称する)は、アルミニウム等の金属箔あるいは導電
性ゴムのような集電体上に活性炭からなる2枚の電極を
セパレーターを介して対峠させ、電気二重層形成イオン
を含む電解液を注入した構造であり、ファラッド級の大
容量を有し、充放電サイクルにも優れることから、各種
電気機器のバックアップ電源、太陽電池と組み合わせた
発光ダイオードの電源、おもちゃ等の小型モーターの電
源、車載バッテリーなどの用途に多く使用されている。
2. Description of the Related Art In recent years, electric double layer capacitors which store energy using an electric double layer generated at the interface between a polarizable electrode and an electrolyte have been widely developed. An electric double layer capacitor (hereinafter, the electric double layer capacitor is simply referred to as a capacitor) is a pair of two electrodes made of activated carbon formed on a current collector such as a metal foil such as aluminum or a conductive rubber via a separator. It has a structure in which an electrolyte containing ions forming an electric double layer is injected, and has a farad-class large capacity and excellent charge / discharge cycle, so it emits light in combination with a backup power supply for various electric devices and a solar cell. It is widely used for power supplies for diodes, power supplies for small motors such as toys, and in-vehicle batteries.

【0003】かかるキャパシタの電極材料には、大きな
比表面積をもつ活性炭繊維や粉末活性炭などのカーボン
系材料が使用されることが多い。例えば、特開平2−2
40909号及び特開平2−241012号公報に、活
性炭繊維をパルプ、炭素繊維に加え、バインダー及び分
散剤を用いて抄紙とした分極性電極が開示されており、
特開平4−22062号公報に、特定の粒子径を持つ活
性炭粉末及びプラスチック粉末を混合し、板状に成型し
たキャパシタが開示されており、また、特開平8−11
9615号公報には、繊維状活性炭、粉末活性炭及びバ
インダーからなる混合物を成型したシートを電極とする
キャパシタが開示されている。
As the electrode material of such a capacitor, a carbon-based material such as activated carbon fiber or powdered activated carbon having a large specific surface area is often used. For example, Japanese Patent Application Laid-Open No. 2-2
Japanese Patent No. 40909 and JP-A-2-241012 disclose a polarizable electrode obtained by adding activated carbon fiber to pulp and carbon fiber, and using a binder and a dispersant to make paper.
JP-A-4-22062 discloses a capacitor formed by mixing activated carbon powder having a specific particle diameter and plastic powder and molding the mixture into a plate shape.
No. 9615 discloses a capacitor in which a sheet formed from a mixture of fibrous activated carbon, powdered activated carbon and a binder is used as an electrode.

【0004】キャパシタに蓄電できる体積あたりのエネ
ルギー量を上げるためには高い比表面積の活性炭を高密
度で充填した電極を使用する必要がある。しかしなが
ら、活性炭の充填密度と比表面積とは逆比例する関係に
あるので、高い比表面積の活性炭を高密度で充填するの
は極めて困難である。高比表面積の粉末活性炭を高密度
で充填する方法として、特開平9−320906号公報
に、粉末活性炭にテフロン粉末等のバインダーを5〜1
0%程度混合した後に加圧成型する方法が提案されてい
る。また、特開平9−289023号公報に、フッ化ビ
ニリデン系共重合体をバインダーとし、N―メチルー2
―ピロリドンに均一に溶解した後に粉末活性炭を混合
し、ペースト状に加工しドクターブレードで塗布し加熱
・乾燥する方法が開示されている。
In order to increase the amount of energy per volume that can be stored in a capacitor, it is necessary to use an electrode filled with activated carbon having a high specific surface area at a high density. However, since the packing density of the activated carbon is in inverse proportion to the specific surface area, it is extremely difficult to fill the activated carbon having a high specific surface area at a high density. Japanese Patent Application Laid-Open No. 9-320906 discloses a method of filling powdered activated carbon with a high specific surface area at a high density.
A method of pressure molding after mixing about 0% has been proposed. JP-A-9-289023 discloses that a vinylidene fluoride copolymer is used as a binder and N-methyl-2
-Disclosed is a method in which powdered activated carbon is mixed after being uniformly dissolved in pyrrolidone, processed into a paste, applied with a doctor blade, heated and dried.

【0005】従来、活性炭を粉砕してキャパシタ用活性
炭とするには、主としてボールミルあるいは振動ボール
ミルによる方法が実施されている。このようにして得ら
れる電気二重層キャパシタに使用される活性炭としては
中心粒子径が3〜40μmであって、中心粒子径の1/
10以下の大きさの粒子の割合は5%以下であった。
Conventionally, a method using a ball mill or a vibrating ball mill is mainly used to pulverize activated carbon into activated carbon for a capacitor. The activated carbon used for the electric double layer capacitor thus obtained has a central particle diameter of 3 to 40 μm and is 1/1/1 of the central particle diameter.
The ratio of particles having a size of 10 or less was 5% or less.

【0006】活性炭の粒度分布をシャープにする場合に
は風力分球機が併用されている。ボールミルで粉砕した
場合には分布がブロードになりやすく、そのために充填
密度が大きくなりやすい傾向にあるが、電極に成型を行
った場合の活性炭の充填密度は実用上十分なレベルまで
向上しなかった。またこの時の中心粒子径の1/10以
下の大きさの粒子の割合は5%以下であった。ボールミ
ルを使用し、粉砕時間を長くすると小さな粒子は増加す
るが、中心粒子径も小さくなるために電極に成型した場
合の充填密度は依然として大きくならない。
[0006] In order to sharpen the particle size distribution of activated carbon, an air sieving machine is also used. When crushed with a ball mill, the distribution tends to be broad and the packing density tends to increase, but the packing density of activated carbon when the electrode is molded has not been improved to a practically sufficient level. . At this time, the ratio of particles having a size of 1/10 or less of the central particle diameter was 5% or less. When a pulverizing time is increased by using a ball mill, the number of small particles increases. However, since the center particle diameter also decreases, the packing density when molded into an electrode does not increase yet.

