JP2011100616A - Particle for electrode, negative electrode material for lithium ion secondary battery, and manufacturing method of particle for electrode - Google Patents
Particle for electrode, negative electrode material for lithium ion secondary battery, and manufacturing method of particle for electrode Download PDFInfo
- Publication number
- JP2011100616A JP2011100616A JP2009254323A JP2009254323A JP2011100616A JP 2011100616 A JP2011100616 A JP 2011100616A JP 2009254323 A JP2009254323 A JP 2009254323A JP 2009254323 A JP2009254323 A JP 2009254323A JP 2011100616 A JP2011100616 A JP 2011100616A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- lithium
- particle
- particles
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、リチウムイオン二次電池用負極材料として好適であり、高いリチウム吸蔵放出容量を有し、かつ、連続充放電を行っても破損しにくい電極用粒子に関する。また、該電極用粒子を用いてなるリチウムイオン二次電池用負極材料に関する。 The present invention relates to a particle for an electrode that is suitable as a negative electrode material for a lithium ion secondary battery, has a high lithium storage / release capacity, and is not easily damaged even after continuous charge / discharge. Moreover, it is related with the negative electrode material for lithium ion secondary batteries which uses this particle | grain for electrodes.
炭素質の焼成体からなる炭素材料は、リチウムイオン二次電池、電気二重層キャパシタ、コンデンサ等の電極材料に用いられている。
例えば、リチウムイオン二次電池においては、負極活物質として炭素材料を用い、電池の充電時にはリチウムをイオン状態で炭素材料中に吸蔵(インターカレーション)し、放電時にはイオンとして放出(デインターカレーション)させるという“ロッキングチェアー型”の電池構成を採用している。
Carbon materials made of carbonaceous fired bodies are used for electrode materials such as lithium ion secondary batteries, electric double layer capacitors, and capacitors.
For example, in a lithium ion secondary battery, a carbon material is used as a negative electrode active material, lithium is occluded (intercalated) into the carbon material in an ionic state when the battery is charged, and released as ions (deintercalation) during discharge. It uses a “rocking chair type” battery configuration.
電子機器の小型化あるいは高性能化が急速に進み、リチウムイオン二次電池の更なる高エネルギー密度化に対する要望が高まっている。しかしながら、炭素材料を構成する黒鉛は理論的なリチウムの吸蔵放出容量が372mAh/gに限られているため、リチウムの吸蔵放出容量のより大きい負極材料が求められている。 As electronic devices are rapidly becoming smaller or higher in performance, there is a growing demand for higher energy density in lithium ion secondary batteries. However, since graphite constituting the carbon material has a theoretical lithium storage / release capacity limited to 372 mAh / g, a negative electrode material having a larger lithium storage / release capacity is required.
これに対して、充放電容量の低い炭素材料に代えて、ケイ素材料を用いる方法が検討されている。しかし、ケイ素材料は、充放電による体積変化が大きく、連続充放電を行うことにより電極材料が破損してしまうことがあるという問題があった。そこで、炭素−ケイ素複合材料も検討されている(例えば、特許文献1〜4)。しかしながら、これらの炭素−ケイ素複合材料でも、依然として含有するケイ素の体積変化による材料の破損の問題は、充分には解決できていないのが現状であった。 In contrast, a method using a silicon material instead of a carbon material having a low charge / discharge capacity has been studied. However, the silicon material has a large volume change due to charging and discharging, and there is a problem that the electrode material may be damaged by continuous charging and discharging. Therefore, carbon-silicon composite materials have also been studied (for example, Patent Documents 1 to 4). However, even with these carbon-silicon composite materials, the problem of material breakage due to the volume change of the silicon still contained has not been sufficiently solved.
本発明は、リチウムイオン二次電池用負極材料として好適であり、高いリチウム吸蔵放出容量を有し、かつ、連続充放電を行っても破損しにくい電極用粒子を提供することを目的とする。また、該電極用粒子を用いてなるリチウムイオン二次電池用負極材料を提供することを目的とする。 An object of the present invention is to provide an electrode particle that is suitable as a negative electrode material for a lithium ion secondary battery, has a high lithium storage / release capacity, and is not easily damaged even when continuous charge / discharge is performed. Moreover, it aims at providing the negative electrode material for lithium ion secondary batteries which uses this particle | grain for electrodes.
本発明は、リチウムと合金を形成する金属粒子、導電性炭素材料及び結合樹脂を含有し、内部に空隙を有する電極用粒子であって、機械的に混合、粉砕することにより、リチウムと合金を形成する金属粒子、導電性炭素材料及び樹脂成分からなる複合粒子を調製する工程と、前記複合粒子を前記樹脂成分の一部のみが分解揮発する条件に加熱する工程とにより製造してなる電極用粒子である。
以下に本発明を詳述する。
The present invention is a particle for an electrode containing metal particles forming an alloy with lithium, a conductive carbon material, and a binding resin, and having voids therein, and mechanically mixing and pulverizing the lithium and alloy. For an electrode manufactured by a step of preparing composite particles composed of metal particles to be formed, a conductive carbon material and a resin component, and a step of heating the composite particles to a condition in which only a part of the resin component is decomposed and volatilized Particles.
The present invention is described in detail below.
本発明者らは、リチウムと合金を形成する金属粒子、導電性炭素材料及び結合樹脂を含有し、内部に空隙を有する電極用粒子は、炭素のみからなる炭素材料に比べて高いリチウム吸蔵放出容量を有し、かつ、連続充放電を行っても破損しにくいことを見出した。本発明の電極用粒子においても、連続充放電を行えばリチウムと合金を形成する金属粒子の体積変化は発生する。しかし、本発明の電極用粒子が空隙を有することにより、該体積変化による応力を分散し吸収することができるため、破損するまでには至らないためと考えられる。 The inventors of the present invention have a lithium occlusion / discharge capacity that is higher than that of a carbon material composed of only carbon, including metal particles that form an alloy with lithium, a conductive carbon material, and a binder resin, and electrode particles having voids therein. And it was found that even if continuous charge / discharge was performed, the material was not easily damaged. Also in the electrode particles of the present invention, volume change of the metal particles forming an alloy with lithium occurs when continuous charge / discharge is performed. However, since the electrode particles of the present invention have voids, the stress due to the volume change can be dispersed and absorbed, so that it is considered that the electrode particles are not damaged.
本発明の電極用粒子は、リチウムと合金を形成する金属粒子、導電性炭素材料及び結合樹脂を含有する。
上記リチウムと合金を形成する金属粒子は、例えば、ケイ素、錫、マグネシウム、チタン、バナジウム、カドミウム、セレン、鉄、コバルト、ニッケル、マンガン、白金、硼素等からなる金属粒子が挙げられる。なかでも、特に高いリチウム吸蔵放出容量を発揮できることから、ケイ素又は錫からなる金属粒子が好適であり、ケイ素からなる金属粒子がより好適である。
The electrode particles of the present invention contain metal particles that form an alloy with lithium, a conductive carbon material, and a binding resin.
Examples of the metal particles that form an alloy with lithium include metal particles made of silicon, tin, magnesium, titanium, vanadium, cadmium, selenium, iron, cobalt, nickel, manganese, platinum, boron, and the like. Among these, metal particles made of silicon or tin are preferable, and metal particles made of silicon are more preferable because a particularly high lithium storage / release capacity can be exhibited.
上記リチウムと合金を形成する金属粒子の粒子径は特に限定されないが、平均粒子径の好ましい上限は1μmである。上記リチウムと合金を形成する金属粒子の粒子径が1μmを超えると、リチウム吸蔵放出容量が低下することがある。 The particle diameter of the metal particles forming the alloy with lithium is not particularly limited, but a preferable upper limit of the average particle diameter is 1 μm. When the particle diameter of the metal particles forming the alloy with lithium exceeds 1 μm, the lithium occlusion / release capacity may be lowered.
本発明の電極用粒子中における上記リチウムと合金を形成する金属粒子の含有量の好ましい下限は5重量%である。上記リチウムと合金を形成する金属粒子の含有量が5重量%未満であると、高いリチウム吸蔵放出容量を発揮できないことがある。上記リチウムと合金を形成する金属粒子の含有量のより好ましい下限は10重量%である。
上記リチウムと合金を形成する金属粒子の含有量の上限は特に限定されない。上記リチウムと合金を形成する金属粒子を大量に含有するほど、高いリチウム吸蔵放出容量を発揮できる。ただし、上記リチウムと合金を形成する金属粒子の含有量が多くなりすぎると、得られる電極用粒子の導電性が不充分となることがある。上記リチウムと合金を形成する金属粒子の含有量の好ましい上限は80重量%である。
The minimum with preferable content of the metal particle which forms an alloy with the said lithium in the particle | grains for electrodes of this invention is 5 weight%. When the content of the metal particles forming the alloy with lithium is less than 5% by weight, a high lithium storage / release capacity may not be exhibited. The minimum with more preferable content of the metal particle which forms an alloy with the said lithium is 10 weight%.
The upper limit of the content of the metal particles that form an alloy with lithium is not particularly limited. The higher the amount of metal particles that form an alloy with lithium, the higher the lithium storage / release capacity. However, if the content of the metal particles forming an alloy with lithium is too large, the conductivity of the resulting electrode particles may be insufficient. The upper limit with preferable content of the metal particle which forms an alloy with the said lithium is 80 weight%.
上記導電性炭素材料は、本発明の電極用粒子の導電性を向上させる役割を有する。
上記導電性炭素材料は、例えば、黒鉛、カーボンブラック、カーボンナノチューブ、グラフェン及びフラーレンからなる群より選択される少なくとも1種が好適である。
The said conductive carbon material has a role which improves the electroconductivity of the particle | grains for electrodes of this invention.
The conductive carbon material is preferably at least one selected from the group consisting of graphite, carbon black, carbon nanotubes, graphene and fullerene, for example.
本発明の電極用粒子中における上記導電性炭素材料の含有量の好ましい下限は10重量%、好ましい上限は90重量%である。上記導電性炭素材料の含有量が10重量%未満であると、得られる電極用粒子の導電性が不充分となることがあり、90重量%を超えると、上記リチウムと合金を形成する金属粒子の含有量が少なくなり、高いリチウム吸蔵放出容量を発揮できないことがある。上記導電性炭素材料の含有量のより好ましい下限は20重量%、より好ましい上限は80重量%である。 The minimum with preferable content of the said electroconductive carbon material in the particle | grains for electrodes of this invention is 10 weight%, and a preferable upper limit is 90 weight%. When the content of the conductive carbon material is less than 10% by weight, the resulting electrode particles may have insufficient conductivity. When the content exceeds 90% by weight, the metal particles form an alloy with lithium. In some cases, the lithium content decreases, and a high lithium storage / release capacity cannot be exhibited. The minimum with more preferable content of the said conductive carbon material is 20 weight%, and a more preferable upper limit is 80 weight%.
上記結合樹脂は、上記リチウムと合金を形成する金属粒子と導電性炭素材料とを結合する結着剤の役割を有し、本発明の電極用粒子の粒子形状を維持する役割を有する。また、上記結合樹脂は、連続充放電時に上記リチウムと合金を形成する金属粒子が体積変化したときに、該体積変化による応力を分散し吸収する役割も果たし得る。
上記結合樹脂は、後述する本発明の電極用粒子の製造方法において、複合粒子を樹脂成分の一部のみが分解揮発する条件に加熱する工程の後に残存した樹脂成分である。
The binding resin serves as a binder that binds the metal particles forming an alloy with lithium and the conductive carbon material, and maintains the particle shape of the electrode particles of the present invention. The binding resin can also serve to disperse and absorb the stress caused by the volume change when the metal particles forming the alloy with lithium change in volume during continuous charge and discharge.
The binder resin is a resin component remaining after the step of heating the composite particles to a condition in which only a part of the resin component is decomposed and volatilized in the method for producing electrode particles of the present invention described later.
本発明の電極用粒子中における上記結合樹脂の含有量の好ましい下限は5重量%、好ましい上限は50重量%である。上記結合樹脂の含有量が5重量%未満であると、電極用粒子の粒子形状を維持できないことがあり、50重量%を超えると、上記リチウムと合金を形成する金属粒子と導電性炭素材料との含有量が少なくなり、高いリチウム吸蔵放出容量を発揮できないことがある。上記結合樹脂の含有量のより好ましい下限は10重量%、より好ましい上限は20重量%である。 The preferable lower limit of the content of the binder resin in the electrode particles of the present invention is 5% by weight, and the preferable upper limit is 50% by weight. When the content of the binding resin is less than 5% by weight, the particle shape of the electrode particles may not be maintained. When the content exceeds 50% by weight, the metal particles that form an alloy with the lithium and the conductive carbon material In some cases, the lithium content decreases, and a high lithium storage / release capacity cannot be exhibited. A more preferable lower limit of the content of the binding resin is 10% by weight, and a more preferable upper limit is 20% by weight.
本発明の電極用粒子は、平均粒子径の好ましい下限が10nm、好ましい上限が1mmである。電極用粒子の平均粒子径が10nm未満であると粒子形状を維持できないことがあり、1mmを超えると、リチウムイオン二次電池用負極材料に成形する際に、所望の形状や大きさに成形できないことがある。本発明の電極用粒子の平均粒子径の好ましい下限は1000nm、好ましい上限は500μmである。 The particles for electrodes of the present invention have a preferable lower limit of the average particle diameter of 10 nm and a preferable upper limit of 1 mm. When the average particle size of the electrode particles is less than 10 nm, the particle shape may not be maintained. When the average particle size exceeds 1 mm, the electrode particles cannot be formed into a desired shape or size when formed into a negative electrode material for a lithium ion secondary battery. Sometimes. The minimum with a preferable average particle diameter of the particle | grains for electrodes of this invention is 1000 nm, and a preferable upper limit is 500 micrometers.
本発明の電極用粒子は、空隙率の好ましい下限が10%、好ましい上限が90%である。本発明の電極用粒子の空隙率が10%未満であると、連続充放電時に上記リチウムと合金を形成する金属粒子が体積変化したときに該体積変化による応力を充分に分散し吸収できずに材料が破損することがあり、90%を超えると、粒子形状を維持できないことがある。本発明の電極用粒子の空隙率のより好ましい下限は20%、より好ましい上限は80%である。
なお、上記空隙率は、例えば、ピクノメーター法真密度測定器等により測定した比重から、アルキメデス法により算出することができる。
In the electrode particles of the present invention, the preferable lower limit of the porosity is 10%, and the preferable upper limit is 90%. When the porosity of the electrode particles of the present invention is less than 10%, the stress due to the volume change cannot be sufficiently dispersed and absorbed when the volume of the metal particles forming the alloy with lithium during continuous charge / discharge changes. The material may be damaged, and if it exceeds 90%, the particle shape may not be maintained. The more preferable lower limit of the porosity of the electrode particles of the present invention is 20%, and the more preferable upper limit is 80%.
The porosity can be calculated by the Archimedes method, for example, from the specific gravity measured with a pycnometer true density measuring instrument or the like.
本発明の電極用粒子は、機械的に混合、粉砕することにより、リチウムと合金を形成する金属粒子、導電性炭素材料及び樹脂成分からなる複合粒子を調製する工程と、前記複合粒子を前記樹脂成分の一部のみが分解揮発する条件に加熱する工程とにより製造してなるものである。このような製造方法により製造することにより、高温焼成による炭素化が不要となり、また、中空剤等を使用せずに内部の空隙を制御することが可能となる。
このような電極用粒子の製造方法もまた、本発明の1つである。
The electrode particles of the present invention are prepared by mechanically mixing and pulverizing to prepare composite particles comprising metal particles that form an alloy with lithium, a conductive carbon material, and a resin component; And a process of heating to a condition where only a part of the components decompose and volatilize. Manufacturing by such a manufacturing method eliminates the need for carbonization by high-temperature firing, and allows the internal voids to be controlled without using a hollow agent or the like.
Such a method for producing electrode particles is also one aspect of the present invention.
本発明の電極用粒子の製造方法は、機械的に混合、粉砕することにより、リチウムと合金を形成する金属粒子及び導電性炭素材料を樹脂成分中に分散させた複合粒子を作製し、これを加熱して上記樹脂成分の一部のみを分解揮発させることを特徴とする。
上記複合粒子から、樹脂成分の一部を分解揮発させることにより、複合粒子内部に比較的均一な空隙を形成することができる。一方、上記加熱条件下では分解揮発しない樹脂成分が残存し、該残存した樹脂成分が上記結合樹脂としての役割を果たす。
The method for producing particles for an electrode according to the present invention involves mechanically mixing and pulverizing to produce composite particles in which metal particles forming an alloy with lithium and a conductive carbon material are dispersed in a resin component. Only a part of the resin component is decomposed and volatilized by heating.
A relatively uniform void can be formed inside the composite particles by decomposing and volatilizing a part of the resin component from the composite particles. On the other hand, a resin component that does not decompose and volatilize remains under the heating condition, and the remaining resin component plays a role as the binding resin.
上記樹脂成分は、1種のみの樹脂であってもよい。
樹脂の熱分解性を、加熱装置のついた天秤(熱天秤)を用いて等温条件で重量の時間的変化を追う熱重量測定を行った場合、加熱温度によって揮発率(%)が大きく異なる。例えばポリスチレンの場合、320℃程度の温度で30分間等温加熱しても揮発率はほぼ0%、即ちほとんど分解揮発しない。一方、360℃程度の温度で30分間等温加熱すると揮発率はほぼ100%、即ちほとんど全てが分解揮発する。従って、上記樹脂成分としてポリスチレンを用いた場合、320〜360℃程度の温度領域で加熱時間を調整すれば、その一部のみが分解揮発する条件を設定することができる。
The resin component may be only one kind of resin.
When the thermogravimetric measurement of the thermal decomposability of the resin is performed by using a balance (thermobalance) equipped with a heating device under the isothermal condition, the volatility (%) varies greatly depending on the heating temperature. For example, in the case of polystyrene, the volatilization rate is almost 0%, that is, hardly decomposes and volatilizes even if it is isothermally heated at a temperature of about 320 ° C. for 30 minutes. On the other hand, when heated isothermally at a temperature of about 360 ° C. for 30 minutes, the volatilization rate is almost 100%, that is, almost all is decomposed and volatilized. Therefore, when polystyrene is used as the resin component, if the heating time is adjusted in a temperature range of about 320 to 360 ° C., a condition in which only a part thereof is decomposed and volatilized can be set.
上記樹脂成分は、複数のモノマーからなる共重合体、好ましくは複数のブロックからなるブロック共重合体や、複数の樹脂の混合物であってもよい。このような場合には、その一部のみが分解揮発する条件を設定しやすい。
例えば、上記樹脂成分がアクリル酸t−ブチルを構成単位とするブロックと、スチレンモノマーを構成単位とするブロックとからなるブロック共重合体である場合、上記スチレンモノマーを構成単位とするブロックの大部分が分解揮発し、かつ、上記アクリル酸t−ブチルを構成単位とするブロックの大部分が分解揮発しない条件で加熱することにより、複合粒子中の樹脂成分の一部のみを分解揮発させることができる。
同様に、例えば、上記樹脂成分がポリアクリル酸t−ブチルとポリスチレンとの混合物である場合、ポリスチレンの大部分が分解揮発し、かつ、ポリアクリル酸t−ブチルの大部分が分解揮発しない条件で加熱することにより、複合粒子中の樹脂成分の一部のみを分解揮発させることができる。
The resin component may be a copolymer composed of a plurality of monomers, preferably a block copolymer composed of a plurality of blocks, or a mixture of a plurality of resins. In such a case, it is easy to set conditions under which only a part of them decomposes and volatilizes.
For example, when the resin component is a block copolymer comprising a block having t-butyl acrylate as a structural unit and a block having a styrene monomer as a structural unit, most of the blocks having the styrene monomer as a structural unit Can be decomposed and volatilized by heating under the condition that most of the block containing t-butyl acrylate as a constituent unit is not decomposed and volatilized. .
Similarly, for example, when the resin component is a mixture of t-butyl polyacrylate and polystyrene, most of the polystyrene is decomposed and volatilized, and most of the polyt-butyl acrylate is not decomposed and volatilized. By heating, only a part of the resin component in the composite particles can be decomposed and volatilized.
本発明の電極用粒子の製造方法において、機械的に混合、粉砕することによりリチウムと合金を形成する金属粒子、導電性炭素材料及び樹脂成分からなる複合粒子を調製する工程は、具体的には例えば、造粒法や溶融混練法等が挙げられる。
上記混合、粉砕に用いる装置は、例えば、遊星ボールミル、シータコンポーザー、ジェットミル等が好適である。
In the method for producing electrode particles of the present invention, the step of preparing composite particles comprising metal particles, an electrically conductive carbon material, and a resin component that form an alloy with lithium by mechanically mixing and pulverizing is specifically, Examples thereof include a granulation method and a melt kneading method.
As the apparatus used for the mixing and pulverization, for example, a planetary ball mill, a theta composer, a jet mill and the like are suitable.
本発明の電極用粒子は、高いリチウム吸蔵放出容量を有し、かつ、連続充放電を行っても破損しにくい。
本発明の電極用粒子は、電極材料、特にリチウムイオン二次電池用負極材料に好適に用いることができる。また、電気二重層キャパシタ用電極材料、コンデンサ用電極材料にも好適に用いることができる。
本発明の電極用粒子とバインダー樹脂とを含有するリチウムイオン二次電池用負極材料もまた、本発明の1つである。
The electrode particles of the present invention have a high lithium storage / release capacity and are not easily damaged even when continuous charge / discharge is performed.
The electrode particles of the present invention can be suitably used for electrode materials, particularly negative electrode materials for lithium ion secondary batteries. Moreover, it can use suitably also for the electrode material for electric double layer capacitors, and the electrode material for capacitors.
The negative electrode material for lithium ion secondary batteries containing the electrode particles of the present invention and a binder resin is also one aspect of the present invention.
上記バインダー樹脂は、本発明の電極用粒子同士を結合させる結着剤の役割を果たし、任意の形状に成形する役割を果たす。ただし、大量にバインダー樹脂を添加すると、得られるリチウムイオン二次電池用負極材料の導電性が低下する恐れがある。
上記バインダー樹脂は、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素含有樹脂や、スチレンブタジエンゴム等が挙げられる。
The binder resin serves as a binder for bonding the electrode particles of the present invention, and plays a role of forming into an arbitrary shape. However, if a binder resin is added in a large amount, the conductivity of the obtained negative electrode material for a lithium ion secondary battery may be lowered.
Examples of the binder resin include fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene, and styrene butadiene rubber.
本発明のリチウムイオン二次電池用負極材料は、黒鉛、カーボンブラック、カーボンナノチューブ、グラフェン及びフラーレンからなる群より選択される少なくとも1種の導電助剤を更に配合することが好ましい。上記導電助剤を配合することにより、本発明のリチウムイオン二次電池用負極材料の導電性をより向上させることができる。 The negative electrode material for a lithium ion secondary battery of the present invention preferably further contains at least one conductive aid selected from the group consisting of graphite, carbon black, carbon nanotubes, graphene, and fullerene. By mix | blending the said conductive support agent, the electroconductivity of the negative electrode material for lithium ion secondary batteries of this invention can be improved more.
上記導電助剤の配合量の好ましい下限は1重量%、好ましい上限は90重量%である。上記導電助剤の配合量が1重量%未満であると、充分な導電性向上効果が得られないことがあり、90重量%を超えると、リチウム吸蔵容量が低下してしまうことがある。
なお、上記導電助剤をある程度以上配合すると、電極用粒子同士を結合させる結着剤の役割を発揮することもできる。上記導電助剤が結着剤の役割を発揮する場合には、バインダー樹脂の配合量を低減させることができ、より高い導電性を発揮することができる。
A preferable lower limit of the blending amount of the conductive assistant is 1% by weight, and a preferable upper limit is 90% by weight. If the blending amount of the conductive aid is less than 1% by weight, a sufficient conductivity improving effect may not be obtained, and if it exceeds 90% by weight, the lithium storage capacity may be lowered.
In addition, when the said conductive support agent is mix | blended to some extent, the role of the binder which couple | bonds the particle | grains for electrodes can also be exhibited. When the said conductive support agent exhibits the role of a binder, the compounding quantity of binder resin can be reduced and higher electroconductivity can be exhibited.
本発明のリチウムイオン二次電池用負極材料を製造する方法は、例えば、本発明の電極用粒子、導電助剤、バインダー樹脂を混合して混合物を得た後、成型する方法等が挙げられる。
上記混合物は、容易に成型できるように、有機溶剤を含有してもよい。
上記有機溶剤は、電極用粒子中に含有される結合樹脂に対する貧溶媒であって、上記バインダー樹脂を溶解可能な溶剤であれば特に限定されず、例えば、N−メチルピロリドン、N,N−ジメチルホルムアミド等が挙げられる。
The method for producing the negative electrode material for a lithium ion secondary battery of the present invention includes, for example, a method of molding after mixing the electrode particles of the present invention, a conductive additive and a binder resin to obtain a mixture.
The mixture may contain an organic solvent so that it can be easily molded.
The organic solvent is not particularly limited as long as it is a poor solvent for the binder resin contained in the electrode particles and can dissolve the binder resin. For example, N-methylpyrrolidone, N, N-dimethyl And formamide.
本発明によれば、リチウムイオン二次電池用負極材料として好適であり、高いリチウム吸蔵放出容量を有し、かつ、連続充放電を行っても破損しにくい電極用粒子を提供できる。また、該電極用粒子を用いてなるリチウムイオン二次電池用負極材料を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, it is suitable as a negative electrode material for lithium ion secondary batteries, has a high lithium occlusion-release capacity | capacitance, and can provide the particle | grains for electrodes which are hard to be damaged even if it performs continuous charge / discharge. Moreover, the negative electrode material for lithium ion secondary batteries which uses this particle | grain for electrodes can be provided.
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
(1)複合粒子の調製
ステンレス製容器(容積80mL)にステンレス製ボール(直径10mm)と、ポリアクリル酸t−ブチル10重量部、ポリスチレン90重量部、ケイ素粒子(アルドリッチ社製シリコンナノパウダー、平均粒子径100nm)50重量部、黒鉛粒子(SECカーボン社製、SNO−3)40重量部とを投入し、アルゴンガスでパージ後、密閉し、遊星型ボールミル(P−6、ドイツフリッチュ社製)で400rpmで10時間メカニカルアロイング処理を行った後、粉砕を行い、ケイ素粒子と黒鉛粒子を含有する複合粒子を得た。
Example 1
(1) Preparation of composite particles Stainless steel container (volume 80 mL), stainless steel balls (diameter 10 mm), 10 parts by weight of poly (t-butyl acrylate), 90 parts by weight of polystyrene, silicon particles (Aldrich silicon nanopowder, average) 50 parts by weight of particle size (100 nm) and 40 parts by weight of graphite particles (manufactured by SEC Carbon Co., SNO-3) are charged, purged with argon gas, sealed, and a planetary ball mill (P-6, manufactured by German Fritsch). Then, after mechanical alloying treatment at 400 rpm for 10 hours, pulverization was performed to obtain composite particles containing silicon particles and graphite particles.
(2)電極用粒子の製造
得られたケイ素粒子と黒鉛粒子を含有する複合粒子を、窒素雰囲気下で370℃、2時間で加熱した電極用粒子を得た。
(2) Production of Electrode Particles The obtained composite particles containing silicon particles and graphite particles were heated at 370 ° C. for 2 hours in a nitrogen atmosphere to obtain electrode particles.
(3)リチウムイオン二次電池用負極材料の作製
得られた電極用粒子100重量部に対して、カーボンブラック(三菱化学社製、#3230B)10重量部、バインダー樹脂としてポリフッ化ビニリデン10重量部、有機溶剤としてN−メチルピロリドンを混合して混合液を調製した。得られた混合液を、厚さ18μmのCu箔の片面に塗布し、乾燥した後、プレスロールで加圧成形してシート状のリチウムイオン二次電池用負極材料を得た。
(3) Production of negative electrode material for lithium ion secondary battery 10 parts by weight of carbon black (manufactured by Mitsubishi Chemical Corporation, # 3230B) and 10 parts by weight of polyvinylidene fluoride as a binder resin with respect to 100 parts by weight of the obtained electrode particles Then, N-methylpyrrolidone was mixed as an organic solvent to prepare a mixed solution. The obtained mixed solution was applied to one side of a 18 μm-thick Cu foil, dried, and then pressure-formed with a press roll to obtain a sheet-like negative electrode material for a lithium ion secondary battery.
(実施例2〜4)
結合樹脂の混合比、ケイ素粒子量、導電性炭素材料の種類及び量を表1のように変更したこと以外は実施例1同様にして複合粒子、電極用粒子及びリチウムイオン二次電池用負極材料を得た。なお、導電性炭素材料としてのカーボンナノチューブは昭和電工社製の多層カーボンナノチューブを使用した。
(Examples 2 to 4)
Composite particles, electrode particles, and negative electrode material for lithium ion secondary batteries were the same as in Example 1 except that the mixing ratio of the binding resin, the amount of silicon particles, and the type and amount of the conductive carbon material were changed as shown in Table 1. Got. In addition, the multi-wall carbon nanotube by Showa Denko KK was used for the carbon nanotube as a conductive carbon material.
(比較例1)
黒鉛粒子(和光純薬社製、平均粒子径20μm)100重量部に対して、カーボンブラック(三菱化学社製、#3230B)10重量部、バインダー樹脂としてポリフッ化ビニリデン10重量部、有機溶剤としてN−メチルピロリドンを混合して混合液を調製した。
得られた混合液を、厚さ18μmのCu箔の片面に塗布し、乾燥した後、プレスロールで加圧成形してシート状のリチウムイオン二次電池用負極材料を得た。
(Comparative Example 1)
10 parts by weight of carbon black (manufactured by Mitsubishi Chemical Corporation, # 3230B), 10 parts by weight of polyvinylidene fluoride as a binder resin, and N as an organic solvent with respect to 100 parts by weight of graphite particles (manufactured by Wako Pure Chemical Industries, average particle size 20 μm) -Methylpyrrolidone was mixed to prepare a mixed solution.
The obtained mixed solution was applied to one side of a 18 μm-thick Cu foil, dried, and then pressure-formed with a press roll to obtain a sheet-like negative electrode material for a lithium ion secondary battery.
(比較例2)
ステンレス製容器(容積80mL)にステンレス製ボール(直径10mm)と、ポリアクリル酸t−ブチル30重量部、ケイ素粒子(アルドリッチ社製シリコンナノパウダー、平均粒子径100nm)50重量部、カーボンナノチューブ(昭和電工社製、多層カーボンナノチューブ)20重量部とを投入し、アルゴンガスでパージ後、密閉し、遊星型ボールミル(P−6、ドイツフリッチュ社製)で400rpmで10時間メカニカルアロイング処理を行った後、粉砕を行い、ケイ素粒子とカーボンナノチューブを含有する複合粒子を得た。
得られたケイ素粒子とカーボンナノチューブを含有する複合粒子を用いた以外は、実施例1と同様にして電極用粒子及びリチウムイオン二次電池用負極材料を得た。
(Comparative Example 2)
Stainless steel container (volume 80 mL), stainless steel balls (diameter 10 mm), polyacrylic acid t-butyl 30 parts by weight, silicon particles (Aldrich silicon nanopowder, average particle diameter 100 nm) 50 parts by weight, carbon nanotube (Showa 20 parts by weight of Denko Co., Ltd. (multi-walled carbon nanotubes) were charged, purged with argon gas, sealed, and subjected to mechanical alloying at 400 rpm for 10 hours with a planetary ball mill (P-6, manufactured by German Fritsch). Thereafter, pulverization was performed to obtain composite particles containing silicon particles and carbon nanotubes.
Electrode particles and a negative electrode material for a lithium ion secondary battery were obtained in the same manner as in Example 1 except that the obtained composite particles containing silicon particles and carbon nanotubes were used.
(評価)
実施例及び比較例で得られたリチウムイオン二次電池用負極材料について、下記のように評価を行った。
結果を表1に示した。
(Evaluation)
The negative electrode materials for lithium ion secondary batteries obtained in the examples and comparative examples were evaluated as follows.
The results are shown in Table 1.
(1)リチウムイオン二次電池の作製
実施例及び比較例で得られた炭素材料をリチウムイオン二次電池用負極材料として用いコイン型モデルセルを作製した。
即ち、リチウムイオン二次電池用負極材料と直径16mmの対極リチウム金属とをセパレータを介して積層した。セパレータに電解液を含浸した後、これらを上部缶と下部缶によりガスケットを介してかしめ付けた。上部缶と下部缶には、負極及び対極リチウムがそれぞれ接触して導通がとられるようにした。
なお、セパレータとしては、厚さ25μm、直径24mmのポリエチレン製微孔膜を用い、電解液としては、エチレンカーボネートとジメチルカーボネートとの体積比1:2の混合溶媒に、電解質としてLiPF6を濃度1mol/Lとなるように溶解した溶液を用いた。
(1) Production of Lithium Ion Secondary Battery A coin type model cell was produced using the carbon materials obtained in Examples and Comparative Examples as negative electrode materials for lithium ion secondary batteries.
That is, a negative electrode material for a lithium ion secondary battery and a counter electrode lithium metal having a diameter of 16 mm were laminated via a separator. After impregnating the separator with the electrolytic solution, these were caulked with an upper can and a lower can through a gasket. The upper can and the lower can were brought into contact with the negative electrode and the counter electrode lithium, respectively.
As the separator, a polyethylene microporous membrane having a thickness of 25 μm and a diameter of 24 mm was used. As the electrolyte, a mixed solvent of ethylene carbonate and dimethyl carbonate in a volume ratio of 1: 2 was used, and LiPF 6 was used as the electrolyte at a concentration of 1 mol. A solution dissolved so as to be / L was used.
(2)放電容量、初期充放電効率
充放電条件は、電圧、電流を0で8時間休止後、0.2Cに相当する電流で0.002Vまで電圧が降下した後、3時間保持し、充電した。10分間休止した後、電流0.2Cで電圧が1.2Vになるまで放電した。10分間休止した後、この放充電を繰り返した。その間の通電量から充放電容量を求めた。
また、下記式から初期充放電効率を計算した。なお、この試験では、リチウムを炭素材料へ吸蔵する過程を充電、離脱する過程を放電とした。
初期充放電効率(%)=(第1サイクルの放電容量/第1サイクルの充電容量)×100
(2) Discharge capacity and initial charge / discharge efficiency Charge / discharge conditions are as follows: voltage and current are 0 for 8 hours, then voltage is reduced to 0.002 V at a current equivalent to 0.2 C, and held for 3 hours to charge. did. After resting for 10 minutes, the battery was discharged at a current of 0.2 C until the voltage reached 1.2V. After resting for 10 minutes, this discharging was repeated. The charge / discharge capacity was determined from the amount of electricity applied during that time.
Further, the initial charge / discharge efficiency was calculated from the following formula. In this test, the process of occluding lithium in the carbon material was charged and the process of detaching was defined as discharge.
Initial charge / discharge efficiency (%) = (first cycle discharge capacity / first cycle charge capacity) × 100
(3)サイクル特性
上記サイクルを10回繰り返し、下記式を用いてサイクル特性を計算した。
サイクル特性=(第10サイクルにおける放電容量/第1サイクルにおける放電容量)×100
(3) Cycle characteristics The above cycle was repeated 10 times, and the cycle characteristics were calculated using the following formula.
Cycle characteristics = (discharge capacity in the tenth cycle / discharge capacity in the first cycle) × 100
本発明によれば、リチウムイオン二次電池用負極材料として好適であり、高いリチウム吸蔵放出容量を有し、かつ、連続充放電を行っても破損しにくい電極用粒子を提供できる。また、該電極用粒子を用いてなるリチウムイオン二次電池用負極材料を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, it is suitable as a negative electrode material for lithium ion secondary batteries, has a high lithium occlusion-release capacity | capacitance, and can provide the particle | grains for electrodes which are hard to be damaged even if it performs continuous charging / discharging. Moreover, the negative electrode material for lithium ion secondary batteries which uses this particle | grain for electrodes can be provided.
Claims (6)
機械的に混合、粉砕することにより、リチウムと合金を形成する金属粒子、導電性炭素材料及び樹脂成分からなる複合粒子を調製する工程と、前記複合粒子を前記樹脂成分の一部のみが分解揮発する条件に加熱する工程とにより製造してなる
ことを特徴とする電極用粒子。 A particle for an electrode containing metal particles forming an alloy with lithium, a conductive carbon material and a binding resin, and having voids therein,
A step of preparing composite particles composed of metal particles that form an alloy with lithium, a conductive carbon material, and a resin component by mechanically mixing and pulverizing, and only a part of the resin component decomposes and volatilizes the composite particles. A particle for an electrode, which is produced by a step of heating to a condition to be performed.
少なくとも、機械的に混合、粉砕することにより、リチウムと合金を形成する金属粒子、導電性炭素材料及び樹脂成分からなる複合粒子を調製する工程と、前記複合粒子を前記樹脂成分の一部のみが分解揮発する条件に加熱する工程とを有する
ことを特徴とする電極用粒子の製造方法。
A method for producing electrode particles containing metal particles that form an alloy with lithium, a conductive carbon material, and a binding resin, and having voids therein,
At least a step of preparing composite particles composed of metal particles that form an alloy with lithium, a conductive carbon material, and a resin component by mechanically mixing and pulverizing, and only a part of the resin component is used for the composite particles. And a step of heating to a condition for decomposing and volatilizing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009254323A JP2011100616A (en) | 2009-11-05 | 2009-11-05 | Particle for electrode, negative electrode material for lithium ion secondary battery, and manufacturing method of particle for electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009254323A JP2011100616A (en) | 2009-11-05 | 2009-11-05 | Particle for electrode, negative electrode material for lithium ion secondary battery, and manufacturing method of particle for electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011100616A true JP2011100616A (en) | 2011-05-19 |
Family
ID=44191643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009254323A Pending JP2011100616A (en) | 2009-11-05 | 2009-11-05 | Particle for electrode, negative electrode material for lithium ion secondary battery, and manufacturing method of particle for electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011100616A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013546144A (en) * | 2011-06-02 | 2013-12-26 | コリア エレクトロテクノロジー リサーチ インスティテュート | Method for producing silicon-based nanocomposite cathode active material for lithium secondary battery and lithium secondary battery using the same |
WO2014156117A1 (en) * | 2013-03-29 | 2014-10-02 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery negative electrode active material and non-aqueous electrolyte secondary battery |
JP2015514284A (en) * | 2012-04-18 | 2015-05-18 | エルジー・ケム・リミテッド | Secondary battery electrode and secondary battery including the same |
JP2016522560A (en) * | 2013-06-18 | 2016-07-28 | ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG | Electrode materials and their use in lithium ion batteries |
KR20180094874A (en) * | 2015-12-10 | 2018-08-24 | 나노텍 인스트러먼츠, 인코포레이티드 | Chemical-free manufacturing of graphene reinforced polymer matrix composites |
CN114204026A (en) * | 2021-11-23 | 2022-03-18 | 海南大学 | Water-based binder for lithium ion battery and preparation method thereof |
-
2009
- 2009-11-05 JP JP2009254323A patent/JP2011100616A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013546144A (en) * | 2011-06-02 | 2013-12-26 | コリア エレクトロテクノロジー リサーチ インスティテュート | Method for producing silicon-based nanocomposite cathode active material for lithium secondary battery and lithium secondary battery using the same |
US10153480B2 (en) | 2012-04-18 | 2018-12-11 | Lg Chem, Ltd. | Electrode for secondary battery and secondary battery including the same |
JP2015514284A (en) * | 2012-04-18 | 2015-05-18 | エルジー・ケム・リミテッド | Secondary battery electrode and secondary battery including the same |
US9508993B2 (en) | 2012-04-18 | 2016-11-29 | Lg Chem, Ltd. | Electrode for secondary battery and secondary battery including the same |
US10205165B2 (en) | 2013-03-29 | 2019-02-12 | Sanyo Electric Co., Ltd. | Negative electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery |
JPWO2014156117A1 (en) * | 2013-03-29 | 2017-02-16 | 三洋電機株式会社 | Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
CN104620426A (en) * | 2013-03-29 | 2015-05-13 | 三洋电机株式会社 | Non-aqueous electrolyte secondary battery negative electrode active material and non-aqueous electrolyte secondary battery |
WO2014156117A1 (en) * | 2013-03-29 | 2014-10-02 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery negative electrode active material and non-aqueous electrolyte secondary battery |
JP2016522560A (en) * | 2013-06-18 | 2016-07-28 | ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG | Electrode materials and their use in lithium ion batteries |
JP2018088412A (en) * | 2013-06-18 | 2018-06-07 | ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG | Electrode material and use of the same in lithium ion battery |
KR20180094874A (en) * | 2015-12-10 | 2018-08-24 | 나노텍 인스트러먼츠, 인코포레이티드 | Chemical-free manufacturing of graphene reinforced polymer matrix composites |
JP2019508510A (en) * | 2015-12-10 | 2019-03-28 | ナノテク インストゥルメンツ, インコーポレイテッドNanotek Instruments, Inc. | Chemical-free fabrication of graphene reinforced polymer matrix composites |
JP7170537B2 (en) | 2015-12-10 | 2022-11-14 | ナノテク インストゥルメンツ,インコーポレイテッド | Chemical-free fabrication of graphene-reinforced polymer matrix composites |
KR102707092B1 (en) * | 2015-12-10 | 2024-09-13 | 나노텍 인스트러먼츠, 인코포레이티드 | Chemical-Free Preparation of Graphene-Reinforced Polymer Matrix Composites |
CN114204026A (en) * | 2021-11-23 | 2022-03-18 | 海南大学 | Water-based binder for lithium ion battery and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Facile synthesis of microsized MnO/C composites with high tap density as high performance anodes for Li-ion batteries | |
JP2011048992A (en) | Carbon material, electrode material, and lithium ion secondary battery negative electrode material | |
JP5369031B2 (en) | Carbon material, electrode material, and negative electrode material for lithium ion secondary battery | |
EP2383224B1 (en) | Process for producing carbon particles for electrode, carbon particles for electrode, and negative-electrode material for lithium-ion secondary battery | |
JP6061139B2 (en) | Method for producing positive electrode mixture for all-solid-state lithium-sulfur battery | |
JP5849701B2 (en) | Polymer radical material / activated carbon / conductive material composite for power storage device electrode, method for producing polymer radical material / activated carbon / conductive material composite for power storage device electrode, and power storage device | |
JP4880016B2 (en) | Anode material for lithium ion secondary battery | |
CN103443976A (en) | Sodium ion rechargeable battery and negative electrode active material used for the sodium ion rechargeable battery | |
JP6084856B2 (en) | Method for producing carbon material, method for producing electrode material, and method for producing lithium ion secondary battery | |
JP6354895B2 (en) | Electrode material, method for producing the electrode material, electrode, and lithium ion battery | |
JP7252988B2 (en) | Prelithiated negative electrode, method of making same, lithium ion battery containing prelithiated negative electrode, and supercapacitor | |
TW201640719A (en) | Powder, electrode and battery comprising such a powder | |
WO2021212392A1 (en) | Three-dimensional composite metal lithium negative electrode, metal lithium battery and apparatus | |
JPWO2020111201A1 (en) | Positive composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2011100616A (en) | Particle for electrode, negative electrode material for lithium ion secondary battery, and manufacturing method of particle for electrode | |
JP2011119207A (en) | Particles for electrode, negative electrode material for lithium ion secondary battery, and manufacturing method of particles for electrode | |
Shih et al. | Suppressed volume change of a spray-dried 3D spherical-like Si/graphite composite anode for high-rate and long-term lithium-ion batteries | |
JP5881468B2 (en) | Positive electrode active material for lithium secondary battery and lithium secondary battery | |
CN100492729C (en) | Electrode material for electrochemical device, manufacturing method thereof, electrode for electrochemical device, and electrochemical device | |
WO2000022687A1 (en) | Carbonaceous material for cell and cell containing the carbonaceous material | |
JP6760224B2 (en) | Negative electrode active material for all-solid-state batteries | |
Liu et al. | Effect of glycine-to-nitrate ratio on solution combustion synthesis of ZnFe2O4 as anode materials for lithium ion batteries | |
JP6422017B2 (en) | Hydrogen storage alloy, electrode and nickel metal hydride storage battery | |
Khairudin et al. | A review study of binary and ternary ZnO/C composites as anodes for high-capacity lithium-ion batteries | |
JP5759307B2 (en) | Carbon particle for electrode, negative electrode material for lithium ion secondary battery, and method for producing carbon particle for electrode |