JP2000340202A - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JP2000340202A
JP2000340202A JP11247374A JP24737499A JP2000340202A JP 2000340202 A JP2000340202 A JP 2000340202A JP 11247374 A JP11247374 A JP 11247374A JP 24737499 A JP24737499 A JP 24737499A JP 2000340202 A JP2000340202 A JP 2000340202A
Authority
JP
Japan
Prior art keywords
separator
basis weight
electrode plate
battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11247374A
Other languages
Japanese (ja)
Other versions
JP3768041B2 (en
Inventor
Teruhito Nagae
輝人 長江
Kenji Arisawa
謙二 有澤
Etsuya Fujisaka
悦也 藤阪
Takeo Hamamatsu
太計男 浜松
Satoru Yonetani
悟 米谷
Yasushi Maeda
泰史 前田
Masao Takee
正夫 武江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP24737499A priority Critical patent/JP3768041B2/en
Priority to CNB001029118A priority patent/CN1176503C/en
Priority to EP00105757A priority patent/EP1039566B1/en
Priority to KR1020000013707A priority patent/KR100634227B1/en
Priority to DE60011171T priority patent/DE60011171T2/en
Priority to TW089104993A priority patent/TW488096B/en
Priority to HU0001179A priority patent/HU224006B1/en
Priority to US09/531,672 priority patent/US6468687B1/en
Publication of JP2000340202A publication Critical patent/JP2000340202A/en
Priority to HK01102141A priority patent/HK1031476A1/en
Application granted granted Critical
Publication of JP3768041B2 publication Critical patent/JP3768041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/286Cells or batteries with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent short-circuit by enhancing strength of a separator on an outer side of a positive electrode plate of a group of coiled electrodes causing short-circuit without degrading battery characteristics. SOLUTION: A thickness and weight of a first separator 13 arranged on an outer side of a positive electrode plate 11 of a group of electrodes 10A are greater than a thickness and weight of a second separator 14 arranged on an inner side of the positive electrode plate 11. An occupying rate of the separators in a battery is approximately equal to a case that the thickness and weight of the first and second separators are equal. With this structure, short-circuit caused by a chip and a breakage of the positive electrode plate on the outer side of the positive electrode plate 11 is prevented without degrading battery characteristics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル−カドミ
ウム蓄電池、ニッケル−水素化物蓄電池などのアルカリ
蓄電池に係り、正極板と負極板がセパレータを介して巻
回された電極群を備えたアルカリ蓄電池の電極群の構成
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery such as a nickel-cadmium storage battery and a nickel-hydride storage battery, and more particularly to an alkaline storage battery having an electrode group in which a positive electrode plate and a negative electrode plate are wound via a separator. The present invention relates to a configuration of an electrode group.

【0002】[0002]

【従来の技術】一般に、ニッケル−カドミウム蓄電池、
ニッケル−水素化物蓄電池などのアルカリ蓄電池は、正
極板と負極板の間にセパレータを介在させ、これらを渦
巻状に巻回して電極群を形成し、この電極群の上下端に
集電体を接続して電極体を形成する。この電極体を円筒
状の金属製電池缶に収納し、正極用集電体より延出する
集電リード板を封口体下面に溶接し、電解液を注入した
後、電池缶の開口部に絶縁ガスケットを介在させて封口
体を装着することにより密閉して構成されている。
2. Description of the Related Art Generally, nickel-cadmium storage batteries,
Alkaline storage batteries such as nickel-hydride storage batteries have a separator interposed between a positive electrode plate and a negative electrode plate, which are spirally wound to form an electrode group, and current collectors are connected to upper and lower ends of the electrode group. An electrode body is formed. This electrode body is housed in a cylindrical metal battery can, a current collecting lead plate extending from the current collector for the positive electrode is welded to the lower surface of the sealing body, and an electrolyte is injected. It is hermetically sealed by attaching a sealing body with a gasket interposed.

【0003】例えば、ニッケル−カドミウム蓄電池にお
いては、ニッケル焼結基板に化学含浸法により所定量の
ニッケル活物質を充填したニッケル正極板と、同様にニ
ッケル焼結基板に化学含浸法により所定量のカドミウム
活物質を充填したカドミウム負極板とを作製した後、こ
れらのニッケル正極板とカドミウム負極板との間にセパ
レータを介在させて巻回して渦巻状電極群を形成するよ
うにしている。
For example, in a nickel-cadmium storage battery, a nickel positive electrode plate in which a nickel sintered substrate is filled with a predetermined amount of a nickel active material by a chemical impregnation method, and a nickel cadmium storage device having a predetermined amount of cadmium by a chemical impregnation method. After a cadmium negative electrode plate filled with an active material is produced, a spiral electrode group is formed by winding the nickel positive electrode plate and the cadmium negative electrode plate with a separator interposed therebetween.

【0004】[0004]

【発明が解決しようとする課題】ところで、近年、この
種のアルカリ蓄電池の高容量化、高出力化が要求され、
これに対応するため、高密度に活物質が充填されるよう
になるとともに、セパレータも薄型化されるようになっ
た。ところが、このように、活物質が高密度に充填され
た極板や薄型化されたセパレータを用いた電池におい
て、短絡の発生率が増大するという問題を生じた。
By the way, in recent years, high capacity and high output of this kind of alkaline storage battery have been demanded.
In order to cope with this, the active material is packed at a high density, and the thickness of the separator is also reduced. However, as described above, in a battery using an electrode plate filled with an active material at a high density or a separator having a reduced thickness, there has been a problem that the incidence of short circuits increases.

【0005】そこで、短絡が生じた電池を解体して短絡
の原因を究明したところ、渦巻状電極群の正極板の外側
で、正極板にクラックやバリや活物質の欠けや破損など
を生じて、これらのクラックやバリや活物質の欠けや破
損に基づく破片や粉末がセパレータを貫通して短絡が多
発していることが分かった。一方、渦巻状電極群の正極
板の内側では、正極板のクラックやバリや活物質の欠け
や破損に起因する短絡はほとんど発生していなかった。
これは、高容量化、高出力化に対応するために、高密度
に活物質が充填された正極板は脆くなって、渦巻状に巻
回する際に正極板にクラックやバリや活物質の欠けや破
損を生じたとともに、セパレータが薄型化されたため
に、強度が低下して、正極板の外側にクラックやバリや
活物質の欠けや破損により発生した破片や粉末がセパレ
ータを貫通したためと考えられる。
[0005] Then, when the cause of the short circuit was investigated by disassembling the battery in which the short circuit occurred, cracks, burrs, chipping or breakage of the active material occurred in the positive electrode plate outside the positive electrode plate of the spiral electrode group. It was also found that fragments and powders based on these cracks, burrs, chipping or breakage of the active material penetrated the separator, and short circuits occurred frequently. On the other hand, inside the positive electrode plate of the spiral electrode group, almost no short circuit occurred due to cracks, burrs, chipping or breakage of the active material of the positive electrode plate.
This is because, in order to cope with higher capacity and higher output, the positive electrode plate filled with the active material with high density becomes brittle, and cracks, burrs, and active material on the positive electrode plate when spirally wound. It is thought that chipping and breakage occurred, and the separator was thinned, resulting in reduced strength.Fragments and powder generated by cracks, burrs, and chipping or breakage of the active material penetrated the separator outside the positive electrode plate. Can be

【0006】[0006]

【課題を解決するための手段およびその作用・効果】そ
こで、本発明は上記問題点に鑑みてなされたものであ
り、電池特性を低下させることなく、短絡の原因となっ
た渦巻状電極群の正極板の外側でのセパレータの強度を
補強して短絡を生じないようにすることを目的とするも
のである。このため、本発明のアルカリ蓄電池は、渦巻
状電極群の正極板の外側に配置される第1のセパレータ
の厚みは同正極板の内側に配置される第2のセパレータ
の厚みより厚くしている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has been made in consideration of the above-described problems. It is an object of the present invention to reinforce the strength of the separator outside the positive electrode plate so that a short circuit does not occur. For this reason, in the alkaline storage battery of the present invention, the thickness of the first separator disposed outside the positive electrode plate of the spiral electrode group is larger than the thickness of the second separator disposed inside the positive electrode plate. .

【0007】このように、電極群の正極板の外側に配置
される第1のセパレータの厚みを正極板の内側に配置さ
れる第2のセパレータの厚みより厚くすることにより、
正極板の外側に配置される第1のセパレータの機械的強
度を補強できるため、正極板のクラックやバリや活物質
の欠けや破損により発生した破片や粉末がセパレータを
貫通することが防止できるようになり、短絡の発生を防
止できるようなる。この場合、第1のセパレータと第2
のセパレータの厚みを等しくした場合と電池内でのセパ
レータの占有率をほぼ等しくすれば、放電容量、作動電
圧等の電池特性を低下させることなく、第1のセパレー
タの機械的強度を補強でき、短絡の発生を防止できるよ
うなる。
As described above, by making the thickness of the first separator disposed outside the positive electrode plate of the electrode group larger than the thickness of the second separator disposed inside the positive electrode plate,
Since the mechanical strength of the first separator disposed outside the positive electrode plate can be reinforced, it is possible to prevent fragments and powder generated by cracks, burrs, chipping or breakage of the active material from penetrating through the separator. And the occurrence of a short circuit can be prevented. In this case, the first separator and the second separator
If the thickness of the separator is equal and the occupancy of the separator in the battery is substantially equal, the mechanical strength of the first separator can be reinforced without lowering battery characteristics such as discharge capacity and operating voltage, The occurrence of a short circuit can be prevented.

【0008】そして、第1のセパレータの厚みを第2の
セパレータの厚みより厚くするに際して、第2のセパレ
ータよりも厚みが薄い2枚のセパレータを用いて第1の
セパレータを構成することができる。この場合、厚みが
薄い2枚のセパレータを正極板の外側になるように配置
して巻回するだけで、第1のセパレータの厚みを第2の
セパレータの厚みより厚くすることができるようになる
ので、簡単、かつ容易にこの種の電極群が得られるよう
になる。
When the thickness of the first separator is made larger than the thickness of the second separator, the first separator can be formed by using two separators having a smaller thickness than the second separator. In this case, the thickness of the first separator can be made larger than the thickness of the second separator only by arranging and winding two thin separators on the outside of the positive electrode plate. Therefore, this kind of electrode group can be obtained easily and easily.

【0009】また、電極群の正極板の外側に配置される
第1のセパレータの目付を内側に配置される第2のセパ
レータの目付より大きくしても、第1のセパレータと第
2のセパレータの目付を等しくした場合と電池内でのセ
パレータの占有率をほぼ等しくすれば、放電容量、作動
電圧等の電池特性を低下させることなく、正極板の外側
に配置される第1のセパレータの機械的強度を補強でき
るため、正極板の欠けや破損により発生した破片や粉末
がセパレータを貫通することが防止できるようになり、
短絡の発生を防止できるようなる。
[0009] Even if the basis weight of the first separator disposed outside the positive electrode plate of the electrode group is larger than the basis weight of the second separator disposed inside, the first separator and the second separator are not separated. When the basis weight is equal to that of the separator in the battery and the occupancy of the separator is substantially equal, the mechanical properties of the first separator disposed outside the positive electrode plate can be reduced without lowering battery characteristics such as discharge capacity and operating voltage. Since the strength can be reinforced, fragments and powder generated by chipping or breakage of the positive electrode plate can be prevented from penetrating the separator,
The occurrence of a short circuit can be prevented.

【0010】さらに、電極群の正極板の外側に配置され
る第1のセパレータの厚みおよび目付を正極板の内側に
配置される第2のセパレータの厚みおよび目付より大き
くすると、第1および第2のセパレータの厚みおよび目
付を等しくした場合と電池内でのセパレータの占有率を
等しくすれば、放電容量、作動電圧等の電池特性を低下
させることなく、第1のセパレータの機械的強度をより
以上に補強できるため、正極板の欠けや破損により発生
した破片や粉末がセパレータを貫通することがさらに防
止できるようになり、短絡の発生を十分に防止できるよ
うなる。
Further, when the thickness and the basis weight of the first separator disposed outside the positive electrode plate of the electrode group are made larger than the thickness and the basis weight of the second separator disposed inside the positive electrode plate, the first and second separators are formed. If the separator occupancy rate in the battery is equal to the case where the thickness and the basis weight of the separator are equal, the mechanical strength of the first separator can be further increased without lowering the battery characteristics such as the discharge capacity and the operating voltage. Therefore, it is possible to further prevent fragments or powder generated by chipping or breakage of the positive electrode plate from penetrating the separator, and to sufficiently prevent occurrence of a short circuit.

【0011】また、本発明のアルカリ蓄電池は、第1の
セパレータおよび第2のセパレータをポリオレフィン系
樹脂繊維からなる分割短繊維と分割長繊維とが均一に絡
み合っており、第1のセパレータの目付を第2のセパレ
ータの目付よりも大きくしている。このように、短繊維
と長繊維とが互いに絡み合って形成されていると、短繊
維によりセパレータの表面積が増大して電解液の保液性
が向上して電池内圧の上昇を抑制できるようになるとと
もに、長繊維によりセパレータの多孔度が向上してガス
透過性が向上する。このため、このようなセパレータを
用いたアルカリ蓄電池の内部短絡の発生を防止でき、良
保液性に基づく活物質利用率が向上し、かつ内部ガス圧
の上昇を防止できるようになる。
Further, in the alkaline storage battery of the present invention, the first separator and the second separator are formed such that the split short fibers and the split long fibers made of polyolefin resin fibers are uniformly entangled, and the basis weight of the first separator is increased. It is larger than the basis weight of the second separator. As described above, when the short fibers and the long fibers are entangled with each other, the short fibers increase the surface area of the separator, improve the liquid retaining property of the electrolytic solution, and can suppress an increase in battery internal pressure. At the same time, the porosity of the separator is improved by the long fibers, and the gas permeability is improved. For this reason, it is possible to prevent the occurrence of an internal short circuit in an alkaline storage battery using such a separator, improve the active material utilization rate based on good liquid retention, and prevent an increase in the internal gas pressure.

【0012】[0012]

【発明の実施の形態】A.第1実施形態 以下に、本発明をニッケル−カドミウム蓄電池に適用し
た場合の第1実施形態を図に基づいて説明する。なお、
図1は第1実施形態の第1実施例の電極群の要部を示す
斜視図であり、図2は第1実施形態の第2実施例の電極
群の要部を示す斜視図であり、図3は第1実施形態の比
較例の電極群の要部を示す斜視図である。
DETAILED DESCRIPTION OF THE INVENTION First Embodiment A first embodiment in which the present invention is applied to a nickel-cadmium storage battery will be described below with reference to the drawings. In addition,
FIG. 1 is a perspective view showing a main part of an electrode group of a first example of the first embodiment, FIG. 2 is a perspective view showing a main part of an electrode group of a second example of the first embodiment, FIG. 3 is a perspective view showing a main part of an electrode group of a comparative example of the first embodiment.

【0013】1.ニッケル焼結基板の作製 まず、ニッケル粉末にカルボキシメチルセルロース等の
増粘剤および水を混練してスラリーを調整し、このスラ
リーをニッケル製パンチングメタルからなる導電性芯体
11a,12aに塗着する。この後、スラリーを塗着し
た導電性芯体11a,12aを還元性雰囲気下で焼結し
て、多孔度80%のニッケル焼結基板を作製する。
1. Preparation of Nickel Sintered Substrate First, a slurry is prepared by kneading a thickener such as carboxymethylcellulose and water into nickel powder, and this slurry is applied to conductive cores 11a and 12a made of nickel punched metal. Thereafter, the conductive cores 11a and 12a to which the slurry has been applied are sintered in a reducing atmosphere to produce a nickel sintered substrate having a porosity of 80%.

【0014】2.ニッケル正極板の作製 上述のように作製したニッケル焼結基板に化学含浸法に
より、所定量のニッケル活物質を充填する。即ち、ニッ
ケル焼結基板を硝酸ニッケルを主体とする水溶液に浸漬
して、ニッケル焼結基板の細孔内に硝酸ニッケルを析出
させた後、水酸化ナトリウム水溶液中に浸漬して、細孔
内に析出させた硝酸ニッケルを水酸化ニッケルに置換す
る活物質化処理を行う。同様な処理工程を所定回数(例
えば、6〜8回)繰り返して、ニッケル焼結基板に所定
量の水酸化ニッケルを主体とするニッケル活物質を充填
したニッケル正極板11を作製する。
2. Preparation of Nickel Positive Electrode A predetermined amount of nickel active material is filled in the nickel sintered substrate prepared as described above by a chemical impregnation method. That is, the nickel sintered substrate is immersed in an aqueous solution mainly composed of nickel nitrate, and nickel nitrate is precipitated in the pores of the nickel sintered substrate. An active material conversion treatment for replacing the precipitated nickel nitrate with nickel hydroxide is performed. The same processing step is repeated a predetermined number of times (for example, 6 to 8 times) to produce a nickel positive electrode plate 11 in which a nickel sintered substrate is filled with a predetermined amount of a nickel active material mainly composed of nickel hydroxide.

【0015】3.カドミウム負極板の作製 上述のように作製したニッケル焼結基板に化学含浸法に
より、所定量のカドミウム活物質を充填する。即ち、ニ
ッケル焼結基板を硝酸カドミウムを主体とする水溶液に
浸漬して、ニッケル焼結基板の細孔内に硝酸カドミウム
を析出させた後、アルカリ水溶液(例えば、水酸化ナト
リウム水溶液)中に浸漬して、細孔内に析出させた硝酸
カドミウムを水酸化カドミウムに置換する活物質化処理
を行う。同様な処理を所定回数(例えば、6〜8回)繰
り返して、ニッケル焼結基板に所定量の水酸化カドミウ
ムを主体とするカドミウム活物質を充填したカドミウム
負極板12を作製する。
3. Preparation of Cadmium Anode Plate A predetermined amount of a cadmium active material is filled into the nickel sintered substrate prepared as described above by a chemical impregnation method. That is, a nickel sintered substrate is immersed in an aqueous solution mainly composed of cadmium nitrate to precipitate cadmium nitrate in pores of the nickel sintered substrate, and then immersed in an alkaline aqueous solution (for example, sodium hydroxide aqueous solution). Then, an active material conversion treatment for replacing cadmium nitrate precipitated in the pores with cadmium hydroxide is performed. The same process is repeated a predetermined number of times (for example, 6 to 8 times) to produce a cadmium negative electrode plate 12 in which a nickel sintered substrate is filled with a predetermined amount of a cadmium active material mainly composed of cadmium hydroxide.

【0016】4.電極群の作製 (1)実施例1 まず、ポリエチレン製あるいはポリプロピレン製の不織
布からなる、厚みが0.20mmで、目付が85g/m
2の第1のセパレータ13を用意するとともに、ポリエ
チレン製あるいはポリプロピレン製の不織布からなる、
厚みが0.16mmで、目付が65g/m2の第2のセ
パレータ14を用意する。ついで、図1に示すように、
これらの第1のセパレータ13と第2のセパレータ14
との間にニッケル正極板11を配置するとともに、第1
のセパレータ13の外側にカドミウム負極板12が配置
されるように積層し、渦巻状に巻回して実施例1の渦巻
状電極群10Aを作製した。
4. Production of Electrode Group (1) Example 1 First, a nonwoven fabric made of polyethylene or polypropylene was 0.20 mm thick and had a basis weight of 85 g / m2.
A second separator 13 is prepared and is made of a nonwoven fabric made of polyethylene or polypropylene.
A second separator 14 having a thickness of 0.16 mm and a basis weight of 65 g / m 2 is prepared. Then, as shown in FIG.
These first separator 13 and second separator 14
And the nickel positive electrode plate 11
The cadmium negative electrode plate 12 was laminated so as to be arranged outside the separator 13 of Example 1 and spirally wound to produce a spiral electrode group 10A of Example 1.

【0017】(2)実施例2 まず、ポリエチレン製あるいはポリプロピレン製の不織
布からなる、厚みが0.10mmで、目付が45g/m
2の第1のセパレータ15を2枚用意するとともに、ポ
リエチレン製あるいはポリプロピレン製の不織布からな
る、厚みが0.16mmで、目付が65g/m2の第2
のセパレータ14(実施例1の第2のセパレータ14と
同じもの)を用意する。ついで、図2に示すように、こ
れらの第1のセパレータ15,15を重ね合わせ、この
重ね合わされた第1のセパレータ15,15と第2のセ
パレータ14との間にニッケル正極板11を配置すると
ともに、第1のセパレータ15,15の外側にカドミウ
ム負極板12が配置されるように積層し、渦巻状に巻回
して実施例2の渦巻状電極群10Bを作製した。
(2) Example 2 First, a nonwoven fabric made of polyethylene or polypropylene, having a thickness of 0.10 mm and a basis weight of 45 g / m2
In addition to preparing two first separators 15, the second separator 15 is made of polyethylene or polypropylene non-woven fabric and has a thickness of 0.16 mm and a basis weight of 65 g / m 2 .
(The same as the second separator 14 of the first embodiment) is prepared. Then, as shown in FIG. 2, the first separators 15, 15 are overlapped, and the nickel positive electrode plate 11 is arranged between the first separators 15, 15 and the second separator 14 thus overlapped. At the same time, the cadmium negative electrode plates 12 were stacked outside the first separators 15, 15 and spirally wound to produce a spirally wound electrode group 10 </ b> B of Example 2.

【0018】(3)比較例 まず、ポリエチレン製あるいはポリプロピレン製の不織
布からなる、厚みが0.18mmで、目付が75g/m
2の2枚のセパレータ16,16を用意する。ついで、
図3に示すように、これらのセパレータ16,16の間
にニッケル正極板11を配置するとともに、このセパレ
ータ16の外側にカドミウム負極板12が配置されるよ
うに積層し、渦巻状に巻回して比較例の渦巻状電極群1
0Cを作製した。
(3) Comparative Example First, a nonwoven fabric made of polyethylene or polypropylene was 0.18 mm thick and had a basis weight of 75 g / m2.
2 , two separators 16, 16 are prepared. Then
As shown in FIG. 3, the nickel positive electrode plate 11 is arranged between the separators 16, 16, and the cadmium negative electrode plate 12 is laminated outside the separator 16, and spirally wound. Spiral electrode group 1 of comparative example
0C was produced.

【0019】5.ニッケル−カドミウム蓄電池の作製 ついで、これらの電極群10A,10B,10Cの上端
部に露出する導電性芯体11aの端部に正極集電体を溶
接し、下端部に露出する導電性芯体12aの端部に負極
集電体を溶接した後、これらを鉄にニッケルメッキを施
した有底筒状の電池缶内にそれぞれ挿入した。ついで、
負極集電体を電池缶の内底面に溶接するとともに、正極
集電体から延出する集電リード板の先端部を封口体の底
面に溶接し、電池缶内に所定量の電解液(30重量%の
水酸化カリウム水溶液)を注入した。
5. Production of Nickel-Cadmium Storage Battery Next, a positive electrode current collector is welded to the end of the conductive core 11a exposed at the upper end of these electrode groups 10A, 10B, 10C, and the conductive core 12a exposed at the lower end. After the negative electrode current collectors were welded to the end portions, these were inserted into a bottomed cylindrical battery can in which nickel was plated on iron. Then
The negative electrode current collector was welded to the inner bottom surface of the battery can, and the tip end of the current collecting lead plate extending from the positive electrode current collector was welded to the bottom surface of the sealing body. % Aqueous potassium hydroxide).

【0020】この後、封口体を電池缶の開口部に絶縁ガ
スケットを介して載置し、電池缶の開口部の端部を内方
にかしめることによって電池を密閉して、公称容量1.
7AhのSCサイズの各ニッケル−カドミウム蓄電池
A,B,Cを作製した。なお、電極群10Aを用いたニ
ッケル−カドミウム蓄電池を実施例1の電池Aとし、電
極群10Bを用いたニッケル−カドミウム蓄電池を実施
例2の電池Bとし、電極群10Cを用いたニッケル−カ
ドミウム蓄電池を比較例の電池Cとした。
Thereafter, the sealing body is placed in the opening of the battery can via an insulating gasket, and the end of the opening of the battery can is crimped inward to hermetically close the battery so that the nominal capacity is 1.
Each nickel-cadmium storage battery A, B, C of 7 Ah SC size was produced. The nickel-cadmium storage battery using the electrode group 10A is referred to as the battery A of Example 1, the nickel-cadmium storage battery using the electrode group 10B is referred to as the battery B of Example 2, and the nickel-cadmium storage battery using the electrode group 10C. Was designated as Battery C of Comparative Example.

【0021】6.試験 (1)短絡測定 上述のようにして作製した各電池A,B,Cをそれぞれ
10000個ずつ用意し、これらの10000個の各電
池A,B,Cの開路電圧を測定して、0.4V以下を短
絡と判定し、短絡発生率を求めると、下記の表1に示す
ような結果となった。
6. Test (1) Short-circuit measurement Each of the batteries A, B, and C produced as described above was prepared by 10,000 each, and the open-circuit voltage of each of the 10,000 batteries A, B, and C was measured. When a voltage of 4 V or less was determined to be a short circuit, and a short circuit occurrence rate was obtained, the results shown in Table 1 below were obtained.

【0022】[0022]

【表1】 [Table 1]

【0023】上記表1より明らかなように、実施例1の
電池Aおよび実施例2の電池Bは短絡発生率が低減され
ていることが分かる。これは、電極群10A(10B)
のニッケル正極板11の外側に配置された第1のセパレ
ータ13(15,15)の厚みおよび目付が内側の第2
のセパレータ14の厚みおよび目付より大きいために強
度が補強されたためである。
As is clear from Table 1, the short-circuit occurrence rate of the battery A of Example 1 and the battery B of Example 2 are reduced. This is the electrode group 10A (10B)
The thickness and the basis weight of the first separator 13 (15, 15) arranged outside the nickel positive plate 11
This is because the strength was reinforced because the separator 14 was larger than the thickness and the basis weight.

【0024】(2)高率放電特性および内部ガス圧 ついで、上述のようにして作製した各電池A,B,Cの
それぞれを、25℃の温度雰囲気で1.7A(1C)の
充電電流で72分間充電し、60分間充電を休止した
後、定電流(2A,10A,30A)で放電し、電池電
圧が0.8Vに達した時点で放電を停止させ、各放電電
流での放電容量と作動電圧を求めると、下記の表2に示
すような結果となった。
(2) High Rate Discharge Characteristics and Internal Gas Pressure Next, each of the batteries A, B, and C produced as described above was subjected to a charge current of 1.7 A (1 C) in a 25 ° C. temperature atmosphere. After charging for 72 minutes and suspending charging for 60 minutes, the battery was discharged at a constant current (2 A, 10 A, 30 A). When the battery voltage reached 0.8 V, the discharge was stopped. When the operating voltage was determined, the results were as shown in Table 2 below.

【0025】[0025]

【表2】 [Table 2]

【0026】一方、上述のようにして作製した各電池
A,B,Cのそれぞれを、25℃の温度雰囲気で2A
(定電流)の充電電流で充電し、充電末期の電池電圧の
ピーク値を記憶し、これを基準として一定値だけ電圧が
低下した時点で充電を終了し、1時間休止した後、2A
(定電流)の放電電流で電池電圧が0.7Vになるまで
放電し、1時間休止するという−Δサイクル試験を行
い、2A放電時の各電池の内圧(最大ガス圧)を測定す
ると、下記の表3に示すような結果となった。また、同
様に、10A(定電流)の放電電流で−Δサイクル試験
を行い、10A放電時の各電池の内圧(最大ガス圧)を
測定すると、下記の表3に示すような結果となった。
On the other hand, each of the batteries A, B, and C produced as described above was subjected to 2 A at a temperature of 25 ° C.
The battery is charged with a (constant current) charging current, and the peak value of the battery voltage at the end of charging is stored. When the voltage drops by a certain value with reference to this, charging is terminated.
The battery was discharged at a (constant current) discharge current until the battery voltage reached 0.7 V, and the battery was discharged for 1 hour. A −Δ cycle test was performed, and the internal pressure (maximum gas pressure) of each battery during 2A discharge was measured. Table 3 shows the results. Similarly, a −Δ cycle test was performed at a discharge current of 10 A (constant current), and the internal pressure (maximum gas pressure) of each battery during 10 A discharge was measured. The results shown in Table 3 below were obtained. .

【0027】[0027]

【表3】 [Table 3]

【0028】上記表2および表3の結果から明らかなよ
うに、実施例1の電池Aであっても、実施例2の電池B
であっても、高率放電容量、作動電圧および内部ガス圧
は、比較例の電池Cとほぼ同様であって、高率放電特性
の低下、作動電圧の低下および内部ガス圧の上昇が認め
られなかった。
As is clear from the results shown in Tables 2 and 3, even the battery A of Example 1 is different from the battery B of Example 2.
However, the high-rate discharge capacity, operating voltage, and internal gas pressure were almost the same as those of the battery C of the comparative example, and a decrease in high-rate discharge characteristics, a decrease in operating voltage, and an increase in internal gas pressure were observed. Did not.

【0029】これは、実施例1の電池Aの電極群10A
にあっては、ニッケル正極板11の外側に配置された第
1のセパレータ13の厚み(0.20mm)および目付
(85g/m2)が内側の第2のセパレータ14の厚み
(0.16mm)および目付(65g/m2)より大き
くしても、第2のセパレータ14の厚みおよび目付を比
較例のセパレータ16,16の厚み(0.18mm)お
よび目付(75g/m 2)よりも小さくし、即ち、平均
の厚み(0.18mm)および平均の目付(75g/m
2)を比較例のセパレータ16,16と等しくして電池
内での占有率を等しくしているためである。
This corresponds to the electrode group 10A of the battery A of the first embodiment.
In the first embodiment, the second
1. Separator 13 thickness (0.20 mm) and basis weight
(85 g / mTwo) Is the thickness of the inner second separator 14
(0.16 mm) and the basis weight (65 g / mTwo) Bigger
In any case, the thickness and the basis weight of the second separator 14 are compared.
The thickness (0.18 mm) of the separators 16 and 16 of the comparative example
And basis weight (75 g / m Two), That is, the average
Thickness (0.18 mm) and average basis weight (75 g / m2)
Two) Is equal to the separators 16 and 16 of the comparative example.
This is because the occupation ratios within are equal.

【0030】また、実施例2の電池Bの電極群10Bに
あっては、ニッケル正極板11の外側に配置された第1
のセパレータ15,15の厚み(2枚の合計で0.20
mm)および目付(2枚の合計で90g/m2)が内側
の第2のセパレータ14の厚み(0.16mm)および
目付(65g/m2)より大きくしても、第2のセパレ
ータ14の厚みおよび目付を比較例のセパレータ16,
16の厚み(0.18mm)および目付(75g/
2)よりも小さくし、即ち、平均の厚み(0.18m
m)を比較例のセパレータ16,16と等しくし、平均
の目付(77.55g/m2)を比較例のセパレータ1
6,16とほぼ等しくして電池内での占有率を等しくし
ているためである。
Further, in the electrode group 10B of the battery B of the second embodiment, the first
Thickness of the separators 15, 15 (0.20 in total of the two sheets)
mm) and basis weight (also greater than the second thickness of the separator 14 90 g / m 2) by two total inner (0.16 mm) and basis weight (65 g / m 2), the second separator 14 The thickness and the basis weight of the separator 16 of the comparative example,
16 thickness (0.18 mm) and basis weight (75 g /
m 2 ), that is, the average thickness (0.18 m
m) is equal to the separators 16 and 16 of the comparative example, and the average basis weight (77.55 g / m 2 ) is set to the separator 1 of the comparative example.
This is because the occupation ratio in the battery is made substantially equal to that of the batteries 6 and 16.

【0031】上述したように、本発明のアルカリ蓄電池
においては、渦巻状電極群の正極板11の外側に位置す
る第1のセパレータ13(15,15)の厚みおよび目
付を大きくし、正極板11の内側に位置する第2のセパ
レータ14の厚みおよび目付を小さくして、電池内での
セパレータの占有率を同等にしているため、電池特性を
低下させることなく正極板11の外側での正極板のクラ
ックやバリや活物質の欠けや破損に起因する短絡の発生
を防止できるようになる。
As described above, in the alkaline storage battery of the present invention, the thickness and basis weight of the first separators 13 (15, 15) located outside the positive electrode plate 11 of the spiral electrode group are increased, and Since the thickness and the basis weight of the second separator 14 located inside the battery are reduced to equalize the occupancy of the separator in the battery, the cathode plate outside the cathode plate 11 without deteriorating the battery characteristics Cracks, burrs, and short-circuiting due to chipping or breakage of the active material can be prevented.

【0032】なお、上述した第1実施形態においては、
第1のセパレータと第2のセパレータを別々に用いる例
について説明したが、これらの第1と第2のセパレータ
は1枚のセパレータとし、その半分の一方を第1のセパ
レータとなるように厚みおよび目付を調整し、他方を第
2のセパレータとなるように厚みおよび目付を調整した
ものを用いることができる。また、上述した第1実施形
態のニッケル−カドミウム蓄電池は、正極板および負極
板の何れも焼結式極板を用いたが、ペースト式などの非
焼結式極板を用いた電池で実験した場合も同様な結果が
得られた。
In the first embodiment described above,
An example in which the first separator and the second separator are used separately has been described. However, the first and second separators are formed as one separator, and the thickness and the thickness are set so that one half of the first and second separators becomes the first separator. The weight of which is adjusted and the thickness and the weight of which are adjusted so that the other becomes the second separator can be used. In the nickel-cadmium storage battery of the first embodiment described above, both the positive electrode plate and the negative electrode plate used sintered electrode plates, but experiments were conducted using batteries using non-sintered electrode plates such as a paste type. Similar results were obtained in these cases.

【0033】B.第2実施形態 ついで、本発明をニッケル−水素化物蓄電池に適用した
場合の第2実施形態を図4に基づいて説明する。なお、
図4は第2実施形態電極群の要部を示す斜視図である。
B. Second Embodiment Next, a second embodiment in which the present invention is applied to a nickel-hydride battery will be described with reference to FIG. In addition,
FIG. 4 is a perspective view showing a main part of the electrode group according to the second embodiment.

【0034】1.ニッケル正極の作製 水酸化ニッケルを主成分とする正極活物質粉末100重
量部と、0.2重量%のヒドロキシプロピルセルロース
を溶解させた水溶液50重量部とを混合して正極活物質
スラリーを調製した。この正極活物質スラリーを多孔度
95%の発泡ニッケル21aに充填し、乾燥させた後、
これを圧延してニッケル正極21を作製した。なお、正
極活物質スラリーを多孔度95%の発泡ニッケル21a
に充填する場合に、電池の公称容量が1200mAhに
なるような正極活物質量を充填した。
1. Preparation of Nickel Positive Electrode A positive electrode active material slurry was prepared by mixing 100 parts by weight of a positive electrode active material powder mainly composed of nickel hydroxide and 50 parts by weight of an aqueous solution in which 0.2% by weight of hydroxypropyl cellulose was dissolved. . This positive electrode active material slurry is filled into 95% porosity nickel foam 21a, dried,
This was rolled to produce a nickel positive electrode 21. In addition, the positive electrode active material slurry was prepared by foaming nickel 21a having a porosity of 95%.
Was charged so that the nominal capacity of the battery became 1200 mAh.

【0035】2.水素吸蔵合金負極の作製 高周波溶解炉を用いて作製した水素吸蔵合金粉末にポテ
トラフルオロエチレン(PTFE)などの結着剤と、適
量の水とを加えて混合し、水素吸蔵合金ペーストを調製
した。ついで、この水素吸蔵合金ペーストをパンチング
メタルからなる負極基板22aの両面に塗布し、乾燥し
た後、所定の厚みとなるようにプレスして水素吸蔵合金
負極22を作製した。なお、水素吸蔵合金ペーストを負
極基板22aに塗布する場合、電池の公称容量が200
0mAhになるように水素吸蔵合金ペースト量を塗布し
た。
2. Preparation of hydrogen storage alloy negative electrode A hydrogen storage alloy paste was prepared by adding a binder such as potetafluoroethylene (PTFE) and an appropriate amount of water to a hydrogen storage alloy powder prepared using a high-frequency melting furnace and mixing them. . Next, this hydrogen storage alloy paste was applied to both surfaces of a negative electrode substrate 22a made of punched metal, dried, and then pressed to a predetermined thickness to produce a hydrogen storage alloy negative electrode 22. When the hydrogen storage alloy paste is applied to the negative electrode substrate 22a, the nominal capacity of the battery is 200
The amount of the hydrogen storage alloy paste was applied so as to be 0 mAh.

【0036】3.セパレータの作製 (1)第1基布(乾式基布)の作製 ポリオレフィン樹脂を主成分とする繊維長が25mm以
上(例えば、50mm)の分割繊維(スプリットファイ
バー)からなる長繊維を空気中に飛散させて金網で捕集
して、繊維密度(目付)が20g/m2および30g/
2になるように、乾式抄紙により抄紙して第1基布を
作製した。
3. Production of Separator (1) Production of First Base Cloth (Dry Base Cloth) Long fibers composed of split fibers (split fibers) having a fiber length of 25 mm or more (for example, 50 mm) mainly composed of a polyolefin resin are scattered in the air. And collected with a wire mesh to obtain a fiber density (basis weight) of 20 g / m 2 and 30 g / m 2.
The first base fabric was prepared by dry paper making so as to obtain m 2 .

【0037】(2)第2基布(湿式基布)の作製 ポリオレフィン樹脂を主成分とする繊維長が10mm以
下(例えば、6mm)の分割繊維(スプリットファイバ
ー)からなる短繊維を水中に分散させて、繊維密度(目
付)が20g/m2,25g/m2,30g/m2,35
g/m2,40g/m2,45g/m2,50g/m2にな
るように、湿式抄紙により抄紙して第2基布を作製し
た。
(2) Preparation of second base fabric (wet base fabric) Short fibers composed of split fibers (split fibers) mainly composed of polyolefin resin and having a fiber length of 10 mm or less (for example, 6 mm) are dispersed in water. The fiber density (basis weight) is 20 g / m 2 , 25 g / m 2 , 30 g / m 2 , 35
The second base fabric was produced by wet paper making so as to obtain g / m 2 , 40 g / m 2 , 45 g / m 2 , and 50 g / m 2 .

【0038】(3)複合基布の作製 ついで、上述のようにして作製した繊維密度(目付)が
20g/m2の第1基布と、繊維密度(目付)が20g
/m2,25g/m2,30g/m2,35g/m2,40
g/m2,45g/m2,50g/m2の第2基布とをそ
れぞれ重ねるようにして貼り合わせて二層の積層体とし
た後、この二層の積層体に高圧の水流を吐瀉する水流交
絡処理を施して、短繊維と長繊維とが均一に絡まるよう
に複合化して、繊維密度(目付)が40g/m2,45
g/m2,50g/m2,55g/m2,60g/m2,6
5g/m2,70g/m2の複合基布をそれぞれ作製し
た。
(3) Preparation of Composite Base Fabric Next, a first base fabric having a fiber density (basis weight) of 20 g / m 2 prepared as described above, and a fiber density (basis weight) of 20 g / m 2 were prepared.
/ M 2 , 25 g / m 2 , 30 g / m 2 , 35 g / m 2 , 40
g / m 2 , 45 g / m 2 , and 50 g / m 2 second base cloths were laminated and laminated to form a two-layer laminate, and a high-pressure water stream was discharged through the two-layer laminate. The fibers are subjected to a hydroentanglement treatment to form a composite such that the short fibers and the long fibers are uniformly entangled, and the fiber density (basis weight) is 40 g / m 2 , 45.
g / m 2 , 50 g / m 2 , 55 g / m 2 , 60 g / m 2 , 6
Composite base fabrics of 5 g / m 2 and 70 g / m 2 were prepared, respectively.

【0039】また、上述のようにして作製した繊維密度
(目付)が30g/m2の第1基布と、繊維密度(目
付)が30g/m2の第2基布とをそれぞれ重ねるよう
にして貼り合わせて二層の積層体とした後、この二層の
積層体に高圧の水流を吐瀉する水流交絡処理を施して、
短繊維と長繊維とが均一に絡まるように複合化して、繊
維密度(目付)が60g/m2の複合基布を作製した。
これらの各複合基布をそれぞれa1(40g/m2のも
の),b1(45g/m2のもの),c1(50g/m2
のもの),d1(55g/m2のもの),e1(60g
/m2のもの),f1(65g/m2のもの),g1(7
0g/m2のもの),h1(第基布が30g/m2ので第
2基布が30g/m2で60g/m2のもの)とした。
Further, the first base cloth of fiber density produced as described above (basis weight) of 30 g / m 2, the fiber density (basis weight) of a second base fabric of 30 g / m 2 so as to overlap each After laminating to form a two-layer laminate, the two-layer laminate is subjected to a hydroentanglement process of discharging high-pressure water flow,
The short fibers and the long fibers were compounded so as to be uniformly entangled to prepare a composite base fabric having a fiber density (basis weight) of 60 g / m 2 .
Each of these composite base fabrics was a1 (40 g / m 2 ), b1 (45 g / m 2 ), c1 (50 g / m 2).
), D1 (55 g / m 2 ), e1 (60 g
/ M 2 ), f1 (65 g / m 2 ), g1 (7
Things 0 g / m 2), and a h1 (since the base fabric 30 g / m 2 second base fabric those with 30 g / m 2 of 60 g / m 2).

【0040】なお、このような短繊維からなる第1の基
布と長繊維からなる第2の基布とを貼り合わせて積層し
た後、水流交絡により短繊維と長繊維とを互いに絡み合
わせるようにしているので、短繊維と長繊維とが均一に
かつ良好に絡まるようになる。この結果、短繊維により
セパレータの表面積が増大して電解液の保液性が向上し
て電池内圧の上昇を抑制できるようになるとともに、長
繊維によりセパレータの多孔度が向上してガス透過性が
向上する。
After the first base cloth made of short fibers and the second base cloth made of long fibers are laminated and laminated, the short fibers and long fibers are entangled with each other by hydroentanglement. The short fibers and the long fibers are uniformly and satisfactorily entangled. As a result, the surface area of the separator is increased by the short fibers, the liquid retention of the electrolyte is improved, and the increase in the internal pressure of the battery can be suppressed. In addition, the porosity of the separator is improved by the long fibers, and the gas permeability is improved. improves.

【0041】(4)親水化処理 この後、厚みが調整された各複合基布a1,b1,c
1,d1,e1,f1,g1,h1をそれぞれ反応容器
中に入れ、この容器内を真空排気した後、フッ素ガスを
窒素ガスで希釈した反応ガスを反応容器中に導入し、各
複合基布を反応ガスに1分間反応させて親水化処理を行
って、各セパレータを作製した。このような各繊維を親
水化処理する親水化処理を行うと、各繊維は親水化され
て親水性が向上する。なお、親水化処理は上述したフッ
素ガス処理以外にも、コロナ放電処理、スルホン化処
理、界面活性剤処理等が適用できる。
(4) Hydrophilizing treatment Thereafter, each of the composite base fabrics a1, b1, and c whose thickness has been adjusted
1, d1, e1, f1, g1, and h1 are respectively put into a reaction vessel, and the inside of this vessel is evacuated, and then a reaction gas obtained by diluting fluorine gas with nitrogen gas is introduced into the reaction vessel. Was reacted with a reaction gas for 1 minute to perform a hydrophilic treatment, thereby producing each separator. When the respective fibers are subjected to a hydrophilization treatment, the respective fibers are hydrophilized and the hydrophilicity is improved. The hydrophilization treatment may be a corona discharge treatment, a sulfonation treatment, a surfactant treatment, or the like, in addition to the above-described fluorine gas treatment.

【0042】そして、複合基布a1を用いたセパレータ
をセパレータaとし、複合基布b1を用いたセパレータ
をセパレータbとし、複合基布c1を用いたセパレータ
をセパレータcとし、複合基布d1を用いたセパレータ
をセパレータdとし、複合基布e1を用いたセパレータ
をセパレータeとし、複合基布f1を用いたセパレータ
をセパレータfとし、複合基布g1を用いたセパレータ
をセパレータgとし、複合基布h1を用いたセパレータ
をセパレータhとした。なお、上述したセパレータの構
成を表にまとめると、下記の表4に示すようになる。な
お、各セパレータは親水化処理されているため、このセ
パレータを用いることにより、電解液の保液性がより向
上し、活物質利用率が向上して、アルカリ蓄電池の放電
容量が向上するようになる。
The separator using the composite base cloth a1 is used as the separator a, the separator using the composite base cloth b1 is used as the separator b, the separator using the composite base cloth c1 is used as the separator c, and the composite base cloth d1 is used. The separator using the composite base fabric e1 is referred to as a separator e, the separator using the composite base fabric f1 is referred to as a separator f, the separator using the composite base fabric g1 is referred to as a separator g, and the composite base fabric h1 is referred to as a separator g. Was used as a separator h. Table 4 below summarizes the configuration of the separator described above. Since each separator is subjected to a hydrophilic treatment, the use of the separator improves the liquid retention of the electrolytic solution, improves the active material utilization rate, and improves the discharge capacity of the alkaline storage battery. Become.

【0043】[0043]

【表4】 [Table 4]

【0044】4.ニッケル水素蓄電池の作製 ついで、これらの各セパレータa〜hいずれかを第1の
セパレータ23とし、これらの各セパレータa〜hいず
れかを第2のセパレータ24として、第1のセパレータ
23と第2のセパレータ24との間に、上述のようにし
て作製したニッケル正極板21を配置するとともに、第
1のセパレータ23の外側に上述のようにして作製した
水素吸蔵合金負極22が配置されるように積層して、渦
巻状に巻回して渦巻状電極群20を作製した。
4. Production of Nickel Metal Hydride Battery Next, any one of these separators a to h is used as a first separator 23, and any one of these separators a to h is used as a second separator 24. The nickel positive electrode plate 21 manufactured as described above is arranged between the separator 24 and the hydrogen storage alloy anode 22 manufactured as described above is stacked outside the first separator 23. Then, the spirally wound electrode group 20 was formed by spirally winding.

【0045】ついで、これらの電極群20の上端部に露
出する導電性芯体21aの端部に正極集電体を溶接し、
下端部に露出する導電性芯体22aの端部に負極集電体
を溶接した後、これらを鉄にニッケルメッキを施した有
底筒状の電池缶内にそれぞれ挿入した。ついで、負極集
電体を電池缶の内底面に溶接するとともに、正極集電体
から延出する集電リード板の先端部を封口体の底面に溶
接し、電池缶内に所定量の電解液(30重量%の水酸化
カリウム水溶液)を注入した。
Next, a positive electrode current collector is welded to the end of the conductive core 21a exposed at the upper end of the electrode group 20,
After welding the negative electrode current collector to the end of the conductive core 22a exposed at the lower end, these were inserted into a bottomed cylindrical battery can in which nickel was plated on iron. Next, the negative electrode current collector is welded to the inner bottom surface of the battery can, and the tip of the current collecting lead plate extending from the positive electrode current collector is welded to the bottom surface of the sealing body, so that a predetermined amount of the electrolytic solution is contained in the battery can. (30% by weight aqueous solution of potassium hydroxide) was injected.

【0046】この後、封口体を電池缶の開口部に絶縁ガ
スケットを介して載置し、電池缶の開口部の端部を内方
にかしめることによって電池を密閉して、公称容量1.
2AhのAAサイズの各ニッケル−水素化物蓄電池D〜
Kを作製した。ここで、第1のセパレータとしてセパレ
ータeを用い、第2のセパレータとしてセパレータcを
用いたものを電池D(X+Y=110,X/Y=1.
2)とした。同様に、セパレータfとセパレータbを用
いたものを電池E(X+Y=110,X/Y=1.4
4)とし、セパレータgとセパレータaを用いたものを
電池F(X+Y=110,X/Y=1.75)とした。
Thereafter, the sealing body is placed on the opening of the battery can through an insulating gasket, and the end of the opening of the battery can is crimped inward to hermetically close the battery so that the nominal capacity is 1.
2Ah AA size nickel-hydride storage batteries D ~
K was produced. Here, a battery D (X + Y = 110, X / Y = 1...) Using the separator e as the first separator and the separator c as the second separator.
2). Similarly, a battery E (X + Y = 110, X / Y = 1.4) using the separator f and the separator b is used.
The battery F (X + Y = 110, X / Y = 1.75) was obtained using the separator g and the separator a.

【0047】同様に、セパレータcとセパレータeを用
いたものを電池G(X+Y=110,X/Y=0.8
3)とし、セパレータdとセパレータdを用いたものを
電池H(X+Y=110,X/Y=1)とし、セパレー
タfとセパレータeを用いたものを電池I(X+Y=1
25,X/Y=1.08)とし、セパレータcとセパレ
ータcを用いたものを電池J(X+Y=100,X/Y
=1)とし、セパレータhとセパレータcを用いたもの
を電池K(X+Y=110,X/Y=1.2)とした。
なお、上記括弧内のX(g/m2)は第1のセパレータ
23の目付を示し、Y(g/m2)は第2のセパレータ
24の目付を示している。
Similarly, the battery G (X + Y = 110, X / Y = 0.8) using the separator c and the separator e was used.
3), a battery using the separator d and the separator d is referred to as a battery H (X + Y = 110, X / Y = 1), and a battery using the separator f and the separator e is referred to as a battery I (X + Y = 1).
25, X / Y = 1.08), and the battery using the separator c and the separator c was used as a battery J (X + Y = 100, X / Y).
= 1), and a battery using the separator h and the separator c was designated as a battery K (X + Y = 110, X / Y = 1.2).
In addition, X (g / m 2 ) in the parentheses indicates the weight of the first separator 23, and Y (g / m 2 ) indicates the weight of the second separator 24.

【0048】5.測定 (1)渦巻電極体の巻径の測定 上述のようにして作製される各電池D〜Kに用いられた
渦巻状電極群の直径を測定し、第1のセパレータ23と
第2のセパレータ24の目付が共に55g/m 2の電池
Hに用いられた渦巻状電極群の直径を100として、そ
の比率を巻径比(%)として求めると、下記の表5に示
す結果となった。
5. Measurement (1) Measurement of winding diameter of spiral electrode body Used for each of the batteries D to K manufactured as described above.
The diameter of the spiral electrode group is measured, and the first
Both the basis weight of the second separator 24 is 55 g / m. TwoBattery
Assuming that the diameter of the spiral electrode group used for H is 100,
Is calculated as a winding diameter ratio (%), as shown in Table 5 below.
Results.

【0049】(2)電池の初期活性化 これらの各電池D〜Kを、充電電流120mA(0.1
C)で16時間充電した後、1時間休止し、放電電流2
40mA(0.2C)で放電終止電圧が1.0Vになる
まで放電した後、1時間休止する。この充放電を3回繰
り返して各電池D〜Kを活性化した。
(2) Initial Activation of Batteries Each of these batteries DK was charged with a charging current of 120 mA (0.1
C) for 16 hours, pause for 1 hour and discharge current 2
After discharging at 40 mA (0.2 C) until the discharge end voltage reaches 1.0 V, the apparatus is paused for 1 hour. This charge / discharge was repeated three times to activate each of the batteries DK.

【0050】(3)短絡発生率の測定 上述のようにして作製した活性化前の各電池D〜Mの開
路電圧を測定し、0.3Vに満たないものを短絡と判定
し、短絡発生率を求めると、下記の表5に示すような結
果となった。
(3) Measurement of Short-Circuit Occurrence Rate The open-circuit voltage of each of the batteries D to M before activation prepared as described above was measured. Was obtained, the results shown in Table 5 below were obtained.

【0051】(4)電池内部圧力の測定 上述のようにして活性化した各電池D〜Mを、充電電流
1200mA(1C)で充電を行い、充電時間が1時間
経過した後の電池内部圧力を測定すると、下記の表5に
示すような結果となった。
(4) Measurement of Battery Internal Pressure Each of the batteries D to M activated as described above is charged at a charging current of 1200 mA (1 C). When measured, the results were as shown in Table 5 below.

【0052】[0052]

【表5】 [Table 5]

【0053】上記表5から明らかなように、第1のセパ
レータの目付が第2のセパレータの目付よりも大きい電
池D(X=60,Y=50)、電池E(X=65,Y=
45)、電池F(X=70,Y=40)、電池I(X=
65,Y=60)、電池K(X=60,Y=50)の短
絡発生率が低く、第1のセパレータの目付が第2のセパ
レータの目付よりも小さい電池G(X=50,Y=6
0)、電池H(X=55,Y=55)、電池J(X=5
0,Y=50)の短絡発生率が高いことが分かる。な
お、電池Hを解体して短絡箇所を調べたところ、全てが
正極板21の外側で短絡が発生していた。このことか
ら、正極板21の外側に配置される第1のセパレータ2
3の目付は、正極板21の内側に配置される第2のセパ
レータの目付よりも大きくした方が短絡発生率が低下す
るということができる。
As is clear from Table 5, the batteries D (X = 60, Y = 50) and E (X = 65, Y = 50) in which the basis weight of the first separator is larger than the basis weight of the second separator.
45), battery F (X = 70, Y = 40), battery I (X =
65, Y = 60) and a battery G (X = 50, Y = 50) in which the short-circuit occurrence rate of the battery K (X = 60, Y = 50) is low and the basis weight of the first separator is smaller than the basis weight of the second separator. 6
0), battery H (X = 55, Y = 55), battery J (X = 5
(0, Y = 50). In addition, when the battery H was disassembled and the short-circuited portion was examined, all of the short-circuits occurred outside the positive electrode plate 21. For this reason, the first separator 2 disposed outside the positive electrode plate 21
It can be said that if the basis weight of No. 3 is larger than the basis weight of the second separator disposed inside the positive electrode plate 21, the short-circuit occurrence rate decreases.

【0054】そして、電池D(X=60,Y=50)と
電池K(X=60,Y=50)とを比較すると、電池D
の方が電池Kよりも短絡率が低いことが分かる。これ
は、第1のセパレータ23の目付が同じであっても、第
1のセパレータ23を構成する第2基布の目付が相違す
る(電池Dでは40g/m2であり、電池Kでは30g
/m2である)ためである。これは、第2基布の目付を
大きくすると、繊維長が10mm以下の短繊維の割合
が、繊維長が25mm以上の長繊維よりも多くなるた
め、長繊維と短繊維が均一に絡み合うようになって、目
付のバラツキが抑制され、短絡発生率が減少したものと
考えられる。このことから、第1のセパレータ23の目
付が同じであっても、第1のセパレータ23を構成する
第2基布の目付を大きくすることが好ましいということ
ができる。
The battery D (X = 60, Y = 50) and the battery K (X = 60, Y = 50) are compared.
It can be understood that the short circuit rate is lower than that of the battery K. This is because even if the basis weight of the first separator 23 is the same, the basis weight of the second base fabric constituting the first separator 23 is different (40 g / m 2 for the battery D and 30 g for the battery K).
/ M 2 ). This is because, when the basis weight of the second base fabric is increased, the ratio of the short fibers having a fiber length of 10 mm or less is larger than that of the long fibers having a fiber length of 25 mm or more, so that the long fibers and the short fibers are uniformly entangled. It is considered that the variation of the basis weight was suppressed, and the short-circuit occurrence rate was reduced. From this, it can be said that it is preferable to increase the basis weight of the second base fabric constituting the first separator 23 even if the basis weight of the first separator 23 is the same.

【0055】電池Fは短絡発生率は低いが、電池内圧の
上昇が大きくなっている。これは、第1のセパレータの
目付は70g/m2で、第2のセパレータの目付は40
g/m2と大きく異なって、目付差が大きいために電解
液の分布が異なり、水素吸蔵合金負極22でのガス吸収
反応にばらつきを生じて電池内圧が上昇したと考えるこ
とができる。このことから、第1のセパレータの目付を
第2のセパレータの目付よりも大きくするとしても、第
2のセパレータの目付の1.75倍よりは小さくする必
要があり、望ましくは1.5倍以下にするのが好まし
い。
Battery F has a low short-circuit occurrence rate, but has a large increase in battery internal pressure. This means that the basis weight of the first separator is 70 g / m 2 and the basis weight of the second separator is 40 g / m 2.
greatly different from g / m 2, unlike the distribution of the electrolyte to the basis weight difference is large, it can be considered that the battery internal pressure rises caused variations in gas absorption reaction of the hydrogen storage alloy negative electrode 22. From this, even if the basis weight of the first separator is larger than the basis weight of the second separator, it is necessary to make the basis weight of the second separator smaller than 1.75 times, preferably 1.5 times or less. It is preferred that

【0056】電池Iは短絡発生率は低いが、巻径比が1
05(第1のセパレータと第2のセパレータの目付の和
は125g/m2)と高くなっているため、電池缶内に
挿入しにくいという問題があった。また、電池缶内での
セパレータの占有率が増加するため、電池内での残存す
る空間率が小さくなったため、ガス吸収が困難となり、
電池内圧が上昇したと考えられる。このことから、第1
のセパレータの目付を第2のセパレータの目付よりも大
きくするとしても、第1のセパレータの目付を大きくし
た分だけ第2のセパレータの目付を小さく、これらの目
付の和を等しくする必要があるということができる。
Battery I has a low short-circuit occurrence rate, but has a winding diameter ratio of 1
05 (the sum of the basis weights of the first separator and the second separator is 125 g / m 2 ), which causes a problem that it is difficult to insert the battery into the battery can. In addition, since the occupancy of the separator in the battery can is increased, the remaining porosity in the battery is reduced, so that gas absorption becomes difficult,
It is considered that the battery internal pressure increased. From this, the first
Even if the basis weight of the separator is larger than the basis weight of the second separator, it is necessary to reduce the basis weight of the second separator by an amount corresponding to the basis weight of the first separator, and to make the sum of these basis weights equal. be able to.

【0057】(5)サイクル寿命の測定 ついで、上述のようにして活性化した各電池D〜Mを、
充電電流1200mA(1C)で16時間充電した後、
1時間休止し、放電電流1200mA(1C)で放電終
止電圧が1.0Vになるまで放電させるという充放電サ
イクルを繰り返して行い、各サイクルでの放電時間から
放電容量を求め、初期容量との比率を電池容量比として
求めると、図5に示すような結果となった。
(5) Measurement of cycle life Next, each of the batteries D to M activated as described above was
After charging at a charging current of 1200 mA (1 C) for 16 hours,
A charge / discharge cycle in which the battery is stopped for 1 hour and discharge is performed at a discharge current of 1200 mA (1 C) until the discharge end voltage reaches 1.0 V is repeated, and a discharge capacity is obtained from a discharge time in each cycle, and a ratio to the initial capacity. Was obtained as the battery capacity ratio, and the result as shown in FIG. 5 was obtained.

【0058】図5から明らかなように、電池D、電池
E、電池G、電池H、電池Kのサイクル寿命は長く、電
池J、電池I、電池Fのサイクル寿命が短いことが分か
る。ここで、電池Jは、第1と第2のセパレータの目付
の和が100で他のものより目付が小さく、巻径も小さ
いため、電解液の保持量が少なく、充放電サイクルの経
過とともにセパレータの保液量が減少してサイクル寿命
が小さくなったと考えられる。また、電池Iは、上述し
たように巻径比が高くて電池缶内でのセパレータの占有
率が増加し、電池内での残存する空間率が小さくなっ
て、ガス吸収が困難となり、電池内圧が上昇してサイク
ル寿命が小さくなったと考えられる。さらに、電池F
は、上述したように正極板の内側と外側でのセパレータ
の目付が大きく異なることから、ガス吸収反応にばらつ
きを生じ、電池内圧が上昇してサイクル寿命が小さくな
ったと考えられる。
As is apparent from FIG. 5, the cycle life of the batteries D, E, G, H, and K is long, and the cycle life of the batteries J, I, and F is short. Here, since the sum of the weights of the first and second separators is 100, the weight of the battery J is smaller than those of the other separators and the winding diameter is smaller, the holding amount of the electrolyte is small, and It is considered that the amount of liquid retained decreased and the cycle life was shortened. Further, as described above, the battery I has a high winding diameter ratio, increases the occupancy of the separator in the battery can, reduces the remaining space ratio in the battery, makes it difficult to absorb gas, and increases the internal pressure of the battery. It is considered that the cycle life was shortened and the cycle life was shortened. Further, battery F
As described above, since the basis weight of the separator is largely different between the inside and outside of the positive electrode plate, it is considered that the gas absorption reaction varies, the internal pressure of the battery increases, and the cycle life is shortened.

【0059】一方、電池Gおよび電池Hはサイクル寿命
は長いが、第1のセパレータの目付が第2のセパレータ
の目付よりも小さいため、第1のセパレータの強度不足
により正極板の外側で短絡が発生し、短絡発生率が大き
くなった。これらの結果を考慮すると、電池Dおよび電
池Eのように、正極板の外側に配置される第1のセパレ
ータの目付を正極板の内側に配置される第2のセパレー
タの目付よりも大きくするとともに、第1のセパレータ
23を構成する第2基布の目付を大きくし、かつ第1の
セパレータの目付を第2のセパレータの目付よりも大き
くするとしても、第2のセパレータの目付の1.5倍以
下にすることにより、短絡発生率が低く、電池内圧の上
昇も少なく、かつサイクル寿命が長いニッケル−水素化
物蓄電池が得られるようになる。
On the other hand, the batteries G and H have a long cycle life, but since the basis weight of the first separator is smaller than the basis weight of the second separator, short-circuiting occurs outside the positive electrode plate due to insufficient strength of the first separator. Occurred, and the short-circuit occurrence rate increased. In consideration of these results, as in the batteries D and E, the basis weight of the first separator disposed outside the positive electrode plate is set to be larger than the basis weight of the second separator disposed inside the positive electrode plate, and Even if the basis weight of the second base fabric constituting the first separator 23 is increased and the basis weight of the first separator is larger than the basis weight of the second separator, the basis weight of the second separator is 1.5 times. By making it twice or less, a nickel-hydride storage battery having a low short-circuit occurrence rate, a small increase in battery internal pressure, and a long cycle life can be obtained.

【0060】上述したように、本発明の第2実施形態に
おいては、正極板の外側に配置される第1のセパレータ
と、正極板の内側に配置される第2のセパレータは短繊
維と長繊維とが互いに絡み合って形成されているので、
各セパレータの目付のばらつきが防止できるようにな
る。そして、このようにして形成されたセパレータを用
いるに際して、第1のセパレータの目付は第2のセパレ
ータの目付よりも大きいため、第2のセパレータの機械
的強度が補強されてこのため、このようなセパレータを
用いたアルカリ蓄電池の内部短絡の発生を防止できるよ
うになる
As described above, in the second embodiment of the present invention, the first separator disposed outside the positive electrode plate and the second separator disposed inside the positive electrode plate are made of short fibers and long fibers. Are entangled with each other,
Variations in the basis weight of each separator can be prevented. When the separator thus formed is used, the basis weight of the first separator is larger than the basis weight of the second separator, so that the mechanical strength of the second separator is reinforced, and thus, Prevents internal short circuit of alkaline storage battery using separator

【0061】なお、上述した第2実施形態においては、
第1基布に長繊維として分割長繊維を用い、第2基布に
短繊維として分割短繊維を用いる例について説明した
が、分割繊維からなる長繊維を含有した第1の基布に分
割繊維以外の長繊維、例えば、接着繊維からなる長繊維
を配合しても良い。同様に、分割繊維からなる短繊維を
含有した第2の基布に分割繊維以外の短繊維、例えば、
接着繊維からなる短繊維を配合しても良い。
In the second embodiment described above,
The example in which the split base fiber is used as the long fiber in the first base cloth and the split short fiber is used as the short fiber in the second base cloth has been described. However, the split base fiber containing the long fiber composed of the split fiber is used in the first base cloth. A long fiber other than the above, for example, a long fiber made of an adhesive fiber may be blended. Similarly, short fibers other than split fibers are added to the second base cloth containing short fibers made of split fibers, for example,
Short fibers composed of adhesive fibers may be blended.

【0062】さらに、上述した第2実施形態において
は、短繊維として繊維長が6mmの短繊維を用いた例に
ついて説明したが、繊維長としは6mmに限らず、10
mm以下であれば良く、特に、3〜10mmの範囲の短
繊維を用いると、セパレータを製造する観点から好まし
い。また、上述した第2実施形態においては、長繊維と
して繊維長が50mmの長繊維を用いた例について説明
したが、繊維長としは50mmに限らず、25mm以上
であれば良く、特に、25〜70mmの範囲の長繊維を
用いると、セパレータを製造する観点から好ましい。さ
らに、上述した各実施形態においては、本発明を円筒型
の蓄電池に適用した例について説明したが、これに限ら
ず、角形等の各種の形状の蓄電池に本発明を適用できる
こともいうまでもない。
Further, in the second embodiment described above, an example was described in which short fibers having a fiber length of 6 mm were used as the short fibers, but the fiber length is not limited to 6 mm and may be 10 mm.
mm or less, and it is particularly preferable to use short fibers in the range of 3 to 10 mm from the viewpoint of manufacturing a separator. Further, in the above-described second embodiment, an example in which a long fiber having a fiber length of 50 mm is used as the long fiber has been described. It is preferable to use a long fiber in the range of 70 mm from the viewpoint of manufacturing a separator. Furthermore, in each of the above-described embodiments, an example in which the present invention is applied to a cylindrical storage battery has been described. However, the present invention is not limited to this, and it goes without saying that the present invention can be applied to various shapes of storage batteries such as a prismatic shape. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態の実施例1の電極群の
要部を示す斜視図である。
FIG. 1 is a perspective view illustrating a main part of an electrode group according to Example 1 of a first embodiment of the present invention.

【図2】 本発明の第1実施形態の実施例2の電極群の
要部を示す斜視図である。
FIG. 2 is a perspective view showing a main part of an electrode group according to Example 2 of the first embodiment of the present invention.

【図3】 本発明の第1実施形態の比較例の電極群の要
部を示す斜視図である。
FIG. 3 is a perspective view showing a main part of an electrode group of a comparative example of the first embodiment of the present invention.

【図4】 本発明の第2実施形態の電極群の要部を示す
斜視図である。
FIG. 4 is a perspective view showing a main part of an electrode group according to a second embodiment of the present invention.

【図5】 本発明の第2実施形態の各電池のサイクル寿
命特性を示す図である。
FIG. 5 is a diagram showing cycle life characteristics of each battery according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10A,10B,10C…電極群、11…ニッケル正極
板、11a…導電性芯体、12…カドミウム負極板、1
2a…導電性芯体、13…第1のセパレータ、14…第
2のセパレータ、15,15…第1のセパレータ、1
6,16…セパレータ、21…ニッケル正極板、21a
…導電性芯体、22…水素吸蔵合金負極板、22a…導
電性芯体、23…第1のセパレータ、24…第2のセパ
レータ、
10A, 10B, 10C: electrode group, 11: nickel positive plate, 11a: conductive core, 12: cadmium negative plate, 1
2a: conductive core, 13: first separator, 14: second separator, 15, 15: first separator, 1
6, 16: separator, 21: nickel positive plate, 21a
... conductive core, 22 ... hydrogen storage alloy negative electrode plate, 22a ... conductive core, 23 ... first separator, 24 ... second separator,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤阪 悦也 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 浜松 太計男 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米谷 悟 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 前田 泰史 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 武江 正夫 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H021 CC17 EE04 EE23 HH00 HH01 HH03 5H028 AA05 BB07 CC12 EE01 EE05 HH05  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Etsuya Fujisaka 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Taimeo Hamamatsu 2 Keihanhondori, Moriguchi-shi, Osaka 5-5-5 Sanyo Electric Co., Ltd. (72) Inventor Satoru Yoneya 2-5-5 Sanyo Electric Co., Ltd. (72) Inventor Yasushi Maeda Yasushi Maeda Keihanmoto, Moriguchi, Osaka 2-5-5, Sanyo Electric Co., Ltd. (72) Inventor Masao Takee 2-5-5, Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 5H021 CC17 EE04 EE23 HH00 HH01 HH03 5H028 AA05 BB07 CC12 EE01 EE05 HH05

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 正極板と負極板がセパレータを介して巻
回された電極群を備えたアルカリ蓄電池であって、 前記電極群の正極板の外側には第1のセパレータが配置
され、前記電極群の正極板の内側には第2のセパレータ
が配置され、 前記第1のセパレータの厚みは前記第2のセパレータの
厚みよりも厚くしたことを特徴とするアルカリ蓄電池。
1. An alkaline storage battery including an electrode group in which a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween, wherein a first separator is disposed outside a positive electrode plate of the electrode group, An alkaline storage battery, wherein a second separator is disposed inside the group of positive plates, wherein the thickness of the first separator is greater than the thickness of the second separator.
【請求項2】 前記第1のセパレータは前記第2のセパ
レータよりも厚みが薄い2枚のセパレータを用いて前記
第1のセパレータの厚みを前記第2のセパレータの厚み
よりも厚くしたことを特徴とする請求項1に記載のアル
カリ蓄電池。
2. The method according to claim 1, wherein the first separator comprises two separators having a thickness smaller than that of the second separator, and the thickness of the first separator is made larger than the thickness of the second separator. The alkaline storage battery according to claim 1, wherein
【請求項3】 正極板と負極板がセパレータを介して巻
回された電極群を備えたアルカリ蓄電池であって、 前記電極群の正極板の外側には第1のセパレータが配置
され、前記電極群の正極板の内側には第2のセパレータ
が配置され、 前記第1のセパレータの目付は前記第2のセパレータの
目付よりも大きくしたことを特徴とするアルカリ蓄電
池。
3. An alkaline storage battery comprising an electrode group in which a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween, wherein a first separator is arranged outside a positive electrode plate of the electrode group, An alkaline storage battery, wherein a second separator is disposed inside the group of positive plates, and a basis weight of the first separator is larger than a basis weight of the second separator.
【請求項4】 正極板と負極板がセパレータを介して巻
回された電極群を備えたアルカリ蓄電池であって、 前記電極群の正極板の外側には第1のセパレータが配置
され、前記電極群の正極板の内側には第2のセパレータ
が配置され、 前記第1のセパレータの厚みおよび目付は前記第2のセ
パレータの厚みおよび目付よりも大きくしたことを特徴
とするアルカリ蓄電池。
4. An alkaline storage battery including an electrode group in which a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween, wherein a first separator is disposed outside a positive electrode plate of the electrode group, An alkaline storage battery, wherein a second separator is disposed inside the group of positive plates, wherein the thickness and the basis weight of the first separator are larger than the thickness and the basis weight of the second separator.
【請求項5】 正極板と負極板がセパレータを介して巻
回された電極群を備えたアルカリ蓄電池であって、 前記電極群の正極板の外側には第1のセパレータが配置
され、前記電極群の正極板の内側には第2のセパレータ
が配置され、 前記第1のセパレータおよび前記第2のセパレータは、
ポリオレフィン系樹脂繊維からなる分割短繊維と分割長
繊維とが均一に絡み合っており、 前記第1のセパレータの目付を前記第2のセパレータの
目付よりも大きくしたことを特徴とするアルカリ蓄電
池。
5. An alkaline storage battery including an electrode group in which a positive electrode plate and a negative electrode plate are wound with a separator interposed therebetween, wherein a first separator is disposed outside a positive electrode plate of the electrode group, A second separator is disposed inside the group of positive plates, wherein the first separator and the second separator are:
An alkaline storage battery, wherein split short fibers and split long fibers made of a polyolefin-based resin fiber are uniformly entangled, and the basis weight of the first separator is larger than the basis weight of the second separator.
【請求項6】 前記第1のセパレータの目付を前記第2
のセパレータの目付よりも大きくするとともに、前記第
1のセパレータの目付が大きくなった分だけ前記第2の
セパレータの目付を小さくして、電池内に存在するセパ
レータの占有率を等しくしたことを特徴とする請求項5
に記載のアルカリ蓄電池。
6. The weight of the first separator is set to the second
And the basis weight of the second separator is reduced by the extent that the basis weight of the first separator is increased, so that the occupancy of the separators present in the battery is equalized. Claim 5
3. The alkaline storage battery according to claim 1.
【請求項7】 前記第1のセパレータおよび前記第2の
セパレータは、繊維長が10mm以下の分割短繊維を主
体とする基布と、繊維長が25mm以上の分割長繊維を
主体とする基布とが均一に複合化されて各繊維が均一に
絡み合っていることを特徴とする請求項5または請求項
6に記載のアルカリ蓄電池。
7. The first separator and the second separator are a base cloth mainly composed of split short fibers having a fiber length of 10 mm or less, and a base cloth mainly composed of divided long fibers having a fiber length of 25 mm or more. 7. The alkaline storage battery according to claim 5, wherein the fibers are uniformly compounded and the fibers are uniformly entangled.
【請求項8】 前記第1のセパレータに用いられる前記
繊維長が10mm以下の分割短繊維を主体とする基布の
目付は前記第2のセパレータに用いられる前記繊維長が
10mm以下の分割短繊維を主体とする基布の目付より
も大きくするとともに、該基布の目付を大きくした分だ
け前記繊維長が25mm以上の分割長繊維を主体とする
基布の目付を小さくしたことを特徴とする請求項7に記
載のアルカリ蓄電池。
8. The basis weight of a base fabric mainly composed of split short fibers having a fiber length of 10 mm or less used for the first separator is a divided short fiber having a fiber length of 10 mm or less used for the second separator. The basis weight is made larger than the basis weight of the base cloth mainly, and the basis weight of the base cloth mainly composed of the split filament fibers having a length of 25 mm or more is reduced by an amount corresponding to the increase in the basis weight of the base cloth. An alkaline storage battery according to claim 7.
【請求項9】 前記第1のセパレータの目付を前記第2
のセパレータの目付よりも大きくするとともに、前記第
1のセパレータの目付を前記第2のセパレータの目付の
1.5倍以下にしたことを特徴とする請求項5から請求
項8のいずれかに記載のアルカリ蓄電池。
9. The weight of the first separator is changed to the second separator.
9. The method according to claim 5, wherein the basis weight of the first separator is larger than the basis weight of the second separator, and the basis weight of the first separator is 1.5 times or less of the basis weight of the second separator. Alkaline storage batteries.
JP24737499A 1999-03-19 1999-09-01 Alkaline storage battery Expired - Lifetime JP3768041B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP24737499A JP3768041B2 (en) 1999-03-19 1999-09-01 Alkaline storage battery
CNB001029118A CN1176503C (en) 1999-03-19 2000-03-09 Alkaline storage battery
KR1020000013707A KR100634227B1 (en) 1999-03-19 2000-03-17 Alkali storage battery
DE60011171T DE60011171T2 (en) 1999-03-19 2000-03-17 Alkaline storage battery with two separators
EP00105757A EP1039566B1 (en) 1999-03-19 2000-03-17 Alkaline storage battery with two separators
TW089104993A TW488096B (en) 1999-03-19 2000-03-17 Alkaline storage battery
HU0001179A HU224006B1 (en) 1999-03-19 2000-03-20 Alkaline storage battery
US09/531,672 US6468687B1 (en) 1999-03-19 2000-03-20 Alkaline storage battery with reinforced separators
HK01102141A HK1031476A1 (en) 1999-03-19 2001-03-24 Alkaline storage battery.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7632599 1999-03-19
JP11-76325 1999-03-19
JP24737499A JP3768041B2 (en) 1999-03-19 1999-09-01 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2000340202A true JP2000340202A (en) 2000-12-08
JP3768041B2 JP3768041B2 (en) 2006-04-19

Family

ID=26417464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24737499A Expired - Lifetime JP3768041B2 (en) 1999-03-19 1999-09-01 Alkaline storage battery

Country Status (9)

Country Link
US (1) US6468687B1 (en)
EP (1) EP1039566B1 (en)
JP (1) JP3768041B2 (en)
KR (1) KR100634227B1 (en)
CN (1) CN1176503C (en)
DE (1) DE60011171T2 (en)
HK (1) HK1031476A1 (en)
HU (1) HU224006B1 (en)
TW (1) TW488096B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298072C (en) * 2003-08-04 2007-01-31 三洋电机株式会社 Cylinder shape alkali accumulator
JP2007207526A (en) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
CN100344026C (en) * 2004-06-23 2007-10-17 三星Sdi株式会社 Secondary battery
JP2009170284A (en) * 2008-01-17 2009-07-30 Panasonic Corp Secondary battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179943B2 (en) * 2003-08-04 2008-11-12 三洋電機株式会社 Cylindrical alkaline storage battery
JP5046539B2 (en) * 2006-03-24 2012-10-10 三洋電機株式会社 Nickel metal hydride storage battery
JP6282857B2 (en) 2013-12-13 2018-02-21 株式会社Soken battery
CN111987292B (en) * 2020-08-14 2022-07-08 湖南格瑞普新能源有限公司 Nickel-hydrogen battery wet method cathode process added with short fibers

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900340A (en) * 1973-11-13 1975-08-19 Union Carbide Corp Galvanic cell structures employing coiled electrodes
FR2272495B1 (en) * 1974-05-24 1978-02-03 Accumulateurs Fixes
JPS5632674A (en) * 1979-08-23 1981-04-02 Toshiba Corp Cylindrical zinc alkaline secondary battery
US4663247A (en) * 1985-11-04 1987-05-05 Union Carbide Corporation Coiled electrode assembly cell construction with pressure contact member
JPH04342954A (en) * 1991-05-21 1992-11-30 Matsushita Electric Ind Co Ltd Battery with spiral electrode
JPH10125348A (en) * 1996-10-21 1998-05-15 Japan Storage Battery Co Ltd Battery
US5902696A (en) * 1997-06-02 1999-05-11 Wilson Greatbatch Ltd. Separator for nonaqueous electrochemical cells
AU746838B2 (en) * 1998-05-21 2002-05-02 Matsushita Electric Industrial Co., Ltd. Cylindrical battery and method and device for manufacturing thereof
JP2000215873A (en) * 1999-01-25 2000-08-04 Sanyo Electric Co Ltd Alkaline storage battery and its manufacture
JP5683834B2 (en) * 2009-12-16 2015-03-11 日置電機株式会社 Photometric device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298072C (en) * 2003-08-04 2007-01-31 三洋电机株式会社 Cylinder shape alkali accumulator
CN100344026C (en) * 2004-06-23 2007-10-17 三星Sdi株式会社 Secondary battery
JP2007207526A (en) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
JP2009170284A (en) * 2008-01-17 2009-07-30 Panasonic Corp Secondary battery

Also Published As

Publication number Publication date
HK1031476A1 (en) 2001-06-15
KR100634227B1 (en) 2006-10-16
HU224006B1 (en) 2005-04-28
DE60011171D1 (en) 2004-07-08
US6468687B1 (en) 2002-10-22
EP1039566A2 (en) 2000-09-27
KR20000076901A (en) 2000-12-26
HU0001179D0 (en) 2000-05-28
HUP0001179A3 (en) 2003-10-28
TW488096B (en) 2002-05-21
CN1176503C (en) 2004-11-17
EP1039566A3 (en) 2001-11-21
EP1039566B1 (en) 2004-06-02
DE60011171T2 (en) 2005-07-07
HUP0001179A2 (en) 2001-05-28
JP3768041B2 (en) 2006-04-19
CN1267921A (en) 2000-09-27

Similar Documents

Publication Publication Date Title
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
JP2009543276A (en) New silver positive electrode for alkaline storage batteries
JP4429569B2 (en) Nickel metal hydride storage battery
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP2000340202A (en) Alkaline storage battery
JP4307020B2 (en) Alkaline storage battery
JP2002198055A (en) Paste-like thin electrode for battery, its manufacturing method and secondary battery
JP2008078037A (en) Electrode substrate for battery and electrode for battery
JP2000215873A (en) Alkaline storage battery and its manufacture
JP2002025604A (en) Alkaline secondary battery
JP4644336B2 (en) Method for producing positive electrode for alkaline storage battery
JP4997529B2 (en) Nickel electrode for alkaline battery and method for producing the same
JPH09213362A (en) Alkali storage battery
JP5116080B2 (en) Battery electrode substrate, battery electrode and battery
JP4359678B2 (en) Secondary battery electrode and secondary battery using the same
JP5924670B2 (en) Battery having sheet-like fiber positive electrode and manufacturing method thereof
JP4413294B2 (en) Alkaline secondary battery
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP2009026562A (en) Electrode substrate for battery, electrode for battery, and battery
JP2000077067A (en) Positive electrode for alkaline storage battery
JP2023101148A (en) Lead accumulator battery
JP4703154B2 (en) Alkaline storage battery and method of manufacturing the same
JP2000268800A (en) Alkaline secondary battery
JP2000164246A (en) Alkali storage battery
JP2000113902A (en) Alkaline secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051111

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060131

R151 Written notification of patent or utility model registration

Ref document number: 3768041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

EXPY Cancellation because of completion of term