【0007】[0007]

【発明が解決しようとする課題】高比表面積の粉末活性
炭を使用して高充填密度の活性炭電極を得るためには、
活性炭粉末にテフロン等のバインダーを混合し、加圧成
型するのが効果的である。しかしバインダーの量を増や
した場合にはバインダーにより活性炭表面が覆われるた
めに容量が低下し、バインダーを粉末活性炭に対し10
%(重量%)以上添加した場合には活性炭の容量低下が
著しく、活性炭の充填密度が上がっても体積あたりの容
量は増加しなかった。またバインダーを多く使用した場
合にはキャパシタの内部抵抗が増大するという問題もあ
った。
In order to obtain an activated carbon electrode having a high packing density using powdered activated carbon having a high specific surface area,
It is effective to mix activated carbon powder with a binder such as Teflon and press-mold. However, when the amount of the binder is increased, the capacity is reduced because the surface of the activated carbon is covered with the binder, and the amount of the binder is reduced by 10 to the activated carbon powder.
% (% By weight), the capacity of the activated carbon decreased significantly, and the capacity per volume did not increase even if the packing density of the activated carbon increased. Further, when a large amount of binder is used, there is a problem that the internal resistance of the capacitor increases.

【0008】キャパシタの内部抵抗が増加する原因は、
バインダーが電気的な絶縁物であることにより、電極と
して使用する活性炭シートの電気抵抗が低下するためで
あり、また、バインダーが粉末活性炭間に多く充填され
ることにより、電解質イオンの通路が減少し、イオンの
運動が妨げられるためである。バインダーの量は少ない
程よいが、あまり少ないと粉末活性炭を捕捉する力が弱
く、加圧した場合でも電極の密度は上がらない傾向にあ
る。したがって本発明の目的は、少ないバインダー量で
成型した場合でも高充填密度を達成できる粉末活性炭を
提供することにある。
The cause of the increase in the internal resistance of the capacitor is as follows.
This is because the electric resistance of the activated carbon sheet used as an electrode is reduced by the fact that the binder is an electrical insulator, and the passage of electrolyte ions is reduced by the fact that the binder is largely filled between the activated carbon powders. This is because the movement of ions is hindered. The smaller the amount of the binder, the better. However, if the amount is too small, the power for capturing the powdered activated carbon is weak, and the density of the electrode does not tend to increase even when pressure is applied. Accordingly, an object of the present invention is to provide a powdered activated carbon that can achieve a high packing density even when molded with a small amount of a binder.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
を達成するため鋭意検討を重ね、本発明に到達した。す
なわち、本発明は、中心粒子径が10μm以上50μm
以下であって、中心粒子径の1/10以下の大きさの粒
子の割合が6%以上13%以下である粉末活性炭であ
る。また、本発明のもう一つの発明は、上記記載の粉末
活性炭及びバインダーからなる混合物を成型せしめた活
性炭シートであり、本発明の別の発明は、上記記載の活
性炭シートを電極とした電気二重層キャパシタである。
Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above object, and have reached the present invention. That is, in the present invention, the center particle diameter is 10 μm or more and 50 μm
Powder activated carbon in which the ratio of particles having a size of 1/10 or less of the central particle diameter is 6% or more and 13% or less. Further, another invention of the present invention is an activated carbon sheet formed by molding a mixture comprising the above-described powdered activated carbon and a binder, and another invention of the present invention provides an electric double layer using the above-described activated carbon sheet as an electrode. It is a capacitor.

【0010】[0010]

【発明の実施の形態】本発明の粉末活性炭の中心粒子径
及び中心粒子径の1/10以下の大きさの粒子の割合
は、あまり小さくても、また、あまり大きくても電極中
の活性炭密度及び体積あたりの容量が小さくなるので、
中心粒子径は10μm以上50μm以下、好ましくは1
3μm以上44μm以下の粉末活性炭が、また、中心粒
子径の1/10以下の大きさの粒子の割合は6%以上1
3%以下の活性炭が使用される。
BEST MODE FOR CARRYING OUT THE INVENTION In the powdered activated carbon of the present invention, even if the center particle diameter and the ratio of particles having a size of 1/10 or less of the center particle diameter are too small or too large, the density of the activated carbon in the electrode is small. And since the capacity per volume becomes smaller,
The center particle diameter is 10 μm or more and 50 μm or less, preferably 1 μm or less.
Activated carbon powder of 3 μm or more and 44 μm or less, and the ratio of particles having a size of 1/10 or less of the central particle diameter is 6% or more and
Up to 3% of activated carbon is used.

【0011】このような活性炭粉末を製造する方法はと
くに限定されないが、例えば、本発明の粉末活性炭を得
るためには二つの粒度分布を有する粉末活性炭を均一混
合してもよいし、あるいは粉末活性炭に高速で圧縮と混
合を繰り返してもよい。本発明者らが検討したところに
よると、粉末活性炭に高速で圧縮と混合を繰り返した場
合の方が粉末活性炭の中に占める細かな粒子の割合が増
加し、活性炭密度を高くすることができるので、好まし
い。高速で圧縮と混合を繰り返すには、例えば後述する
ホソカワミクロン株式会社から商品名AMS―30Sで
市販されている粒子複合化装置を使用すればよい。
The method for producing such activated carbon powder is not particularly limited. For example, in order to obtain the powdered activated carbon of the present invention, powdered activated carbon having two particle size distributions may be uniformly mixed, or powdered activated carbon may be obtained. The compression and mixing may be repeated at high speed. According to the investigations by the present inventors, the ratio of fine particles in powdered activated carbon increases when powdered activated carbon is repeatedly compressed and mixed at a high speed, and the activated carbon density can be increased. ,preferable. In order to repeat the compression and mixing at a high speed, for example, a particle composite apparatus commercially available from Hosokawa Micron Corporation under the trade name AMS-30S may be used.

【0012】また、二つの粒度分布を有する粉末活性炭
を混合した後に高速で圧縮と混合を繰り返してもよい。
本発明の粉末活性炭を使用することにより電極中の活性
炭の充填密度は5%〜13%程度向上する。活性炭の吸
着性能は低下しないためにキャパシタの体積あたりの容
量も同等に向上する。また、内部抵抗が増大しないとい
う効果も発現する。
Further, after mixing powdered activated carbon having two particle size distributions, compression and mixing may be repeated at a high speed.
By using the powdered activated carbon of the present invention, the packing density of the activated carbon in the electrode is improved by about 5% to 13%. Since the adsorption performance of the activated carbon does not decrease, the capacity per volume of the capacitor is also improved. Also, an effect that the internal resistance does not increase is exhibited.

