JP2000340208A - Nickel metal hydride battery - Google Patents

Nickel metal hydride battery

Info

Publication number
JP2000340208A
JP2000340208A JP11150240A JP15024099A JP2000340208A JP 2000340208 A JP2000340208 A JP 2000340208A JP 11150240 A JP11150240 A JP 11150240A JP 15024099 A JP15024099 A JP 15024099A JP 2000340208 A JP2000340208 A JP 2000340208A
Authority
JP
Japan
Prior art keywords
battery
separator
discharge
metal hydride
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11150240A
Other languages
Japanese (ja)
Other versions
JP4660869B2 (en
Inventor
Takehito Matsubara
岳人 松原
Yuichi Umehara
雄一 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP15024099A priority Critical patent/JP4660869B2/en
Publication of JP2000340208A publication Critical patent/JP2000340208A/en
Application granted granted Critical
Publication of JP4660869B2 publication Critical patent/JP4660869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress an increase of polarization of a battery caused by a separator in high rate discharge and suppress degradation of a discharge voltage and output of a battery. SOLUTION: This nickel metal hydride battery uses a nonwavon fabric cloth separator of polyolefin treated to be hydrophilic by acrylic acid graft polymerization treatment or fluorine gas treatment. Accumulated porous volume of pores of a pore size not larger than 40 μm is 10-30% of the whole porous volume of the separator in the battery.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル・金属水
素化物電池に関するものである。
[0001] The present invention relates to a nickel-metal hydride battery.

【0002】[0002]

【従来の技術】水酸化ニッケルを主体とする正極と水素
吸蔵合金を主体とする負極を備えたニッケル・金属水素
化物電池は、エネルギー密度が高く、高率放電性能に優
れることから、携帯機器や電気自動車用などの電源とし
て商用されている。一般的なニッケル・金属水素化物電
池の構成では、正極と負極の間に不織布製のセパレータ
が配置されている。セパレータの材質としては耐アルカ
リ性に優れたポリオレフィン樹脂に親水化処理を施した
ものが好適である。このような親水化ポリオレフィン製
不織布をセパレータとして用いると、正極と負極とを電
気的に絶縁して内部短絡を防止するとともに、不織布の
繊維間の空孔に電解液が保持されて、充放電反応を進行
させることができる。繊維間の空孔は、その孔径が小さ
くなるほど電解液の保持力が高くなり、セパレータ内の
液枯れを防止することができる。しかしながら、特に電
池を高率で放電した場合には、正極と負極との間に介在
したセパレータが電池の分極を増大させて放電電圧が下
がり、電池の出力が低下することがあった。
2. Description of the Related Art Nickel / metal hydride batteries provided with a positive electrode mainly composed of nickel hydroxide and a negative electrode mainly composed of a hydrogen storage alloy have high energy density and excellent high-rate discharge performance. Commercially used as a power source for electric vehicles. In a general nickel-metal hydride battery configuration, a nonwoven fabric separator is disposed between a positive electrode and a negative electrode. As the material of the separator, a material obtained by subjecting a polyolefin resin excellent in alkali resistance to a hydrophilic treatment is preferable. When such a non-woven fabric made of hydrophilized polyolefin is used as a separator, the positive electrode and the negative electrode are electrically insulated to prevent an internal short circuit, and the electrolyte is held in pores between the fibers of the non-woven fabric, so that the charge-discharge reaction is performed. Can be advanced. As for the pores between the fibers, the smaller the pore diameter is, the higher the holding power of the electrolytic solution is, and the liquid in the separator can be prevented from withering. However, particularly when the battery is discharged at a high rate, the separator interposed between the positive electrode and the negative electrode may increase the polarization of the battery, lower the discharge voltage, and lower the output of the battery.

