JP2011023358A - Nickel-metal hydride battery - Google Patents

Nickel-metal hydride battery Download PDF

Info

Publication number
JP2011023358A
JP2011023358A JP2010194699A JP2010194699A JP2011023358A JP 2011023358 A JP2011023358 A JP 2011023358A JP 2010194699 A JP2010194699 A JP 2010194699A JP 2010194699 A JP2010194699 A JP 2010194699A JP 2011023358 A JP2011023358 A JP 2011023358A
Authority
JP
Japan
Prior art keywords
separator
battery
nickel
discharge
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010194699A
Other languages
Japanese (ja)
Inventor
Takehito Matsubara
岳人 松原
Yuichi Umehara
雄一 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2010194699A priority Critical patent/JP2011023358A/en
Publication of JP2011023358A publication Critical patent/JP2011023358A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a drop of a discharge voltage and reduction of a battery output by suppressing an increase of polarization of a battery caused by a separator during high rate discharge. <P>SOLUTION: This nickel-metal hydride battery includes a hydrophilic nonwoven fabric separator made of polyolefin, and the separator is contained in a battery case in a pressed state by a positive electrode plate and a negative electrode plate. In this separator in the pressed state by the positive electrode and the negative electrode, the accumulated porous volume of pores each of which has a pore size of not larger than 40 μm is 10-30% of the whole porous volume. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ニッケル・金属水素化物電池に関するものである。   The present invention relates to a nickel metal hydride battery.

水酸化ニッケルを主体とする正極と水素吸蔵合金を主体とする負極を備えたニッケル・金属水素化物電池は、エネルギー密度が高く、高率放電性能に優れることから、携帯機器や電気自動車用などの電源として商用されている。一般的なニッケル・金属水素化物電池の構成では、正極と負極の間に不織布製のセパレータが配置されている。セパレータの材質としては耐アルカリ性に優れたポリオレフィン樹脂に親水化処理を施したものが好適である。このような親水化ポリオレフィン製不織布をセパレータとして用いると、正極と負極とを電気的に絶縁して内部短絡を防止するとともに、不織布の繊維間の空孔に電解液が保持されて、充放電反応を進行させることができる。繊維間の空孔は、その孔径が小さくなるほど電解液の保持力が高くなり、セパレータ内の液枯れを防止することができる。しかしながら、特に電池を高率で放電した場合には、正極と負極との間に介在したセパレータが電池の分極を増大させて放電電圧が下がり、電池の出力が低下することがあった。   Nickel / metal hydride batteries with a positive electrode mainly composed of nickel hydroxide and a negative electrode mainly composed of a hydrogen storage alloy have high energy density and excellent high-rate discharge performance. Commercially available as a power source. In a general nickel-metal hydride battery configuration, a non-woven separator is disposed between the positive electrode and the negative electrode. As a material for the separator, a polyolefin resin excellent in alkali resistance and subjected to a hydrophilic treatment is preferable. When such a hydrophilic polyolefin nonwoven fabric is used as a separator, the positive electrode and the negative electrode are electrically insulated to prevent an internal short circuit, and the electrolyte is held in the pores between the fibers of the nonwoven fabric, and the charge / discharge reaction Can be advanced. As the pore diameter of the pores between the fibers becomes smaller, the holding power of the electrolytic solution becomes higher, and it is possible to prevent the separator from draining. However, particularly when the battery is discharged at a high rate, the separator interposed between the positive electrode and the negative electrode increases the polarization of the battery, and the discharge voltage is lowered, and the output of the battery may be lowered.

上述のように、従来の技術においては、セパレータによって電池の分極が増大するという問題があった。今後、ニッケル・金属水素化物電池の出力を向上させるには、不織布セパレータに起因する分極を抑制しなければならない。そこで本発明は、セパレータによる電池の分極を低減することを目的とする。   As described above, the conventional technique has a problem that the polarization of the battery is increased by the separator. In the future, in order to improve the output of the nickel-metal hydride battery, the polarization caused by the nonwoven fabric separator must be suppressed. Therefore, an object of the present invention is to reduce the polarization of a battery due to a separator.