【0013】粉末活性炭の中心粒子径および粒度分布を
測定するには遠心沈降法あるいはレーザー回折法が一般
的に使用されるが、測定精度が高いという点でレーザー
回折型粒度分布計を使用するのが好ましい。
A centrifugal sedimentation method or a laser diffraction method is generally used to measure the central particle diameter and the particle size distribution of the powdered activated carbon. However, a laser diffraction type particle size distribution meter is used because the measurement accuracy is high. Is preferred.

【0014】本発明の活性炭粉末をシートに成型するに
は、活性炭粉末100重量部に対し、テフロン、ポリビ
ニリデンフルオライド(PVDF)などのバインダー5
〜10重量部を混合し、ロールプレスなどで圧縮成型す
る。成型温度はバインダーの種類に応じて適宜選択すれ
ばよいが、通常は室温程度で実施される。加熱して冷却
プレスする方法によってもよい。
To form the activated carbon powder of the present invention into a sheet, a binder 5 such as Teflon or polyvinylidene fluoride (PVDF) is added to 100 parts by weight of the activated carbon powder.
-10 parts by weight are mixed and compression-molded by a roll press or the like. The molding temperature may be appropriately selected according to the type of the binder, but is usually carried out at about room temperature. A method of heating and cooling press may be used.

【0015】一般的な傾向として、中心粒子径が小さい
場合にはより多くのバインダーが必要になる。この理由
は活性炭粒子が小さくなることにより活性炭の見かけの
表面積(活性炭粒子の外表面の面積)が増大するためで
あると推定される。小さな粒子が多い粉末活性炭におい
ては中心粒子直径が10μm以下である場合には5〜1
0%のバインダー量では活性炭粉末をバインダーにより
十分に捕捉することができない。本発明の粉末活性炭は
従来の粉末活性炭と比較して微粉の量が増加しているた
め、とくにその傾向が大きい。
As a general tendency, when the central particle diameter is small, more binder is required. This is presumed to be because the apparent surface area of the activated carbon (the area of the outer surface of the activated carbon particles) increases as the activated carbon particles become smaller. In the case of powdered activated carbon having many small particles, if the center particle diameter is 10 μm or less, 5 to 1
If the binder amount is 0%, the activated carbon powder cannot be sufficiently captured by the binder. The powdered activated carbon of the present invention has a particularly large tendency because the amount of the fine powder is increased as compared with the conventional powdered activated carbon.

【0016】本発明の粉末活性炭を走査電子顕微鏡を使
用して観察すると、粉末活性炭中に存在する細かな粒子
は大きな粒子の周囲に付着した状態で存在する。したが
って、粉末活性炭を5〜10%のバインダーと混合し電
極として成型した場合、大きな粒子の周りに小さな粒子
が存在する状態で最密充填の状態が達成されていると考
えられる。このため中心となる粒子が大きい場合と小さ
い場合とでは必要となる粒子の大きさが変化する。
When the powdered activated carbon of the present invention is observed using a scanning electron microscope, fine particles present in the powdered activated carbon are present in a state of being attached around large particles. Therefore, when powdered activated carbon is mixed with a binder of 5 to 10% and molded as an electrode, it is considered that a close-packed state is achieved in a state where small particles exist around large particles. Therefore, the required particle size changes depending on whether the central particle is large or small.

【0017】本発明の粉末活性炭を使用すれば、成型時
の活性炭の密度が0.65g/cc以上、とくに好まし
くは0.67g/cc以上の電極を作製することができ
る。従来の粉末活性炭を使用した場合には0.63g/
cc程度の密度にしか成型が困難であったが、本発明の
粉末活性炭を使用することにより、充填密度を大きく向
上させることができる。
When the powdered activated carbon of the present invention is used, an electrode having an activated carbon density of 0.65 g / cc or more, particularly preferably 0.67 g / cc or more, can be produced. When conventional powdered activated carbon is used, 0.63 g /
Although molding was difficult only to a density of about cc, the use of the powdered activated carbon of the present invention can greatly improve the packing density.

【0018】本発明に使用される活性炭は1gあたり3
00m/g以上の大きな比表面積を有し、高い吸着性
能を示す材料であれば高範囲に使用できる。活性炭の原
料としては、椰子殻、木材あるいはフェノール樹脂等の
炭化物あるいは石炭が使用される。なかでも、椰子殻を
原料とする活性炭は粉砕と粒度調整が容易であり、さら
に高速で圧縮と混合を繰り返すことにより中心粒子径は
ほとんど変化せずに小さな粒子のみが増加しやすく、充
填密度が上がりやすいという点で本発明の効果を最も顕
著に発揮でき、好ましい。これらの活性炭は、水蒸気あ
るいは二酸化炭素により高温であるいは、塩化亜鉛、リ
ン酸、水酸化カリウム等により薬品により賦活された活
性炭でもよい。
The activated carbon used in the present invention is 3 g / g.
A material having a large specific surface area of at least 00 m 2 / g and exhibiting high adsorption performance can be used in a wide range. As a raw material of the activated carbon, coconut shell, wood, carbide such as phenolic resin or coal is used. Above all, activated carbon made from coconut shell is easy to pulverize and adjust the particle size, and by repeating compression and mixing at high speed, the center particle diameter hardly changes and only small particles tend to increase, and the packing density is increased. The effect of the present invention can be most remarkably exhibited in that it is easily raised, which is preferable. These activated carbons may be activated carbons activated by steam or carbon dioxide at a high temperature or activated by zinc chloride, phosphoric acid, potassium hydroxide or the like.

【0019】前述したように、キャパシタは、アルミニ
ウム等の金属箔あるいは導電性ゴムのような集電体上に
活性炭からなる2枚の電極をセパレーターを介して対峠
させ、電気二重層形成イオンを含む電解液を注入した構
造であり、該電解液としては、硫酸水溶液などの水溶液
系電解液を使用する場合と、プロピレンカーボネート、
γ―ブチロラクトン、アセトニトリル、ジメチルホルム
アミドのような有機溶媒にテトラノルマルブチルアンモ
ニウムテトラフルオロボレート等の電解質を溶解した有
機電解液を使用する場合がある。有機電解液系キャパシ
タは耐電圧が2.5V程度と高く、キャパシタの蓄電エ
ネルギー量は電圧の二乗に比例するため、高エネルギー
密度のキャパシタを作る場合には有機電解液を使用する
のが好ましい。
As described above, in the capacitor, two electrodes made of activated carbon are passed through a separator on a metal foil such as aluminum or a current collector such as conductive rubber via a separator, and ions forming an electric double layer are formed. It has a structure in which an electrolytic solution containing is injected, as the electrolytic solution, when using an aqueous electrolytic solution such as a sulfuric acid aqueous solution, propylene carbonate,
An organic electrolyte in which an electrolyte such as tetra-n-butylammonium tetrafluoroborate is dissolved in an organic solvent such as γ-butyrolactone, acetonitrile, or dimethylformamide may be used. An organic electrolytic solution-based capacitor has a high withstand voltage of about 2.5 V and the amount of stored energy of the capacitor is proportional to the square of the voltage. Therefore, when a capacitor having a high energy density is produced, it is preferable to use an organic electrolytic solution.

【0020】本発明の粉末活性炭をシートに成型し、該
シートを使用してボタン型キャパシタを作製した例を図
1に示す。図1において、1は正極、2は負極、3はス
テンレス蓋、4はステンレスケース、5は封口体、6は
セパレーター、7は電解液である。以下、実施例により
本発明を具体的に説明するが本発明はこれらに限定され
るものではない。
FIG. 1 shows an example in which the powdered activated carbon of the present invention is formed into a sheet, and a button-type capacitor is manufactured using the sheet. In FIG. 1, 1 is a positive electrode, 2 is a negative electrode, 3 is a stainless steel lid, 4 is a stainless steel case, 5 is a sealing body, 6 is a separator, and 7 is an electrolyte. Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.

【0021】[0021]

【実施例】参考実験例 椰子殻を乾留した炭化物を4〜10メッシュ(粒径1.
7mm以上、4.75mm以下)に整粒して粒状活性炭
の原料とした。この原料炭化物をプロパン燃焼ガスを用
いて900℃で4時間賦活した後、同一組成のガス中で
300℃以下まで冷却した。この活性炭の灰分は2.5
重量%であった。この活性炭を濃度10重量%、温度5
0℃の塩酸水溶液で繰り返し洗浄を行った。その後水洗
浄を行い、150℃で12時間乾燥を行った。この活性
炭の灰分は0.3重量%であって、電気二重層キャパシ
タ用活性炭の電極として使用可能なレベルまで低下して
いた。この活性炭のベンゼン吸着量は50%、ヨード吸
着性能は1700mg/gであった。またこの活性炭の
容量は27F(ファラッド)/gであった。容量の測定
には電解液として1M(CBFのプロピレ
ンカーボネート(PC)溶液を使用した。
EXAMPLES Reference Experimental Example 4 to 10 meshes of carbonized carbonized coconut shell (particle size 1.
(7 mm or more and 4.75 mm or less) to obtain a raw material for granular activated carbon. This raw material carbide was activated at 900 ° C. for 4 hours using propane combustion gas, and then cooled to 300 ° C. or lower in a gas having the same composition. The ash content of this activated carbon is 2.5
% By weight. This activated carbon was used at a concentration of
Washing was repeatedly performed with a hydrochloric acid aqueous solution at 0 ° C. Thereafter, washing with water was performed, and drying was performed at 150 ° C. for 12 hours. The ash content of this activated carbon was 0.3% by weight, and was reduced to a level usable as an electrode of activated carbon for electric double layer capacitors. The activated carbon had a benzene adsorption amount of 50% and an iodine adsorption performance of 1700 mg / g. The capacity of this activated carbon was 27 F (farad) / g. For the measurement of the capacity, a propylene carbonate (PC) solution of 1 M (C 2 H 5 ) 4 BF 4 was used as an electrolytic solution.

【0022】この活性炭をボールミルに入れ12時間粉
砕を行った。この粉末活性炭の中心粒子径(50%D)
および粒度分布をレーザー回折型粒度分布計(島津製作
所製SALD―3000S)を使用し測定した。中心粒
子直径は45μm、中心粒子径が1/10以下の粒子の
割合は5%であった。中心粒子径の1/10の粒子の割
合はその値に最も近い測定値の上下二つの値から比例計
算によって算定した。
This activated carbon was put into a ball mill and pulverized for 12 hours. Center particle diameter of this powdered activated carbon (50% D)
The particle size distribution was measured using a laser diffraction type particle size distribution meter (SALD-3000S manufactured by Shimadzu Corporation). The center particle diameter was 45 μm, and the ratio of particles having a center particle diameter of 1/10 or less was 5%. The proportion of particles having a diameter of 1/10 of the central particle diameter was calculated by proportional calculation from the upper and lower values of the measured value closest to the value.

【0023】実施例1 参考実験例で得た粉末活性炭を、高速で圧縮と混合を行
う粒子複合化装置(ホソカワミクロン株式会社製AMS
―30S)を使用し、回転数1100rpmで30分間
圧縮と混合を行った。インナーピースと回転容器との間
は8mmとした。該粒子複合化装置による圧縮と混合の
原理を簡単に説明する。まず、該装置に粉末活性炭を投
入し、500〜2500rpm程度の速さで高速回転さ
せる。粉末活性炭は遠心力により容器内壁に固定され
る。中心軸に固定されたインナーピースと回転する容器
の間を粉末活性炭は高速で通過し、この時に圧縮力を受
ける。
Example 1 A particle composite apparatus (AMS manufactured by Hosokawa Micron Corporation) for compressing and mixing the powdered activated carbon obtained in the reference experimental example at a high speed.
Using -30S), compression and mixing were performed at a rotation speed of 1100 rpm for 30 minutes. The distance between the inner piece and the rotating container was 8 mm. The principle of compression and mixing by the particle composite device will be briefly described. First, powdered activated carbon is charged into the apparatus and rotated at a high speed of about 500 to 2500 rpm. The powdered activated carbon is fixed to the inner wall of the container by centrifugal force. The powdered activated carbon passes between the inner piece fixed to the center shaft and the rotating container at a high speed, and receives a compressive force at this time.

【0024】インナーピースの後には粉末活性炭を回転
容器から剥ぎ取るためのスクレーパーが設置してあり、
圧縮された粉末活性炭は直後に攪拌混合される。この作
業を高速で繰り返す。この装置で処理された粉末活性炭
は中心粒子直径43μm、1/10以下の粒子は7.5
%に増加していた。細かな粒子が増加した理由は高速の
圧縮と混合により粉末活性炭の中で割れやすい部分が選
択的に破損したためではないかと考えられる。
After the inner piece, there is provided a scraper for stripping the powdered activated carbon from the rotary container.
The compacted powdered activated carbon is immediately stirred and mixed. This operation is repeated at high speed. The powdered activated carbon treated by this apparatus has a central particle diameter of 43 μm, and particles of 1/10 or less are 7.5.
% Had increased. It is considered that the reason for the increase in fine particles is that the fragile portion in the powdered activated carbon was selectively damaged by high-speed compression and mixing.

【0025】該装置で粉末活性炭を処理する前と処理し
た後の粉末活性炭の状態を走査電子顕微鏡で観察した。
図2と図3に処理前の粉末活性炭の状態を各々倍率10
00倍及び2000倍で示し、図4と図5に処理後の粉
末活性炭の状態を各々倍率1000倍及び2000倍で
示した。処理後は処理前と比較して小さな粒子が格段に
増加していることが明瞭である。この結果はレーザー回
折型粒度分布計での測定結果と一致していた。また、小
さな粒子が大きな粒子の周りに付着した状態で存在して
いる様子も明瞭である。
The state of the powdered activated carbon before and after the treatment of the powdered activated carbon with the apparatus was observed with a scanning electron microscope.
2 and 3 show the state of the powdered activated carbon before treatment at a magnification of 10 respectively.
4 and 5 show the states of the powdered activated carbon after the treatment at magnifications of 1000 and 2000, respectively. It is clear that small particles are significantly increased after the treatment as compared to before the treatment. This result was consistent with the measurement result obtained with the laser diffraction type particle size distribution meter. It is also clear that small particles are present around large particles in a state of being attached.

【0026】この粉末活性炭に重量比で7.5%のテフ
ロン7Jとデンカブラック7.5%を加え均一に混合
し、ロールプレスで圧縮成型してシートに成型した。該
シートを打ち抜き、直径20mm、重さ100mgの活
性炭シートを得た。該シートの厚さから活性炭の充填密
度を測定したところ、0.78g/ccであり、この値
から換算した電極中の活性炭密度は0.68g/ccで
あった。該シート2枚とセパレーターとして硝子繊維ペ
ーパーを使用し、電解液として1M(C BF
のPC溶液を使用してボタン型キャパシタを作製し
た。2.3V定電圧充電を30分間行い、4mA定電流
放電により容量を測定したところ、成型活性炭電極の単
位体積あたりの容量は18.4F/ccであった。結果
を表1に示す。
The powdered activated carbon has a weight ratio of 7.5% Tef.
Add Ron 7J and 7.5% Denka Black and mix uniformly
Then, compression molding was performed by a roll press to form a sheet. The
The sheet was punched out and had a diameter of 20 mm and a weight of 100 mg.
A charcoal sheet was obtained. The packing density of the activated carbon is determined from the thickness of the sheet.
When the degree was measured, it was 0.78 g / cc.
The activated carbon density in the electrode calculated from is 0.68 g / cc.
there were. Two sheets and a glass fiber paper as a separator
1M (C2H5) 4BF
4Of button type capacitor using PC solution
Was. Charge at 2.3V constant voltage for 30 minutes, 4mA constant current
When the capacity was measured by discharging,
The capacity per unit volume was 18.4 F / cc. result
Are shown in Table 1.

【0027】比較例1 参考実験例で得た処理前の粉末活性炭を使用した場合の
電極密度は0.72g/ccであった(電極中の活性炭
の密度0.63g/cc)。この成型活性炭を実施例1
と同様な方法で評価したところ、処理前の活性炭を使用
した場合の容量は17.0F/ccであった。この容量
は従来の電気二重層キャパシタの標準的な容量であり、
この値を容量の大小を検討する場合の指標とした。容量
の増加率は電極中の活性炭の密度の向上率に比例してい
た。小さな粒子の増加率は2.5%であったが容量は
7.6%も大幅に向上していた。結果を表1に示す。
Comparative Example 1 The electrode density was 0.72 g / cc when the powdered activated carbon before treatment obtained in the reference experimental example was used (the density of activated carbon in the electrode was 0.63 g / cc). Example 1
When the evaluation was performed in the same manner as in the above, the capacity when the activated carbon before the treatment was used was 17.0 F / cc. This capacity is the standard capacity of conventional electric double layer capacitors,
This value was used as an index when considering the magnitude of the capacity. The increase rate of the capacity was proportional to the increase rate of the density of the activated carbon in the electrode. The increase rate of the small particles was 2.5%, but the capacity was greatly improved by 7.6%. Table 1 shows the results.

【0028】実施例2 15分処理を行った以外は実施例1と同様にして粉末活
性炭を得た。該粉末活性炭の中心粒子径は44μmで、
1/10以下の粒子は6.5%であった。この粉末活性
炭を使用して実施例1と同様にして電極を作製した。電
極中の活性炭の密度は0.67g/ccで、容量は1
8.1F/ccであり、容量は6.5%向上した。結果
を表1に示す。
Example 2 A powdered activated carbon was obtained in the same manner as in Example 1 except that the treatment was performed for 15 minutes. The central particle diameter of the powdered activated carbon is 44 μm,
6.5% of the particles were 1/10 or less. Using this powdered activated carbon, an electrode was produced in the same manner as in Example 1. The density of the activated carbon in the electrode was 0.67 g / cc and the capacity was 1
It was 8.1 F / cc, and the capacity was improved by 6.5%. Table 1 shows the results.

【0029】実施例3 60分間処理を行った以外は実施例1と同様にして粉末
活性炭を得た。該粉末活性炭の中心粒子径は43μm
で、1/10以下の粒子は9.0%であった。この粉末
活性炭を使用して実施例1と同様にして電極を作製し
た。電極中の活性炭の密度は0.70g/cc、容量は
18.9F/であり、容量は11%向上した。結果を表
1に示す。
Example 3 A powdered activated carbon was obtained in the same manner as in Example 1 except that the treatment was performed for 60 minutes. The central particle diameter of the powdered activated carbon is 43 μm
The ratio of particles of 1/10 or less was 9.0%. Using this powdered activated carbon, an electrode was produced in the same manner as in Example 1. The density of the activated carbon in the electrode was 0.70 g / cc, the capacity was 18.9 F /, and the capacity was improved by 11%. Table 1 shows the results.