【0003】[0003]

【発明が解決しようとする課題】上述のように、従来の
技術においては、セパレータによって電池の分極が増大
するという問題があった。今後、ニッケル・金属水素化
物電池の出力を向上させるには、不織布セパレータに起
因する分極を抑制しなければならない。そこで本発明
は、セパレータによる電池の分極を低減することを目的
とする。
As described above, the conventional technique has a problem that the polarization of the battery is increased by the separator. In the future, in order to improve the output of a nickel-metal hydride battery, it is necessary to suppress the polarization caused by the nonwoven fabric separator. Therefore, an object of the present invention is to reduce the polarization of a battery by a separator.

【0004】[0004]

【課題を解決するための手段】本発明では、上述の課題
を解決するために、アクリル酸グラフト重合処理または
フッ素ガス処理の内の少なくとも一つの方法によって親
水化処理を施したポリオレフィン製不織布セパレータを
備えるニッケル・金属水素化物電池であって、前記セパ
レータにおける孔径40μm以下の空孔の累積空孔体積
が全空孔体積に対し10〜30パーセントであることを
特徴とするニッケル・金属水素化物電池を提供する。
In order to solve the above-mentioned problems, the present invention provides a polyolefin nonwoven fabric separator which has been subjected to a hydrophilic treatment by at least one of acrylic acid graft polymerization treatment and fluorine gas treatment. A nickel-metal hydride battery comprising: a nickel-metal hydride battery, wherein a cumulative pore volume of pores having a pore diameter of 40 μm or less in the separator is 10 to 30% with respect to a total pore volume. provide.

【0005】[0005]

【発明の実施の形態】本発明のニッケル・金属水素化物
電池は、アクリル酸グラフト重合処理またはフッ素ガス
処理の内の少なくとも一つの方法によって親水化処理を
施したポリオレフィン製不織布セパレータを備えるニッ
ケル・金属水素化物電池であって、前記セパレータにお
ける孔径40μm以下の空孔の累積空孔体積が全空孔体
積に対し10〜30パーセントであることを特徴とする
ものであって、セパレータとしてこのようなものを用い
ることによって、サイクル寿命性能を低下させることな
く、アルカリ蓄電池の高率放電時の出力を向上させるこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION A nickel-metal hydride battery according to the present invention comprises a nickel-metal hydride battery having a polyolefin nonwoven fabric separator which has been subjected to a hydrophilic treatment by at least one of acrylic acid graft polymerization treatment and fluorine gas treatment. A hydride battery, wherein the cumulative pore volume of pores having a pore diameter of 40 μm or less in the separator is 10 to 30% with respect to the total pore volume. By using, the output of the alkaline storage battery during high-rate discharge can be improved without lowering the cycle life performance.

【0006】その理由については種々考えられるが、概
ね次のように説明できる。すなわち、充放電反応の際に
は正極と負極との間のイオン移動が不可欠であるが、そ
れは一般的なアルカリ蓄電池においては、不織布セパレ
ータの空孔に保持された電解液を通じて行われる。不織
布内に細孔が数多く存在すると、正極と負極の間の電解
液の経路が長くなり、イオン移動が困難になって、分極
が大きくなると考えられる。また、電解液の経路が長く
なると正極と負極の間の電気抵抗が増大し、これも分極
を大きくする要因になると考えられる。
Although there are various possible reasons for this, it can be generally explained as follows. In other words, ion transfer between the positive electrode and the negative electrode is indispensable during the charge / discharge reaction. In a general alkaline storage battery, this is performed through an electrolyte held in pores of a nonwoven fabric separator. It is thought that if there are many pores in the nonwoven fabric, the path of the electrolytic solution between the positive electrode and the negative electrode becomes long, ion transfer becomes difficult, and polarization increases. Further, when the path of the electrolytic solution becomes longer, the electric resistance between the positive electrode and the negative electrode increases, which is also considered to be a factor for increasing the polarization.

