JPH10125313A - Negative electrode for alkaline storage battery and alkaline storage battery equipped with negative electrode - Google Patents

Negative electrode for alkaline storage battery and alkaline storage battery equipped with negative electrode

Info

Publication number
JPH10125313A
JPH10125313A JP8279587A JP27958796A JPH10125313A JP H10125313 A JPH10125313 A JP H10125313A JP 8279587 A JP8279587 A JP 8279587A JP 27958796 A JP27958796 A JP 27958796A JP H10125313 A JPH10125313 A JP H10125313A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
absorbing layer
gas
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8279587A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kitaoka
和洋 北岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8279587A priority Critical patent/JPH10125313A/en
Publication of JPH10125313A publication Critical patent/JPH10125313A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a drop in the discharge characteristic of high efficiency, and provide a high charging and discharging cycle life by laying a porous gas- absorbing layer of nonwoven fabric, formed out of carbon fiber among a plurality of negative electrode plates. SOLUTION: Slurry is prepared by kneading, for example, 99wt.% of the powder of a hydrogen storage alloy for an electrode, with 1wt.% of polyethylene oxide powder as a binding agent and distilled water, and applied to both sides of a current collector. Also, the current collector is dried and rolled. A hydrogen storage plate 3 is thereby formed. Thereafter, nonwoven fabric made, for example, of carbon fiber having a 18μm diameter is laid between electrode plates 3 so formed and inserted in a bag type separator, that is forms a nickel- hydrogen battery negative electrode 5 filled with a gas-absorbing layer made of carbon fiber. In this case, the negative electrode 5 has a three-layer structure with a gas-absorbing layer positioned between two hydrogen storage alloy plates. As a result of fitting the gas-absorbing layer so formed, energy density per battery weight is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、特に急速充電や高率放
電を必要とする電気自動車用電池等の大型電池に用いら
れる好適な電極構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode structure suitable for use in a large battery such as a battery for an electric vehicle which requires rapid charging and high-rate discharging.

【0002】[0002]

【従来の技術】アルカリ蓄電池用負極板は大別して焼結
式と非焼結式の2種の方式で製造されるが、前者は比較
的エネルギー密度に劣るものの急速充電、高率放電特性
に優れ、後者はエネルギー密度は高くなるものの急速充
電、高率放電に劣っていた。
2. Description of the Related Art Anode plates for alkaline storage batteries are roughly classified into two types, namely, a sintered type and a non-sintered type. The former is excellent in quick charge and high rate discharge characteristics although its energy density is relatively low. In the latter case, although the energy density was high, it was inferior to rapid charge and high rate discharge.

【0003】現在実用化されている水素吸蔵合金電極に
おいては非焼結式の製造方法が一般的に利用されてい
る。このような非焼結式極板の構造の一例としては、集
電するための芯体となるパンチングメタルの両面に水素
吸蔵合金からなる活物質層を塗着したものをあげること
ができるが、急速充電における過充電時の電池内部ガス
圧の上昇が問題となっていた。
[0003] In a hydrogen storage alloy electrode currently in practical use, a non-sintered manufacturing method is generally used. As an example of the structure of such a non-sintered electrode plate, there can be mentioned a structure in which an active material layer made of a hydrogen storage alloy is applied to both surfaces of a punching metal serving as a core for collecting current, An increase in gas pressure inside the battery at the time of overcharging during rapid charging has been a problem.

【0004】そこで、USP5,477,806号公報
には、このような問題を解決することを目的として、2
枚の負極板の間に1枚の多孔性のガス吸収層を介在させ
た3層構造からなるアルカリ蓄電池用負極が提案されて
いる。そして、そのガス吸収層として発泡ニッケル等の
多孔性金属やプラスチック等を使用することが開示して
いる。
Therefore, US Pat. No. 5,477,806 discloses a two-layered circuit for the purpose of solving such a problem.
A negative electrode for an alkaline storage battery having a three-layer structure in which one porous gas absorbing layer is interposed between two negative plates has been proposed. It discloses that a porous metal such as foamed nickel, plastic, or the like is used as the gas absorbing layer.

【0005】このガス吸収層を発泡ニッケル等の多孔性
金属で構成した場合、前記ガス吸収層を集電体に電気的
に接続されている構造にすれば負極板の集電体として作
用して高率放電特性も向上する。しかし、ガス吸収層と
して発泡ニッケル等の多孔性金属を使用した場合、電池
の重量が重くなり、重量エネルギー密度的に不利である
という問題がある。
When the gas absorbing layer is made of a porous metal such as foamed nickel, if the gas absorbing layer is electrically connected to a current collector, it acts as a current collector for the negative electrode plate. High rate discharge characteristics are also improved. However, when a porous metal such as foamed nickel is used as the gas absorbing layer, there is a problem that the weight of the battery becomes heavy, which is disadvantageous in terms of weight energy density.

【0006】また、酸素ガス吸収を行うために過充電時
には絶えず酸素に触れていることにより、金属表面に酸
化被膜が形成され、長期的には活物質との導電性が薄れ
ていき、高率放電特性が低下するという問題があった。
[0006] In addition, due to constant contact with oxygen at the time of overcharging to absorb oxygen gas, an oxide film is formed on the metal surface, and the conductivity with the active material is diminished in the long term. There was a problem that the discharge characteristics deteriorated.

【0007】一方、プラスチックは前記のような金属よ
りも軽量であるが、絶縁性であるために高率放電特性に
劣るという問題があった。
[0007] On the other hand, plastic is lighter than the above-mentioned metals, but has a problem that it is inferior in high-rate discharge characteristics because of its insulating property.

【0008】また、水酸化ニッケル正極は充放電サイク
ルを繰り返すと膨化を起こし、その膨化によりセパレー
タ中の電解液が絞り出されるために、電解液不足とな
り、いわゆるセパレータのドライアウト化により電池寿
命が短くなるという問題が生じていた。
Further, the nickel hydroxide positive electrode swells when charge / discharge cycles are repeated, and the swelling causes the electrolyte in the separator to be squeezed out. As a result, the electrolyte becomes insufficient. There has been a problem of being shorter.

【0009】[0009]

【発明が解決しようとする課題】本発明は、前記問題点
に鑑みてなされたものであり、負極板の間に介在させた
ガス吸収層を炭素繊維の不織布で構成することにより、
優れたガス吸収性能を維持しつつ、電池の重量エネルギ
ー密度を向上させると共に、長期にわたって高率放電特
性の低下を防止し、充放電サイクル寿命の優れた電池を
提供しようとすることを本発明の課題とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has been made by forming a gas absorbing layer interposed between negative electrode plates by a carbon fiber nonwoven fabric.
It is an object of the present invention to improve the weight energy density of the battery while preventing the deterioration of the high rate discharge characteristics over a long period of time while maintaining excellent gas absorption performance, and to provide a battery excellent in charge / discharge cycle life. Make it an issue.

【0010】[0010]

【課題を解決するための手段】複数の負極板の間に介在
させた多孔性ガス吸収層を備えたアルカリ蓄電池用負極
であって、前記多孔性ガス吸収層が炭素繊維の不織布か
らなることを特徴とする。
A negative electrode for an alkaline storage battery having a porous gas absorbing layer interposed between a plurality of negative electrode plates, wherein the porous gas absorbing layer is made of carbon fiber nonwoven fabric. I do.

【0011】[0011]

【作用】複数の負極板の間に介在させた多孔性ガス吸収
層として炭素繊維の不織布を使用しているので、発泡ニ
ッケル等の金属を使用するよりも軽量とすることがで
き、重量エネルギー密度を向上させることができる。ま
た、炭素繊維の不織布等の炭素材料は金属のように表面
に酸化被膜を形成しないために、水素吸蔵合金等の活物
質とガス吸収層との電気的接触が長期的に持続する。従
って、長期にわたって電池の高率放電特性の低下を防止
することができる。また、炭素繊維の不織布は金属多孔
体に比べて柔らかく、弾力性に富むために、組立て初期
から電池構成に充分な構成圧をかけつつ、充放電によっ
て正極が膨化してきた際にはその弾力性でもってその膨
化分を吸収し、セパレータにかかる圧力を緩和するため
に、セパレータのドライアウトを防止することができ
る。従って、充放電サイクル寿命の優れた電池を得るこ
とが可能となる。
[Function] Since a carbon fiber non-woven fabric is used as a porous gas absorbing layer interposed between a plurality of negative electrode plates, the weight can be reduced as compared with the use of a metal such as foamed nickel, and the weight energy density is improved. Can be done. In addition, since a carbon material such as a nonwoven fabric of carbon fiber does not form an oxide film on the surface unlike metal, electric contact between an active material such as a hydrogen storage alloy and a gas absorbing layer is maintained for a long time. Therefore, it is possible to prevent the high-rate discharge characteristics of the battery from being deteriorated for a long period of time. In addition, since the carbon fiber nonwoven fabric is softer and more elastic than the porous metal body, it applies sufficient structural pressure to the battery configuration from the initial stage of assembly, and when the positive electrode expands due to charge and discharge, the elasticity is high. In order to absorb the swelling and reduce the pressure applied to the separator, dryout of the separator can be prevented. Therefore, it is possible to obtain a battery having excellent charge / discharge cycle life.

【0012】[0012]

【実施例】【Example】

(実施例1)先ず、以下のようにして電極用水素吸蔵合
金粉末を作製した。
(Example 1) First, a hydrogen storage alloy powder for an electrode was produced as follows.

【0013】市販のミッシュメタルMm(希土類元素の
混合物)、Ni、Co、Al、およびMnを用いて元素
比でMm:Ni:Co:Mn:Alの各金属元素を1:
3.4:0.8:0.6:0.2の割合となるように市
販の金属元素を秤量して混合した。次にこの混合物をア
ルゴン雰囲気下の高周波溶解炉にて溶解し、冷却を行っ
て、組成式MmNi3.4Co0.8Mn0.6Al0.2で示され
る水素吸蔵合金鋳塊を作製した。次に、上記水素吸蔵合
金塊に対して不活性ガス中、1000℃で8時間アニー
ル処理を行い、この合金塊を不活性ガス雰囲気下で平均
粒径を150μmになるように粉砕し、水素吸蔵合金粉
末を作製した。
Using commercially available misch metal Mm (mixture of rare earth elements), Ni, Co, Al, and Mn, each metal element of Mm: Ni: Co: Mn: Al is represented by 1:
Commercially available metal elements were weighed and mixed in a ratio of 3.4: 0.8: 0.6: 0.2. Then dissolving the mixture at a high frequency melting furnace under argon atmosphere and subjected to cooling to produce a hydrogen-absorbing alloy ingot represented by a composition formula MmNi 3.4 Co 0.8 Mn 0.6 Al 0.2 . Next, the hydrogen-absorbing alloy mass is annealed at 1000 ° C. for 8 hours in an inert gas, and the alloy mass is pulverized under an inert gas atmosphere so as to have an average particle size of 150 μm. An alloy powder was produced.

【0014】さらに前記水素吸蔵合金粉末を、pH=1
の塩酸溶液中に20分浸漬の後、イオン交換水で充分洗
浄し、乾燥させて、電極用水素吸蔵合金粉末を作製し
た。
Further, the hydrogen-absorbing alloy powder is adjusted to pH = 1.
Was immersed in a hydrochloric acid solution for 20 minutes, washed sufficiently with ion-exchanged water, and dried to prepare a hydrogen storage alloy powder for an electrode.

【0015】このように作製した電極用水素吸蔵合金粉
末99重量%と結着剤としてポリエチレンオキサイド粉
末1重量%、純水とを混練してスラリーを作製した。
A slurry was prepared by kneading 99% by weight of the hydrogen storage alloy powder for an electrode thus prepared, 1% by weight of a polyethylene oxide powder as a binder, and pure water.

【0016】このスラリーをパンチングメタルからなる
集電体の両面に塗着後、70℃で1時間乾燥し、圧延を
行って極板厚み0.45mmの水素吸蔵合金電極を作製
し、この電極を62×65mmのサイズに切断した。
The slurry is applied to both sides of a current collector made of punching metal, dried at 70 ° C. for 1 hour, and rolled to produce a 0.45 mm-thick hydrogen-absorbing alloy electrode. It was cut to a size of 62 × 65 mm.

【0017】2枚の前記水素吸蔵合金電極板の間に繊維
径18μmの炭素繊維からなる厚さ0.6mm、サイズ
62×65mmの炭素繊維の不織布を介在させた。さら
にこの炭素繊維の不織布を介在させた2枚の水素吸蔵合
金電極板をナイロン不織布からなる袋状セパレータに挿
入し、炭素繊維の不織布からなるガス吸収層を備えたニ
ッケル水素電池用負極とした。
A carbon fiber nonwoven fabric of carbon fiber having a fiber diameter of 18 μm and having a thickness of 0.6 mm and a size of 62 × 65 mm was interposed between the two hydrogen storage alloy electrode plates. Further, two hydrogen storage alloy electrode plates with the carbon fiber non-woven fabric interposed therebetween were inserted into a bag-like separator made of a nylon non-woven fabric to obtain a negative electrode for a nickel-metal hydride battery having a gas absorption layer made of a carbon fiber non-woven fabric.

【0018】前記ニッケル水素電池用負極11枚と公知
の方法で作製したサイズ62×65mmの焼結式ニッケ
ル正極10枚とを交互に積層し、正極、負極それぞれに
集電体を溶接して極板群を作製した。この極板群の電極
積層構造を図1に示す。
The above-mentioned eleven negative electrodes for nickel-metal hydride batteries and ten sintered nickel positive electrodes of 62 × 65 mm in size manufactured by a known method are alternately laminated, and a current collector is welded to each of the positive electrode and the negative electrode. A plate group was prepared. FIG. 1 shows an electrode laminated structure of this electrode plate group.

【0019】図1において、1は正極及び負極を隔離す
るためのセパレータであり、2は水素吸蔵合金電極板3
に介在された炭素繊維の不織布からなるガス吸収層であ
る。
In FIG. 1, reference numeral 1 denotes a separator for separating a positive electrode and a negative electrode, and 2 denotes a hydrogen storage alloy electrode plate 3
Is a gas absorption layer made of a nonwoven fabric of carbon fibers interposed between the carbon fibers.

【0020】3は水素吸蔵合金電極板であり、4は焼結
式のニッケル正極である。
Reference numeral 3 denotes a hydrogen storage alloy electrode plate, and reference numeral 4 denotes a sintered nickel positive electrode.

【0021】5は2枚の水素吸蔵合金電極板に介在させ
たガス吸収層を備えた3層構造からなる負極である。前
記極板群を角型ケースに挿入して、31重量%の水酸化
カリウム水溶液を電解液として23.8g注液した後、
封口して電池容量10.1Ahの角型の密閉型ニッケル
水素電池Aを作製した。
Reference numeral 5 denotes a negative electrode having a three-layer structure including a gas absorbing layer interposed between two hydrogen storage alloy electrode plates. The electrode group was inserted into a square case, and 23.8 g of a 31% by weight aqueous potassium hydroxide solution was injected as an electrolytic solution.
The sealed nickel-metal hydride battery A having a battery capacity of 10.1 Ah was fabricated by sealing the battery.

【0022】(比較例1)2枚の水素吸蔵合金電極板の
間に炭素繊維の不織布からなる多孔性ガス吸収層の代わ
りに目付475g/cm2、厚さ0.5mmのニッケル
金属多孔体からなる多孔性ガス吸収層を介在させた以外
は、前記実施例1と同様にして電池容量10.1Ahの
角型の密閉型ニッケル水素電池X1を作製した。
(Comparative Example 1) Instead of a porous gas-absorbing layer made of a nonwoven fabric of carbon fiber between two hydrogen-absorbing alloy electrode plates, a porous nickel metal porous material having a basis weight of 475 g / cm 2 and a thickness of 0.5 mm was used. A sealed nickel-metal hydride battery X1 having a battery capacity of 10.1 Ah was produced in the same manner as in Example 1 except that an inert gas absorbing layer was interposed.

【0023】(比較例2)また、2枚の水素吸蔵合金電
極板の間にガス吸収層を介在させない以外は、前記実施
例1と同様にして電池容量10.1Ahの角型の密閉型
ニッケル水素電池X2を作製した。
(Comparative Example 2) A sealed nickel-metal hydride battery having a battery capacity of 10.1 Ah in the same manner as in Example 1 except that no gas absorbing layer was interposed between the two hydrogen absorbing alloy electrode plates. X2 was produced.

【0024】これらの電池の重量比較を行うと、ガス吸
収層としてニッケル金属多孔体を使用した比較電池X1
はガス吸収層を介在させていない比較電池X2に比べて
17.6gの重量増になるが、一方、ガス吸収層として
炭素繊維の不織布からなる本発明電池Aは比較電池X2
に比べて2.1gの重量増だけで軽く済んだことを確認
した。
A comparison of the weights of these batteries shows that a comparative battery X1 using a nickel metal porous body as a gas absorbing layer was manufactured.
The battery A of the present invention, which is composed of a carbon fiber nonwoven fabric as the gas absorbing layer, has a weight increase of 17.6 g as compared with the comparative battery X2 having no gas absorbing layer.
It was confirmed that the weight was reduced only by 2.1 g in comparison with.

【0025】本発明電池A及び比較電池X1、X2に対
して、室温中で0.9Aで16時間充電し、1時間休止
の後、4.5Aで電池電圧が0.8Vになるまで放電
し、1時間休止するというサイクルを10サイクル繰り
返すことにより電池の活性化を各々行った。
The battery A of the present invention and the comparative batteries X1 and X2 were charged at 0.9 A for 16 hours at room temperature, and after a 1-hour pause, discharged at 4.5 A until the battery voltage reached 0.8 V. The battery was activated by repeating a cycle of pausing for 1 hour for 10 cycles.

【0026】 充放電特性試験 前記活性化処理を終了した電池A、X1、X2を電池温
度20℃の環境下で0.9Aで16時間充電し、5分の
休止の後、18Aで電池電圧が0.8Vになるまで放電
するという充放電特性試験を行い、その結果を図2及び
図3に示す。
Charge / Discharge Characteristics Test The batteries A, X1, and X2 that have completed the activation process are charged at 0.9 A for 16 hours in an environment with a battery temperature of 20 ° C., and after a 5-minute pause, the battery voltage is reduced at 18 A. A charge / discharge characteristic test of discharging to 0.8 V was performed, and the results are shown in FIGS. 2 and 3.

【0027】図2は、本発明電池A及び比較電池X1、
X2の充電特性を示す図であり、この図に示すようにガ
ス吸収層として炭素繊維からなる不織布を用いた本発明
電池A及びガス吸収層としてニッケル金属多孔体を用い
た比較電池X1は、ガス吸収層を介在させていない比較
電池X2に比べて顕著に電池内圧の上昇が抑制されてい
ることがわかる。これは、炭素繊維の不織布やニッケル
金属多孔体を水素吸蔵合金電極の間に介在させることに
よって、正極から発生した酸素ガスを消費する負極の反
応面積が向上したためと考えられる。
FIG. 2 shows a battery A of the present invention and a comparative battery X1,
FIG. 4 is a graph showing the charging characteristics of X2. As shown in the figure, the battery A of the present invention using a nonwoven fabric made of carbon fiber as a gas absorbing layer and the comparative battery X1 using a nickel metal porous body as a gas absorbing layer were gas It can be seen that the increase in battery internal pressure is significantly suppressed as compared with the comparative battery X2 without the absorption layer. This is presumably because the reaction area of the negative electrode that consumes oxygen gas generated from the positive electrode was improved by interposing a carbon fiber nonwoven fabric or a nickel metal porous body between the hydrogen storage alloy electrodes.

【0028】図3は、本発明電池A及び比較電池X1、
X2の放電特性を示す図であり、この図に示すようにガ
ス吸収層として炭素繊維からなる不織布を用いた本発明
電池A及びガス吸収層としてニッケル金属多孔体を用い
た比較電池X1は、ガス吸収層を介在させていない比較
電池X2に比べて作動電圧及び放電容量が高く、優れた
放電特性が得られていることがわかる。これは、炭素繊
維の不織布やニッケル金属多孔体は導電性が良好なため
に、水素吸蔵合金電極板の間に何も介在していない電池
に比べて高率放電時の作動電圧が向上したためと考えら
れる。
FIG. 3 shows the battery A of the present invention and the comparative battery X1,
FIG. 4 is a graph showing the discharge characteristics of X2. As shown in FIG. 4, the battery A of the present invention using a non-woven fabric made of carbon fiber as a gas absorbing layer and the comparative battery X1 using a nickel metal porous body as a gas absorbing layer were gaseous. It can be seen that the operating voltage and the discharge capacity are higher than those of the comparative battery X2 in which no absorption layer is interposed, and that excellent discharge characteristics are obtained. This is considered to be due to the fact that the non-woven fabric of carbon fiber and the porous nickel metal body have good conductivity, and the operating voltage at the time of high-rate discharge has been improved compared to a battery in which nothing is interposed between the hydrogen storage alloy electrode plates. .

【0029】 サイクル特性試験 図4は、本発明電池A及び比較電池X1、X2の200
サイクル後の高率放電特性を示す図である。
Cycle Characteristics Test FIG. 4 shows 200 cells of the battery A of the present invention and the comparative batteries X1 and X2.
It is a figure showing the high rate discharge characteristic after a cycle.

【0030】この時の試験条件は、先ず初めに、温度2
0℃の環境下で0.9Aで16時間充電し、この電池を
放電電流9Aで24分放電した。
The test conditions at this time are as follows:
The battery was charged at 0.9 A for 16 hours in an environment of 0 ° C., and the battery was discharged at a discharge current of 9 A for 24 minutes.

【0031】この電池を9Aで27分充電し、2分間休
止し、9Aで24分放電し、2分間休止するという行程
を1サイクルとした充放電サイクル試験を行った。
A charge / discharge cycle test was performed in which the battery was charged at 9 A for 27 minutes, paused for 2 minutes, discharged at 9 A for 24 minutes, and paused for 2 minutes as one cycle.

【0032】そして、この行程の100サイクル毎に電
池電圧が0.8Vになるまで放電し、その後、0.9A
で16時間充電し、2分間休止し、4.5Aで0.8V
まで放電して容量を測定するという操作を600サイク
ルまで行った。途中、200サイクル終了時に前記の
充放電特性試験と同じ条件で高率放電特性試験を行っ
た。
Then, the battery is discharged until the battery voltage becomes 0.8 V every 100 cycles of this process.
Charge for 16 hours, pause for 2 minutes, and 0.8V at 4.5A
The operation of discharging the battery and measuring the capacity was performed up to 600 cycles. On the way, at the end of 200 cycles, a high-rate discharge characteristic test was performed under the same conditions as the charge-discharge characteristic test described above.

【0033】ここで、図4は、200サイクル後の高率
放電特性試験を示すものであり、図5は600サイクル
までのサイクル特性試験を示すものである。
Here, FIG. 4 shows a high-rate discharge characteristic test after 200 cycles, and FIG. 5 shows a cycle characteristic test up to 600 cycles.

【0034】図4に示すようにガス吸収層として炭素繊
維からなる不織布を用いた本発明電池Aは、ガス吸収層
としてニッケル金属多孔体を用いた比較電池X1に比べ
て作動電圧及び放電容量が高く、優れた放電特性が得ら
れていることがわかる。これは、充放電サイクルの経過
に伴いニッケル金属多孔体を使用した比較電池X1は表
面に酸化被膜が形成して水素吸蔵合金とガス吸収層との
導電性の低下と正極の膨化の影響によるセパレータのド
ライアウト化が進んだのに対して、炭素繊維の不織布は
その表面に酸化被膜が形成しないため、水素吸蔵合金と
ガス吸収層との導電性の低下を抑制すると共に、ニッケ
ル金属多孔体よりも弾力性に富むために正極の膨化分を
吸収し、セパレータにかかる圧力を緩和してセパレータ
のドライアウト化を抑制したものと考えられる。
As shown in FIG. 4, the battery A of the present invention using the nonwoven fabric made of carbon fiber as the gas absorbing layer has a lower operating voltage and discharge capacity than the comparative battery X1 using the nickel metal porous body as the gas absorbing layer. It can be seen that high discharge characteristics were obtained. The reason for this is that the comparative battery X1 using the nickel metal porous body with the progress of the charge / discharge cycle has an oxide film formed on the surface and the separator due to the decrease in the conductivity between the hydrogen storage alloy and the gas absorption layer and the expansion of the positive electrode. In contrast to the progress of dry-out, carbon fiber non-woven fabric does not form an oxide film on its surface, so it suppresses the decrease in conductivity between the hydrogen storage alloy and the gas absorption layer, and has a higher conductivity than the nickel metal porous body. It is also considered that, because of its high elasticity, it absorbs the swelling of the positive electrode, alleviates the pressure applied to the separator, and suppresses the dry-out of the separator.

【0035】また、図5に示すように、ガス吸収層とし
て炭素繊維の不織布を使用した本発明電池Aは、ガス吸
収層としてニッケル金属多孔体を用いた比較電池X1及
びガス吸収層を介在していない比較電池X2に比較して
サイクル特性が優れていることがわかる。これは、炭素
繊維の不織布は弾力性に富むため、充放電サイクルに伴
う正極の膨化を吸収して、セパレータのドライアウト化
が抑制されたためであると考えられる。
As shown in FIG. 5, the battery A of the present invention using the carbon fiber non-woven fabric as the gas absorbing layer has the comparative battery X1 using the nickel metal porous body as the gas absorbing layer and the gas absorbing layer. It can be seen that the cycle characteristics are superior to the comparative battery X2 which is not provided. This is considered to be because the carbon fiber nonwoven fabric is rich in elasticity, so that the expansion of the positive electrode accompanying the charge / discharge cycle was absorbed and the dry-out of the separator was suppressed.

【0036】尚、本実施例では、2枚の負極板の間に1
枚の多孔性のガス吸収層を介在させた3層構造からなる
アルカリ蓄電池用負極の例を示したが、これに限らず3
枚の負極板の間に2枚の多孔性ガス吸収層を介在させた
5層構造からなる負極等であっても同様の効果が得られ
る。また、負極活物質として水素吸蔵合金以外にカドミ
ウム、亜鉛等を用いても同様の効果が得られる。
In this embodiment, 1 is provided between the two negative plates.
The example of the negative electrode for an alkaline storage battery having a three-layer structure in which three porous gas absorbing layers are interposed has been described.
The same effect can be obtained even with a negative electrode or the like having a five-layer structure in which two porous gas absorbing layers are interposed between two negative electrode plates. Similar effects can be obtained by using cadmium, zinc, or the like in addition to the hydrogen storage alloy as the negative electrode active material.

【0037】[0037]

【発明の効果】以上から明らかなように、本発明によれ
ば、複数の負極板の間に炭素繊維の不織布からなるガス
吸収層を介在させたので、優れたガス吸収性能を維持し
つつ、電池の重量エネルギー密度を向上できると共に、
長期にわたって高率放電特性の低下を防止し、充放電サ
イクル寿命の優れた電池が得られ、その工業的価値は極
めて高い。
As is apparent from the above, according to the present invention, a gas absorbing layer made of a nonwoven fabric of carbon fiber is interposed between a plurality of anode plates, so that excellent gas absorbing performance can be maintained while maintaining excellent gas absorbing performance. While improving the weight energy density,
A battery excellent in charge / discharge cycle life can be obtained by preventing a decrease in high-rate discharge characteristics over a long period of time, and its industrial value is extremely high.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電極積層構造を示す模式図である。FIG. 1 is a schematic view showing an electrode laminated structure of the present invention.

【図2】本発明電池A及び比較電池X1、X2の充電特
性を示す図である。
FIG. 2 is a view showing charging characteristics of a battery A of the present invention and comparative batteries X1 and X2.

【図3】本発明電池A及び比較電池X1、X2の高率放
電特性を示す図である。
FIG. 3 is a view showing high-rate discharge characteristics of a battery A of the present invention and comparative batteries X1 and X2.

【図4】本発明電池A及び比較電池X1、X2の200
サイクル後の高率放電特性を示す図である。
FIG. 4 shows 200 of the battery A of the present invention and the comparative batteries X1 and X2.
It is a figure showing the high rate discharge characteristic after a cycle.

【図5】本発明電池A及び比較電池X1、X2のサイク
ル特性を示す図である。
FIG. 5 is a view showing cycle characteristics of the battery A of the present invention and comparative batteries X1 and X2.

【符号の説明】[Explanation of symbols]

1 セパレータ 2 ガス吸収層 3 水素吸蔵電極板 4 ニッケル正極 5 負極 A 本発明電池 X1,X2 比較電池 DESCRIPTION OF SYMBOLS 1 Separator 2 Gas absorption layer 3 Hydrogen storage electrode plate 4 Nickel positive electrode 5 Negative electrode A Battery of the present invention X1, X2 Comparative battery

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の負極板の間に介在させた多孔性ガ
ス吸収層を備えたアルカリ蓄電池用負極であって、前記
多孔性ガス吸収層が炭素繊維の不織布からなることを特
徴とするアルカリ蓄電池用負極。
1. A negative electrode for an alkaline storage battery, comprising a porous gas absorbing layer interposed between a plurality of negative electrode plates, wherein the porous gas absorbing layer is made of a non-woven fabric of carbon fiber. Negative electrode.
【請求項2】 前記負極板が水素吸蔵合金を備えたこと
を特徴とする請求項1記載のアルカリ蓄電池用負極。
2. The negative electrode for an alkaline storage battery according to claim 1, wherein said negative electrode plate comprises a hydrogen storage alloy.
【請求項3】 請求項1の負極を備えたことを特徴とす
るアルカリ蓄電池。
3. An alkaline storage battery comprising the negative electrode according to claim 1.
JP8279587A 1996-10-22 1996-10-22 Negative electrode for alkaline storage battery and alkaline storage battery equipped with negative electrode Pending JPH10125313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8279587A JPH10125313A (en) 1996-10-22 1996-10-22 Negative electrode for alkaline storage battery and alkaline storage battery equipped with negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8279587A JPH10125313A (en) 1996-10-22 1996-10-22 Negative electrode for alkaline storage battery and alkaline storage battery equipped with negative electrode

Publications (1)

Publication Number Publication Date
JPH10125313A true JPH10125313A (en) 1998-05-15

Family

ID=17613073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8279587A Pending JPH10125313A (en) 1996-10-22 1996-10-22 Negative electrode for alkaline storage battery and alkaline storage battery equipped with negative electrode

Country Status (1)

Country Link
JP (1) JPH10125313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2815474A1 (en) * 2000-10-16 2002-04-19 Cit Alcatel Impervious electrochemical generator incorporating an improved recombination device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2815474A1 (en) * 2000-10-16 2002-04-19 Cit Alcatel Impervious electrochemical generator incorporating an improved recombination device
EP1199763A1 (en) * 2000-10-16 2002-04-24 Alcatel Gastight electrochemical current generator with improved device for recombination
US6673483B2 (en) 2000-10-16 2004-01-06 Alcatel Sealed storage cell with an improved recombination device

Similar Documents

Publication Publication Date Title
JP3438142B2 (en) Medium / large capacity sealed metal oxide / hydrogen storage battery
EP0587973B1 (en) Nickel positive electrode for use in alkaline storage battery and nickel-hydrogen storage battery using the same
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JPH04137368A (en) Nickel-hydrogen storage battery and its manufacture
KR100224464B1 (en) Alkaline secondary battery manufacturing method, alkaline secondary battery positive electrode, alkaline secondary battery, and a method of manufacturing an initially charged alkaline secondary battery
JP4429569B2 (en) Nickel metal hydride storage battery
US20050019657A1 (en) Nickel-hydrogen cell
JP3387381B2 (en) Alkaline storage battery
JP3390309B2 (en) Sealed alkaline storage battery
JP4010630B2 (en) Hydrogen storage alloy electrode
JP3209071B2 (en) Alkaline storage battery
JP3902330B2 (en) Cylindrical battery
JPH10125313A (en) Negative electrode for alkaline storage battery and alkaline storage battery equipped with negative electrode
JPH08264174A (en) Hydrogen storage alloy cathode and its preparation
JP2989877B2 (en) Nickel hydride rechargeable battery
JPH0714578A (en) Nickel positive electrode for alkaline storage battery and sealed nickel-hydrogen storage battery
JP3429684B2 (en) Hydrogen storage electrode
JP3182790B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3339327B2 (en) Storage battery
JP3498545B2 (en) Alkaline storage battery
JP3330088B2 (en) Negative electrode for secondary battery
JPH09129227A (en) Nickel-hydrogen storage battery
JP2929716B2 (en) Hydrogen storage alloy electrode
JP3827023B2 (en) Hydrogen storage electrode and method for manufacturing the same
JPH1040950A (en) Alkaline secondary battery