【0030】実施例4 120分処理を行った以外は実施例1と同様にして粉末
活性炭を得た。該粉末活性炭の中心粒子径は40μm
で、1/10以下の粒子は11%であった。電極中の活
性炭密度は0.71g/ccで、容量は19.2F/c
cであり、容量は12%向上しており、小さな粒子の割
合の増加に伴い、容量が向上した。結果を表1に示す。
Example 4 A powdered activated carbon was obtained in the same manner as in Example 1 except that the treatment was performed for 120 minutes. The center particle diameter of the powdered activated carbon is 40 μm
The ratio of particles having a size of 1/10 or less was 11%. The activated carbon density in the electrode was 0.71 g / cc, and the capacity was 19.2 F / c.
c, the capacity was improved by 12%, and the capacity was improved as the proportion of small particles was increased. Table 1 shows the results.

【0031】実施例5 参考実験例で得た粉末活性炭をボールミルを使用し、さ
らに24時間粉砕を行った。この活性炭の中心粒子径は
5μmであった。参考実験例で得た粉末活性炭と上記粉
砕した粉末活性炭を1:1(重量比)の割合でボールミ
ルに入れ、2時間混合した。得られた粉末活性炭の中心
粒子径は16μmで、1/10以下の粒子は7%であっ
た。この粉末活性炭を使用した電極中の活性炭密度は
0.66g/cc、容量は17.8F/ccであり、容
量は5%向上した。結果を表1に示す。
Example 5 The powdered activated carbon obtained in the Reference Experimental Example was further ground for 24 hours using a ball mill. The center particle diameter of this activated carbon was 5 μm. The powdered activated carbon obtained in the reference experimental example and the pulverized powdered activated carbon were put into a ball mill at a ratio of 1: 1 (weight ratio) and mixed for 2 hours. The center particle diameter of the obtained powdered activated carbon was 16 μm, and particles of 1/10 or less were 7%. The activated carbon density in the electrode using this powdered activated carbon was 0.66 g / cc, the capacity was 17.8 F / cc, and the capacity was improved by 5%. Table 1 shows the results.

【0032】実施例6 実施例5で得た粉末活性炭を実施例4と同様にして高速
で圧縮と混合を120分間行った。中心粒子径は13μ
mで、1/10以の粒子は13%に増加した。この粉末
活性炭を使用した電極中の活性炭密度は0.72g/c
c、容量は19.4F/ccであり、容量は13%向上
した。結果を表1に示す。
Example 6 The powdered activated carbon obtained in Example 5 was compressed and mixed at a high speed for 120 minutes in the same manner as in Example 4. The center particle diameter is 13μ
At m, 1/10 or more particles increased to 13%. The activated carbon density in the electrode using this powdered activated carbon is 0.72 g / c.
c, the capacity was 19.4 F / cc, and the capacity was improved by 13%. Table 1 shows the results.

【0033】実施例7 参考実験例で得た粉末活性炭をさらに17時間ボールミ
ルで粉砕し、中心粒子径が12μm、1/10以下粒子
が5%の粉末活性炭とした。この活性炭を実施例1と同
様にして30分間高速で圧縮と混合を繰り返した。得ら
れた粉末活性炭は中心粒子径10μm、1/10以下の
粒子の割合は7%であった。この粉末活性炭の電極での
密度は0.67g/cc、容量は18.1F/ccであ
った。容量は6.5%向上した。結果を表1に示す。
Example 7 The powdered activated carbon obtained in the Reference Experimental Example was further pulverized by a ball mill for 17 hours to obtain powdered activated carbon having a center particle diameter of 12 μm and 1/10 or less particles of 5%. Compression and mixing of this activated carbon were repeated at a high speed for 30 minutes in the same manner as in Example 1. The obtained powdered activated carbon had a center particle diameter of 10 μm and a ratio of particles having a particle size of 1/10 or less was 7%. The density of the powdered activated carbon at the electrode was 0.67 g / cc, and the capacity was 18.1 F / cc. Capacity increased by 6.5%. Table 1 shows the results.

【0034】比較例2 参考実験例で得た粉末活性炭を使用し、さらに34時間
ボールミルで粉砕を行い、中心粒径3μmの粉末活性炭
とした。この粉末活性炭を参考実験例で得た粉末活性炭
に1:1(重量比)の割合で混合した。中心粒子径は1
3μmで、1/10以下の粒子の割合は14%であっ
た。この活性炭を使用して電極を成型した。活性炭密度
は0.60g/cc、容量は16.2F/ccであっ
た。容量は4.7%低下した。結果を表1に示す。
Comparative Example 2 The powdered activated carbon obtained in the Reference Experimental Example was further pulverized with a ball mill for 34 hours to obtain powdered activated carbon having a central particle diameter of 3 μm. This powdered activated carbon was mixed with the powdered activated carbon obtained in the reference example at a ratio of 1: 1 (weight ratio). Central particle size is 1
At 3 μm, the percentage of particles less than 1/10 was 14%. An electrode was formed using this activated carbon. The activated carbon density was 0.60 g / cc, and the capacity was 16.2 F / cc. The capacity dropped 4.7%. Table 1 shows the results.

【0035】比較例3 参考実験例で得た粉末活性炭をさらに20時間ボールミ
ルで粉砕を行い、中心粒子径9μmの粉末活性炭とし
た。この活性炭を実施例3と同様にして60分間圧縮と
混合を繰り返した。得られた粉末活性炭の中心粒子径は
8μmで、1/10以下の粒子は8%であった。この粉
末活性炭の電極中の活性炭密度は0.57g/cc、容
量は15.4F/ccと低下した。中心粒子径が10μ
m以下の場合には活性炭の密度が向上しなかった。結果
を表1に示す。
Comparative Example 3 The powdered activated carbon obtained in the reference experimental example was further pulverized by a ball mill for 20 hours to obtain powdered activated carbon having a central particle diameter of 9 μm. This activated carbon was subjected to compression and mixing for 60 minutes in the same manner as in Example 3. The center particle diameter of the obtained powdered activated carbon was 8 μm, and particles of 1/10 or less were 8%. The activated carbon density in the electrode of the powdered activated carbon was reduced to 0.57 g / cc, and the capacity was reduced to 15.4 F / cc. Central particle size is 10μ
m or less, the density of the activated carbon did not improve. Table 1 shows the results.