【0007】ニッケル・金属水素化物電池内の不織布に
おいては、孔径40μm以下の累積空孔体積を全空孔体
積に対し30パーセント以下になるように設定すると、
高率放電時においても充分にイオン移動ができ、分極の
増大を抑制することができる。また、孔径40μm以下
の累積空孔体積を全空孔体積に対し10パーセント以上
になるように設定すると、充放電サイクルを繰り返した
後も、細孔が充分な電解液を保持することから、液枯れ
に起因する内部抵抗上昇を抑制することができると考え
られる。なお、本発明で言う孔径とは、水銀圧入法によ
り算出される孔径である。
In a non-woven fabric in a nickel metal hydride battery, when the cumulative pore volume having a pore diameter of 40 μm or less is set to be 30% or less of the total pore volume,
Even during high-rate discharge, ions can be sufficiently moved, and an increase in polarization can be suppressed. Further, when the cumulative pore volume having a pore diameter of 40 μm or less is set to be 10% or more of the total pore volume, the pores retain a sufficient electrolytic solution even after repeated charge / discharge cycles. It is considered that an increase in internal resistance due to withering can be suppressed. In addition, the pore diameter referred to in the present invention is a pore diameter calculated by a mercury intrusion method.

【0008】本セパレータの材料としては、繊維径が1
0〜30μmの範囲にあるポリオレフィン繊維を用いる
のが、上述の孔径分布を有する不織布の製造に好適であ
るので好ましい。また、不織布の構成としては、目付重
量45〜75g/m厚さ130〜200μmの不織布
とすると、充分な通気性が得られ、かつ内部短絡が防止
できるので好適である。また、ニッケル・金属水素化物
電池のセパレータの材質としてポリオレフィン樹脂を用
いる際は、親水化処理をおこなうことが必要であり、こ
の手段としてアクリル酸グラフト重合処理やフッ素ガス
処理をおこなうことが、耐久性および経済性に優れてい
るという理由で好適である。
[0008] As a material of the present separator, the fiber diameter is 1
It is preferable to use a polyolefin fiber having a size in the range of 0 to 30 μm because it is suitable for producing a nonwoven fabric having the above-mentioned pore size distribution. In addition, as the configuration of the nonwoven fabric, a nonwoven fabric having a basis weight of 45 to 75 g / m 2 and a thickness of 130 to 200 μm is preferable because sufficient air permeability can be obtained and an internal short circuit can be prevented. In addition, when a polyolefin resin is used as a material of a separator of a nickel metal hydride battery, it is necessary to perform a hydrophilic treatment, and as a means of performing an acrylic acid graft polymerization treatment or a fluorine gas treatment, the durability is increased. It is suitable because it is excellent in economy.

【0009】[0009]

