JP5581488B2 - Method for producing spherical carbon material, method for producing spherical phenol resin - Google Patents
Method for producing spherical carbon material, method for producing spherical phenol resin Download PDFInfo
- Publication number
- JP5581488B2 JP5581488B2 JP2010184382A JP2010184382A JP5581488B2 JP 5581488 B2 JP5581488 B2 JP 5581488B2 JP 2010184382 A JP2010184382 A JP 2010184382A JP 2010184382 A JP2010184382 A JP 2010184382A JP 5581488 B2 JP5581488 B2 JP 5581488B2
- Authority
- JP
- Japan
- Prior art keywords
- spherical
- carbon material
- phenol resin
- average particle
- surfactant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Phenolic Resins Or Amino Resins (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、球状炭素材の製造方法、球状フェノール樹脂の製造方法に関する。 The present invention relates to a method for producing a spherical carbon material, a method for producing a spherical phenol resins.
炭素材には、ガス成分や臭い成分の吸着材、有機合成品への添加剤、複写機のトナー材、蓄電装置の電極材など多種の用途があることが知られている。このうち、蓄電装置の電極用炭素材は、特定の層構造を有する黒鉛質(結晶質)のものと、特定の層構造を有しない活性炭質のものとに大別することができる。電解質イオンのインターカレーションを利用する場合には黒鉛質のものが用いられ、吸着を利用する場合には活性炭質のものが用いられる。 It is known that carbon materials have various uses such as adsorbents for gas components and odor components, additives for organic synthetic products, toner materials for copying machines, and electrode materials for power storage devices. Among these, carbon materials for electrodes of power storage devices can be broadly classified into graphite materials (crystalline) having a specific layer structure and activated carbon materials having no specific layer structure. Graphite is used when intercalation of electrolyte ions is used, and activated carbon is used when adsorption is used.
上記蓄電装置の電極用炭素材の一例が特許文献1に記載されている。それは、平均粒子径1〜10μm、細孔容積1.5cm3/g以下の球状活性炭を電気二重層キャパシタの電極に用いるというものである。その球状活性炭の製法としては、溶媒中で、フェノール類とアルデヒド類を、触媒及び懸濁安定剤の存在下、撹拌しながら加熱・硬化させることにより球状フェノール樹脂を得ること、この球状フェノール樹脂を炭化し賦活させることにより球状活性炭とすることが記載されている。撹拌条件や懸濁安定剤の濃度等の合成条件の変更により粒子径を制御できることも記載されている。 An example of the carbon material for an electrode of the power storage device is described in Patent Document 1. That is, spherical activated carbon having an average particle diameter of 1 to 10 μm and a pore volume of 1.5 cm 3 / g or less is used for an electrode of an electric double layer capacitor. The spherical activated carbon can be produced by heating and curing phenols and aldehydes in a solvent in the presence of a catalyst and a suspension stabilizer while stirring, to obtain a spherical phenol resin. It is described that a spherical activated carbon is obtained by carbonization and activation. It is also described that the particle size can be controlled by changing the synthesis conditions such as the stirring conditions and the concentration of the suspension stabilizer.
また、特許文献2には、レゾルシノール系ポリマー粒子を前駆体とした直径30〜500nmの超微細球状炭素材について記載されている。また、この球状炭素材は、レゾルシノール/ホルムアルデヒド系共重合体を骨格成分とする層状構造を構成単位とする球状構造体の形態的特徴を有してなるものである。それは、層状構造を構成単位とすることから、黒鉛質の球状炭素材であると認められる。特許文献2に掲載された図1(b)の写真によれば、その球状炭素材は、個々の粒子が分離独立しておらず、粒子同士が部分的に結合したものである。その製法は、塩基性縮合剤の存在下、アルキルアンモニウム塩、アルキルアミンよりなる群から選択された1種以上の界面活性剤と水を特定モル比で混合した溶液に、レゾルシノールモノマーとアルデヒド類の中から選択された1種以上のモノマーを加え、反応させることにより得られる球状の重合体生成物を不活性雰囲気下で焼成するというものである。 Patent Document 2 describes an ultrafine spherical carbon material having a diameter of 30 to 500 nm using resorcinol-based polymer particles as a precursor. The spherical carbon material has a morphological feature of a spherical structure having a layered structure having a resorcinol / formaldehyde copolymer as a skeleton component as a structural unit. Since it has a layered structure as a structural unit, it is recognized as a graphite-like spherical carbon material. According to the photograph of FIG. 1B published in Patent Document 2, the spherical carbon material is one in which individual particles are not separated and independent, but the particles are partially bonded. In the production method, a resorcinol monomer and an aldehyde are mixed with a solution in which one or more surfactants selected from the group consisting of alkylammonium salts and alkylamines and water are mixed at a specific molar ratio in the presence of a basic condensing agent. A spherical polymer product obtained by adding one or more monomers selected from the above and reacting them is baked in an inert atmosphere.
特許文献1に記載されている如く、活性炭質の球状炭素材は知られているが、その平均粒子径は1〜10μmであって比較的大きい。また、市販の活性炭は、炭素材を賦活し機械的に粉砕して微細化したものであるため、粒径が大きいだけでなく、不規則な破砕形状(不定形)になっている。そのため、これら従前の活性炭を蓄電装置の電極に用いても、性能の飛躍的な向上は望めない。 As described in Patent Document 1, an activated carbon spherical carbon material is known, but its average particle diameter is 1 to 10 μm, which is relatively large. In addition, since the activated carbon on the market is activated and mechanically pulverized and refined, it has not only a large particle size but also an irregularly crushed shape (indefinite shape). Therefore, even if these conventional activated carbons are used for the electrodes of the power storage device, a dramatic improvement in performance cannot be expected.
例えば、電気二重層キャパシタの場合、エネルギー密度の増大(蓄えることができるエネルギー量の増大)のためには、静電容量が大きな活性炭を所定容積内に高密度に充填することが必要になる。活性炭に対するイオンの吸着量で静電容量が決まることから、単位重量あたりの静電容量を増大するためには、有効な表面積を増加させること、並びにミクロポア内部へのイオンの拡散進入を容易にすべく拡散経路を短くすることが重要になる。しかし、活性炭の粒子径が大きいと、それだけ表面積の増大及び拡散経路の短縮に不利になる。また、活性炭が不規則な破砕形状であれば、所定容積に充填しても粒子間の空隙が大きくなり、充填密度は低くなる。つまり、単位体積あたりの静電容量の増大に不利になる。 For example, in the case of an electric double layer capacitor, in order to increase the energy density (increase in the amount of energy that can be stored), it is necessary to fill activated carbon with a large capacitance into a predetermined volume at a high density. Since the capacitance is determined by the amount of ions adsorbed on the activated carbon, in order to increase the capacitance per unit weight, it is necessary to increase the effective surface area and facilitate diffusion of ions into the micropore. It is important to shorten the diffusion path as much as possible. However, the larger the particle size of activated carbon, the more disadvantageous it is for increasing the surface area and shortening the diffusion path. Moreover, if activated carbon is an irregular crushing shape, even if it fills predetermined volume, the space | gap between particles will become large and a packing density will become low. That is, it is disadvantageous for an increase in capacitance per unit volume.