【0036】比較例4 参考実験例で得た粉末活性炭をさらに10時間ボールミ
ルで粉砕し、中心粒子径60μm、1/10以下の粒子
の割合が5%の粉末活性炭とした。この活性炭を実施例
1と同様に処理し、中心粒子径55μm、1/10以下
の粒子の割合が8%の粉末活性炭を得た。この粉末活性
炭の電極中の密度は0.57g/cc、容量は15.4
F/ccと低下した。中心粒子直径が50μm以上の場
合には活性炭の密度が向上しなかった。結果を表1に示
す。
Comparative Example 4 The powdered activated carbon obtained in the Reference Experimental Example was further pulverized with a ball mill for 10 hours to obtain a powdered activated carbon having a center particle diameter of 60 μm and a ratio of particles of 1/10 or less of 5%. This activated carbon was treated in the same manner as in Example 1 to obtain a powdered activated carbon having a central particle diameter of 55 μm and a ratio of particles of 1/10 or less of 8%. The density of the powdered activated carbon in the electrode was 0.57 g / cc, and the capacity was 15.4.
F / cc. When the center particle diameter was 50 μm or more, the density of the activated carbon did not improve. Table 1 shows the results.

【0037】[0037]

【表1】 [Table 1]

【0038】実施例8 フェノール樹脂を硬化・乾留した炭化物を4〜10メッ
シュに整粒して活性炭の原料とした。この原料炭化物を
プロパン燃焼ガスを使用し900℃で8時間賦活した。
この活性炭のヨード吸着性能は2000mg/g、ベン
ゼン吸着量は60%であった。この活性炭のキャパシタ
としての容量は29F/gであった。この活性炭をボー
ルミルを使用し19時間粉砕を行った。得られた粉末活
性炭は中心粒子径35μm、1/10の粒子の割合は5
%であった。この粉末活性炭を使用し実施例1と同様な
方法で電極を作製した。活性炭の密度は0.62g/c
cで、容量は18.0F/ccであった。この粉末活性
炭を実施例1と同様な方法で高速で圧縮と混合を行い、
中心粒子径34μm、1/10の粒子の割合が7%の粉
末活性炭を得た。この活性炭の電極中での密度は0.6
5g/ccで、容量は18.9F/ccであった。容量
は5%向上した。フェノール樹脂活性炭の場合も容量は
向上したが、椰子殻活性炭の方が容量の向上が大きかっ
た。
Example 8 A carbide obtained by curing and carbonizing a phenol resin was sized to 4 to 10 mesh to obtain a raw material for activated carbon. This raw material carbide was activated at 900 ° C. for 8 hours using propane combustion gas.
The iodine adsorption performance of this activated carbon was 2000 mg / g, and the benzene adsorption amount was 60%. The capacity of this activated carbon as a capacitor was 29 F / g. This activated carbon was ground using a ball mill for 19 hours. The obtained powdered activated carbon had a central particle diameter of 35 μm, and the ratio of 1/10 particles was 5
%Met. Using this powdered activated carbon, an electrode was produced in the same manner as in Example 1. The density of activated carbon is 0.62g / c
At c, the capacity was 18.0 F / cc. This powdered activated carbon was compressed and mixed at a high speed in the same manner as in Example 1,
Powdered activated carbon having a center particle diameter of 34 μm and a ratio of 1/10 particles of 7% was obtained. The density of this activated carbon in the electrode is 0.6
At 5 g / cc, the capacity was 18.9 F / cc. Capacity increased by 5%. The phenolic resin activated carbon also improved the capacity, but the coconut shell activated carbon improved the capacity more.

【0039】[0039]

【発明の効果】本発明により、中心粒子径が10μm以
上50μm以下で、中心粒子径の1/10以下の大きさ
の粒子の割合が6%以上13%以下の粉末活性炭を提供
することができる。本発明の粉末活性炭はバインダーと
混合してシートに成型し、該シートを電極としてセパレ
ータ及び電解液と組み合わせ、容量の大きいキャパシタ
に作製することができる。また、本発明の活性炭粉末
は、キャパシタの他、各種電極、シートにも好適に使用
することができる。
According to the present invention, it is possible to provide a powdered activated carbon having a center particle diameter of 10 μm or more and 50 μm or less and a proportion of particles having a size of 1/10 or less of the center particle diameter of 6% or more and 13% or less. . The powdered activated carbon of the present invention can be mixed with a binder and molded into a sheet, and the sheet can be used as an electrode in combination with a separator and an electrolytic solution to produce a capacitor having a large capacity. The activated carbon powder of the present invention can be suitably used for various electrodes and sheets in addition to capacitors.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の粉末活性炭を成型して作製したボタン
型キャパシタの断面図である。
FIG. 1 is a sectional view of a button-type capacitor manufactured by molding the powdered activated carbon of the present invention.

【図2】処理前の粉末活性炭を1000倍の走査電子顕
微鏡で観察した写真である。
FIG. 2 is a photograph obtained by observing a powdered activated carbon before treatment with a scanning electron microscope (× 1000).

【図3】処理前の粉末活性炭を2000倍の走査電子顕
微鏡で観察した写真である。
FIG. 3 is a photograph obtained by observing a powdered activated carbon before treatment with a scanning electron microscope at a magnification of 2000 times.

【図4】本発明の粉末活性炭を1000倍の走査電子顕
微鏡で観察した写真である。
FIG. 4 is a photograph of the powdered activated carbon of the present invention observed with a scanning electron microscope at a magnification of 1000 times.

【図5】本発明の粉末活性炭を2000倍の走査電子顕
微鏡で観察した写真である。
FIG. 5 is a photograph obtained by observing the powdered activated carbon of the present invention with a scanning electron microscope at 2000 times.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 ステンレス蓋 4 ステンレスケース 5 封口体 6 セパレーター 7 電解液 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Stainless steel lid 4 Stainless steel case 5 Sealing body 6 Separator 7 Electrolyte

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 中心粒子径が10μm以上50μm以下
であって、中心粒子径の1/10以下の大きさの粒子の
割合が6%以上13%以下である粉末活性炭。
1. A powdered activated carbon having a central particle diameter of 10 μm or more and 50 μm or less and a ratio of particles having a size of 1/10 or less of the central particle diameter of 6% or more and 13% or less.
【請求項2】 該粉末活性炭が主として椰子殻を原料と
する活性炭である請求項1記載の粉末活性炭。
2. The powdered activated carbon according to claim 1, wherein the powdered activated carbon is an activated carbon mainly made of coconut shell.
【請求項3】 請求項1又は2記載の粉末活性炭及びバ
インダーからなる混合物を成型せしめた活性炭シート。
3. An activated carbon sheet formed by molding a mixture comprising the powdered activated carbon according to claim 1 and a binder.
【請求項4】 請求項3記載の活性炭シートを電極とし
た電気二重層キャパシタ。
4. An electric double layer capacitor using the activated carbon sheet according to claim 3 as an electrode.
JP11159244A 1999-06-07 1999-06-07 Powdery activated carbon, activated carbon sheet and electric double layer capacitor Pending JP2000344507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11159244A JP2000344507A (en) 1999-06-07 1999-06-07 Powdery activated carbon, activated carbon sheet and electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11159244A JP2000344507A (en) 1999-06-07 1999-06-07 Powdery activated carbon, activated carbon sheet and electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2000344507A true JP2000344507A (en) 2000-12-12