【実施例】本発明を実施例によって説明する。正極は次
の方法で作製した。すなわち、ニッケル、コバルトおよ
び亜鉛を共沈して得られた水酸化ニッケル粉末に対し、
金属コバルト粉末およびメチルセルロース水溶液を加え
て混練し、ペーストにした。そして、ペーストを発泡状
ニッケル多孔体に充填、プレス、乾燥し、所定のサイズ
に切断して正極板を得た。負極は次の方法で作製した。
すなわち、ミッシュメタル(以後Mmと表記する。主要
成分は、La:約45重量%、Ce:約5重量%、P
r:約10重量%、Nd:約40重量%)、Ni、C
o、MnおよびAlの金属材料を所望の組成となるよう
に高周波誘導炉にて融解し、金型に鋳込んで凝固させ
た。得られた合金の組成は、MmNi3.6Co0.8Al
0.4Mn0.2である。合金塊表面の酸化物層は研磨して除
去した。その後、合金塊を粉砕し、ふるい分けて、平均
粒径が数十μmの水素吸蔵合金粉末とした。この水素吸
蔵合金粉末と金属ニッケル粉末およびポリビニルアルコ
ール水溶液とを混練し、ペーストにした。そして、この
ペーストをニッケルメッキした穿孔鋼板に塗着、乾燥、
プレスし、所定のサイズに切断して負極板を得た。
EXAMPLES The present invention will be described with reference to examples. The positive electrode was produced by the following method. That is, for nickel hydroxide powder obtained by coprecipitating nickel, cobalt and zinc,
A metal cobalt powder and an aqueous solution of methylcellulose were added and kneaded to form a paste. Then, the paste was filled in a foamed nickel porous body, pressed, dried, and cut into a predetermined size to obtain a positive electrode plate. The negative electrode was manufactured by the following method.
That is, misch metal (hereinafter referred to as Mm. The main components are La: about 45% by weight, Ce: about 5% by weight, P:
r: about 10% by weight, Nd: about 40% by weight), Ni, C
The metal materials of o, Mn and Al were melted in a high-frequency induction furnace so as to have a desired composition, cast into a mold and solidified. The composition of the obtained alloy was MmNi 3.6 Co 0.8 Al
0.4 Mn 0.2 . The oxide layer on the surface of the alloy mass was removed by polishing. Thereafter, the alloy lump was pulverized and sieved to obtain a hydrogen storage alloy powder having an average particle diameter of several tens of μm. The hydrogen storage alloy powder, the metallic nickel powder and the aqueous solution of polyvinyl alcohol were kneaded to form a paste. This paste is applied to a nickel-plated perforated steel plate, dried,
It was pressed and cut into a predetermined size to obtain a negative electrode plate.

【0010】(実施例電池1)セパレータは、平均繊維
径約20μmのポリオレフィン繊維からなる不織布に対
しアクリル酸グラフト重合にて親水化処理したものを用
いた。ここで、アクリル酸グラフト重合は、アクリル酸
(ビニルモノマー)および重合開始剤の水溶液に不織布
を浸漬し、窒素雰囲気中で紫外線を照射することにより
おこなった。得られたセパレータの厚さは約0.18m
m、目付は約65g/mである。セパレータにて包ん
だ正極板3枚と負極板4枚とを交互に積層して、エレメ
ントを構成した。ニッケルメッキした鉄製の電池ケース
(高さ67mm、幅17mm、厚さ5.6mm)にこの
エレメントを挿入し、6mol/lのKOH水溶液を注
液して、密閉型電池とした。次いで、数回の充放電から
なる化成をおこなった。
(Example Battery 1) As a separator, a non-woven fabric made of a polyolefin fiber having an average fiber diameter of about 20 μm and subjected to hydrophilic treatment by acrylic acid graft polymerization was used. Here, the acrylic acid graft polymerization was carried out by immersing the nonwoven fabric in an aqueous solution of acrylic acid (vinyl monomer) and a polymerization initiator, and irradiating ultraviolet light in a nitrogen atmosphere. The thickness of the obtained separator is about 0.18 m
m, the basis weight is about 65 g / m 2 . An element was formed by alternately stacking three positive electrode plates and four negative electrode plates wrapped in a separator. The element was inserted into a nickel-plated iron battery case (height: 67 mm, width: 17 mm, thickness: 5.6 mm), and a 6 mol / l KOH aqueous solution was injected to obtain a sealed battery. Next, a chemical conversion consisting of several times of charging and discharging was performed.

【0011】(実施例電池2)セパレータは、平均繊維
径約10μmのポリオレフィン繊維からなる不織布に対
しアクリル酸グラフト重合にて親水化処理をおこなった
ものを用いた。得られたセパレータの厚さおよび目付
は、実施例電池1とほぼ同じである。セパレータの他
は、実施例電池1と同様に電池を構成し、化成充放電を
おこなった。
(Example Battery 2) As a separator, a non-woven fabric made of a polyolefin fiber having an average fiber diameter of about 10 μm and subjected to hydrophilic treatment by acrylic acid graft polymerization was used. The thickness and the basis weight of the obtained separator are almost the same as those of the battery 1 of the example. A battery was formed in the same manner as in Example Battery 1 except for the separator, and was subjected to formation charge / discharge.