一方、特許文献2に記載されている球状炭素材は、活性炭ではないものの、その粒子径は小さい。しかし、上述の如く個々の粒子が分離独立しておらず、粒子同士が部分的に結合している。従って、これを電極材料として利用するとしても、当該球状炭素材を粉砕する必要がある。そして、粉砕しても、得られる粒子が必ずしも球状になるわけではなく、また、大径粒子も含まれることになるから、上記静電容量及び充填密度の大きな増加を望むことはできない。 On the other hand, the spherical carbon material described in Patent Document 2 is not activated carbon, but its particle size is small. However, as described above, the individual particles are not separated and independent, and the particles are partially bonded. Therefore, even if this is used as an electrode material, it is necessary to grind the spherical carbon material. And even if it grind | pulverizes, since the particle | grains obtained do not necessarily become spherical shape and large diameter particle | grains are contained, the big increase in the said electrostatic capacitance and packing density cannot be desired.
そこで、本発明は、吸着材、複写機のトナー材など種々の用途に供することができ、また、蓄電装置の電極材として供したときに上記エネルギー密度を増大させることができる炭素材を提供することを課題とする。 Therefore, the present invention provides a carbon material that can be used for various applications such as an adsorbent and a toner material for a copying machine, and that can increase the energy density when used as an electrode material for a power storage device. This is the issue.
本発明の観点の一つは、平均粒子径が100nm以上850nm以下である球状の活性炭粒子よりなる球状炭素材の製造方法である。 One aspect of the present invention is a method for producing a spherical carbon material comprising spherical activated carbon particles having an average particle diameter of 100 nm or more and 850 nm or less .
この球状炭素材は、活性炭質であって、平均粒子径がサブミクロンオーダで非常に小さく且つ球状であるから、吸着材、複写機のトナー材、蓄電装置の電極材など種々の用途において、製品品質改善を図ることができる。 This spherical carbon material is activated carbon, and its average particle size is very small and spherical with submicron order, so it can be used in various applications such as adsorbent, copier toner material, power storage device electrode material, etc. Quality can be improved.
好ましい態様では、上記活性炭粒子が個々に独立した球状粒子になっている。これにより、当該球状炭素材を、機械的粉砕を要することなく、利用することができ、破砕による不定形化を避けることができる。従って、球状炭素材を所定容積に充填して使用する場合の充填密度を高めることができ、製品品質の改善に有利になる。 In good preferable embodiment, the activated carbon particles is in the individually independent spherical particles. Thereby, the said spherical carbon material can be utilized without requiring a mechanical grinding | pulverization, and the amorphous form by crushing can be avoided. Therefore, it is possible to increase the packing density when the spherical carbon material is used in a predetermined volume, which is advantageous for improving the product quality.
例えば、上記球状炭素材を活物質として用いた蓄電装置にあっては、個々の活性炭粒子の平均粒子径が非常に小さいことから、表面積の増大及び拡散経路の短縮により単位重量当たりの静電容量が大きくなり、また、高密度充填が可能になり、エネルギー密度の増大に有利になる。 For example, in a power storage device using the spherical carbon material as an active material, since the average particle diameter of each activated carbon particle is very small, the capacitance per unit weight is increased by increasing the surface area and shortening the diffusion path. Becomes larger, and high-density filling becomes possible, which is advantageous for increasing the energy density.
以下、上記球状炭素材の製造方法を具体的に説明する。それは、フェノール類と、アルデヒド類と、界面活性剤と、硬化剤と、酸触媒とを混合してなる反応溶液を調製する工程と、上記反応溶液を加熱して重合反応を進めることにより、炭素材前駆体である平均粒子径1μm以下の球状フェノール樹脂を調製する工程と、上記炭素材前駆体を加熱硬化させる工程と、得られた硬化物を加熱して炭素化する工程と、得られた炭素化物を水蒸気賦活する工程とを備えていることを特徴とする。 Hereinafter, the manufacturing method of the said spherical carbon material is demonstrated concretely. It consists of a step of preparing a reaction solution comprising a mixture of phenols, aldehydes, a surfactant, a curing agent, and an acid catalyst, and heating the reaction solution to advance a polymerization reaction. A step of preparing a spherical phenol resin having an average particle diameter of 1 μm or less, which is a raw material precursor, a step of heat-curing the carbon material precursor, a step of heating and carbonizing the obtained cured product, and And a step of steam-activating the carbonized product.
ここに、上記酸触媒は、ハロゲン化水素、硝酸及び硫酸のうちから選ばれる少なくとも一種とし、該酸触媒の上記フェノール類に対する添加割合をモル比で0.01以上0.15以下とする。 Here, the acid catalyst is at least one selected from hydrogen halide, nitric acid and sulfuric acid, and the addition ratio of the acid catalyst to the phenols is 0.01 to 0.15 in terms of molar ratio.
上記重合反応においては、上記反応溶液を75℃以上110℃以下の熱処理温度で反応させる。上記反応溶液を上記熱処理温度で数時間ないし数十時間攪拌すればよい。上記加熱硬化においては、上記炭素材前駆体(球状フェノール樹脂)を110℃以上300℃以下の温度雰囲気で硬化させる。例えば、当該前駆体を不活性ガス雰囲気下で加熱して当該温度に0.5時間以上5時間以下保持すればよい。上記炭素化においては、上記硬化後の球状フェノール樹脂を600℃以上900℃以下の温度雰囲気で炭素化する。例えば、不活性ガス雰囲気下で加熱して当該温度に1時間前後保持すればよい。さらに、上記水蒸気賦活においては、上記炭素化物を、飽和水蒸気を含む窒素ガス雰囲気下で加熱して900℃前後の温度に1時間前後保持すればよい。 In the polymerization reaction, the reaction solution is reacted at a heat treatment temperature of 75 ° C. or higher and 110 ° C. or lower . The reaction solution may be stirred at the heat treatment temperature for several hours to several tens of hours. In the heat curing, the carbon material precursor (spherical phenol resin) is cured in a temperature atmosphere of 110 ° C. or higher and 300 ° C. or lower . For example, the precursor may be heated in an inert gas atmosphere and held at the temperature for 0.5 hours to 5 hours. In the carbonization, the cured spherical phenol resin is carbonized in a temperature atmosphere of 600 ° C. or higher and 900 ° C. or lower . For example, what is necessary is just to heat in inert gas atmosphere and hold | maintain at the said temperature about 1 hour. Furthermore, in the steam activation, the carbonized material may be heated in a nitrogen gas atmosphere containing saturated steam and kept at a temperature of about 900 ° C. for about 1 hour.
この製造方法により、平均粒子径が100nm以上850nm以下である球状の活性炭粒子よりなる球状炭素材を得ることができる。この製造方法の特徴は界面活性剤及び酸触媒をフェノール樹脂の球状化及び微細化に利用したことにある。 By this production method, a spherical carbon material made of spherical activated carbon particles having an average particle diameter of 100 nm or more and 850 nm or less can be obtained. This production method is characterized in that a surfactant and an acid catalyst are used for spheroidization and refinement of a phenol resin.
すなわち、フェノール類とアルデヒド類とを酸触媒の存在下で縮合重合させると、ノボラックと呼ばれる熱可塑性樹脂が得られることは知られている。しかし、界面活性剤が添加されていない場合、得られるフェノール樹脂は不定形の塊状物となる。これに対して、本発明では、上記縮合重合反応が界面活性剤の各ミセル内で進む。そのために、互いに分離独立した多数の球状フェノール樹脂が得られる。その際、酸触媒の存在により、ミセルサイズが小さくなるため、得られる球状フェノール樹脂の粒子径が小さくなると考えられる。 That is, it is known that a thermoplastic resin called novolak can be obtained by condensation polymerization of phenols and aldehydes in the presence of an acid catalyst. However, when no surfactant is added, the resulting phenolic resin becomes an irregularly shaped lump. On the other hand, in the present invention, the condensation polymerization reaction proceeds in each micelle of the surfactant. Therefore, a large number of spherical phenol resins separated and independent from each other are obtained. At that time, the presence of the acid catalyst reduces the micelle size, so that the particle diameter of the resulting spherical phenol resin is considered to be small.
上記フェノール類に対する酸触媒の添加割合に関し、そのモル比が0.01未満になると、上記縮合重合反応が進み難くなり、また、0.15を越えるモル比になると、球状フェノール樹脂を得ることが困難になる。 It relates proportion of the added acid catalyst with respect to the upper notated phenol compound, when the molar ratio is less than 0.01, the condensation polymerization reaction hardly proceeds, and, at a molar ratio greater than 0.15, obtaining a spherical phenol resin It becomes difficult.
また、上記界面活性剤として、陽イオン性界面活性剤及び陰イオン性界面活性剤の少なくとも一方を用いることが好ましい。 Moreover, it is preferable to use at least one of a cationic surfactant and an anionic surfactant as the surfactant.
本発明の別の観点は、平均粒子径が300nm以上1000nm以下である新規な球状のフェノール樹脂の製造方法である。この球状フェノール樹脂によれば、これを加熱硬化させ、得られた硬化物を加熱して炭素化し、さらに得られた炭素化物を水蒸気賦活することにより、平均粒子径が100nm以上850nm以下である球状の活性炭粒子よりなる上記球状炭素材を得ることができる。また、この球状フェノール樹脂を電池電極、砥石、フィラー、成形材料等の原料として利用し、関連製品の品質改善を図ることができる。 Another aspect of the present invention is a process for the preparation of novel spherical phenolic resin average particle size of 300nm or more 1000nm or less. According to this spherical phenol resin, this is cured by heating, the obtained cured product is heated and carbonized, and the resulting carbonized product is steam-activated, whereby a spherical particle having an average particle diameter of 100 nm or more and 850 nm or less is obtained. The above-mentioned spherical carbon material made of the activated carbon particles can be obtained. Moreover, this spherical phenol resin can be used as a raw material for battery electrodes, grindstones, fillers, molding materials, and the like, so that the quality of related products can be improved.
以下、上記平均粒子径が300nm以上1000nm以下である球状のフェノール樹脂の製造方法を具体的に説明する。それは、フェノール類と、アルデヒド類と、界面活性剤と、硬化剤と、酸触媒との混合溶液を調製する工程と、上記混合溶液を75℃以上110℃以下の熱処理温度に加熱して重合反応を進める工程とを備えていることを特徴とする。 Hereinafter, the manufacturing method of the spherical phenol resin whose said average particle diameter is 300 to 1000 nm is demonstrated concretely. It includes a step of preparing a mixed solution of phenols, aldehydes, a surfactant, a curing agent, and an acid catalyst, and heating the mixed solution to a heat treatment temperature of 75 ° C. or higher and 110 ° C. or lower to perform a polymerization reaction. And a step of advancing.
ここに、上記酸触媒は、ハロゲン化水素、硝酸及び硫酸のうちから選ばれる少なくとも一種とする。フェノール類に対する酸触媒の添加割合はモル比で0.01以上0.15以下とする。このモル比が0.01未満になると、上記縮合重合反応が進み難くなり、また、0.15を越えるモル比になると、球状フェノール樹脂を得ることが困難になる。また、上記界面活性剤として、陽イオン性界面活性剤及び陰イオン性界面活性剤の少なくとも一方を用いることが好ましい。上記重合反応においては、上記反応溶液を上記熱処理温度で数時間ないし数十時間攪拌すればよい。 Here, the acid catalyst is a hydrogen halide, you at least one selected from among nitric acid and sulfuric acid. The addition ratio of the acid catalyst to phenols you 0.01 to 0.15 in molar ratio. When the molar ratio is less than 0.01, the condensation polymerization reaction is difficult to proceed, and when the molar ratio exceeds 0.15, it is difficult to obtain a spherical phenol resin. Moreover, it is preferable to use at least one of a cationic surfactant and an anionic surfactant as the surfactant. In the polymerization reaction, the reaction solution may be stirred at the heat treatment temperature for several hours to several tens of hours.
先に説明した球状炭素材の製造方法の説明から明らかなように、当該製造方法によれば、平均粒子径が300nm以上1000nm以下である球状のフェノール樹脂を得ることができる。 As is apparent from the explanation of the method for producing the spherical carbon material described above, according to the production method, a spherical phenol resin having an average particle diameter of 300 nm or more and 1000 nm or less can be obtained.
本発明に係る球状炭素材の製造方法によれば、フェノール類、アルデヒド類、硬化剤及び酸触媒(上記フェノール類に対する添加割合をモル比で0.01以上0.15以下とするハロゲン化水素、硝酸及び硫酸のうちから選ばれる少なくとも一種)の混合溶液に界面活性剤を添加し、縮合重合反応によって炭素材前駆体である平均粒子径1μm以下の球状フェノール樹脂を調製し、これを加熱硬化させて炭素化及び水蒸気賦活を行なうようにしたから、平均粒子径が100nm以上850nm以下である球状の活性炭粒子よりなる球状炭素材を得ることができる。 According to the method for producing a spherical carbon material according to the present invention , phenols, aldehydes, a curing agent and an acid catalyst (hydrogen halide having a molar ratio of 0.01 to 0.15 in terms of addition ratio to the phenols, A surfactant is added to a mixed solution of at least one selected from nitric acid and sulfuric acid) , and a spherical phenol resin having an average particle diameter of 1 μm or less, which is a carbon material precursor, is prepared by a condensation polymerization reaction. Since carbonization and water vapor activation are performed, a spherical carbon material made of spherical activated carbon particles having an average particle diameter of 100 nm or more and 850 nm or less can be obtained.
また、本発明に係る球状のフェノール樹脂の製造方法によれば、フェノール類と、アルデヒド類と、界面活性剤と、硬化剤と、酸触媒(上記フェノール類に対する添加割合をモル比で0.01以上0.15以下とするハロゲン化水素、硝酸及び硫酸のうちから選ばれる少なくとも一種)との混合溶液を調製する工程と、上記混合溶液を75℃以上110℃以下の熱処理温度に加熱して重合反応を進める工程とを備えているから、平均粒子径が300nm以上1000nm以下である球状のフェノール樹脂を得ることができる。 In addition, according to the method for producing a spherical phenol resin according to the present invention, phenols, aldehydes, surfactants, curing agents, and acid catalysts (addition ratio to the phenols in 0.01 molar ratio). A step of preparing a mixed solution of at least one selected from hydrogen halide, nitric acid, and sulfuric acid of 0.15 or less, and heating the mixed solution to a heat treatment temperature of 75 ° C. to 110 ° C. for polymerization. And a step of advancing the reaction, a spherical phenol resin having an average particle size of 300 nm or more and 1000 nm or less can be obtained.
以下、本発明を実施するための形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.
<球状フェノール樹脂の調製>
図1に調製方法を概略的に示す。すなわち、界面活性剤と硬化剤とを水中で混合し、これに、フェノール、ホルムアルデヒド及び酸触媒を加えて混合することにより、反応溶液(混合溶液)を調製する。この反応溶液を95℃の温度になるように加熱しながら24時間攪拌する(重合反応)。その後、反応溶液を遠心分離し、得られた生成物を水及びメタノールで洗浄することにより、球状炭素材の前駆体である球状フェノール樹脂を得る。得られた球状フェノール樹脂は、アルゴンガス雰囲気下で加熱して270℃の温度に2時間保持して硬化させる。
<Preparation of spherical phenol resin>
FIG. 1 schematically shows the preparation method. That is, a surfactant and a curing agent are mixed in water, and a reaction solution (mixed solution) is prepared by adding and mixing phenol, formaldehyde, and an acid catalyst. The reaction solution is stirred for 24 hours while being heated to a temperature of 95 ° C. (polymerization reaction). Thereafter, the reaction solution is centrifuged, and the resulting product is washed with water and methanol to obtain a spherical phenol resin which is a precursor of the spherical carbon material. The obtained spherical phenol resin is heated under an argon gas atmosphere and kept at a temperature of 270 ° C. for 2 hours to be cured.
この場合、図2に示すように、水相において界面活性剤のミセルが形成され、そのミセル内にフェノールが導入され、酸触媒の存在下、縮合重合反応が進行する。このミセル内での重合反応の進行により、球状フェノール樹脂が得られる。また、酸触媒によって、界面活性剤の分散が図れ、その結果、ミセルサイズが小さくなるため、得られる球状フェノール樹脂は粒子径が小さくなる。すなわち、平均粒子径が300nm以上1000nm以下である球状フェノール樹脂を得ることができる。 In this case, as shown in FIG. 2, surfactant micelles are formed in the aqueous phase, phenol is introduced into the micelles, and the condensation polymerization reaction proceeds in the presence of an acid catalyst. A spherical phenol resin is obtained by the progress of the polymerization reaction in the micelle. In addition, the surfactant can be dispersed by the acid catalyst, and as a result, the micelle size becomes small, so that the resulting spherical phenol resin has a small particle size. That is, a spherical phenol resin having an average particle diameter of 300 nm or more and 1000 nm or less can be obtained.
図3は得られた球状フェノール樹脂のSEM(走査型電子顕微鏡)像である。これは、界面活性剤としてCTAB(臭化セチルトリメチルアンモニウム;陽イオン界面活性剤)を用い、酸触媒として塩酸を用い、硬化剤としてヘキサメチレンテトラミンを用いたものである。フェノール1モル当たりの添加量は、CTABが0.28モル、塩酸が0.02モル、硬化剤が0.034モルである。図3により、得られる球状フェノール樹脂は高い真球度を有することがわかる。その平均粒子径は0.82μmであった。 FIG. 3 is an SEM (scanning electron microscope) image of the obtained spherical phenol resin. This uses CTAB (cetyltrimethylammonium bromide; cationic surfactant) as a surfactant, hydrochloric acid as an acid catalyst, and hexamethylenetetramine as a curing agent. The addition amount per mole of phenol is 0.28 mole of CTAB, 0.02 mole of hydrochloric acid, and 0.034 mole of curing agent. FIG. 3 shows that the obtained spherical phenol resin has high sphericity. The average particle diameter was 0.82 μm.
−酸触媒の添加量の影響−
上記球状フェノール樹脂の調製において、酸触媒(塩酸)の添加量が、得られる球状フェノール樹脂の粒径に与える影響を調べた。原料添加割合は表1に示すとおりである。図4に得られた球状フェノール樹脂の粒度分布(頻度分布)を示す。
-Effect of addition amount of acid catalyst-
In the preparation of the spherical phenol resin, the influence of the amount of acid catalyst (hydrochloric acid) added on the particle size of the resulting spherical phenol resin was examined. The raw material addition ratio is as shown in Table 1. FIG. 4 shows the particle size distribution (frequency distribution) of the obtained spherical phenol resin.
塩酸の添加量が多くなるほど、得られる球状フェノール樹脂の粒子径が小さくなっている。また、図4に示すように、塩酸の添加量が多くなるほど、粒子径の分散度が小さくなっている。一方、表1に示すように、塩酸の添加量が多い(モル比で0.18)サンプル5では、球状フェノール樹脂が得られなかった。これは、塩酸の添加量が多くなり過ぎると、界面活性剤(CTAB)の多くがプロトンと結合し、ミセルを形成できなくなるためと考えられる。以上から、酸触媒の添加量によって球状フェノール樹脂の粒子径を制御できることがわかる。 The larger the amount of hydrochloric acid added, the smaller the particle size of the resulting spherical phenol resin. Moreover, as shown in FIG. 4, the dispersion degree of the particle diameter decreases as the amount of hydrochloric acid added increases. On the other hand, as shown in Table 1, in the sample 5 having a large amount of hydrochloric acid added (0.18 in molar ratio), the spherical phenol resin was not obtained. This is presumably because if the amount of hydrochloric acid added is too large, most of the surfactant (CTAB) binds to protons and cannot form micelles. From the above, it can be seen that the particle size of the spherical phenol resin can be controlled by the addition amount of the acid catalyst.
−酸触媒の種類の影響−
上記球状フェノール樹脂の調製において、酸触媒の種類が、得られる球状フェノール樹脂の粒径に与える影響を調べた。酸触媒としては、HBr、HI、HNO3及びH2SO4の各無機酸を準備した。原料添加割合は表1のサンプル2と同じである。すなわち、いずれの無機酸も、フェノールに対するモル比は0.02モル%とした。いずれの無機酸を採用した場合でも球状フェノール樹脂を得ることができた。それら球状フェノール樹脂の粒度分布(頻度分布)を、先のサンプル2(酸触媒;塩酸HCl)の結果と共に図5に示す。HBr、HI、HNO3及びH2SO4のいずれにおいても、HClの場合よりも、球状フェノール樹脂の平均粒子径の小さく、また、粒子径の分散度が小さくなっている。以上から、酸触媒の種類で球状フェノール樹脂の粒子径を制御できることがわかる。
-Influence of the type of acid catalyst-
In the preparation of the spherical phenol resin, the effect of the type of acid catalyst on the particle size of the obtained spherical phenol resin was examined. As the acid catalyst, inorganic acids of HBr, HI, HNO 3 and H 2 SO 4 were prepared. The raw material addition ratio is the same as Sample 2 in Table 1. That is, in any inorganic acid, the molar ratio to phenol was 0.02 mol%. Even when any inorganic acid was used, a spherical phenol resin could be obtained. The particle size distribution (frequency distribution) of these spherical phenol resins is shown in FIG. 5 together with the result of the previous sample 2 (acid catalyst; hydrochloric acid HCl). In any of HBr, HI, HNO 3 and H 2 SO 4 , the average particle diameter of the spherical phenol resin is smaller than that of HCl, and the degree of dispersion of the particle diameter is small. From the above, it can be seen that the particle size of the spherical phenol resin can be controlled by the type of the acid catalyst.
−界面活性剤の種類の影響−
上記球状フェノール樹脂の調製において、界面活性剤の種類が、得られる球状フェノール樹脂の粒径に与える影響を調べた。すなわち、陰イオン性界面活性剤として、SDS(ドデシル硫酸ナトリウム)を準備した。原料添加割合は表1のサンプル2と同じにした。得られた球状フェノール樹脂の粒度分布(頻度分布)を、先のサンプル2(陽イオン性界面活性剤;CTAB)の結果と共に図6に示す。SDSの場合、粒子径はサンプル2のCTABより少し大きくなり、粒子径の分散度も少し大きくなっているものの、陰イオン性界面活性剤でも陽イオン性界面活性剤の場合と同じく、粒子径が比較的小さな球状フェノール樹脂が得られることがわかる。
-Effect of surfactant type-
In the preparation of the spherical phenol resin, the effect of the type of surfactant on the particle size of the obtained spherical phenol resin was examined. That is, SDS (sodium dodecyl sulfate) was prepared as an anionic surfactant. The raw material addition ratio was the same as Sample 2 in Table 1. The particle size distribution (frequency distribution) of the obtained spherical phenol resin is shown in FIG. 6 together with the result of the previous sample 2 (cationic surfactant; CTAB). In the case of SDS, the particle size is a little larger than the CTAB of sample 2 and the dispersion of the particle size is also a little larger, but the anionic surfactant has the same particle size as in the case of the cationic surfactant. It turns out that a comparatively small spherical phenol resin is obtained.
<球状炭素材の調製>
図7は上記調製法で得られた球状フェノール樹脂から球状炭素材を得る調製法を概略的に示す。すなわち、上述の硬化させた球状フェノール樹脂をアルゴンガス雰囲気下で加熱して800℃の温度に1時間保持する。これは球状フェノール樹脂の炭素化処理である。次いで当該炭素化物を飽和水蒸気を含む窒素ガス雰囲気下で加熱して900℃の温度に55分間保持する。これは水蒸気賦活処理である。
<Preparation of spherical carbon material>
FIG. 7 schematically shows a preparation method for obtaining a spherical carbon material from the spherical phenol resin obtained by the above preparation method. That is, the above-described cured spherical phenol resin is heated in an argon gas atmosphere and held at a temperature of 800 ° C. for 1 hour. This is a carbonization treatment of a spherical phenol resin. Next, the carbonized product is heated in a nitrogen gas atmosphere containing saturated water vapor and held at a temperature of 900 ° C. for 55 minutes. This is a steam activation treatment.
図8は表1のサンプル2の球状フェノール樹脂に上記炭素化処理及び水蒸気賦活処理を施して得た多数の球状活性炭粒子よりなる球状炭素材のSEM像である。図9は界面活性剤を添加せずに調製した塊状フェノール樹脂に上記炭素化処理及び水蒸気賦活処理を施し、粉砕して得た粉末炭素材のSEM像である。 FIG. 8 is an SEM image of a spherical carbon material composed of a number of spherical activated carbon particles obtained by subjecting the spherical phenol resin of Sample 2 in Table 1 to the carbonization treatment and the steam activation treatment. FIG. 9 is an SEM image of a powdered carbon material obtained by subjecting the bulk phenol resin prepared without adding a surfactant to the carbonization treatment and the steam activation treatment and pulverization.
サンプル2の球状フェノール樹脂の場合、炭素化及び水蒸気賦活後も粒子の球形は保持されている。すなわち、個々の活性炭粒子は、互いに分離独立した球状になっている。図10はサンプル2の炭素化前及び炭素化・水蒸気賦活後の粒度分布(頻度分布)である。球状フェノール樹脂は、炭素化・水蒸気賦活によってその粒子径が小さくなり、粒子径の分散度も小さくなっている。炭素化・水蒸気賦活後の平均粒子径は0.33μm(330nm)である。 In the case of the spherical phenol resin of sample 2, the spherical shape of the particles is maintained even after carbonization and steam activation. That is, each activated carbon particle has a spherical shape that is separated and independent from each other. FIG. 10 shows the particle size distribution (frequency distribution) of sample 2 before carbonization and after carbonization / steam activation. The spherical phenol resin has a reduced particle size due to carbonization and steam activation, and the degree of dispersion of the particle size is also reduced. The average particle diameter after carbonization and steam activation is 0.33 μm (330 nm).
上記サンプル1〜4の球状フェノール樹脂の他に、塩酸のモル比を0.13として上記球状フェノール樹脂の調製法により、平均粒子径0.32μmの球状フェノール樹脂を調製した。そして、サンプル1〜4の球状フェノール樹脂及び平均粒子径0.32μmの球状フェノール樹脂各々から上記調製法によって球状炭素材を得た。それらの炭素化前及び炭素化・水蒸気賦活後の平均粒子径を図11に示す。平均粒子径320nm〜930nmの球状フェノール樹脂から平均粒子径100nm〜400nmの球状炭素材が得られている。なお、図11の各サンプルは上述した条件によって得られた一実施例であり、調製条件が異なる場合(但し、本願請求項4で特定する範囲内)には比較的大きな平均粒子径を有する球状炭素材が得られる。具体的には、図11の各サンプルは最も小さい平均粒子径のものであり、条件によって、図11で示すバーの範囲のものが得られる。最大で850nmであった。以上から、平均粒子径300nm〜1000nmの球状フェノール樹脂から平均粒子径100nm〜850nmの球状炭素材を得ることができることがわかる。 In addition to the spherical phenol resins of Samples 1 to 4, a spherical phenol resin having an average particle diameter of 0.32 μm was prepared by a method for preparing the spherical phenol resin with a molar ratio of hydrochloric acid of 0.13. And the spherical carbon material was obtained by the said preparation method from each of the spherical phenol resin of samples 1-4, and the spherical phenol resin with an average particle diameter of 0.32 micrometer. The average particle diameters before carbonization and after carbonization / steam activation are shown in FIG. A spherical carbon material having an average particle diameter of 100 nm to 400 nm is obtained from a spherical phenol resin having an average particle diameter of 320 nm to 930 nm. In addition, each sample of FIG. 11 is one Example obtained by the above-mentioned conditions, and when the preparation conditions are different (however, within the range specified in claim 4 of the present application), a spherical shape having a relatively large average particle diameter. Carbon material is obtained. Specifically, each sample in FIG. 11 has the smallest average particle diameter, and a sample in the bar range shown in FIG. 11 is obtained depending on the conditions. The maximum was 850 nm. From the above, it can be seen that a spherical carbon material having an average particle size of 100 nm to 850 nm can be obtained from a spherical phenol resin having an average particle size of 300 nm to 1000 nm.