Family

ID=15689508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11159244A Pending JP2000344507A (en) 1999-06-07 1999-06-07 Powdery activated carbon, activated carbon sheet and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2000344507A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189586A (en) * 2002-11-29 2004-07-08 Honda Motor Co Ltd Activated carbon, polarizable electrode for electric double-layer capacitor, and electric double-layer capacitor using the same
KR100479188B1 (en) * 2001-02-06 2005-03-25 엔이씨 도낀 가부시끼가이샤 Electric double layer capacitor with improved activated carbon electrodes
JP2005158818A (en) * 2003-11-20 2005-06-16 Tdk Corp Electrochemical capacitor electrode, manufacturing method therefor, electrochemical capacitor and manufacturing method therefor
WO2010150534A1 (en) * 2009-06-23 2010-12-29 クラレケミカル株式会社 Flow-through capacitor, method for producing deionized water, and device for producing deionized water
JP2011176043A (en) * 2010-02-23 2011-09-08 Calgon Carbon Japan Kk Activated carbon for electric double layer capacitor
US20130133923A1 (en) * 2010-04-29 2013-05-30 Oû Skeleton Technologies A carbon composite electrode for the electric double-layer capacitor
US8848338B2 (en) 2006-09-01 2014-09-30 W. L. Gore & Associates, Co., Ltd. Electric double layer capacitor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100479188B1 (en) * 2001-02-06 2005-03-25 엔이씨 도낀 가부시끼가이샤 Electric double layer capacitor with improved activated carbon electrodes
US7092239B2 (en) 2001-02-06 2006-08-15 Nec Tokin Corporation Electric double layer capacitor with improved activated carbon electrodes
JP2004189586A (en) * 2002-11-29 2004-07-08 Honda Motor Co Ltd Activated carbon, polarizable electrode for electric double-layer capacitor, and electric double-layer capacitor using the same
JP2005158818A (en) * 2003-11-20 2005-06-16 Tdk Corp Electrochemical capacitor electrode, manufacturing method therefor, electrochemical capacitor and manufacturing method therefor
JP4608871B2 (en) * 2003-11-20 2011-01-12 Tdk株式会社 Electrode for electrochemical capacitor and manufacturing method thereof, and electrochemical capacitor and manufacturing method thereof
US8848338B2 (en) 2006-09-01 2014-09-30 W. L. Gore & Associates, Co., Ltd. Electric double layer capacitor
WO2010150534A1 (en) * 2009-06-23 2010-12-29 クラレケミカル株式会社 Flow-through capacitor, method for producing deionized water, and device for producing deionized water
JPWO2010150534A1 (en) * 2009-06-23 2012-12-06 クラレケミカル株式会社 Liquid-permeable capacitor, deionized water production method, and deionized water production apparatus
JP5687620B2 (en) * 2009-06-23 2015-03-18 クラレケミカル株式会社 Liquid-permeable capacitor, deionized water production method, and deionized water production apparatus
JP2011176043A (en) * 2010-02-23 2011-09-08 Calgon Carbon Japan Kk Activated carbon for electric double layer capacitor
US20130133923A1 (en) * 2010-04-29 2013-05-30 Oû Skeleton Technologies A carbon composite electrode for the electric double-layer capacitor

Similar Documents

Publication Publication Date Title
JP6123839B2 (en) Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR101167744B1 (en) Nanocarbon composite structure having ruthenium oxide trapped therein
US6103373A (en) Carbon fiber material and electrode materials and method of manufacture therefor
US20100261051A1 (en) Sodium ion secondary battery and negative electrode active material used therein
CN103682287A (en) Lithium ion battery silicon-based composite anode material, preparation method thereof and battery
CN106558681B (en) Manufacture the method for electrode laminated body and the method for manufacture all-solid-state battery
JP2007258611A (en) Manufacturing method of electrode for electric double layer capacitor, and manufacturing method of electric double layer capacitor using the electrode
JP2009238584A (en) Carbon particle for lithium-ion secondary battery anode, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2000223121A (en) Carbon material and its manufacture
CN112499624A (en) Modification method of natural graphite, modified natural graphite and application
JP3920411B2 (en) Method for producing electrode material
JP2000344507A (en) Powdery activated carbon, activated carbon sheet and electric double layer capacitor
JP3597099B2 (en) Consolidated graphite particles, method for producing the same, and negative electrode material for lithium secondary battery
JP3341693B2 (en) Active material powder for electrode of silver oxide battery, electrode material and production method thereof
JP5581488B2 (en) Method for producing spherical carbon material, method for producing spherical phenol resin
JP2011100616A (en) Particle for electrode, negative electrode material for lithium ion secondary battery, and manufacturing method of particle for electrode
JP2011175766A (en) Negative electrode active material for lithium ion secondary battery
WO2015146459A1 (en) Activated carbon, method for producing activated carbon and method for treating activated carbon
JP2017108022A (en) Conductive auxiliary material, electrode and power storage device
JP2002222650A (en) Black lead nature particle for negative electrode of non-aqueous electrolytic solution secondary battery and its manufacturing process, negative electrode of the non-aqueous electrolytic solution secondary battery and the non-aqueous electrolytic solution secondary battery
CN106784695A (en) Prepare method, the composite and the lithium ion battery of CNT/SiC/ nano Si composites
KR100771840B1 (en) Heterogeneous-carbonaceous materials-inserted globule carbonaceous powders and process for preparation thereof
JP2004189587A (en) Activated carbon, polarizable electrode for electric double-layer capacitor, and electric double-layer capacitor using the same
KR102086589B1 (en) Electrode materials, electrochemical device comprising the same and method for manufacturing the same
JPH10312806A (en) Negative electrode material for lithium ton secondary battery and manufacture therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224