【0012】(実施例電池3)セパレータは、実施例電
池1と同様の不織布に対しフッ素ガスにて親水化処理を
おこなったものを用いた。ここで、フッ素ガスの処理
は、フッ素ガスと酸素ガスの混合気中に不織布を放置す
ることによりおこなった。セパレータの他は、実施例電
池1と同様に電池を構成し、化成充放電をおこなった。
(Embodiment Battery 3) As the separator, the same non-woven fabric as in Embodiment Battery 1 was subjected to a hydrophilic treatment with fluorine gas. Here, the treatment of the fluorine gas was performed by leaving the nonwoven fabric in a mixture of the fluorine gas and the oxygen gas. A battery was formed in the same manner as in Example Battery 1 except for the separator, and was subjected to formation charge / discharge.

【0013】(比較例電池1)セパレータは、平均繊維
径約50μmのポリオレフィン繊維からなる不織布に対
しアクリル酸グラフト重合にて親水化処理をおこなった
ものを用いた。セパレータの他は、実施例電池1と同様
に電池を構成し、化成充放電をおこなった。
(Comparative Battery 1) A separator obtained by subjecting a nonwoven fabric made of polyolefin fibers having an average fiber diameter of about 50 μm to a hydrophilic treatment by acrylic acid graft polymerization was used. A battery was formed in the same manner as in Example Battery 1 except for the separator, and was subjected to formation charge / discharge.

【0014】(比較例電池2)セパレータは、平均繊維
径約5μmのポリオレフィン繊維からなる不織布に対し
アクリル酸グラフト重合にて親水化処理をおこなったも
のを用いた。セパレータの他は、実施例電池1と同様に
電池を構成し、化成充放電をおこなった。
(Comparative Example Battery 2) A separator obtained by subjecting a nonwoven fabric made of polyolefin fibers having an average fiber diameter of about 5 μm to hydrophilic treatment by acrylic acid graft polymerization was used. A battery was formed in the same manner as in Example Battery 1 except for the separator, and was subjected to formation charge / discharge.

【0015】(比較例電池3)セパレータは、本発明電
池1と同様の不織布を、ノニオン系界面活性剤の水溶液
に浸漬して親水化処理をおこなったものを用いた。セパ
レータの他は、実施例電池1と同様に電池を構成し、化
成充放電をおこなった。
(Comparative Battery 3) As the separator, a nonwoven fabric similar to that of Battery 1 of the present invention was subjected to a hydrophilic treatment by immersing the same in an aqueous solution of a nonionic surfactant. A battery was formed in the same manner as in Example Battery 1 except for the separator, and was subjected to formation charge / discharge.

【0016】セパレータの孔径分布は、次のようにして
測定した。まず、電池内におけるセパレータの孔径分布
を再現するため、セパレータを2枚の樹脂板ではさみ圧
迫を加えた。圧迫度は、完備電池において、セパレータ
が極板から受ける圧迫と同程度に設定してある。そし
て、このように圧迫を加えた状態のセパレータについ
て、水銀圧入式の孔径分布測定装置(島津ポアサイザー
9310)にて、孔径分布を測定した。
The pore size distribution of the separator was measured as follows. First, in order to reproduce the pore size distribution of the separator in the battery, the separator was sandwiched between two resin plates and pressed. The degree of compression is set to the same level as the compression that the separator receives from the electrode plate in the complete battery. The pore size distribution of the separator thus pressed was measured by a mercury intrusion type pore size distribution measuring device (Shimadzu Pore Sizer 9310).

【0017】結果を図1に示す。実施例電池1では、孔
径40μm以下の累積空孔体積が全空孔体積に対し約1
2%であり、実施例電池2では、孔径40μm以下の累
積空孔体積が全空孔体積に対し約26%であった。ま
た、図には示していないが、実施例電池1と実施例電池
3と比較例電池3とは、いずれも同じ基布のセパレータ
を用いているため、ほぼ同じ孔径分布を示した。
FIG. 1 shows the results. In the example battery 1, the cumulative pore volume having a pore diameter of 40 μm or less is about 1% of the total pore volume.
In the battery of Example 2, the cumulative volume of pores having a pore size of 40 μm or less was about 26% of the total volume of pores. Although not shown in the figure, the batteries of Example 1, the batteries of Example 3, and the batteries of Comparative Example 3 all use the same base fabric separator, and thus have substantially the same pore size distribution.

【0018】電池の放電出力特性は、次のようにして測
定した。すなわち、化成終了後の電池について、1サイ
クル目は、1CmA(1000mA)にて66分間充電
し、30分間休止した後、0.2CmA(200mA)
にて1.0Vまで放電をおこない、低率放電時の放電中
間電圧を求めた。そして、2サイクル目は、1サイクル
目と同様に、充電および休止をおこなった後、3CmA
(3000mA)にて電圧が1.0Vになるまで放電をお
こない、高率放電時の放電中間電圧を求めた。なお、充
放電試験時の雰囲気温度は25℃である。0.2CmA
放電時および3CmA放電時の放電中間電圧を下記表1
に示す。
The discharge output characteristics of the battery were measured as follows. That is, in the first cycle, the battery after the formation was charged at 1 CmA (1000 mA) for 66 minutes, paused for 30 minutes, and then 0.2 CmA (200 mA).
To discharge to 1.0 V, and a discharge intermediate voltage at the time of low rate discharge was obtained. Then, in the second cycle, after charging and pausing as in the first cycle, 3 CmA
At 3000 mA, the battery was discharged until the voltage reached 1.0 V, and a discharge intermediate voltage during high-rate discharge was determined. The ambient temperature during the charge / discharge test was 25 ° C. 0.2 CmA
Table 1 below shows the discharge intermediate voltage at the time of discharging and 3 CmA discharging.
Shown in

【0019】[0019]

【表1】 [Table 1]

【0020】比較例電池2では、高率放電時の放電中間
電圧が低かったが、これは比較例電池2のセパレータに
おいては、孔径の小さい空孔が多く、セパレータ中のイ
オン移動が低下したこと等が影響していると考えられ
る。
In the battery 2 of the comparative example, the discharge intermediate voltage at the time of high-rate discharge was low. It is considered that the influence is given.

【0021】電池のサイクル寿命は、次のようにして測
定した。まず、高率放電試験をおこなった電池につい
て、0.2CmAにて1.0Vまで残存放電した。そし
て、1CmAにて66分間充電し、1CmAにて1.0
Vまで放電するという条件で充放電サイクルをおこなっ
た。放電容量は、100サイクルごとに、1CmAにて
66分間充電し、0.2CmAにて1.0Vまで放電す
るという条件で確認した。
The cycle life of the battery was measured as follows. First, the battery subjected to the high-rate discharge test was subjected to residual discharge at 0.2 CmA to 1.0 V. Then, charge at 1 CmA for 66 minutes, and charge at 1.0 CmA for 1.0 minute.
A charge / discharge cycle was performed under the condition of discharging to V. The discharge capacity was confirmed under the conditions that the battery was charged at 1 CmA for 66 minutes every 100 cycles and discharged to 1.0 V at 0.2 CmA.