−細孔特性−
図8の球状炭素材SAC及び図9の粉末炭素材AC各々について、77.4K(窒素の沸点)に冷却し、窒素ガスを導入して窒素ガスの吸着量を測定した。このとき、導入する窒素ガスの圧力Pを徐々に上げ、窒素ガスの飽和蒸気圧P0で除した値を相対圧P/P0として、各相対圧に対する吸着量をプロットすることにより図12に示す窒素吸着等温線を得た。そして、BET法により各炭素材の比表面積を求め、上記窒素ガス吸着量の測定結果に基いて全細孔容積を求め、BJH法によりメゾポア容積率(全細孔容積に対する細孔径2nm以上50nm未満のメゾポアの容積の割合)を求め、さらに、比表面積および全細孔容積を用いて平均細孔径を求めた。結果を表2に示す。
-Pore properties-
Each of the spherical carbon material SAC in FIG. 8 and the powder carbon material AC in FIG. 9 was cooled to 77.4 K (the boiling point of nitrogen), nitrogen gas was introduced, and the adsorption amount of nitrogen gas was measured. At this time, the pressure P of the nitrogen gas to be introduced is gradually increased, and the value obtained by dividing by the saturated vapor pressure P 0 of the nitrogen gas is set as the relative pressure P / P 0 , and the amount of adsorption with respect to each relative pressure is plotted in FIG. The indicated nitrogen adsorption isotherm was obtained. Then, the specific surface area of each carbon material is obtained by the BET method, the total pore volume is obtained based on the measurement result of the nitrogen gas adsorption amount, and the mesopore volume ratio (pore diameter relative to the total pore volume is 2 nm or more and less than 50 nm by the BJH method. The ratio of mesopore volume) was determined, and the average pore diameter was determined using the specific surface area and the total pore volume. The results are shown in Table 2.
実施形態に係る球状炭素材SACは、従前の破砕によって得られる粉末炭素材ACと略同等の細孔特性を有する。実施形態に係る球状炭素材SACは、球状であるにも拘わらず、その平均粒子径が非常に小さいためと考えられる。 The spherical carbon material SAC according to the embodiment has substantially the same pore characteristics as the powder carbon material AC obtained by conventional crushing. The spherical carbon material SAC according to the embodiment is considered to have a very small average particle diameter despite being spherical.
<電気二重層キャパシタへの適用>
表2に示すサンプルSAC及びAC各々を電気二重層キャパシタの活物質として用いたときの特性を調べた。図13はコイン型電気二重層キャパシタの構造を示す。同図において、1は集電体、2は電極、3はセパレータ、4は電解液である。集電体1としては白金を用い、セパレータ3としてはPVDF(ポリフッ化ビニリデン)を用い、電解液4としては1モル濃度のEt4NBF4/PC(テトラエチルアンモニウムテトラフルオロブロマイド)を用いた。そして、電極2は、炭素材(SAC又はAC)95質量%とPTFE(ポリテトラフルオロエチレン)5質量%との混合体で構成した。
<Application to electric double layer capacitors>
The characteristics when each of the samples SAC and AC shown in Table 2 was used as the active material of the electric double layer capacitor were examined. FIG. 13 shows the structure of a coin-type electric double layer capacitor. In the figure, 1 is a current collector, 2 is an electrode, 3 is a separator, and 4 is an electrolytic solution. Platinum was used as the current collector 1, PVDF (polyvinylidene fluoride) was used as the separator 3, and 1 molar Et 4 NBF 4 / PC (tetraethylammonium tetrafluorobromide) was used as the electrolytic solution 4. The electrode 2 was composed of a mixture of 95% by mass of a carbon material (SAC or AC) and 5% by mass of PTFE (polytetrafluoroethylene).
そうして、活物質として球状炭素材SACを用いたケース及び粉末炭素材ACを用いたケース各々について、10mAの定電流で電圧3Vまで充電し、次に1〜50mAの定電流下、0Vまで放電し、次式により単位重量当たり電極容量(静電容量)C(g)及び単位体積当たりの電極容量C(v)を求めた。なお、Iは電流値、Δtは電圧降下時間、ΔVは電圧降下値、(M1+M2)は電極2枚分の活物質質量(g)、(V1+V2)は電極2枚分の活物質体積(cm3)である。 Thus, each of the case using the spherical carbon material SAC and the case using the powder carbon material AC as the active material is charged to a voltage of 3V with a constant current of 10 mA, and then to 0 V under a constant current of 1 to 50 mA. After discharging, the electrode capacity (capacitance) C (g) per unit weight and the electrode capacity C (v) per unit volume were determined by the following equations. Here, I is a current value, Δt is a voltage drop time, ΔV is a voltage drop value, (M 1 + M 2 ) is an active material mass (g) for two electrodes, and (V 1 + V 2 ) is for two electrodes. It is an active material volume (cm 3 ).
C(g)=I×Δt/(ΔV×(M1+M2))
C(v)=I×Δt/(ΔV×(V1+V2))
C (g) = I × Δt / (ΔV × (M 1 + M 2 ))
C (v) = I × Δt / (ΔV × (V 1 + V 2 ))
まず、電極密度及び電気伝導率は表3に示すとおりである。球状炭素材SACの場合は、電極密度が粉末炭素材ACの場合の約2倍、電気伝導率が粉末炭素材ACの場合の約50倍になっている。 First, the electrode density and electrical conductivity are as shown in Table 3. In the case of the spherical carbon material SAC, the electrode density is about twice that of the powder carbon material AC, and the electric conductivity is about 50 times that of the powder carbon material AC.
図14は放電電流密度に対する単位重量当たり電極容量を示し、図14は放電電流密度に対する単位体積当たり電極容量を示す。いずれも、球状炭素材SACの方が高い値を示している。特に、図15の単位体積当たり電極容量に関しては、球状炭素材SACは粉末炭素材ACの2倍以上になっている。これは、球状炭素材SACが粉末炭素材ACに比べ、より高密度に充填されたことによるものと認められる。 FIG. 14 shows the electrode capacity per unit weight with respect to the discharge current density, and FIG. 14 shows the electrode capacity per unit volume with respect to the discharge current density. In any case, the spherical carbon material SAC shows a higher value. In particular, regarding the electrode capacity per unit volume in FIG. 15, the spherical carbon material SAC is more than twice the powder carbon material AC. This is considered to be due to the spherical carbon material SAC being filled at a higher density than the powder carbon material AC.
<電池への適用>
図11に示す酸触媒モル比0.04、0.09及び0.13各々の球状炭素材SAC3種(それらのおよその平均粒子径は300nm、200nm、100nmである)と、従前の粉末炭素材AC(平均粒子径5000nm)とについて、各々を負極材料とするコイン電池(CR2032)を作製し、特性を比較した。
<Application to batteries>
Spherical carbon material SAC3 types (their average particle diameters are 300 nm, 200 nm, and 100 nm) of the acid catalyst molar ratios 0.04, 0.09, and 0.13 shown in FIG. For AC (average particle diameter 5000 nm), coin batteries (CR2032) each having a negative electrode material were prepared and the characteristics were compared.
コイン電池の正極材料はリチウム金属とし、電解液には、プロピレンカーボネート及びジメチルカーボネートの混合溶媒にLi電解質LiPF6を混合した溶液を採用した。そして、1mAの定電流、−3.0〜−0.01Vの電圧範囲で充放電サイクル試験(室温25℃)を行なった。結果を図16に示す。初期充放電効率(=(放電容量/充電容量)×100)を表4に示す。 The positive electrode material of the coin battery was lithium metal, and a solution obtained by mixing Li electrolyte LiPF 6 in a mixed solvent of propylene carbonate and dimethyl carbonate was used as the electrolyte. And the charge / discharge cycle test (room temperature 25 degreeC) was done in the constant current of 1 mA and the voltage range of -3.0--0.01V. The results are shown in FIG. Table 4 shows the initial charge / discharge efficiency (= (discharge capacity / charge capacity) × 100).
本発明に係る球状炭素材SACの場合、従前の炭素材ACに比べて初期充放電効率が高い。また、充放電サイクルの場合、サイクル数が多くなると、放電容量が小さくなるが、その放電容量の低下をみると、本発明に係る球状炭素材SACは、従前の炭素材ACに比べその低下度が小さい。図17は20サイクル後の放電容量を比較したものであり、本発明に係る球状炭素材SACでは、20サイクル後でも大きな放電容量が維持されていることがわかる。また、表4及び図16,17から、球状炭素材SACの平均粒子径が小さくなるほど放電容量が増加することがわかる。 In the case of the spherical carbon material SAC according to the present invention, the initial charge / discharge efficiency is higher than that of the conventional carbon material AC. In the case of the charge / discharge cycle, the discharge capacity decreases as the number of cycles increases. However, when the discharge capacity decreases, the spherical carbon material SAC according to the present invention has a decrease degree compared to the conventional carbon material AC. Is small. FIG. 17 compares the discharge capacities after 20 cycles. It can be seen that the spherical carbon material SAC according to the present invention maintains a large discharge capacity even after 20 cycles. Moreover, it can be seen from Table 4 and FIGS. 16 and 17 that the discharge capacity increases as the average particle diameter of the spherical carbon material SAC decreases.
−レート特性−
上記本発明に係る3種の球状炭素材SAC及び従前の炭素材ACによる各コイン電池(CR2032)について、1mAの定電流、−3.0〜−0.01Vの電圧範囲でレート(印加電流変更)試験(室温25℃)を行なった。すなわち、放電レート0.5C(2時間率)での放電容量を100%としたときの、放電レートの増大による放電容量維持率の変化を測定した。結果を図18に示す。いずれも、放電レートの増大(印加電流の増大)に伴って放電容量維持率が低下しているものの、本発明に係る3種の球状炭素材SACは従前の炭素材ACに比べて、その放電容量維持率が高い。また、球状炭素材SACの平均粒子径が小さくなるほど放電容量維持率が高くなっている。
-Rate characteristics-
For each coin battery (CR2032) using the above-mentioned three types of spherical carbon material SAC and the conventional carbon material AC according to the present invention, the rate (applied current change) at a constant current of 1 mA and a voltage range of -3.0 to -0.01V. ) Test (room temperature 25 ° C.) was conducted. That is, the change in the discharge capacity retention rate due to the increase in the discharge rate was measured when the discharge capacity at a discharge rate of 0.5 C (2 hour rate) was 100%. The results are shown in FIG. In any case, although the discharge capacity maintenance rate decreases with an increase in discharge rate (increase in applied current), the three types of spherical carbon materials SAC according to the present invention have a higher discharge than the conventional carbon materials AC. Capacity maintenance rate is high. In addition, the discharge capacity retention rate increases as the average particle diameter of the spherical carbon material SAC decreases.
すなわち、リチウム電池は大電流に弱いとされているところ、本発明に係る球状炭素材SACの場合、その粒子径が小さく、ミクロポア内部へのLiイオンの拡散進入が容易である(拡散経路が短い)ために、大電流になっても、放電容量の維持率が高くなったものと認められる。換言すれば、従前の炭素材ACの場合は、その粒子径が大きいことから、ミクロポア内部へのLiイオンの拡散に時間がかかり、大電流に対応できない、つまり、使用されない炭素材が多くなったものと認められる。 That is, the lithium battery is considered to be vulnerable to a large current. However, in the case of the spherical carbon material SAC according to the present invention, the particle diameter is small, and the diffusion and entry of Li ions into the micropores is easy (the diffusion path is short). Therefore, even when the current becomes large, it is recognized that the maintenance rate of the discharge capacity is increased. In other words, in the case of the conventional carbon material AC, since the particle diameter is large, it takes time to diffuse Li ions inside the micropore, and it is not possible to cope with a large current, that is, the carbon material that is not used has increased. It is accepted.
球状炭素材は、吸着材、複写機のトナー材、蓄電装置の電極材など種々の用途がある。また、球状フェノール樹脂は、粒状活性炭、電池電極、砥石、フィラー、成形材料等の原料とすることができる。 The spherical carbon material has various uses such as an adsorbing material, a toner material of a copying machine, and an electrode material of a power storage device. The spherical phenol resin can be used as a raw material for granular activated carbon, battery electrodes, grindstones, fillers, molding materials and the like.
1 集電体
2 電極
3 セパレータ
4 電解液
DESCRIPTION OF SYMBOLS 1 Current collector 2 Electrode 3 Separator 4 Electrolyte
Claims (4)
フェノール類と、アルデヒド類と、界面活性剤と、硬化剤と、上記フェノール類に対する添加割合をモル比で0.01以上0.15以下とするハロゲン化水素、硝酸及び硫酸のうちから選ばれる少なくとも一種の酸触媒との混合溶液を調製する工程と、
上記混合溶液を75℃以上110℃以下の熱処理温度で反応させることにより、炭素材前駆体である平均粒子径1μm以下の球状フェノール樹脂を調製する工程と、
上記炭素材前駆体を110℃以上300℃以下の温度雰囲気で硬化させる工程と、
得られた硬化物を600℃以上800℃以下の温度雰囲気で炭素化する工程と、
得られた炭素化物を水蒸気賦活する工程とを備えていることを特徴とする球状炭素材の製造方法。 A method for producing a spherical carbon material comprising spherical activated carbon particles having an average particle diameter of 100 nm or more and 850 nm or less,
Phenols, aldehydes, surfactants, curing agents, and at least selected from hydrogen halide, nitric acid, and sulfuric acid having a molar ratio of 0.01 to 0.15 in terms of molar ratio. Preparing a mixed solution with a kind of acid catalyst;
A step of preparing a spherical phenol resin having an average particle diameter of 1 μm or less, which is a carbon material precursor, by reacting the mixed solution at a heat treatment temperature of 75 ° C. or higher and 110 ° C. or lower;
Curing the carbon material precursor in a temperature atmosphere of 110 ° C. or higher and 300 ° C. or lower;
A step of carbonizing the obtained cured product in a temperature atmosphere of 600 ° C. or higher and 800 ° C. or lower;
And a step of steam activation of the obtained carbonized product. A method for producing a spherical carbon material.
上記界面活性剤として、陽イオン性界面活性剤及び陰イオン性界面活性剤の少なくとも一方を用いることを特徴とする球状炭素材の製造方法。 In claim 1 ,
A method for producing a spherical carbon material, wherein at least one of a cationic surfactant and an anionic surfactant is used as the surfactant.
フェノール類と、アルデヒド類と、界面活性剤と、硬化剤と、上記フェノール類に対する添加割合をモル比で0.01以上0.15以下とするハロゲン化水素、硝酸及び硫酸のうちから選ばれる少なくとも一種の酸触媒との混合溶液を調製する工程と、
上記混合溶液を75℃以上110℃以下の熱処理温度に加熱して重合反応を進める工程とを備えていることを特徴とする球状のフェノール樹脂の製造方法。 A method for producing a spherical phenol resin having an average particle size of 300 nm or more and 1000 nm or less,
Phenols, aldehydes, surfactants, curing agents, and at least selected from hydrogen halide, nitric acid, and sulfuric acid having a molar ratio of 0.01 to 0.15 in terms of molar ratio. Preparing a mixed solution with a kind of acid catalyst;
And a step of heating the mixed solution to a heat treatment temperature of 75 ° C. or higher and 110 ° C. or lower to advance a polymerization reaction.
上記界面活性剤として、陽イオン性界面活性剤及び陰イオン性界面活性剤の少なくとも一方を用いることを特徴とする球状のフェノール樹脂の製造方法。 In claim 3 ,
A method for producing a spherical phenol resin, wherein at least one of a cationic surfactant and an anionic surfactant is used as the surfactant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010184382A JP5581488B2 (en) | 2010-03-15 | 2010-08-19 | Method for producing spherical carbon material, method for producing spherical phenol resin |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010058078 | 2010-03-15 | ||
JP2010058078 | 2010-03-15 | ||
JP2010184382A JP5581488B2 (en) | 2010-03-15 | 2010-08-19 | Method for producing spherical carbon material, method for producing spherical phenol resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011213571A JP2011213571A (en) | 2011-10-27 |
JP5581488B2 true JP5581488B2 (en) | 2014-09-03 |
Family
ID=44943710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010184382A Active JP5581488B2 (en) | 2010-03-15 | 2010-08-19 | Method for producing spherical carbon material, method for producing spherical phenol resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5581488B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5947585B2 (en) * | 2012-03-27 | 2016-07-06 | マツダ株式会社 | Method for producing spherical phenol resin granulated product, method for producing carbon material, and method for producing activated carbon material |
JP2014189611A (en) * | 2013-03-27 | 2014-10-06 | Asahi Organic Chemicals Industry Co Ltd | Cured resorcinol resin particles, method for producing the same, and carbon particles and active carbon particles obtained using the same |
CN103936004B (en) * | 2014-04-09 | 2016-01-20 | 中国科学院山西煤炭化学研究所 | A kind of preparation method of resin base spheric active carbon of controllable hole structure |
JP6733443B2 (en) * | 2016-09-08 | 2020-07-29 | 株式会社Gsユアサ | Composite electrode material, negative electrode, and non-aqueous electrolyte secondary battery |
CN113471419A (en) * | 2021-06-09 | 2021-10-01 | 济南精智方正新材料有限公司 | Silicon-carbon composite material and preparation method and application thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH111314A (en) * | 1997-06-10 | 1999-01-06 | Dainippon Ink & Chem Inc | Spherical active carbonaceous material and its production |
JP5058467B2 (en) * | 2005-08-30 | 2012-10-24 | リグナイト株式会社 | Electrode material, electrode for secondary battery, carbon material for electric double layer capacitor polarizable electrode, electric double layer capacitor polarizable electrode, and method for producing the same |
-
2010
- 2010-08-19 JP JP2010184382A patent/JP5581488B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011213571A (en) | 2011-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qing et al. | Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots | |
Ma et al. | Novel mesoporous Si@ C microspheres as anodes for lithium-ion batteries | |
Chen et al. | Pinecone-like hierarchical anatase TiO 2 bonded with carbon enabling ultrahigh cycling rates for sodium storage | |
US20170125811A1 (en) | Carbon material for nonaqueous electrolyte secondary battery and method for manufacturing same, and negative electrode using carbon material and nonaqueous electrolyte secondary battery | |
US20150024277A1 (en) | Carbonaceous material for non-aqueous electrolyte secondary battery | |
JP5581488B2 (en) | Method for producing spherical carbon material, method for producing spherical phenol resin | |
KR20150059137A (en) | Surface-modified carbon hybrid particles, methods of making, and applications of the same | |
JP5570577B2 (en) | Method for producing non-graphitizable carbon material | |
Yan et al. | Facile hydrothermal synthesis of urchin‐like NiCo2O4 as advanced electrochemical pseudocapacitor materials | |
KR20110033134A (en) | Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same | |
Liu et al. | Metal oxides with distinctive valence states in an electron‐rich matrix enable stable high‐capacity anodes for Li ion batteries | |
Hu et al. | Synergistic effect, structural and morphology evolution, and doping mechanism of spherical Br‐doped Na3V2 (PO4) 2F3/C toward enhanced sodium storage | |
JPWO2017057146A1 (en) | Carbonaceous material for negative electrode of sodium ion secondary battery and sodium ion secondary battery using the same | |
Wilgosz et al. | Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors | |
JP2019046925A (en) | Negative electrode active material for lithium ion capacitor | |
Ming et al. | High dispersion of TiO 2 nanocrystals within porous carbon improves lithium storage capacity and can be applied batteries to LiNi 0.5 Mn 1.5 O 4 | |
Chen et al. | Synthesis of core-shell carbon sphere@ nickel oxide composites and their application for supercapacitors | |
Ge et al. | In Situ Growth of CoSe2 Coated in Porous Carbon Layers as Anode for Efficient Sodium‐Ion Batteries | |
Liang et al. | Silicon single walled carbon nanotube-embedded pitch-based carbon spheres prepared by a spray process with modified antisolvent precipitation for lithium ion batteries | |
TWI556496B (en) | Non-aqueous electrolyte secondary battery negative electrode carbonaceous material, nonaqueous electrolyte secondary battery and vehicle | |
JP5957793B2 (en) | Carbon material manufacturing method | |
Shao et al. | Hierarchical nanosheets-assembled hollow NiCo2O4 nanoboxes for high-performance asymmetric supercapacitors | |
Kim et al. | Stacking‐Controlled Assembly of Cabbage‐Like Graphene Microsphere for Charge Storage Applications | |
Sun et al. | Corncob-derived hierarchical porous carbons constructed by re-activation for high-rate lithium-ion capacitors | |
Xu et al. | Hierarchically Porous Carbon from Lychee Seed as Cathode Host for Fast‐Charging and High Area Capacity Li–Se Batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20120222 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130711 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20130711 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140325 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140520 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20140618 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140618 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140618 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5581488 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |