JP2000321193A - Grain size distribution-measuring device of laser diffraction-scattering type - Google Patents

Grain size distribution-measuring device of laser diffraction-scattering type

Info

Publication number
JP2000321193A
JP2000321193A JP11134415A JP13441599A JP2000321193A JP 2000321193 A JP2000321193 A JP 2000321193A JP 11134415 A JP11134415 A JP 11134415A JP 13441599 A JP13441599 A JP 13441599A JP 2000321193 A JP2000321193 A JP 2000321193A
Authority
JP
Japan
Prior art keywords
optical system
light
irradiation optical
measured
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11134415A
Other languages
Japanese (ja)
Other versions
JP3874047B2 (en
Inventor
Michiro Higuchi
三千郎 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP13441599A priority Critical patent/JP3874047B2/en
Publication of JP2000321193A publication Critical patent/JP2000321193A/en
Application granted granted Critical
Publication of JP3874047B2 publication Critical patent/JP3874047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve sensitivity for a fine particle in a simple configuration. SOLUTION: In addition to a first illumination optical system 2 for applying a laser beam to a particle group to be measured in a dispersed state, a second illumination optical system 3 for generating a laser beam on a light axis nearly orthogonal to the light axis, and applies the laser beam to the particle group is provided, a photo detector 5 where a plurality of photo detectors are arranged via the particle group is provided on the light axis of the first illumination optical system 2, and the photo detector 5 is functioned as a forward scattering light sensor for the laser beam from the first illumination optical system 2, and at the same time is functioned as a side and rear scattering light sensor for the laser beam from the second illumination optical system 3, thus measuring the intensity of side and rear scattered light at a number of scattering angles without providing an exclusive sensor for measuring the spatial intensity distribution of the side and rear scattered light, and hence improving measurement sensitivity at a fine particle region.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はレーザ回折・散乱式
の粒度分布測定装置に関する。
The present invention relates to a laser diffraction / scattering type particle size distribution measuring device.

【0002】[0002]

【従来の技術】レーザ回折・散乱式の粒度分布測定装置
においては、一般に、分散飛翔状態の被測定粒子群にレ
ーザ光を照射して得られる回折・散乱光の空間強度分布
を測定し、その光強度分布がミーの散乱理論ないしはフ
ラウンホーファの回折理論に則ることを利用し、回折・
散乱光の空間強度分布の測定結果からミーの散乱理論な
いしはフラウンホーファ回折理論に基づく演算によって
被測定粒子群の粒度分布を測定する。
2. Description of the Related Art In general, a laser diffraction / scattering type particle size distribution measuring apparatus measures the spatial intensity distribution of diffracted / scattered light obtained by irradiating a group of particles to be measured in a dispersed and flying state with laser light. Using the fact that the light intensity distribution follows Mie's scattering theory or Fraunhofer's diffraction theory,
From the measurement results of the spatial intensity distribution of the scattered light, the particle size distribution of the particles to be measured is measured by an operation based on Mie's scattering theory or Fraunhofer diffraction theory.

【0003】被測定粒子群にレーザ光を照射することに
よって得られる回折・散乱光の測定は、例えば以下のよ
うにして行われる。すなわち、図2にこの種の測定装置
の測定系の基本的な構成を模式的に示すように、測定対
象となる粒子群Pにレーザ光源21からのレーザ光をコ
リメータレンズ22等を介して平行光束にして照射する
と、レーザ光は粒子群Pによって回折または散乱し、空
間的な光強度分布パターンが生ずる。この回折・散乱光
のうち、前方への回折・散乱光は集光レンズ23によっ
て集光され、その焦点位置にある検出面にリング状の回
折・散乱像を結ぶ。この前方への回折・散乱光強度分布
パターンは、その検出面上に配置された複数の受光素子
からなる前方散乱光センサ24によって検出される。ま
た、側方および後方への散乱光は、側方散乱光センサ2
5および後方散乱光センサ26によってそれぞれ直接的
に検出される。
The measurement of diffraction / scattered light obtained by irradiating a laser beam to a particle group to be measured is performed, for example, as follows. That is, as schematically shown in FIG. 2, a basic configuration of a measurement system of this type of measurement apparatus, a laser beam from a laser light source 21 is parallelized to a particle group P to be measured via a collimator lens 22 and the like. When irradiated as a light beam, the laser light is diffracted or scattered by the particle group P, and a spatial light intensity distribution pattern is generated. Of the diffracted / scattered light, the forward diffracted / scattered light is condensed by the condenser lens 23 and forms a ring-shaped diffracted / scattered image on the detection surface at the focal position. This forward diffraction / scattered light intensity distribution pattern is detected by a forward scattered light sensor 24 including a plurality of light receiving elements arranged on the detection surface. Further, the scattered light to the side and the back is transmitted to the side scattered light sensor 2.
5 and the backscattered light sensor 26 respectively.

【0004】ここで、前方散乱光センサ24は、リング
状の回折・散乱像を効率的に検出すべく、通常、互いに
半径の異なるリング状または半リング状あるいは1/4
リング状の受光面を有する数十個の受光素子を、照射レ
ーザ光の光軸を中心として同心状に配置してなる、リン
グディテクタと称されるセンサが用いられる。一方、側
方および後方散乱光センサ25および26は、それぞれ
単体の光センサが用いられ、その総数は数個程度であ
る。
Here, the forward scattered light sensor 24 usually has a ring shape, a semi-ring shape, or a quarter of a radius different from each other in order to efficiently detect a ring-shaped diffraction / scattered image.
A sensor called a ring detector is used in which dozens of light receiving elements having a ring-shaped light receiving surface are arranged concentrically around the optical axis of the irradiation laser light. On the other hand, each of the side and back scattered light sensors 25 and 26 uses a single light sensor, and the total number is about several.

【0005】[0005]

【発明が解決しようとする課題】ところで、以上のよう
な従来のレーザ回折・散乱式粒度分布測定装置の測定系
においては、前方への回折・散乱光については、多数の
受光素子を連続的に配列したリングディテクタからなる
前方散乱光センサによって、多数の回折・散乱角度ごと
の光強度を空間的に連続して測定しているが、側方およ
び後方への散乱光については、離散的に配置された数個
の光センサによって測定しているにとどまる。ここで、
レーザ光を照射することによって得られる回折・散乱光
は、照射対象である粒子の径が小さくなるほど、つまり
微粒子ほど大角度領域における散乱光のパターンが増え
る傾向にあるため、上記した従来の測定系を用いた場合
には、微粒子に対する感度が劣るという問題に繋がる。
In the measurement system of the conventional laser diffraction / scattering type particle size distribution measuring apparatus as described above, a large number of light-receiving elements are continuously used for forward diffracted / scattered light. A forward scattered light sensor consisting of an array of ring detectors continuously measures the light intensity at each of a number of diffraction and scattering angles spatially, but scattered light to the side and back is discretely arranged. Measurement is performed by only a few optical sensors. here,
Diffraction and scattered light obtained by irradiating laser light has a tendency to increase the pattern of scattered light in a large angle region as the diameter of the particle to be irradiated becomes smaller, that is, as the particle becomes finer. When this is used, it leads to a problem that the sensitivity to fine particles is inferior.

【0006】本発明はこのような実情に鑑みてなされた
もので、側方散乱光センサおよび後方散乱光センサを増
やすことなく、むしろこれらを設けることなく、従って
比較的簡単な構成のもとに、微粒子に対する感度を向上
させることのできるレーザ回折・散乱式粒度分布測定装
置の提供を目的としている。
The present invention has been made in view of such circumstances, and does not increase the number of side scattered light sensors and back scattered light sensors, but rather does not provide them, and therefore has a relatively simple configuration. Another object of the present invention is to provide a laser diffraction / scattering type particle size distribution measuring device capable of improving the sensitivity to fine particles.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明のレーザ回折・散乱式粒度分布測定装置は、
分散飛翔状態の被測定粒子群にレーザ光を照射して得ら
れる回折・散乱光の空間強度分布を測定し、その測定結
果から被測定粒子群の粒度分布を算出するレーザ回折・
散乱式粒度分布測定装置において、被測定粒子群に対し
てレーザ光を照射する第1の照射光学系と、その第1の
照射光学系に対して被測定粒子群を介して対向配置さ
れ、かつ、当該第1の照射光学系の光軸からの距離が互
いに異なる複数の受光素子群を配列してなる光ディテク
タと、上記第1の照射光学系の光軸に対して略直交する
光軸に沿って上記被測定粒子群に対してレーザ光を照射
する第2の照射光学系と、被測定粒子群に対して上記第
1の照射光学系からのレーザ光を照射したときの上記光
ディテクタの各受光素子からの出力を前方回折・散乱光
の空間強度分布測定結果とし、かつ、上記第2の照射光
学系からのレーザ光を照射したときの上記光ディテクタ
の各受光素子からの出力を側方および後方散乱光の空間
強度分布測定結果として組み合わせて、被測定粒子群の
粒度分布を算出する演算手段を備えていることによって
特徴づけられる。
In order to achieve the above object, a laser diffraction / scattering type particle size distribution measuring apparatus of the present invention comprises:
Laser diffraction to measure the spatial intensity distribution of the diffracted and scattered light obtained by irradiating the measured particles in the dispersed and flying state with laser light and calculate the particle size distribution of the measured particles from the measurement results.
In a scattering type particle size distribution measuring apparatus, a first irradiation optical system that irradiates a laser beam to a group of particles to be measured, and is arranged to face the first irradiation optical system via the group of particles to be measured, and An optical detector having a plurality of light receiving element groups arranged at different distances from the optical axis of the first irradiation optical system, and an optical axis substantially orthogonal to the optical axis of the first irradiation optical system. A second irradiation optical system that irradiates the laser beam to the particle group to be measured along, and the light detector that irradiates the laser beam from the first irradiation optical system to the particle group to be measured. The output from each light receiving element is used as the spatial intensity distribution measurement result of the forward diffracted / scattered light, and the output from each light receiving element of the light detector when the laser light from the second irradiation optical system is irradiated is Of the spatial intensity distribution of the forward and back scattered light In combination Te, characterized by that it comprises a calculating means for calculating a particle size distribution of the particles to be measured.

【0008】本発明は、多数の受光素子を配置可能な前
方散乱光センサを、側方および後方散乱光センサとして
も利用することによって、所期の目的を達成しようとす
るものである。
An object of the present invention is to achieve a desired object by using a forward scattered light sensor capable of disposing a large number of light receiving elements also as a side scattered light sensor and a back scattered light sensor.

【0009】すなわち、被測定粒子群にレーザ光を照射
する光学系として、光軸が互いに略直交する第1および
第2の照射光学系を設けると、第1の照射光学系から粒
子群に対して照射されるレーザ光に対しては前方散乱光
センサとして機能する光ディテクタが、第2の照射光学
系から粒子群に対して照射されるレーザ光に対しては側
方ないしは後方散乱光センサとして機能する。本発明に
おける光ディテクタとして、例えば従来のこの種の測定
装置に前方散乱光センサとして多用されている数十個の
受光素子を配列してなるリングディテクタを用いると、
第1の照射光学系を駆動することにより、粒子群による
前方への回折・散乱光について、従来装置と同様に多数
の回折・散乱角度ごとの強度を空間的に連続して測定す
ることができる。一方、第1の照射光学系の駆動を停止
し、第2の照射光学系を駆動すれば、光ディテクタの各
受光素子は側方および後方散乱光センサとして機能する
ので、粒子群による側方および後方への散乱光につい
て、多数の散乱角度ごとの強度を同様にして空間的に連
続して測定することができる。そして、以上のようにし
て測定した前方への回折・散乱光の強度分布と、側方お
よび後方への散乱光の強度分布とを組み合わせることに
より、実際には側方および後方散乱光センサを全く設け
ていないにも係わらず、従来と同等の前方散乱光センサ
のほかに、側方および後方散乱光センサを数十個設けた
場合と実質的に同等の回折・散乱光の空間強度分布が得
られ、微粒子に対する感度を向上させることができる。
In other words, when the first and second irradiation optical systems whose optical axes are substantially orthogonal to each other are provided as an optical system for irradiating a laser beam to the particle group to be measured, the first irradiation optical system applies the laser beam to the particle group. A light detector that functions as a forward scattered light sensor for the laser light irradiated by the second irradiation optical system, and a side or back scattered light sensor for the laser light irradiated to the particle group from the second irradiation optical system. Function. As a light detector in the present invention, for example, using a ring detector in which dozens of light receiving elements are frequently used as a forward scattered light sensor in this type of conventional measurement device,
By driving the first irradiation optical system, it is possible to spatially continuously measure the intensities at a large number of diffraction / scattering angles for the forward diffracted / scattered light by the particle group, similarly to the conventional apparatus. . On the other hand, if the driving of the first irradiation optical system is stopped and the second irradiation optical system is driven, each light receiving element of the photodetector functions as a side and back scattered light sensor. For the backward scattered light, the intensity at each of a large number of scattering angles can be measured spatially continuously in the same manner. Then, by combining the intensity distribution of the forward diffracted / scattered light measured as described above with the intensity distribution of the scattered light to the side and to the rear, the side and back scattered light sensors are actually completely Despite the absence of the sensor, a spatial intensity distribution of diffracted / scattered light substantially equal to the case where dozens of side and back scattered light sensors are provided in addition to the forward scattered light sensor equivalent to the conventional one is obtained. As a result, the sensitivity to fine particles can be improved.

【0010】[0010]

【発明の実施の形態】以下、図面を参照しつつ本発明の
好適な実施の形態について述べる。図1は本発明の実施
の形態の構成図であり、測定系の模式的斜視図と電気的
構成を示すブロック図とを併記して示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram showing both a schematic perspective view of a measurement system and a block diagram showing an electrical configuration.

【0011】被測定粒子群Pは、媒液中に分散されて懸
濁液の状態とされて試料セル1内を流される。試料セル
1には、第1の照射光学系2と第2の照射光学系3から
のレーザ光が選択的に照射される。第1の照射光学系2
および第2の照射光学系3はそれぞれ、レーザ光源2
a,3aと、その出力光を平行光束に成形するコリメー
タレンズ2b,3bを主体として構成されており、第1
の照射光学系2の光軸は水平方向に、また、第2の照射
光学系3の光軸はそれに直交して鉛直方向に設定されて
いる。
The particle group P to be measured is dispersed in a liquid medium to form a suspension, and flows through the sample cell 1. The sample cell 1 is selectively irradiated with laser light from the first irradiation optical system 2 and the second irradiation optical system 3. First irradiation optical system 2
And the second irradiation optical system 3 respectively
a and 3a, and collimator lenses 2b and 3b for shaping the output light into a parallel light flux.
The optical axis of the irradiation optical system 2 is set in the horizontal direction, and the optical axis of the second irradiation optical system 3 is set in the vertical direction perpendicular to it.

【0012】第1の照射光学系2の光軸上には、試料セ
ル1を挟んでその反対側に集光レンズ4とリングディテ
クタ5が配置されている。リングディテクタ5は、互い
に異なる半径を有する1/4リング状の受光面を持つ多
数個の受光素子を、第1の照射光学系2の光軸を中心と
して同心状に隙間なく配置した公知のものであり、その
各受光素子からの出力はアンプ6によって個別に増幅さ
れた後、A−D変換器7によってそれぞれにデジタル化
されて、後述するタイミングのもとにコンピュータ8に
取り込まれる。
A condenser lens 4 and a ring detector 5 are arranged on the optical axis of the first irradiation optical system 2 on the opposite side of the sample cell 1 with the sample cell 1 interposed therebetween. The ring detector 5 is a known type in which a large number of light receiving elements having quarter-ring light receiving surfaces having different radii are arranged concentrically with no gap around the optical axis of the first irradiation optical system 2. The outputs from the respective light receiving elements are individually amplified by the amplifier 6, digitized by the A / D converter 7, and taken into the computer 8 at the timing described later.

【0013】前記した第1および第2の照射光学系2お
よび3の各レーザ光源2aおよび3aは、それぞれドラ
イバ9および10から供給される駆動信号によって駆動
/停止する。これらの各ドライバ9,10は、コンピュ
ータ8から供給される制御信号によって動作する。
The laser light sources 2a and 3a of the first and second irradiation optical systems 2 and 3 are driven / stopped by drive signals supplied from drivers 9 and 10, respectively. These drivers 9 and 10 operate according to control signals supplied from the computer 8.

【0014】コンピュータ8は、試料セル1内に被測定
粒子群Pが分散してなる懸濁液を流した状態で、まず、
いずれか一方、例えば第1の照射光学系2のレーザ光源
2aのみを駆動して、その状態でリングディテクタ5の
各受光素子からの出力データを取り込む第1のデータ採
取工程を実行した後、第1の照射光学系2のレーザ光源
2aの駆動を停止して、第2の照射光学系3のレーザ光
源3aを駆動し、その状態でリングディテクタ5の各受
光素子からの出力データを取り込む第2のデータ採取工
程を実行する。その後、これらの各データを組み合わせ
ることによって一組の回折・散乱光強度分布データと
し、その強度分布データを用いて、公知のミーの散乱理
論ないしはフラウンホーファの回折理論に基づく演算に
よって粒子群Pの粒度分布を算出する。
In a state where the suspension in which the particle group P to be measured is dispersed flows in the sample cell 1,
Either one, for example, only the laser light source 2a of the first irradiation optical system 2 is driven, and in that state, a first data collection step of taking in output data from each light receiving element of the ring detector 5 is performed, The driving of the laser light source 2a of the first irradiation optical system 2 is stopped, the laser light source 3a of the second irradiation optical system 3 is driven, and the output data from each light receiving element of the ring detector 5 is taken in that state. Execute the data collection process. After that, these data are combined to form a set of diffraction / scattered light intensity distribution data, and using the intensity distribution data, the particle size of the particle group P is calculated by calculation based on the well-known Mie scattering theory or Fraunhofer diffraction theory. Calculate the distribution.

【0015】以上の本発明の実施の形態において、第1
の照射光学系2からのレーザ光を試料セル1内の粒子群
Pに照射した状態では、粒子群Pにより回折・散乱した
レーザ光のうち、前方への回折・散乱光は集光レンズ4
を介してリングディテクタ5の各受光素子に入射する。
従って、第1のデータ採取工程によって、コンピュータ
8には粒子群Pによる前方回折・散乱光の空間強度分布
が取り込まれることになる。一方、第2の照射光学系3
からのレーザ光を試料セル1内の粒子群Pに照射した状
態では、粒子群Pにより回折・散乱したレーザ光のう
ち、側方および後方散乱光がリングディテクタ5の各受
光素子に入射する。
In the above embodiment of the present invention, the first
In the state where the laser light from the irradiation optical system 2 is applied to the particle group P in the sample cell 1, of the laser light diffracted and scattered by the particle group P, the forward diffracted / scattered light is collected by the condenser lens 4.
And enters the respective light receiving elements of the ring detector 5 via.
Accordingly, the spatial intensity distribution of the forward diffraction / scattered light by the particle group P is taken into the computer 8 by the first data collection step. On the other hand, the second irradiation optical system 3
Is irradiated on the particle group P in the sample cell 1, of the laser light diffracted and scattered by the particle group P, side and back scattered light is incident on each light receiving element of the ring detector 5.

【0016】従って、第2のデータ採取工程によって、
コンピュータ8には粒子群Pによる側方および後方散乱
光の空間強度分布が取り込まれることになり、第1と第
2のデータ採取工程により取り込んだデータを組み合わ
せることによって、コンピュータ8には、粒子群Pによ
る前方回折・散乱光に関してのリングディテクタ5の受
光素子数分の角度ごとの光強度分布と、同じく粒子群P
による側方および後方散乱光に関してのリングディテク
タ5の受光素子数分の角度ごとの光強度分布が格納され
ることになり、これらを組み合わせることによって、粒
子群Pによる広範囲にわたる回折・散乱光の空間強度分
布データを得ることができる。このようにして組み合わ
された回折・散乱光の空間強度分布データは、側方およ
び後方散乱光についてもリングディテクタ5の受光素子
の数、従って数十個のセンサで空間強度分布を測定した
データとなり、特に微粒子領域における感度が従来のも
の比して飛躍的に向上し、広い粒径範囲で高精度の粒度
分布を算出することが可能となる。
Therefore, by the second data collection step,
The computer 8 receives the spatial intensity distribution of the side and back scattered light by the particle group P. By combining the data captured in the first and second data collection steps, the computer 8 The light intensity distribution for each angle corresponding to the number of light receiving elements of the ring detector 5 with respect to forward diffraction and scattered light by P, and the particle group P
, The light intensity distribution for each angle corresponding to the number of light receiving elements of the ring detector 5 with respect to the side scattered light and the back scattered light is stored. Intensity distribution data can be obtained. The spatial intensity distribution data of the diffracted and scattered light combined in this way is the data obtained by measuring the spatial intensity distribution with the number of light receiving elements of the ring detector 5 and also with several tens of sensors for the side and back scattered light. In particular, the sensitivity in the fine particle region is dramatically improved as compared with the conventional one, and it is possible to calculate a highly accurate particle size distribution in a wide particle size range.

【0017】ここで、リングディテクタ5の各受光素子
の受光面は、第1の照射光学系2の光軸を中心としてリ
ング状の広がりを持ち、特に外側の受光素子ほど広がり
が大きくなる。このようなリングディテクタ5によって
第2の照射光学系3からのレーザ光を照射したときに得
られる側方および後方散乱光の空間強度分布を測定した
とき、上記の広がりに起因して各受光素子と散乱角度と
の関係に誤差が生じる場合が考えられる。このような誤
差を解消するには、第2の照射光学系3からのレーザ光
を粒子群Pに照射する第2のデータ採取工程において、
リングディテクタ5の受光素子の両サイド部分の不要領
域を適宜にマスキングすればよい。
Here, the light receiving surface of each light receiving element of the ring detector 5 has a ring-shaped spread centering on the optical axis of the first irradiation optical system 2, and the spread becomes particularly large as the light receiving element is located outside. When the spatial intensity distribution of the side scattered light and the back scattered light obtained when the laser light from the second irradiation optical system 3 is irradiated by such a ring detector 5 is measured, each light receiving element is caused by the above-mentioned spread. It is conceivable that an error occurs in the relationship between the angle and the scattering angle. In order to eliminate such an error, in the second data collection step of irradiating the particle group P with laser light from the second irradiation optical system 3,
Unnecessary regions on both sides of the light receiving element of the ring detector 5 may be appropriately masked.

【0018】また、以上の実施の形態においては、側方
および後方散乱光についても集光レンズ4を経てリング
ディテクタ5に入射し、従来の側方散乱光センサおよび
後方散乱光センサに直接的に入射する場合との比較にお
いて、側方および後方散乱光は集光レンズ4によって屈
折する分だけ異なる角度位置において検出されることに
なるが、集光レンズ4の光学的諸性能は既知であるた
め、その屈折に起因する角度の相違は容易に補正可能で
ある。
In the above embodiment, side scattered light and back scattered light also enter the ring detector 5 through the condenser lens 4 and are directly transmitted to the conventional side scattered light sensor and back scattered light sensor. In comparison with the case of incidence, side and back scattered light will be detected at different angular positions by the amount of refraction by the condenser lens 4, but since the optical performance of the condenser lens 4 is known, The difference in angle due to the refraction can be easily corrected.

【0019】なお、以上の実施の形態においては、第1
の照射光学系2のレーザ光に対して前方回折・散乱光セ
ンサとして機能する光ディテクタとしてリングディテク
タ5を用いたが、このリングディテクタ5は、リング状
の回折・散乱像を結ぶ前方回折・散乱光の測定精度を向
上させるために極めて有効であるものの、本発明はこれ
に限定されることなく、例えばドット状の受光面を有す
る受光素子群を第1の照射光学系2の光軸に対する距離
を互いに異ならせて一列状に配置した光ディテクタを用
いてもよいことは勿論である。
In the above embodiment, the first
The ring detector 5 is used as a light detector functioning as a forward diffraction / scattering light sensor for the laser light of the irradiation optical system 2 of the above. Although extremely effective for improving the measurement accuracy of light, the present invention is not limited to this. For example, a light-receiving element group having a dot-shaped light-receiving surface may be positioned at a distance from the optical axis of the first irradiation optical system 2 to the optical axis. It is needless to say that optical detectors arranged in a line with different from each other may be used.

【0020】また、以上の実施の形態においては、第1
の照射光学系2の光軸を水平方向とするとともに、第2
の照射光学系の光軸を鉛直方向として、これら両光軸を
直交させた例を示したが、本発明においては、第1の照
射光学系2からのレーザ光を粒子群Pに照射したときに
前方散乱光センサとして機能するリングディテクタ5
が、第2の照射光学系3からのレーザ光を粒子群Pに照
射したときに側方ないしは後方散乱光センサとして機能
するように、各照射光学系の光軸が略直交してさえいれ
ば、厳密に直交している必要はない。すなわち、両光軸
間の角度が既知であれば、第2の照射光学系3からのレ
ーザ光を照射したときに側方および後方散乱光センサと
して機能するリングディテクタ5上の各受光素子と散乱
角度との関係が既知となるため、特に問題は生じない。
また、各照射光学系2,3の光軸方向は水平方向と鉛直
方向に限定されることなく、上記の条件を満たしていれ
ばそれぞれ任意の方向とし得ることは言うまでもない。
In the above embodiment, the first
The optical axis of the irradiation optical system 2 is set to be horizontal and
In the present invention, an example is shown in which the optical axis of the irradiation optical system is vertical and the two optical axes are perpendicular to each other. However, in the present invention, when the laser beam from the first irradiation optical system 2 is irradiated on the particle group P, Ring detector 5 functioning as forward scattered light sensor
However, as long as the optical axis of each irradiation optical system is substantially orthogonal so that the laser beam from the second irradiation optical system 3 functions as a lateral or backscattered light sensor when the particle group P is irradiated. Need not be strictly orthogonal. In other words, if the angle between the two optical axes is known, each light receiving element on the ring detector 5 functioning as a side and back scattered light sensor when irradiating the laser light from the second irradiation optical system 3 is scattered. Since the relationship with the angle is known, no particular problem occurs.
The optical axis direction of each of the irradiation optical systems 2 and 3 is not limited to the horizontal direction and the vertical direction, and it goes without saying that any direction can be used as long as the above conditions are satisfied.

【0021】更に、本発明は、以上の実施の形態のよう
に粒子群Pを媒液中に分散させて懸濁液の状態で測定す
るいわゆる湿式測定のほか、粒子群Pをエアロゾルの状
態として測定する乾式測定にも等しく適用し得ることは
勿論である。
Further, according to the present invention, in addition to the so-called wet measurement in which the particle group P is dispersed in a medium and measured in a suspension state as in the above embodiment, the particle group P is converted into an aerosol state. Of course, the present invention is equally applicable to dry measurement.

【0022】[0022]

【発明の効果】以上のように、本発明によれば、被測定
粒子群に対して互いに略直交する2方向からのレーザ光
を選択的に照射し得るように構成するとともに、一方の
照射光学系からのレーザ光の照射時に被測定粒子群によ
る前方回折・散乱光の空間強度分布を測定するための複
数の受光素子からなる光ディテクタを、他方の照射光学
系からのレーザ光の照射時に被測定粒子群による側方お
よび後方散乱光の空間強度分布を測定するための光ディ
テクタとして利用しているので、従来のように独立して
側方散乱光センサおよび後方散乱光センサを設けること
なく、側方および後方散乱光の測定ポイントを従来に比
して飛躍的に増大させることが可能となり、特に微粒子
に対する感度が向上し、広い粒径範囲にわたって高精度
の粒度分布を測定することが可能となる。
As described above, according to the present invention, it is possible to selectively irradiate the particle group to be measured with laser beams from two directions substantially orthogonal to each other, A light detector consisting of a plurality of light receiving elements for measuring the spatial intensity distribution of the forward diffracted and scattered light by the particle group to be measured when irradiating the laser light from the other irradiation optical system Since it is used as a light detector for measuring the spatial intensity distribution of the side and back scattered light by the measurement particle group, without separately providing a side scattered light sensor and a back scattered light sensor as in the related art, The number of measurement points for side scatter and back scattered light can be dramatically increased compared to the past, and especially the sensitivity to fine particles has been improved, and a highly accurate particle size distribution can be measured over a wide particle size range. Rukoto is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の構成図で、測定系の模式
的斜視図と、電気的構成を表すブロック図とを併記して
示す図である。
FIG. 1 is a configuration diagram of an embodiment of the present invention, showing a schematic perspective view of a measurement system and a block diagram showing an electrical configuration.

【図2】従来のレーザ回折・散乱式粒度分布測定装置に
おける測定系の構成例を示す模式的斜視図である。
FIG. 2 is a schematic perspective view showing a configuration example of a measuring system in a conventional laser diffraction / scattering type particle size distribution measuring device.

【符号の説明】[Explanation of symbols]

1 試料セル 2 第1の照射光学系 3 第2の照射光学系 2a,3a レーザ光源 2b,3b コリメータレンズ 4 集光レンズ 5 リングディテクタ 6 アンプ 7 A−D変換器 8 コンピュータ 9,10 ドライバ P 被測定粒子群 Reference Signs List 1 sample cell 2 first irradiation optical system 3 second irradiation optical system 2a, 3a laser light source 2b, 3b collimator lens 4 condenser lens 5 ring detector 6 amplifier 7 A / D converter 8 computer 9, 10 driver P Measurement particle group

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 分散飛翔状態の被測定粒子群にレーザ光
を照射して得られる回折・散乱光の空間強度分布を測定
し、その測定結果から被測定粒子群の粒度分布を算出す
るレーザ回折・散乱式粒度分布測定装置において、 被測定粒子群に対してレーザ光を照射する第1の照射光
学系と、その第1の照射光学系に対して被測定粒子群を
介して対向配置され、かつ、当該第1の照射光学系の光
軸からの距離が互いに異なる複数の受光素子群を配列し
てなる光ディテクタと、上記第1の照射光学系の光軸に
対して略直交する光軸に沿って上記被測定粒子群に対し
てレーザ光を照射する第2の照射光学系と、被測定粒子
群に対して上記第1の照射光学系からのレーザ光を照射
したときの上記光ディテクタの各受光素子からの出力を
前方回折・散乱光の空間強度分布測定結果とし、かつ、
上記第2の照射光学系からのレーザ光を照射したときの
上記光ディテクタの各受光素子からの出力を側方および
後方散乱光の空間強度分布測定結果として組み合わせ
て、被測定粒子群の粒度分布を算出する演算手段を備え
ていることを特徴とするレーザ回折・散乱式粒度分布測
定装置。
1. A laser diffraction method for measuring a spatial intensity distribution of diffraction / scattered light obtained by irradiating a laser beam onto a group of particles to be measured in a dispersed and flying state, and calculating a particle size distribution of the group of particles to be measured from the measurement result. A scattering particle size distribution measuring device, a first irradiation optical system for irradiating a laser beam to the particle group to be measured, and a first irradiation optical system opposed to the first irradiation optical system via the particle group to be measured; An optical detector having a plurality of light receiving element groups arranged at different distances from the optical axis of the first irradiation optical system; and an optical axis substantially orthogonal to the optical axis of the first irradiation optical system. A second irradiation optical system that irradiates the measured particle group with laser light along the line, and the light detector that irradiates the measured particle group with laser light from the first irradiation optical system. Output from each light receiving element And intensity distribution measurement result, and,
Combining the output from each light receiving element of the photodetector when irradiating the laser light from the second irradiation optical system as a result of measuring the spatial intensity distribution of lateral and backscattered light, the particle size distribution of the particle group to be measured A laser diffraction / scattering type particle size distribution measuring device, comprising a calculating means for calculating the particle size distribution.
JP13441599A 1999-05-14 1999-05-14 Laser diffraction / scattering particle size distribution analyzer Expired - Lifetime JP3874047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13441599A JP3874047B2 (en) 1999-05-14 1999-05-14 Laser diffraction / scattering particle size distribution analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13441599A JP3874047B2 (en) 1999-05-14 1999-05-14 Laser diffraction / scattering particle size distribution analyzer

Publications (2)

Publication Number Publication Date
JP2000321193A true JP2000321193A (en) 2000-11-24
JP3874047B2 JP3874047B2 (en) 2007-01-31

Family

ID=15127860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13441599A Expired - Lifetime JP3874047B2 (en) 1999-05-14 1999-05-14 Laser diffraction / scattering particle size distribution analyzer

Country Status (1)

Country Link
JP (1) JP3874047B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009098154A (en) * 2009-02-05 2009-05-07 Shimadzu Corp Laser diffraction-type particle-size-distribution measuring apparatus
JP2009524018A (en) * 2006-01-13 2009-06-25 ハネウェル・インターナショナル・インコーポレーテッド Liquid-particle analysis of metallic materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009524018A (en) * 2006-01-13 2009-06-25 ハネウェル・インターナショナル・インコーポレーテッド Liquid-particle analysis of metallic materials
US8030082B2 (en) 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials
JP2009098154A (en) * 2009-02-05 2009-05-07 Shimadzu Corp Laser diffraction-type particle-size-distribution measuring apparatus

Also Published As

Publication number Publication date
JP3874047B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
EP0485817B1 (en) Apparatus for measuring a particle size distribution
JP2000121540A (en) Apparatus for measuring particle size distribution
US6208750B1 (en) Method for detecting particles using illumination with several wavelengths
JP2863874B2 (en) Particle size distribution analyzer
JP3258889B2 (en) Optical axis adjustment method in scattering particle size distribution analyzer
JP2862077B2 (en) Particle size distribution analyzer
JP4266075B2 (en) Particle size distribution measuring device
JP2000321193A (en) Grain size distribution-measuring device of laser diffraction-scattering type
JPH05172730A (en) Measurement of particle-size distribution
JP4701892B2 (en) Particle size distribution measuring device
JP4105888B2 (en) Particle size distribution measuring device
JPH02193041A (en) Particle size distribution apparatus
JP3531557B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP2626009B2 (en) Particle size distribution analyzer
JP2876253B2 (en) Particle size distribution analyzer
JP4456301B2 (en) Particle size distribution measuring device
JPH07260669A (en) Grain size distribution measuring device
JP2001272355A (en) Foreign matter inspecting apparatus
JP2674128B2 (en) Particle size distribution analyzer
JP3258904B2 (en) Scattered light detector
JP3475097B2 (en) Particle size distribution measuring device
JPH08193810A (en) Device for measuring displacement
JPH1090158A (en) Apparatus for measuring concentration and grain size of air-borne particles
JPS5833107A (en) Device for measuring size of particle
JP3046504B2 (en) Particle measuring method and particle measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

EXPY Cancellation because of completion of term