【0022】図2に、放電容量の推移を示す。実施例電
池1〜3に比べて、比較例電池1の寿命が短かかった
が、これは比較例電池1のセパレータにおいては、孔径
の大きい空孔が多く、セパレータ中の電解液が減少しや
すかったこと等が影響していると考えられる。また、比
較例電池3は著しく寿命が短かった。これは、界面活性
剤による親水化の効果が長続きしなかったためと考えら
れ、ポリオレフィン製不織布を親水化するには耐久性に
優れたアクリル酸グラフト処理またはフッ素処理が好適
であることがわかる。
FIG. 2 shows the transition of the discharge capacity. Although the life of the comparative battery 1 was shorter than that of the batteries of the examples 1 to 3, the separator of the comparative battery 1 had many pores having a large pore diameter, and the electrolyte in the separator was easily reduced. It is considered that this has influenced. The battery of Comparative Example 3 had a remarkably short life. This is considered to be because the effect of the hydrophilicity by the surfactant did not last for a long time, and it can be seen that the acrylic acid graft treatment or the fluorine treatment, which has excellent durability, is suitable for making the polyolefin nonwoven fabric hydrophilic.

【0023】なお、上記の実施例では、特定の径の繊維
からなる不織布を例にして示したが、どのような繊維径
の繊維を用いても、セパレータの孔径分布が、本願請求
項1にて示される範囲になるのであれば、同様の効果が
得られる。また、上記の実施例では、化成後の電池内に
おけるセパレータの孔径分布を例に示したが、充放電サ
イクルが進行した後の電池内においても、セパレータの
孔径分布が、本請求項にて示される範囲になるのであれ
ば、同様の効果が得られる。また、電池は充電状態であ
っても構わないし、放電状態であっても構わない。
In the above embodiment, a non-woven fabric made of a fiber having a specific diameter is shown as an example. However, no matter what kind of fiber diameter fiber is used, the pore size distribution of the separator is as defined in claim 1 of the present application. The same effect can be obtained as long as it is within the range indicated by. Further, in the above embodiment, the pore size distribution of the separator in the battery after the formation was shown as an example, but also in the battery after the charge / discharge cycle has progressed, the pore size distribution of the separator is shown in the claims. The same effect can be obtained as long as it is within the range. Further, the battery may be in a charged state or in a discharged state.

【0024】不織布の製造方法は、湿式、乾式、メルト
ブロー等何であっても構わない。また、上記の実施例で
は、親水化処理の方法について具体的な例を挙げて示し
たが、アクリル酸グラフト重合の条件およびフッ素ガス
処理の条件については、適宜変更することができる。
The nonwoven fabric may be produced by any method such as a wet method, a dry method and a melt blow method. Further, in the above-described embodiment, specific examples of the method of the hydrophilic treatment are shown, but the conditions of the acrylic acid graft polymerization and the conditions of the fluorine gas treatment can be appropriately changed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】水銀圧入法により測定したセパレータ中の孔径
分布を示す図である。
FIG. 1 is a view showing a pore size distribution in a separator measured by a mercury intrusion method.

【図2】ニッケル・金属水素化物電池の放電容量の推移
を示す図である。
FIG. 2 is a graph showing a change in discharge capacity of a nickel metal hydride battery.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アクリル酸グラフト重合処理またはフッ
素ガス処理の内の少なくとも一つの方法によって親水化
処理を施したポリオレフィン製不織布セパレータを備え
るニッケル・金属水素化物電池であって、前記セパレー
タにおける孔径40μm以下の空孔の累積空孔体積が全
空孔体積に対し10〜30パーセントであることを特徴
とするニッケル・金属水素化物電池。
1. A nickel metal hydride battery comprising a polyolefin nonwoven fabric separator subjected to a hydrophilic treatment by at least one of an acrylic acid graft polymerization treatment and a fluorine gas treatment, wherein the separator has a pore diameter of 40 μm or less. Wherein the cumulative pore volume of the pores is 10 to 30% of the total pore volume.
JP15024099A 1999-05-28 1999-05-28 Nickel metal hydride battery Expired - Fee Related JP4660869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15024099A JP4660869B2 (en) 1999-05-28 1999-05-28 Nickel metal hydride battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15024099A JP4660869B2 (en) 1999-05-28 1999-05-28 Nickel metal hydride battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010194699A Division JP2011023358A (en) 2010-08-31 2010-08-31 Nickel-metal hydride battery