本発明では、上述の課題を解決するために、アクリル酸グラフト重合処理またはフッ素ガス処理の内の少なくとも一つの方法によって親水化処理を施したポリオレフィン製不織布セパレータを備えるニッケル・金属水素化物電池であって、前記セパレータにおける孔径40μm以下の空孔の累積空孔体積が全空孔体積に対し10〜30パーセントであることを特徴とするニッケル・金属水素化物電池を提供する。   In order to solve the above-mentioned problems, the present invention provides a nickel-metal hydride battery comprising a polyolefin nonwoven fabric separator subjected to a hydrophilic treatment by at least one of an acrylic acid graft polymerization treatment or a fluorine gas treatment. In addition, the nickel-metal hydride battery is characterized in that the cumulative pore volume of pores having a pore diameter of 40 μm or less in the separator is 10 to 30 percent with respect to the total pore volume.

本発明によればセパレータによる電池の分極を低減することができる。   According to the present invention, the polarization of the battery due to the separator can be reduced.

水銀圧入法により測定したセパレータ中の孔径分布を示す図である。It is a figure which shows the pore size distribution in the separator measured by the mercury intrusion method. ニッケル・金属水素化物電池の放電容量の推移を示す図である。It is a figure which shows transition of the discharge capacity of a nickel metal hydride battery.

本発明のニッケル・金属水素化物電池は、アクリル酸グラフト重合処理またはフッ素ガス処理の内の少なくとも一つの方法によって親水化処理を施したポリオレフィン製不織布セパレータを備えるニッケル・金属水素化物電池であって、前記セパレータにおける孔径40μm以下の空孔の累積空孔体積が全空孔体積に対し10〜30パーセントであることを特徴とするものであって、セパレータとしてこのようなものを用いることによって、サイクル寿命性能を低下させることなく、アルカリ蓄電池の高率放電時の出力を向上させることができる。   The nickel-metal hydride battery of the present invention is a nickel-metal hydride battery comprising a polyolefin nonwoven fabric separator subjected to hydrophilic treatment by at least one of acrylic acid graft polymerization treatment or fluorine gas treatment, In the separator, the accumulated pore volume of pores having a pore diameter of 40 μm or less is 10 to 30% with respect to the total pore volume, and by using such a separator, the cycle life The output at the time of high rate discharge of the alkaline storage battery can be improved without degrading the performance.

その理由については種々考えられるが、概ね次のように説明できる。すなわち、充放電反応の際には正極と負極との間のイオン移動が不可欠であるが、それは一般的なアルカリ蓄電池においては、不織布セパレータの空孔に保持された電解液を通じて行われる。不織布内に細孔が数多く存在すると、正極と負極の間の電解液の経路が長くなり、イオン移動が困難になって、分極が大きくなると考えられる。また、電解液の経路が長くなると正極と負極の間の電気抵抗が増大し、これも分極を大きくする要因になると考えられる。   There are various reasons for this, but it can be generally explained as follows. That is, in the charge / discharge reaction, ion transfer between the positive electrode and the negative electrode is indispensable. In a general alkaline storage battery, this is performed through an electrolytic solution retained in the pores of the nonwoven fabric separator. If there are many pores in the nonwoven fabric, the path of the electrolyte solution between the positive electrode and the negative electrode becomes longer, ion migration becomes difficult, and polarization is considered to increase. In addition, when the electrolyte path becomes longer, the electrical resistance between the positive electrode and the negative electrode increases, which is considered to be a factor for increasing the polarization.

ニッケル・金属水素化物電池内の不織布においては、孔径40μm以下の累積空孔体積を全空孔体積に対し30パーセント以下になるように設定すると、高率放電時においても充分にイオン移動ができ、分極の増大を抑制することができる。また、孔径40μm以下の累積空孔体積を全空孔体積に対し10パーセント以上になるように設定すると、充放電サイクルを繰り返した後も、細孔が充分な電解液を保持することから、液枯れに起因する内部抵抗上昇を抑制することができると考えられる。なお、本発明で言う孔径とは、水銀圧入法により算出される孔径である。   In the non-woven fabric in the nickel-metal hydride battery, if the cumulative void volume with a pore diameter of 40 μm or less is set to 30% or less with respect to the total void volume, ion migration can be sufficiently performed even during high rate discharge, An increase in polarization can be suppressed. In addition, when the cumulative pore volume with a pore diameter of 40 μm or less is set to be 10% or more with respect to the total pore volume, the pores retain sufficient electrolyte even after repeated charge / discharge cycles. It is considered that an increase in internal resistance due to withering can be suppressed. In addition, the hole diameter said by this invention is a hole diameter computed by the mercury intrusion method.

本セパレータの材料としては、繊維径が10〜30μmの範囲にあるポリオレフィン繊維を用いるのが、上述の孔径分布を有する不織布の製造に好適であるので好ましい。また、不織布の構成としては、目付重量45〜75g/m2厚さ130〜200μmの不織布とすると、充分な通気性が得られ、かつ内部短絡が防止できるので好適である。また、ニッケル・金属水素化物電池のセパレータの材質としてポリオレフィン樹脂を用いる際は、親水化処理をおこなうことが必要であり、この手段としてアクリル酸グラフト重合処理やフッ素ガス処理をおこなうことが、耐久性および経済性に優れているという理由で好適である。   As the material of the separator, it is preferable to use polyolefin fibers having a fiber diameter in the range of 10 to 30 μm because it is suitable for the production of the nonwoven fabric having the above-mentioned pore diameter distribution. Moreover, as a structure of a nonwoven fabric, when a nonwoven fabric with a fabric weight of 45-75 g / m2 thickness 130-200 micrometers is sufficient, since sufficient air permeability is obtained and an internal short circuit can be prevented, it is suitable. Also, when polyolefin resin is used as the material for the nickel-metal hydride battery separator, it is necessary to perform a hydrophilic treatment, and as a means for this, it is possible to perform acrylic acid graft polymerization treatment or fluorine gas treatment. And it is preferable because it is economical.

本発明を実施例によって説明する。正極は次の方法で作製した。すなわち、ニッケル、コバルトおよび亜鉛を共沈して得られた水酸化ニッケル粉末に対し、金属コバルト粉末およびメチルセルロース水溶液を加えて混練し、ペーストにした。そして、ペーストを発泡状ニッケル多孔体に充填、プレス、乾燥し、所定のサイズに切断して正極板を得た。負極は次の方法で作製した。すなわち、ミッシュメタル(以後Mmと表記する。主要成分は、La:約45重量%、Ce:約5重量%、Pr:約10重量%、Nd:約40重量%)、Ni、Co、MnおよびAlの金属材料を所望の組成となるように高周波誘導炉にて融解し、金型に鋳込んで凝固させた。得られた合金の組成は、MmNi3.6Co0.8Al0.4Mn0.2である。合金塊表面の酸化物層は研磨して除去した。その後、合金塊を粉砕し、ふるい分けて、平均粒径が数十μmの水素吸蔵合金粉末とした。この水素吸蔵合金粉末と金属ニッケル粉末およびポリビニルアルコール水溶液とを混練し、ペーストにした。そして、このペーストをニッケルメッキした穿孔鋼板に塗着、乾燥、プレスし、所定のサイズに切断して負極板を得た。   The invention is illustrated by examples. The positive electrode was produced by the following method. That is, to the nickel hydroxide powder obtained by coprecipitation of nickel, cobalt and zinc, a metal cobalt powder and an aqueous methylcellulose solution were added and kneaded to obtain a paste. The paste was filled into a foamed nickel porous body, pressed, dried, and cut into a predetermined size to obtain a positive electrode plate. The negative electrode was produced by the following method. That is, misch metal (hereinafter referred to as Mm. The main components are La: about 45 wt%, Ce: about 5 wt%, Pr: about 10 wt%, Nd: about 40 wt%), Ni, Co, Mn and An Al metal material was melted in a high-frequency induction furnace so as to have a desired composition, and was cast into a mold and solidified. The composition of the obtained alloy is MmNi3.6Co0.8Al0.4Mn0.2. The oxide layer on the surface of the alloy lump was removed by polishing. Thereafter, the alloy lump was pulverized and sieved to obtain a hydrogen storage alloy powder having an average particle size of several tens of μm. This hydrogen storage alloy powder, metal nickel powder and polyvinyl alcohol aqueous solution were kneaded to obtain a paste. The paste was applied to a nickel-plated perforated steel sheet, dried and pressed, and cut into a predetermined size to obtain a negative electrode plate.

(実施例電池1)セパレータは、平均繊維径約20μmのポリオレフィン繊維からなる不織布に対しアクリル酸グラフト重合にて親水化処理したものを用いた。ここで、アクリル酸グラフト重合は、アクリル酸(ビニルモノマー)および重合開始剤の水溶液に不織布を浸漬し、窒素雰囲気中で紫外線を照射することによりおこなった。得られたセパレータの厚さは約0.18mm、目付は約65g/m2である。セパレータにて包んだ正極板3枚と負極板4枚とを交互に積層して、エレメントを構成した。ニッケルメッキした鉄製の電池ケース(高さ67mm、幅17mm、厚さ5.6mm)にこのエレメントを挿入し、6mol/lのKOH水溶液を注液して、密閉型電池とした。次いで、数回の充放電からなる化成をおこなった。   (Example battery 1) As the separator, a non-woven fabric made of polyolefin fibers having an average fiber diameter of about 20 μm was subjected to a hydrophilic treatment by acrylic acid graft polymerization. Here, the acrylic acid graft polymerization was performed by immersing the nonwoven fabric in an aqueous solution of acrylic acid (vinyl monomer) and a polymerization initiator and irradiating ultraviolet rays in a nitrogen atmosphere. The obtained separator has a thickness of about 0.18 mm and a basis weight of about 65 g / m 2. Three positive electrode plates and four negative electrode plates wrapped with a separator were alternately laminated to form an element. This element was inserted into a nickel-plated iron battery case (height 67 mm, width 17 mm, thickness 5.6 mm), and a 6 mol / l aqueous solution of KOH was poured into a sealed battery. Next, chemical conversion consisting of several times of charge and discharge was performed.

(実施例電池2)セパレータは、平均繊維径約10μmのポリオレフィン繊維からなる不織布に対しアクリル酸グラフト重合にて親水化処理をおこなったものを用いた。得られたセパレータの厚さおよび目付は、実施例電池1とほぼ同じである。セパレータの他は、実施例電池1と同様に電池を構成し、化成充放電をおこなった。   (Example battery 2) The separator used was a nonwoven fabric made of polyolefin fibers having an average fiber diameter of about 10 μm and subjected to a hydrophilic treatment by acrylic acid graft polymerization. The thickness and basis weight of the obtained separator are almost the same as those of Example Battery 1. Except for the separator, a battery was constructed in the same manner as in Example Battery 1, and chemical charge / discharge was performed.

(実施例電池3)セパレータは、実施例電池1と同様の不織布に対しフッ素ガスにて親水化処理をおこなったものを用いた。ここで、フッ素ガスの処理は、フッ素ガスと酸素ガスの混合気中に不織布を放置することによりおこなった。セパレータの他は、実施例電池1と同様に電池を構成し、化成充放電をおこなった。   (Example battery 3) As the separator, the same nonwoven fabric as in Example battery 1 was subjected to a hydrophilization treatment with fluorine gas. Here, the treatment of the fluorine gas was performed by leaving the nonwoven fabric in a mixture of fluorine gas and oxygen gas. Except for the separator, a battery was constructed in the same manner as in Example Battery 1, and chemical charge / discharge was performed.

(比較例電池1)セパレータは、平均繊維径約50μmのポリオレフィン繊維からなる不織布に対しアクリル酸グラフト重合にて親水化処理をおこなったものを用いた。セパレータの他は、実施例電池1と同様に電池を構成し、化成充放電をおこなった。   (Comparative Example Battery 1) The separator used was a nonwoven fabric made of polyolefin fibers having an average fiber diameter of about 50 μm and subjected to a hydrophilic treatment by acrylic acid graft polymerization. Except for the separator, a battery was constructed in the same manner as in Example Battery 1, and chemical charge / discharge was performed.

(比較例電池2)セパレータは、平均繊維径約5μmのポリオレフィン繊維からなる不織布に対しアクリル酸グラフト重合にて親水化処理をおこなったものを用いた。セパレータの他は、実施例電池1と同様に電池を構成し、化成充放電をおこなった。   (Comparative battery 2) The separator used was a nonwoven fabric made of polyolefin fibers having an average fiber diameter of about 5 μm and subjected to a hydrophilic treatment by acrylic acid graft polymerization. Except for the separator, a battery was constructed in the same manner as in Example Battery 1, and chemical charge / discharge was performed.

(比較例電池3)セパレータは、本発明電池1と同様の不織布を、ノニオン系界面活性剤の水溶液に浸漬して親水化処理をおこなったものを用いた。セパレータの他は、実施例電池1と同様に電池を構成し、化成充放電をおこなった。   (Comparative Example Battery 3) As the separator, a non-woven fabric similar to that of the present invention battery 1 was immersed in an aqueous solution of a nonionic surfactant and subjected to a hydrophilic treatment. Except for the separator, a battery was constructed in the same manner as in Example Battery 1, and chemical charge / discharge was performed.

セパレータの孔径分布は、次のようにして測定した。まず、電池内におけるセパレータの孔径分布を再現するため、セパレータを2枚の樹脂板ではさみ圧迫を加えた。圧迫度は、完備電池において、セパレータが極板から受ける圧迫と同程度に設定してある。そして、このように圧迫を加えた状態のセパレータについて、水銀圧入式の孔径分布測定装置(島津ポアサイザー9310)にて、孔径分布を測定した。   The pore size distribution of the separator was measured as follows. First, in order to reproduce the pore size distribution of the separator in the battery, the separator was sandwiched between two resin plates and pressed. In the complete battery, the degree of compression is set to the same level as the compression received by the separator from the electrode plate. And about the separator of the state which applied the pressure in this way, the hole diameter distribution was measured with the mercury intrusion type hole diameter distribution measuring apparatus (Shimadzu pore sizer 9310).

結果を図1に示す。実施例電池1では、孔径40μm以下の累積空孔体積が全空孔体積に対し約12%であり、実施例電池2では、孔径40μm以下の累積空孔体積が全空孔体積に対し約26%であった。また、図には示していないが、実施例電池1と実施例電池3と比較例電池3とは、いずれも同じ基布のセパレータを用いているため、ほぼ同じ孔径分布を示した。   The results are shown in FIG. In Example Battery 1, the cumulative pore volume with a pore diameter of 40 μm or less is about 12% of the total pore volume. In Example Battery 2, the cumulative pore volume with a pore diameter of 40 μm or less is about 26 with respect to the total pore volume. %Met. Moreover, although not shown in the figure, Example Battery 1, Example Battery 3 and Comparative Example Battery 3 all showed the same pore size distribution because they used the same base fabric separator.

電池の放電出力特性は、次のようにして測定した。すなわち、化成終了後の電池について、1サイクル目は、1CmA(1000mA)にて66分間充電し、30分間休止した後、0.2CmA(200mA)にて1.0Vまで放電をおこない、低率放電時の放電中間電圧を求めた。そして、2サイクル目は、1サイクル目と同様に、充電および休止をおこなった後、3CmA(3000mA)にて電圧が1.0Vになるまで放電をおこない、高率放電時の放電中間電圧を求めた。なお、充放電試験時の雰囲気温度は25℃である。0.2CmA放電時および3CmA放電時の放電中間電圧を下記表1に示す。   The discharge output characteristics of the battery were measured as follows. That is, for the battery after chemical conversion is completed, the first cycle is charged at 1 CmA (1000 mA) for 66 minutes, paused for 30 minutes, discharged to 1.0 V at 0.2 CmA (200 mA), and low rate discharge The discharge intermediate voltage was determined. In the second cycle, similarly to the first cycle, after charging and resting, discharging is performed at 3 CmA (3000 mA) until the voltage reaches 1.0 V, and a discharge intermediate voltage at high rate discharge is obtained. It was. In addition, the atmospheric temperature at the time of a charge / discharge test is 25 degreeC. The discharge intermediate voltage at the time of 0.2 CmA discharge and at the time of 3 CmA discharge is shown in Table 1 below.

比較例電池2では、高率放電時の放電中間電圧が低かったが、これは比較例電池2のセパレータにおいては、孔径の小さい空孔が多く、セパレータ中のイオン移動が低下したこと等が影響していると考えられる。   In Comparative Example Battery 2, the discharge intermediate voltage at the time of high rate discharge was low, but this was influenced by the fact that the separator of Comparative Example Battery 2 had many pores having a small hole diameter and decreased ion movement in the separator. it seems to do.

電池のサイクル寿命は、次のようにして測定した。まず、高率放電試験をおこなった電池について、0.2CmAにて1.0Vまで残存放電した。そして、1CmAにて66分間充電し、1CmAにて1.0Vまで放電するという条件で充放電サイクルをおこなった。放電容量は、100サイクルごとに、1CmAにて66分間充電し、0.2CmAにて1.0Vまで放電するという条件で確認した。   The cycle life of the battery was measured as follows. First, the battery subjected to the high-rate discharge test was discharged to 1.0 V at 0.2 CmA. And charging / discharging cycle was performed on the conditions that it charged for 66 minutes at 1 CmA, and discharged to 1.0V at 1 CmA. The discharge capacity was confirmed under the condition that every 100 cycles, the battery was charged at 1 CmA for 66 minutes and discharged to 0.2 V at 0.2 CmA.

図2に、放電容量の推移を示す。実施例電池1〜3に比べて、比較例電池1の寿命が短かかったが、これは比較例電池1のセパレータにおいては、孔径の大きい空孔が多く、セパレータ中の電解液が減少しやすかったこと等が影響していると考えられる。また、比較例電池3は著しく寿命が短かった。これは、界面活性剤による親水化の効果が長続きしなかったためと考えられ、ポリオレフィン製不織布を親水化するには耐久性に優れたアクリル酸グラフト処理またはフッ素処理が好適であることがわかる。   FIG. 2 shows the transition of the discharge capacity. The life of the comparative example battery 1 was shorter than that of the example batteries 1 to 3, but this is because the separator of the comparative example battery 1 has many pores with large pore diameters, and the electrolyte in the separator tends to decrease. It is thought that this has influenced. In addition, the battery of Comparative Example 3 has a remarkably short life. This is considered to be because the effect of hydrophilization by the surfactant did not last for a long time, and it was found that acrylic grafting treatment or fluorine treatment excellent in durability was suitable for hydrophilizing the polyolefin nonwoven fabric.

なお、上記の実施例では、特定の径の繊維からなる不織布を例にして示したが、どのような繊維径の繊維を用いても、セパレータの孔径分布が、本願請求項1にて示される範囲になるのであれば、同様の効果が得られる。また、上記の実施例では、化成後の電池内におけるセパレータの孔径分布を例に示したが、充放電サイクルが進行した後の電池内においても、セパレータの孔径分布が、本請求項にて示される範囲になるのであれば、同様の効果が得られる。また、電池は充電状態であっても構わないし、放電状態であっても構わない。   In the above embodiment, the nonwoven fabric made of fibers having a specific diameter is shown as an example, but the pore diameter distribution of the separator is shown in claim 1 of this application, regardless of the fiber having any fiber diameter. If it falls within the range, the same effect can be obtained. Further, in the above-described examples, the pore size distribution of the separator in the battery after chemical conversion is shown as an example. However, the pore size distribution of the separator in the battery after the charge / discharge cycle has progressed is shown in the claims. If it is within the range, the same effect can be obtained. The battery may be in a charged state or a discharged state.

不織布の製造方法は、湿式、乾式、メルトブロー等何であっても構わない。また、上記の実施例では、親水化処理の方法について具体的な例を挙げて示したが、アクリル酸グラフト重合の条件およびフッ素ガス処理の条件については、適宜変更することができる。   The method for producing the nonwoven fabric may be any method such as wet, dry, and melt blow. In the above-described embodiments, specific examples of the hydrophilization treatment method have been described. However, the acrylic acid graft polymerization conditions and the fluorine gas treatment conditions can be appropriately changed.

Claims (1)

親水性を有するポリオレフィン製不織布セパレータを備え、前記セパレータが正極板と負極板とによって圧迫された状態で電池ケース収納されたニッケル・金属水素化物電池であって、前記正極板と前記負極板とによって圧迫された状態の前記セパレータにおける孔径40μm以下の空孔の累積空孔体積が全空孔体積に対し10〜30パーセントであることを特徴とするニッケル・金属水素化物電池。   A nickel-metal hydride battery comprising a polyolefin nonwoven fabric separator having hydrophilicity and housed in a battery case in a state where the separator is pressed by a positive electrode plate and a negative electrode plate, the positive electrode plate and the negative electrode plate A nickel-metal hydride battery characterized in that the accumulated pore volume of pores having a pore diameter of 40 μm or less in the pressed separator is 10 to 30 percent of the total pore volume.
JP2010194699A 2010-08-31 2010-08-31 Nickel-metal hydride battery Pending JP2011023358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010194699A JP2011023358A (en) 2010-08-31 2010-08-31 Nickel-metal hydride battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010194699A JP2011023358A (en) 2010-08-31 2010-08-31 Nickel-metal hydride battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15024099A Division JP4660869B2 (en) 1999-05-28 1999-05-28 Nickel metal hydride battery

Publications (1)

Publication Number Publication Date
JP2011023358A true JP2011023358A (en) 2011-02-03

Family

ID=43633214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010194699A Pending JP2011023358A (en) 2010-08-31 2010-08-31 Nickel-metal hydride battery

Country Status (1)

Country Link
JP (1) JP2011023358A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175372A (en) * 2012-02-27 2013-09-05 Enuzu Enterprise Inc Led fluorescent illumination apparatus
JP2017033717A (en) * 2015-07-30 2017-02-09 株式会社Gsユアサ Storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175372A (en) * 2012-02-27 2013-09-05 Enuzu Enterprise Inc Led fluorescent illumination apparatus
JP2017033717A (en) * 2015-07-30 2017-02-09 株式会社Gsユアサ Storage battery

Similar Documents

Publication Publication Date Title
JP5636740B2 (en) Hydrogen storage alloy for alkaline storage battery and method for producing the same
JP2008071533A (en) Manufacturing method of alkaline battery nickel electrode and alkaline battery nickel electrode
JP2008084649A (en) Hydrogen storage alloy for alkaline storage battery, alkaline storage battery and its manufacturing method
JP3653425B2 (en) Alkaline storage battery and method for manufacturing the same
JP2003317694A (en) Nickel hydride storage battery
JP2011023358A (en) Nickel-metal hydride battery
JP2004031293A (en) Alkaline storage battery
JP2008192320A (en) Hydrogen occlusive alloy electrode, manufacturing method therefor, and alkali storage battery
JP4772185B2 (en) Positive electrode plate for alkaline storage battery, method for producing the same, and alkaline storage battery using the same
JP2012238565A (en) Alkaline storage battery
JP4660869B2 (en) Nickel metal hydride battery
JP4420767B2 (en) Nickel / hydrogen storage battery
JP2000340202A (en) Alkaline storage battery
JP5092230B2 (en) Control valve type lead acid battery
JPWO2011077640A1 (en) Control valve type lead acid battery
JP3555177B2 (en) Sealed lead-acid battery
JP4580861B2 (en) Nickel metal hydride secondary battery
JP3816653B2 (en) Nickel metal hydride secondary battery
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP6951047B2 (en) Alkaline secondary battery
JP2002069511A (en) Method for producing hydrogen storage alloy and hydrogen storage alloy electrode
JPH10106525A (en) Sealed alkaline storage battery
JPH11154531A (en) Manufacture of alkali secondary battery
JP4703154B2 (en) Alkaline storage battery and method of manufacturing the same
JP3685726B2 (en) Method for producing sintered cadmium negative electrode

Legal Events

Date Code Title Description
A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20120110