JPH09180753A - Nickel-metal hydride battery - Google Patents

Nickel-metal hydride battery

Info

Publication number
JPH09180753A
JPH09180753A JP7350569A JP35056995A JPH09180753A JP H09180753 A JPH09180753 A JP H09180753A JP 7350569 A JP7350569 A JP 7350569A JP 35056995 A JP35056995 A JP 35056995A JP H09180753 A JPH09180753 A JP H09180753A
Authority
JP
Japan
Prior art keywords
battery
separator
nickel
metal hydride
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7350569A
Other languages
Japanese (ja)
Inventor
Yuichi Umehara
雄一 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP7350569A priority Critical patent/JPH09180753A/en
Publication of JPH09180753A publication Critical patent/JPH09180753A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a cycle life characteristic by satisfying the requirements for both self-discharging restraint and productivity. SOLUTION: A separator made of polyolefine nonwoven or woven fabric subjected to hydrophilic treatment by means other than sulfonation is used as a separator, and a sulfonated polyolefine resin is laid in a battery jar, in addition to the separator. In this case, a nonwoven or woven fabric form of the resin is used as the sulfonated polyolefine resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術】本発明は、ニッケル・金属水素化
物電池の自己放電の抑制に関するものである。
TECHNICAL FIELD The present invention relates to suppression of self-discharge of a nickel metal hydride battery.

【0002】[0002]

【従来の技術】水酸化ニッケルを主活物質とする正極
と、水素吸蔵合金を主体とする負極と、前記正極と前記
負極との間に介在して前記正極と前記負極とを電気的に
絶縁するセパレータと、電池容器とを備えるニッケル・
金属水素化物電池は、ニッケルカドミウム電池と比較し
て、エネルギー密度が高く、負極活物質にカドミウムを
含まないことから、環境上好ましく、携帯機器や電気自
動車用などの電源として、近年償用されている。
2. Description of the Related Art A positive electrode having nickel hydroxide as a main active material, a negative electrode mainly having a hydrogen storage alloy, and a positive electrode and a negative electrode interposed between the positive electrode and the negative electrode to electrically insulate the positive electrode and the negative electrode from each other. Equipped with a separator and a battery container
Metal hydride batteries have a higher energy density than nickel-cadmium batteries and do not contain cadmium in the negative electrode active material, which is environmentally preferable and has been recently used as a power source for portable devices and electric vehicles. There is.

【0003】この電池の正極、セパレータ、電解液およ
び電池容器には、ニッケルカドミウム電池と類似のもの
が用いられていた。
For the positive electrode, the separator, the electrolytic solution and the battery container of this battery, those similar to the nickel-cadmium battery were used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うなニッケル・金属水素化物電池には、自己放電がニッ
ケルカドミウム電池と同等以上に大きいという問題点が
あった。
However, such a nickel-metal hydride battery has a problem that the self-discharge is larger than that of the nickel-cadmium battery.

【0005】ニッケルカドミウム電池の自己放電の主た
る原因は、原料塩に由来して正極活物質や、負極活物質
に不純物として残留している硝酸根や、ポリアミド製セ
パレータの分解生成物による"nitrate-nitrite shuttl
e" 機構にあることが知られており、ニッケル・金属水
素化物電池においても同様の機構が作用しているものと
考えられる。また、ニッケル・金属水素化物電池におい
ては、負極の水素吸蔵合金から放出された水素ガスによ
って、正極活物質が還元されるという機構も考えられ
る。
The main cause of self-discharge in nickel-cadmium batteries is "nitrate-" due to nitrate radicals remaining as impurities in the positive electrode active material and negative electrode active material due to the raw material salt and decomposition products of the polyamide separator. nitrite shuttl
It is known that there is an e "mechanism, and it is considered that the same mechanism is operating in a nickel-metal hydride battery. In a nickel-metal hydride battery, the hydrogen storage alloy of the negative electrode A mechanism is conceivable in which the positive electrode active material is reduced by the released hydrogen gas.

【0006】ニッケル・金属水素化物電池では、硝酸ニ
ッケルを含む水溶液を用いて製造した焼結式水酸化ニッ
ケル電極を正極に用いる場合に、電池組立後に開放系で
充電し、30〜60℃で保存して硝酸イオンを除去する
製造方法が提案されている。(特開平4−322071
号)。しかしながら、この方法では、電池を開放系で充
電して放置している間に、アルカリ電解液が空気中の炭
酸根を吸収して電解液が汚染されたり、アルカリ電解液
中の水が蒸発して電解液の濃度や量が変化するという問
題点が存在した。また、自己放電を抑制するために、ポ
リアミド製セパレータの代替として、スルホン化による
親水化を施したポリオレフィン製不織布を用いて、硝酸
根の発生を抑制する方法も提案されている。この種のセ
パレータを用いると、自己放電は抑制されるものの、電
池を組み立てる際に電解液の注入に時間がかかって、生
産性を低下させるという問題があった。その他、硝酸根
を抑制するには、フッ素ガスによって親水化処理を施し
たポリオレフィン製セパレータを用いたりする手段や、
ポリオレフィン繊維の構造にエチルビニルアルコールの
部分を導入して親水性を付与したセパレータを用いたり
する手段がある。これらのセパレータには、スルホン化
ポリオレフィンよりも電解液の吸収速度が優れたものが
あり、電池の生産性を向上させるために望ましい性質を
有している。また、これらのセパレータに含有される窒
素量は、スルホン化ポリオレフィン製セパレータと同等
程度に少ない。さらに、ポリオレフィン製セパレータ
は、ポリアミド製セパレータよりも、アルカリ電解液中
における耐久性が高く、充放電サイクル寿命特性にも優
れている。しかし、スルホン化以外の手段によって親水
化処理が施されたポリオレフィン製セパレータを用いて
も、スルホン化ポリオレフィン製セパレータを用いた場
合ほどには、自己放電を抑制することができなかった。
In the nickel-metal hydride battery, when a sintered nickel hydroxide electrode manufactured by using an aqueous solution containing nickel nitrate is used as a positive electrode, it is charged in an open system after battery assembly and stored at 30 to 60 ° C. There has been proposed a manufacturing method for removing nitrate ions. (Japanese Patent Laid-Open No. 4-3202071
issue). However, in this method, while the battery is charged in an open system and left to stand, the alkaline electrolyte absorbs carbonate in the air and contaminates the electrolyte, or the water in the alkaline electrolyte evaporates. Therefore, there was a problem that the concentration and amount of the electrolytic solution changed. In addition, in order to suppress self-discharge, a method of suppressing the generation of nitrate radicals has been proposed by using a polyolefin nonwoven fabric hydrophilized by sulfonation as an alternative to the polyamide separator. When this type of separator is used, self-discharge is suppressed, but there is a problem in that it takes time to inject the electrolyte solution when assembling the battery, which lowers productivity. In addition, in order to suppress nitrate radicals, a means of using a polyolefin separator subjected to a hydrophilic treatment with fluorine gas,
There is a means of using a separator in which a portion of ethyl vinyl alcohol is introduced into the structure of the polyolefin fiber to impart hydrophilicity. Some of these separators have an electrolytic solution absorption rate higher than that of the sulfonated polyolefin, and have desirable properties for improving battery productivity. Further, the amount of nitrogen contained in these separators is as small as that of the sulfonated polyolefin separator. Further, the polyolefin separator has higher durability in an alkaline electrolyte than the polyamide separator and is also excellent in charge / discharge cycle life characteristics. However, even if a polyolefin separator subjected to a hydrophilic treatment by means other than sulfonation is used, self-discharge cannot be suppressed as much as when a sulfonated polyolefin separator is used.

【0007】[0007]

【課題を解決するための手段】本発明では、上述の課題
を解決するために、水酸化ニッケルを主活物質とする正
極と、水素吸蔵合金を主体とする負極と、前記正極と前
記負極との間に介在して前記正極と前記負極とを電気的
に絶縁するスルホン化以外の手段によって親水化処理を
施されたポリオレフィン製の不織布もしくは織布からな
るセパレータと、アルカリ電解液と、電池容器とを備え
るニッケル・金属水素化物電池であって、セパレータと
は別に、電池容器内にスルホン化ポリオレフィン樹脂が
配設されてなるニッケル・金属水素化物電池を提供す
る。さらに、前記スルホン化ポリオレフィン樹脂が、繊
維状であるニッケル・金属水素化物電池を提供する。さ
らに、前記スルホン化ポリオレフィン樹脂繊維が、不織
布もしくは織布であるニッケル・金属水素化物電池を提
供する。さらに、前記スルホン化ポリオレフィン不織布
が、正極とセパレータと負極とからなる極板群の側面ま
たは底面にて、極板群と接しているニッケル・金属水素
化物電池を提供する。
According to the present invention, in order to solve the above-mentioned problems, a positive electrode containing nickel hydroxide as a main active material, a negative electrode mainly containing a hydrogen storage alloy, the positive electrode and the negative electrode. A separator made of a non-woven fabric or a woven fabric made of polyolefin hydrophilized by means other than sulfonation for electrically insulating the positive electrode and the negative electrode by interposing between them, an alkaline electrolyte, and a battery container A nickel-metal hydride battery comprising: a nickel-metal hydride battery in which a sulfonated polyolefin resin is provided in a battery container separately from a separator. Further, the sulfonated polyolefin resin provides a nickel metal hydride battery in a fibrous state. Further, there is provided a nickel metal hydride battery in which the sulfonated polyolefin resin fiber is a non-woven fabric or a woven fabric. Further, there is provided a nickel-metal hydride battery in which the sulfonated polyolefin nonwoven fabric is in contact with the electrode plate group on the side surface or the bottom surface of the electrode plate group including a positive electrode, a separator and a negative electrode.

【0008】[0008]

【発明の実施の形態】本発明によるニッケル・金属水素
化物電池は、スルホン化ポリオレフィン樹脂をスルホン
化以外の方法で親水化処理を施したポリオレフィン製セ
パレータと別に電池内に設置する。このようにすると、
自己放電を抑制する作用があり、その効果は、スルホン
化以外の方法で親水化処理を施したポリオレフィン製セ
パレータを用いた場合よりもはるかに大きい。本発明に
よれば、スルホン化ポリオレフィン製セパレータより
も、電解液の吸収が速いセパレータを用いることによ
り、スルホン化ポリオレフィン製セパレータを用いる従
来技術と比べて、注液工程にかかる時間を大幅に短縮す
ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION A nickel metal hydride battery according to the present invention is installed in a battery separately from a polyolefin separator in which a sulfonated polyolefin resin is hydrophilized by a method other than sulfonation. This way,
It has a function of suppressing self-discharge, and its effect is much larger than that when a polyolefin separator hydrophilized by a method other than sulfonation is used. According to the present invention, by using a separator that absorbs the electrolytic solution faster than a separator made of sulfonated polyolefin, the time required for the liquid injection step is significantly shortened as compared with the conventional technique using a separator made of sulfonated polyolefin. be able to.

【0009】さらに、ポリアミド製セパレータよりも、
アルカリ電解液中における耐久性が優れたポリオレフィ
ン製のセパレータを用いることにより、自己放電性能だ
けでなくサイクル寿命性能も優れた電池を得ることがで
きる。
Furthermore, rather than a polyamide separator,
By using a polyolefin separator having excellent durability in an alkaline electrolyte, a battery having not only self-discharge performance but also excellent cycle life performance can be obtained.

【0010】スルホン化による親水化処理を施した場
合、特に自己放電が減少する理由については、現在のと
ころ良くわかっていないが、おそらく、表面のスルホン
基が何らかのイオン交換能を有しており、自己放電に関
与する電池内の窒素根を減少させる働きをもっているの
であろう。或いは、スルホン化ポリオレフィンを設置す
ると、電解液の分布が変わり、水素吸蔵合金から放出さ
れた水素ガスが、正極へ到達しにくくなっているのかも
知れない。或いは、スルホン化ポリオレフィンをアルカ
リ電解液中に浸漬すると、自己放電を抑制する作用のあ
る何らかの物質が、放出されているのかも知れない。
The reason why the self-discharge is reduced when the hydrophilization treatment by sulfonation is performed is not well understood at present, but the sulfo group on the surface probably has some ion exchange ability, It may have the function of reducing nitrogen roots in the battery that are involved in self-discharge. Alternatively, if a sulfonated polyolefin is installed, the distribution of the electrolytic solution may change, and it may be difficult for hydrogen gas released from the hydrogen storage alloy to reach the positive electrode. Alternatively, when the sulfonated polyolefin is dipped in an alkaline electrolyte, some substance that suppresses self-discharge may be released.

【0011】いずれにせよ、スルホン化ポリオレフィン
をセパレータとは別に電池内に配設することによって、
自己放電を効果的に抑制するとともに、スルホン化ポリ
オレフィン製セパレータやポリアミド製セパレータを用
いる場合の不都合も同時に除去するというすぐれた作用
を生ずるのである。
In any case, by disposing the sulfonated polyolefin in the battery separately from the separator,
This effectively suppresses self-discharge, and at the same time eliminates the disadvantages of using a sulfonated polyolefin separator or a polyamide separator.

【0012】[0012]

【実施例】本発明を好適な実施例によって詳しく説明す
る。 [電池A](本発明品) 正極は次のようにして作製した。
The present invention will be described in detail with reference to preferred embodiments. [Battery A] (Product of the Present Invention) A positive electrode was prepared as follows.

【0013】すなわち、水酸化ニッケルに少量の水酸化
コバルトおよび水酸化亜鉛を共沈して得た活物質粉末を
主体とし、水酸化コバルト粉末を混合し、これに水を加
えて混練してペースト状物を調製した。この水酸化コバ
ルト粉末は、正極活物質の活物質利用率を向上すると共
に、負極の放電リザーブを得るための添加物である。同
様の作用は、金属コバルトや酸化コバルトによっても得
られる。次に、このペースト状物を、約300μmの平
均細孔径を有する発泡状ニッケル多孔体に充填し、乾燥
し、加圧し、所定の大きさに切断して正極板を得た。
That is, an active material powder obtained by coprecipitating a small amount of cobalt hydroxide and zinc hydroxide in nickel hydroxide is mainly mixed with cobalt hydroxide powder, and water is added to this and kneaded to form a paste. Was prepared. The cobalt hydroxide powder is an additive for improving the utilization rate of the active material of the positive electrode active material and obtaining the discharge reserve of the negative electrode. A similar effect can be obtained by using cobalt metal or cobalt oxide. Next, this paste was filled in a foamed nickel porous body having an average pore diameter of about 300 μm, dried, pressurized, and cut into a predetermined size to obtain a positive electrode plate.

【0014】負極は次の方法で製作した。The negative electrode was manufactured by the following method.

【0015】すなわち、ミッシュメタル(以後Mmと表
記する。主要成分は、La:約45重量%、Ce:約5
重量%、Pr:約10重量%、Nd:約40重量%)、
Ni、Co、MnおよびAlの金属材料を、MmNi
3.5 Co0.8 Al0.4 Mn0.3の組成となるように高周
波誘導炉にて融解し、金型に鋳込んで凝固させた。そし
て、その鋳塊を粉砕し、ふるい分けて、平均粒径が数十
μmの水素吸蔵合金粉末を得た。次に、この水素吸蔵合
金粉末100重量部と、導電助剤たる少量のカーボンブ
ラックとを、増粘剤かつ結着剤の機能を有するポリビニ
ルアルコール等の水溶液とともに混練してペースト状物
を調製した。次に、このペースト状物を、厚さが約80
μmで開口率が約50%のニッケルメッキを施した鉄製
の穿孔鋼板に塗布し、乾燥し、プレスし、所定の大きさ
に切断して、負極を得た。
That is, misch metal (hereinafter referred to as Mm. The main components are La: about 45% by weight, Ce: about 5).
%, Pr: about 10% by weight, Nd: about 40% by weight),
The metallic materials of Ni, Co, Mn and Al are replaced by MmNi
It was melted in a high frequency induction furnace so as to have a composition of 3.5 Co 0.8 Al 0.4 Mn 0.3 , cast into a mold and solidified. Then, the ingot was pulverized and sieved to obtain a hydrogen storage alloy powder having an average particle size of several tens of μm. Next, 100 parts by weight of this hydrogen-absorbing alloy powder and a small amount of carbon black as a conductive auxiliary agent were kneaded with an aqueous solution of polyvinyl alcohol or the like having a function of a thickener and a binder to prepare a paste-like material. . Next, this paste-like material is made to have a thickness of about 80.
A negative electrode was obtained by coating a perforated steel plate made of iron plated with nickel and having an aperture ratio of about 50% at μm, dried, pressed, and cut into a predetermined size.

【0016】そして、これらの正極3枚と負極4枚と
を、フッ素ガスによる親水化処理を施したポリオレフィ
ン製不織布からなるセパレータ各1枚を介して積層し
て、高さ57mm、ヨコ15mm、タテ4.8mmの極
板群を構成した。そして、この極板群の底面に、ヨコ1
5mm、タテ4.8mm、厚さ200μmのスルホン化
ポリオレフィン製不織布を設置し、ニッケルメッキした
鉄製の電池容器に収納した。そして、7molのKOH
水溶液に10g/lのLiOHを溶解させたアルカリ電
解液を注入し、安全弁を兼ねた正極端子を有する蓋で電
池を封口し、公称容量が1000mAhの角形密閉型の
ニッケル・金属水素化物電池を構成した。
Then, these three positive electrodes and four negative electrodes are laminated with one separator each consisting of a polyolefin nonwoven fabric hydrophilized with fluorine gas, with a height of 57 mm, a width of 15 mm, and a vertical length. A 4.8 mm plate group was constructed. And on the bottom of this electrode group, horizontal 1
A sulfonated polyolefin non-woven fabric having a size of 5 mm, a length of 4.8 mm, and a thickness of 200 μm was placed and stored in a nickel-plated iron battery container. And 7 mol KOH
An alkaline electrolyte prepared by dissolving 10 g / l of LiOH in an aqueous solution is injected, and the battery is sealed with a lid having a positive electrode terminal that also serves as a safety valve, forming a prismatic sealed nickel metal hydride battery with a nominal capacity of 1000 mAh. did.

【0017】構成した電池は、20℃にて数回の充放電
からなる化成をおこなった。化成後に200mA(約5
時間率)の電流で6時間充電し、200mAの電流で放
電した場合の放電容量は約1000mAhであった。ま
た、この電池の充電および放電は、共に正極の容量で制
限されていた。 [電池B](本発明品) 極板群は、電池Aと同様の方法で製作した。そして、こ
の極板群の側面に、ヨコ15mm、タテ60mm、厚さ
200μmのスルホン化ポリオレフィン製不織布を設置
した。電池Aと同様に、注液、封口し、25℃にて数回
の充放電からなる化成をおこなった。 [電池C](比較例) 正極および負極は、電池Aと同様の方法で製作した。正
極3枚と負極4枚とを、スルホン化ポリオレフィン製不
織布からなるセパレータ各1枚を介して積層して、極板
群を構成した。電池Aと同様に、注液、封口し、25℃
にて数回の充放電からなる化成をおこなった。 [電池D](比較例) 正極および負極は、電池Aと同様の方法で製作した。正
極3枚と負極4枚とを、フッ素ガスによる親水化処理を
施したセパレータ各1枚を介して積層して、極板群を構
成した。電池Aと同様に、注液、封口し、25℃にて数
回の充放電からなる化成をおこなった。 [電池E](比較例) 正極および負極は、電池Aと同様の方法で製作した。正
極3枚と負極4枚とを、ポリアミド製セパレータ各1枚
を介して積層して、極板群を構成した。電池Aと同様
に、注液、封口し、25℃にて数回の充放電からなる化
成をおこなった。 [電池F](比較例) 正極および負極は、電池Aと同様の方法で製作した。正
極3枚と負極4枚とを、ポリアミド製セパレータ各1枚
を介して積層して、極板群を構成した。そして、この極
板群の側面に、ヨコ15mm、タテ60mm、厚さ20
0μmのスルホン化ポリオレフィン製不織布を設置し
た。電池Aと同様に、注液、封口し、25℃にて数回の
充放電からなる化成をおこなった。
The battery thus constructed was subjected to chemical conversion by charging and discharging several times at 20 ° C. After formation, 200mA (about 5
(Hour rate) for 6 hours, and discharged at a current of 200 mA, the discharge capacity was about 1000 mAh. In addition, charging and discharging of this battery were both limited by the capacity of the positive electrode. [Battery B] (Product of the Present Invention) The electrode plate group was manufactured in the same manner as the battery A. Then, a sulfonated polyolefin nonwoven fabric having a width of 15 mm, a length of 60 mm, and a thickness of 200 μm was placed on the side surface of this electrode plate group. Similar to the battery A, liquid injection, sealing, and charging / discharging at 25 ° C. were performed several times to perform chemical conversion. [Battery C] (Comparative Example) The positive electrode and the negative electrode were manufactured in the same manner as the battery A. Three positive electrodes and four negative electrodes were laminated with one separator each made of a sulfonated polyolefin non-woven fabric interposed therebetween to form an electrode plate group. Like Battery A, inject and seal, 25 ℃
At that time, formation was performed by charging and discharging several times. [Battery D] (Comparative Example) The positive electrode and the negative electrode were manufactured in the same manner as the battery A. Three positive electrodes and four negative electrodes were laminated with one separator each subjected to a hydrophilizing treatment with fluorine gas, to form an electrode plate group. Similar to the battery A, liquid injection, sealing, and charging / discharging at 25 ° C. were performed several times to perform chemical conversion. [Battery E] (Comparative Example) The positive electrode and the negative electrode were manufactured in the same manner as the battery A. Three positive electrodes and four negative electrodes were laminated with one polyamide separator interposed therebetween to form an electrode plate group. Similar to the battery A, liquid injection, sealing, and charging / discharging at 25 ° C. were performed several times to perform chemical conversion. [Battery F] (Comparative Example) The positive electrode and the negative electrode were manufactured in the same manner as the battery A. Three positive electrodes and four negative electrodes were laminated with one polyamide separator interposed therebetween to form an electrode plate group. Then, on the side surface of this electrode plate group, a width of 15 mm, a length of 60 mm, and a thickness of 20
A 0 μm sulfonated polyolefin nonwoven fabric was installed. Similar to the battery A, liquid injection, sealing, and charging / discharging at 25 ° C. were performed several times to perform chemical conversion.

【0018】このようにして得た試験電池A、B、C、
D、EおよびFを製作する際の吸液特性を、次の試験に
より比較した。すなわち、各電池の極板群に、それぞれ
約1mlの電解液を滴下し、この電解液を吸収するのに
要した時間を測定した。結果を表1に示す。
The test batteries A, B, C obtained in this way
The liquid absorption characteristics when producing D, E and F were compared by the following tests. That is, about 1 ml of the electrolytic solution was dropped onto the electrode plate group of each battery, and the time required to absorb the electrolytic solution was measured. The results are shown in Table 1.

【0019】[0019]

【表1】 フッ素による親水化処理を施したセパレータを用いた電
池A、BおよびDに比べて、スルホン化ポリオレフィン
製セパレータを用いた比較例の電池Cは、電解液を吸収
するのに著しく長い時間を要することがわかる。スルホ
ン化ポリオレフィン不織布を設置した本発明の電池Aお
よびBでは、比較例の電池Dと同等の吸液時間とするこ
とができた。また、ポリアミド製セパレータを用いた電
池EおよびFの吸液時間も、電池Dと同等であった。
[Table 1] Compared with the batteries A, B and D using the separator hydrophilized with fluorine, the battery C of the comparative example using the sulfonated polyolefin separator requires a significantly longer time to absorb the electrolytic solution. I understand. In the batteries A and B of the present invention in which the sulfonated polyolefin nonwoven fabric was installed, the liquid absorption time was able to be the same as that of the battery D of the comparative example. The liquid absorption times of the batteries E and F using the polyamide separator were also the same as those of the battery D.

【0020】次に、次の条件で自己放電特性の比較をお
こなった。すなわち、電池A、B、C、D、EおよびF
をまず25℃で1000mA(約1時間率)にて66分
間充電してから、200mA(約5時間率)にて端子間
電圧が1.0Vになるまで放電して、自己放電前の容量
を調べる。その後に、25℃で1000mAにて66分
間充電してから、40℃の恒温槽中にて7日間保存し、
その後25℃で200mAにて端子間電圧が1.0Vに
なるまで残存放電した。この残存放電容量と自己放電の
前の放電容量の比から容量保持率を算出した。結果を表
2に示す。
Next, the self-discharge characteristics were compared under the following conditions. That is, batteries A, B, C, D, E and F
Is first charged at 25 ° C. at 1000 mA (about 1 hour rate) for 66 minutes, then discharged at 200 mA (about 5 hour rate) until the terminal voltage becomes 1.0 V, and the capacity before self-discharge Find out. After that, charge at 1000 mA at 25 ° C for 66 minutes, then store in a constant temperature bath at 40 ° C for 7 days,
After that, residual discharge was carried out at 25 ° C. and 200 mA until the terminal voltage became 1.0 V. The capacity retention rate was calculated from the ratio of the remaining discharge capacity and the discharge capacity before self-discharge. Table 2 shows the results.

【0021】[0021]

【表2】 スルホン化ポリオレフィン製セパレータを用いた比較例
の電池Cの容量保持率は82%であったが、フッ素によ
る親水化処理を施したセパレータを用いた比較例の電池
Dでは65%であった。一方、極板群の底面にスルホン
化ポリオレフィン製不織布を設置した本発明の電池Aは
容量保持率が73%になった。また、極板群の側面にス
ルホン化ポリオレフィン製不織布を設置した電池Cで
は、容量保持率は82%になった。ポリアミド製不織布
を用いた比較例の電池Eでは、容量保持率が55%に低
下し、極板群の側面にスルホン化ポリオレフィン製不織
布を設置した比較例の電池Fにおいても、容量保持率は
71%程度までしか向上しなかった。
[Table 2] The capacity retention of the battery C of the comparative example using the sulfonated polyolefin separator was 82%, but 65% of the battery D of the comparative example using the separator hydrophilized with fluorine. On the other hand, in the battery A of the present invention in which the sulfonated polyolefin nonwoven fabric was installed on the bottom surface of the electrode plate group, the capacity retention rate was 73%. Further, in the battery C in which the sulfonated polyolefin nonwoven fabric was installed on the side surface of the electrode plate group, the capacity retention rate was 82%. In the battery E of the comparative example using the polyamide nonwoven fabric, the capacity retention rate decreased to 55%, and also in the battery F of the comparative example in which the sulfonated polyolefin nonwoven fabric was installed on the side surface of the electrode plate group, the capacity retention ratio was 71%. It improved only to about%.

【0022】次に、サイクル寿命性能の比較をおこなっ
た。充放電サイクルは、1000mA(約1時間率)に
て54分間充電し、1000mA(約1時間率)にて4
8分間放電するという条件でおこなった。雰囲気の温度
は、25℃であり、また、充電と放電の間には、10分
間の休止をおこなった。数十サイクルごとに、1kHz
交流法にて内部抵抗の測定をおこなった。また、放電容
量は、内部抵抗を測定する際に、1000mAにて66
分間充電し、200mAにて1.0Vまで放電するとい
う条件で測定した。サイクル寿命試験における放電容量
の推移を図1に、電池の内部抵抗の推移を図2に示す。
Next, the cycle life performances were compared. The charge and discharge cycle is as follows: charging at 1000 mA (about 1 hour rate) for 54 minutes, and charging at 1000 mA (about 1 hour rate) for 4 minutes.
The test was performed under the condition of discharging for 8 minutes. The temperature of the atmosphere was 25 ° C., and a pause of 10 minutes was performed between charging and discharging. 1 kHz every tens of cycles
The internal resistance was measured by the AC method. The discharge capacity was 66 at 1000 mA when measuring the internal resistance.
The measurement was performed under the condition that the battery was charged for 1 minute and discharged to 1.0 V at 200 mA. The change in discharge capacity in the cycle life test is shown in FIG. 1, and the change in internal resistance of the battery is shown in FIG.

【0023】ポリアミド製不織布を用いた比較例の電池
EおよびFにおいては、サイクルの進行にともなう内部
抵抗の上昇が大きく、放電容量の減少が著しかった。ま
た、スルホン化ポリオレフィン製不織布からなるセパレ
ータを用いた比較例の電池Cに比べて、フッ素による親
水化処理を施したポリオレフィン製セパレータを用いた
本発明の電池A、Bおよび比較例の電池Dの方が、内部
抵抗の上昇が少なく、放電容量の減少が少なかった。よ
って、フッ素による親水化処理を施したポリオレフィン
製セパレータを用いた場合が、もっともサイクル寿命性
能に優れていることがわかる。
In the batteries E and F of the comparative example using the polyamide nonwoven fabric, the internal resistance increased greatly with the progress of the cycle, and the discharge capacity decreased remarkably. Further, compared to the battery C of the comparative example using the separator made of the sulfonated polyolefin nonwoven fabric, the batteries A and B of the present invention and the battery D of the comparative example using the polyolefin separator hydrophilized with fluorine were used. In this case, the increase in internal resistance was small and the decrease in discharge capacity was small. Therefore, it is found that the cycle life performance is most excellent when the polyolefin separator subjected to the hydrophilic treatment with fluorine is used.

【0024】なお、上記の実施例では、スルホン化ポリ
オレフィン製不織布を例にして示したが、スルホン化ポ
リオレフィン樹脂は、顆粒状、繊維状およびフィルム状
等の形状で用いても構わない。また、上記の実施例で
は、スルホン化ポリオレフィン製不織布をエレメントの
底面および側面に設置した場合を例にして説明したが、
設置する場所は、エレメントの上部等、セパレータと別
であれば電池内のどの場所であっても構わない。
In the above examples, the sulfonated polyolefin nonwoven fabric is shown as an example, but the sulfonated polyolefin resin may be used in the form of granules, fibers or films. Further, in the above example, the case where the sulfonated polyolefin nonwoven fabric is installed on the bottom surface and the side surface of the element has been described as an example.
The place of installation may be any place in the battery, such as the upper part of the element, as long as it is different from the separator.

【0025】上記の実施例では、フッ素ガスによる親水
化処理を施したポリオレフィン製不織布のセパレータを
例にして示したが、親水化処理は、界面活性剤を添加す
る方法や、ポリオレフィン繊維の構造にエチルビニルア
ルコールの部分を導入する方法で施しても構わないし、
不織布のかわりに織布をもちいても構わない。
In the above-mentioned examples, the separator made of the polyolefin non-woven fabric which has been subjected to the hydrophilic treatment with fluorine gas has been described as an example, but the hydrophilic treatment is carried out by the method of adding a surfactant or the structure of the polyolefin fiber. It may be applied by a method of introducing a portion of ethyl vinyl alcohol,
Woven cloth may be used instead of non-woven cloth.

【0026】また、上記の実施例では、正極合剤の組成
や配合方法、正極の組成、負極の水素吸蔵合金の組成、
合金粉末の製造方法、正極や負極の製造方法、電解液の
組成、ニッケル・金属水素化物電池の構成、充放電や放
置の条件等について、特定の具体的な構成のものを用い
て詳しく説明したが、当該技術分野における通常の技術
知識を有するものが、本発明の範囲において修正および
変更をおこなうことは可能であり、そのような修正およ
び変更は、本発明の範囲に含まれる。
Further, in the above-mentioned examples, the composition and blending method of the positive electrode mixture, the composition of the positive electrode, the composition of the hydrogen storage alloy of the negative electrode,
The alloy powder manufacturing method, the positive electrode and the negative electrode manufacturing method, the composition of the electrolytic solution, the configuration of the nickel-metal hydride battery, the conditions of charging and discharging and leaving, etc. were described in detail using a specific specific configuration. However, those having ordinary technical knowledge in the art can make modifications and changes within the scope of the present invention, and such modifications and changes are included in the scope of the present invention.

【0027】[0027]

【発明の効果】以上に詳述したように、本発明によれ
ば、ニッケル・金属水素化物電池において、スルホン化
以外の方法により親水化処理を施したポリオレフィン製
セパレータを用いることおよびセパレータとは別に、電
池内にスルホン化ポリオレフィン樹脂を設置した構造を
採用することによって、電解液の吸収速度が著しく遅く
なることなく、自己放電速度が低下し、サイクル寿命性
能にも優れたニッケル・金属水素化物電池を得ることが
できる。
As described in detail above, according to the present invention, in a nickel metal hydride battery, a polyolefin separator hydrophilized by a method other than sulfonation is used, and separately from the separator. By adopting a structure in which a sulfonated polyolefin resin is installed in the battery, the self-discharge rate is reduced without significantly slowing the absorption rate of the electrolytic solution, and the nickel metal hydride battery also has excellent cycle life performance. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】放電容量の推移を比較した図FIG. 1 is a diagram comparing changes in discharge capacity.

【図2】内部抵抗の推移を比較した図FIG. 2 is a diagram comparing changes in internal resistance.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 2/16 H01M 2/16 P Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location H01M 2/16 H01M 2/16 P

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水酸化ニッケルを主活物質とする正極
と、水素吸蔵合金を主体とする負極と、前記正極と前記
負極との間に介在して前記正極と前記負極とを電気的に
絶縁するスルホン化以外の手段によって親水化処理が施
されたポリオレフィン製の不織布もしくは織布からなる
セパレータと、アルカリ電解液と、電池容器とを備える
ニッケル・金属水素化物電池であって、セパレータとは
別に、電池容器内にスルホン化ポリオレフィン樹脂が配
設されてなることを特徴とするニッケル・金属水素化物
電池。
1. A positive electrode having nickel hydroxide as a main active material, a negative electrode mainly having a hydrogen storage alloy, and a positive electrode and a negative electrode interposed between the positive electrode and the negative electrode to electrically insulate the positive electrode and the negative electrode. A nickel-metal hydride battery provided with a separator made of a non-woven fabric or a woven fabric made of polyolefin that has been hydrophilized by a means other than sulfonation, an alkaline electrolyte, and a battery container, which is separate from the separator. A nickel metal hydride battery characterized in that a sulfonated polyolefin resin is disposed in a battery container.
【請求項2】 前記スルホン化ポリオレフィン樹脂が、
繊維状であることを特徴とする請求項1に記載のニッケ
ル・金属水素化物電池。
2. The sulfonated polyolefin resin,
The nickel-metal hydride battery according to claim 1, which is fibrous.
【請求項3】 前記スルホン化ポリオレフィン樹脂繊維
が、不織布もしくは織布であることを特徴とする請求項
1に記載のニッケル・金属水素化物電池。
3. The nickel-metal hydride battery according to claim 1, wherein the sulfonated polyolefin resin fiber is a non-woven fabric or a woven fabric.
【請求項4】 前記スルホン化ポリオレフィン不織布
が、正極とセパレータと負極とからなる極板群の側面ま
たは底面にて、極板群と接していることを特徴とする請
求項1に記載のニッケル・金属水素化物電池。
4. The nickel according to claim 1, wherein the sulfonated polyolefin nonwoven fabric is in contact with the electrode plate group at a side surface or a bottom surface of the electrode plate group including a positive electrode, a separator and a negative electrode. Metal hydride battery.
JP7350569A 1995-12-22 1995-12-22 Nickel-metal hydride battery Pending JPH09180753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7350569A JPH09180753A (en) 1995-12-22 1995-12-22 Nickel-metal hydride battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7350569A JPH09180753A (en) 1995-12-22 1995-12-22 Nickel-metal hydride battery

Publications (1)

Publication Number Publication Date
JPH09180753A true JPH09180753A (en) 1997-07-11

Family

ID=18411388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7350569A Pending JPH09180753A (en) 1995-12-22 1995-12-22 Nickel-metal hydride battery

Country Status (1)

Country Link
JP (1) JPH09180753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283901A (en) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd Alkaline battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283901A (en) * 2000-03-31 2001-10-12 Sanyo Electric Co Ltd Alkaline battery

Similar Documents

Publication Publication Date Title
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
EP0587974A1 (en) Sealed metal oxide-hydrogen storage battery
EP0271043A1 (en) Sealed storage battery and method for making its electrode
JP3042043B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
US5034289A (en) Alkaline storage battery and method of producing negative electrode thereof
JPH0521064A (en) Nickel hydroxide4 active material powder and nickel positive electrode and alkaline storage battery using this
JPH1074536A (en) Sealed nickel-hydrogen storage battery
EP0696822B1 (en) Sealed type alkaline battery
JP3287367B2 (en) Sealed nickel zinc battery
JP2001076730A (en) Nickel-hydrogen secondary battery
JP3515286B2 (en) Electrodes for secondary batteries
JP3209071B2 (en) Alkaline storage battery
JPH09180753A (en) Nickel-metal hydride battery
JP3895984B2 (en) Nickel / hydrogen storage battery
JP2926732B2 (en) Alkaline secondary battery
US6924062B2 (en) Nickel-metal hydride storage battery
JP2989877B2 (en) Nickel hydride rechargeable battery
JP2987873B2 (en) Alkaline storage battery
JP3520573B2 (en) Method for producing nickel-metal hydride battery
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP3070081B2 (en) Sealed alkaline storage battery
CN115411265A (en) Hydrogen storage alloy negative electrode and nickel-hydrogen secondary battery comprising hydrogen storage alloy negative electrode
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
JP3412162B2 (en) Alkaline storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050708

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218