Publications (2)

Publication Number Publication Date
JP2000340208A true JP2000340208A (en) 2000-12-08
JP4660869B2 JP4660869B2 (en) 2011-03-30

Family

ID=15492637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15024099A Expired - Fee Related JP4660869B2 (en) 1999-05-28 1999-05-28 Nickel metal hydride battery

Country Status (1)

Country Link
JP (1) JP4660869B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100821442B1 (en) * 2005-05-31 2008-04-10 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery and battery module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354137A (en) * 1986-08-15 1988-03-08 キンバリ− クラ−ク コ−ポレ−シヨン Humidifying wiper
JPH067429A (en) * 1992-03-17 1994-01-18 Asahi Medical Co Ltd Blood filter medium
JPH07220711A (en) * 1994-01-31 1995-08-18 Toshiba Battery Co Ltd Nickel-hydrogen secondary battery
JPH10101830A (en) * 1996-08-07 1998-04-21 Mitsubishi Chem Corp Surface treatment of polyolefin-based resin molded form
JPH10199503A (en) * 1997-01-06 1998-07-31 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPH11135096A (en) * 1997-10-31 1999-05-21 Toshiba Battery Co Ltd Nickel-hydrogen secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354137A (en) * 1986-08-15 1988-03-08 キンバリ− クラ−ク コ−ポレ−シヨン Humidifying wiper
JPH067429A (en) * 1992-03-17 1994-01-18 Asahi Medical Co Ltd Blood filter medium
JPH07220711A (en) * 1994-01-31 1995-08-18 Toshiba Battery Co Ltd Nickel-hydrogen secondary battery
JPH10101830A (en) * 1996-08-07 1998-04-21 Mitsubishi Chem Corp Surface treatment of polyolefin-based resin molded form
JPH10199503A (en) * 1997-01-06 1998-07-31 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPH11135096A (en) * 1997-10-31 1999-05-21 Toshiba Battery Co Ltd Nickel-hydrogen secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100821442B1 (en) * 2005-05-31 2008-04-10 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery and battery module
US7951482B2 (en) 2005-05-31 2011-05-31 Panasonic Corporation Non-aqueous electrolyte secondary battery and battery module
US8076023B2 (en) 2005-05-31 2011-12-13 Panasonic Corporation Non-aqueous electrolyte secondary battery and battery module

Also Published As

Publication number Publication date
JP4660869B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
JP2001102084A (en) Alkali storage battery and method for manufacturing it
JP4307020B2 (en) Alkaline storage battery
JP2003317694A (en) Nickel hydride storage battery
JP4660869B2 (en) Nickel metal hydride battery
JP2011023358A (en) Nickel-metal hydride battery
JPH10125300A (en) Separator for alkaline secondary battery
JP3816653B2 (en) Nickel metal hydride secondary battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP3332139B2 (en) Sealed alkaline storage battery
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP4703154B2 (en) Alkaline storage battery and method of manufacturing the same
JP2001283902A (en) Alkaline battery
JP2006120647A (en) Nickel hydrogen secondary battery
JPH10334899A (en) Manufacture of alkaline storage battery and its electrode
JPH09180753A (en) Nickel-metal hydride battery
JPH02183964A (en) Manufacture of hydrogen storage electrode
JP3685726B2 (en) Method for producing sintered cadmium negative electrode
JP2001266860A (en) Nickel hydrogen storage battery
JP2000164246A (en) Alkali storage battery
JPH10125313A (en) Negative electrode for alkaline storage battery and alkaline storage battery equipped with negative electrode
JPH09320576A (en) Hydrogen absorbing alloy electrode and sealed nickelhydrogen storage battery
JP2002157989A (en) Alkaline storage battery
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery
JPH06275278A (en) Hydrogen storage electrode for alkaline storage battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100831

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Ref document number: 4660869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees