JPH07260669A - Grain size distribution measuring device - Google Patents

Grain size distribution measuring device

Info

Publication number
JPH07260669A
JPH07260669A JP7069787A JP6978795A JPH07260669A JP H07260669 A JPH07260669 A JP H07260669A JP 7069787 A JP7069787 A JP 7069787A JP 6978795 A JP6978795 A JP 6978795A JP H07260669 A JPH07260669 A JP H07260669A
Authority
JP
Japan
Prior art keywords
size distribution
scattered light
light
particle size
diffracted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7069787A
Other languages
Japanese (ja)
Inventor
Haruo Shimaoka
治夫 島岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP7069787A priority Critical patent/JPH07260669A/en
Publication of JPH07260669A publication Critical patent/JPH07260669A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To select the grain size distribution of particle group distributed over a wide area by selecting the grain size distribution based on the light scattering method with the aid of a light scattering phenomena generating at the time when scattering and flying particle group is irradiated by a light. CONSTITUTION:Diffracted/scattered lights of less than specified forward angle among diffracted/scattered lights of a particle group are condensed by a lens 4 and their intensity distribution is measured by an array sensor 5. At the same time, forward, side and backward scattered lights exceeding the specified angle among the scattered lights of the particle group are measured by optical sensors 6-8 installed separately from the sensor 5. In this case, the digital conversion data outputted from the sensor 5 and sensors 6-8 are picked up into a calculation part 13 through a common A/D converter 11, and they are used as a unified vector component for scattered light intensity, thus calculating the data by using a preset conversion factor matrix for converting a scattered light intensity distribution vector into a grain size distribution vector and obtaining the grain size distribution of particle group at one time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は分散飛翔状態の粒子群に
光を照射したときに生ずる光散乱現象を利用した、いわ
ゆる光散乱法に基づく粒度分布測定装置に関し、特に分
布が広範囲に亘る粒子群の粒度分布を測定するのに適し
た粒度分布測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle size distribution measuring device based on a so-called light scattering method, which utilizes a light scattering phenomenon which occurs when particles of particles in a dispersed flying state are irradiated with light, and particularly particles having a wide distribution. The present invention relates to a particle size distribution measuring device suitable for measuring a particle size distribution of a group.

【0002】[0002]

【従来の技術】ミーの散乱理論ないしフラウンホーファ
回折理論を用いた粒度分布測定装置においては、従来、
レンズを用いて被測定粒子群からの回折/散乱光を集光
して、リングデテクタ等のアレイセンサの受光面上に回
折/散乱像を結ばせ、その出力から回折/散乱光の空間
強度分布を得て、これを粒度分布に換算する構造のもの
が主として実用化されている。
2. Description of the Related Art In a particle size distribution measuring apparatus using Mie's scattering theory or Fraunhofer diffraction theory,
The diffracted / scattered light from the particle group to be measured is collected using a lens to form a diffracted / scattered image on the light receiving surface of an array sensor such as a ring detector, and the spatial intensity distribution of the diffracted / scattered light from the output. Those having a structure for obtaining the above and converting it into a particle size distribution are mainly put into practical use.

【0003】また、従来、被測定粒子群からの回折/散
乱光を、互いに所定の角度をあけて配置した光ファイバ
の端面に入射し、その各光ファイバの他端にはそれぞれ
光センサを設けた構造のものも提案されている。
Further, conventionally, diffracted / scattered light from a group of particles to be measured is incident on the end faces of optical fibers arranged at a predetermined angle from each other, and an optical sensor is provided at the other end of each optical fiber. Other structures have also been proposed.

【0004】ここで、汎用的な粒度分布測定装置におい
ては、一般に、サブミクロン〜千数百μmにおよぶ非常
に広い測定範囲が要求される。リングデテクタ等のアレ
イセンサを用いた前者の方式が実用化機において主流を
占める理由は、大きい粒子の場合、その散乱光は、前方
の角度の極めて狭い範囲(散乱角0゜近傍)で激しく変
化するが、リングデテクタ等のアレイセンサでは回折/
散乱角の0゜近傍に相当する部分を非常に細かく分割す
ることができ、この激しく変化する領域における光強度
を高分解能でしかも連続的に測定できるからに他ならな
い。これに対し光ファイバを用いた方式では、散乱角0
゜近傍を上記のように細分化することは不可能で、しか
も光導入端である光ファイバの端面の面積は小さい円形
であるため、リングデテクタ等のアレイセンサを用いた
構造に比してセンサに導く光量を確保できないという問
題点もある。
Here, a general-purpose particle size distribution measuring device is generally required to have a very wide measuring range ranging from submicron to several thousand and several hundred μm. The reason why the former method using an array sensor such as a ring detector occupies the mainstream in practical machines is that in the case of large particles, the scattered light changes drastically within a very narrow forward angle range (scattering angle near 0 °). However, with array sensors such as ring detectors, diffraction /
This is because the portion corresponding to the scattering angle of about 0 ° can be divided into very fine parts, and the light intensity in this region where the change is sharp can be measured with high resolution and continuously. On the other hand, in the method using the optical fiber, the scattering angle is 0
Since it is impossible to subdivide the vicinity of the above-mentioned degree and the area of the end face of the optical fiber that is the light-introducing end is a small circle, compared to the structure using an array sensor such as a ring detector, There is also a problem that the amount of light that leads to is not secured.

【0005】このように、特に大径の粒子の測定に関し
てはリングデテクタ等のアレイセンサを用いる方式が有
利であるが、リングデテクタ等のアレイセンサは、一般
にシリコンウエハから作成されるため、その大きさに制
約があり、回折/散乱角の測定限界は前方の約40゜以
下程度になる。ここで、小さい粒子、特にサブミクロン
粒子を測定する場合には、全体的に散乱光の散乱角度に
依存した変化が緩慢となり、前方だけでなく側方おおよ
び後方をも含めた全体的な変化を検出する必要が生じ
る。
As described above, a method using an array sensor such as a ring detector is advantageous especially for measuring a large-diameter particle, but since the array sensor such as a ring detector is generally manufactured from a silicon wafer, its size is large. There is a restriction on the size, and the measurement limit of the diffraction / scattering angle is about 40 ° or less in front. Here, when measuring small particles, especially submicron particles, the change depending on the scattering angle of scattered light becomes slow as a whole, and the overall change including not only the front but also the side and the back is performed. Need to be detected.

【0006】そこで、従来、リングデテクタ等のアレイ
センサを用いた方式の装置において、前記したような広
い測定範囲をカバーするため、前方の約40゜よりも大
きな角度の散乱光については別途1個または複数個の光
センサを設けてその光強度を測定することが実用化され
ている。この場合、大きな角度の散乱光は強度が弱くな
るため、これを測定する光センサについては通常は被測
定粒子に近づけるとともに、前記したように変化が緩慢
であるため受光面積の大きなセンサを用いることが一般
的である。
Therefore, in order to cover a wide measuring range as described above in a device using an array sensor such as a ring detector, one scattered light with an angle larger than about 40 ° ahead is separately provided. Alternatively, it has been put into practical use to provide a plurality of optical sensors and measure the light intensity thereof. In this case, the intensity of scattered light at a large angle becomes weaker, so an optical sensor that measures this should normally be brought closer to the particle to be measured, and use a sensor with a large light-receiving area because the change is slow as described above. Is common.

【0007】そして、このようなリングデテクタ等のア
レイセンサと他の光センサを組み合わせた装置において
は、従来、アレイセンサと他のセンサとは異種のセンサ
となって、アレイセンサのみを用いる場合の各センサ間
の特性的ないしは空間的な共通性が失われることになる
ため、従来のこの種の装置では、アレイセンサと他のセ
ンサからの出力を、それぞれ別個のA−D変換器によっ
てデジタル変換して演算部に採り込んだ後、アレイセン
サによる回折/散乱光強度分布データを粒度分布に換算
する一方、他のセンサによる散乱光強度分布データにつ
いては別途粒度分布に別途粒度分布に換算して、最後に
両者を結合することによって被測定粒子群の全体の粒度
分布を求めている。
In an apparatus in which an array sensor such as a ring detector is combined with another optical sensor, conventionally, the array sensor and the other sensor are different types of sensors, and only the array sensor is used. Since the characteristic or spatial commonality between the sensors is lost, in the conventional device of this type, the outputs from the array sensor and the other sensor are digitally converted by separate A / D converters. Then, the data of the diffraction / scattered light intensity distribution by the array sensor is converted into a particle size distribution, and the data of the scattered light intensity distribution by other sensors is converted into a separate particle size distribution. Finally, by combining the two, the particle size distribution of the entire measured particle group is obtained.

【0008】[0008]

【発明が解決しようとする課題】リングデテクタ等のア
レイセンサを用いることにより、大径の粒子による前方
微小角度の回折/散乱光を高分解能のもとに測定し、し
かも別途側方ないしは後方用の光センサを設けてサブミ
クロン粒子の測定をも可能にした従来の広範囲可能な粒
度分布測定装置では、前方微小角散乱(回折)光の強度
分布パターンと、それ以外の前方、側方および後方散乱
光の強度分布パターンとは全く別々に取り扱われてお
り、それぞれのデータに基づいて別々に求められた粒度
分布を後で接続するという点において理論的な根拠があ
いまいであり、正確な粒度分布が得られているという保
証はない。つまり、従来の粒度分布測定装置では、広範
囲の粒度分布を正確に測定することは困難であった。ま
た、センサごとにA−D変換器を設けるので、部品点数
が増加したり装置全体が大型化したりした。
By using an array sensor such as a ring detector, it is possible to measure the diffracted / scattered light at a small front angle with a high resolution by using an array sensor such as a ring detector. With the conventional wide-range particle size distribution measuring device that is also capable of measuring submicron particles by using the above optical sensor, the intensity distribution pattern of the front minute angle scattering (diffraction) light and other front, side and It is treated completely differently from the intensity distribution pattern of scattered light, and the theoretical basis is ambiguous in that the particle size distributions obtained separately based on the respective data are connected later, and an accurate particle size distribution is obtained. There is no guarantee that That is, it is difficult for the conventional particle size distribution measuring device to accurately measure a wide range of particle size distribution. Further, since the A / D converter is provided for each sensor, the number of parts is increased and the size of the entire device is increased.

【0009】本発明はこのような点に鑑みなされたもの
で、広範囲にわたる粒度分布を正確に測定することので
きる粒度分布測定装置の提供を目的としている。
The present invention has been made in view of the above points, and an object thereof is to provide a particle size distribution measuring apparatus capable of accurately measuring a wide range of particle size distribution.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、分散飛翔状態の粒子群に平行光束を照
射することによって得られる、粒子群による回折/散乱
光の強度分布を測定することによって、粒子群の粒度分
布を測定する装置において、粒子群による回折/散乱光
の内、前方所定角度以下の回折/散乱光を集光するレン
ズと、そのレンズによって集光された回折/散乱光の強
度分布を検出するアレイセンサと、粒子群による散乱光
の内、上記角度を越える前方散乱光、側方散乱光および
後方散乱光のいずれかを入射してその強度を検出する1
個もしくは複数の光センサと、上記アレイセンサおよび
上記光センサの出力をそれぞれの出力を共通のA−D変
換器を介して採り込んで、その各データを統一的な散乱
光強度分布ベクトルの成分として用い、そのデータか
ら、散乱光強度分布ベクトルを粒度分布ベクトルに変換
するためのあらかじめ設定されている変換係数行列を用
いた演算により、粒子群の粒度分布を一挙に算出する演
算手段を備えたことを特徴とする。
In order to achieve the above object, the present invention provides an intensity distribution of diffracted / scattered light by a particle group obtained by irradiating a particle group in a dispersed flying state with a parallel light flux. In a device for measuring the particle size distribution of particle groups by measurement, a lens that collects diffracted / scattered light of a predetermined angle or less out of the diffracted / scattered light by the particle group and the diffracted light that is condensed by the lens / An array sensor for detecting the intensity distribution of scattered light, and of the scattered light by the particle group, any of forward scattered light, side scattered light, and back scattered light that exceeds the above angle is made incident and its intensity is detected 1
The output of each of the plurality of optical sensors and the array sensor and the optical sensor is taken in through a common A / D converter, and the respective data are integrated into a component of a scattered light intensity distribution vector. And a calculation means for calculating the particle size distribution of the particle group at once by an operation using a preset conversion coefficient matrix for converting the scattered light intensity distribution vector into the particle size distribution vector from the data. It is characterized by

【0011】[0011]

【作用】粒子にレーザ光等の光を照射すると、空間的に
回折/散乱光の強度分布パターンが生ずるが、このパタ
ーンは、粒子の大きさによって変化する。種々の大きさ
の粒子が混在している粒子群に光を照射した場合、粒子
群から生ずる光強度分布パターンはそれぞれの粒子から
の回折/散乱光の重ね合わせとなる。
When the particles are irradiated with light such as laser light, a spatial intensity distribution pattern of diffracted / scattered light is generated, and this pattern changes depending on the size of the particles. When a particle group in which particles of various sizes are mixed is irradiated with light, the light intensity distribution pattern generated from the particle group is a superposition of diffracted / scattered light from each particle.

【0012】これをベクトル、行列で表現すると、 r = Af となる。ここで,rは光強度分布ベクトルで、fは粒度
分布ベクトルである。また、Aは、粒度分布ベクトルf
を、光強度分布ベクトルrに変換する係数行列である。
実際の計算手法において、rの成分(要素)は各回折/
散乱角度においてアレイセンサないしは光センサによっ
て検出される光強度データである。
When this is expressed by a vector and a matrix, r = Af. Here, r is a light intensity distribution vector and f is a particle size distribution vector. A is the particle size distribution vector f
Is a coefficient matrix for converting into the light intensity distribution vector r.
In the actual calculation method, the component (element) of r is
Light intensity data detected by an array sensor or light sensor at a scattering angle.

【0013】従って、アレイセンサおよびそれとは別の
光センサによる、前方微小角散乱/回折光とそれ以外の
前方散乱光、側方散乱光および後方散乱光の全データを
統一的な光強度分布ベクトルrの要素として取り扱うこ
との理論的矛盾はなく、このようなrを用いるととも
に、変換行列行列Aを求めておくことによって(後
述)、一挙に粒度分布ベクトルfの成分を求めるとがで
きる。
Therefore, all the data of the front minute angle scattered / diffracted light and the other front scattered light, side scattered light and back scattered light by the array sensor and another optical sensor are unified into a light intensity distribution vector. There is no theoretical contradiction of treating it as an element of r, and by using such r and obtaining the conversion matrix A (described later), the components of the particle size distribution vector f can be obtained all at once.

【0014】[0014]

【実施例】図面は本発明実施例の構成図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS The drawings are block diagrams of embodiments of the present invention.

【0015】レーザ光源1から出たレーザ光はフローセ
ル2に照射される。フローセル2内には、被測定粒子群
を媒液中に分散された懸濁液3が紙面に直行する方向に
流されており、照射されたレーザ光は粒子によって散乱
ないしは回折される。
Laser light emitted from the laser light source 1 is applied to the flow cell 2. In the flow cell 2, a suspension 3 in which a group of particles to be measured is dispersed in a medium is flown in a direction perpendicular to the paper surface, and the irradiated laser light is scattered or diffracted by the particles.

【0016】照射レーザ光の進行方向、フローセル2の
前方にはレンズ4が配設されているとともに、更にその
前方にはその焦点位置にリングデテクタ5が配設されて
いる。リングデテクタ5は、レンズ4の光軸を中心とし
て互いに半径の異なるリング状ないしは半リング状の受
光面を持つ光センサを複数個同心状に配列したもので、
フローセル2内の粒子による散乱/回折光の内、40°
以内の散乱/回折角の光はレンズ4によってこのリング
デテクタ5上に集光される。
A lens 4 is arranged in front of the flow cell 2 in the traveling direction of the irradiation laser light, and a ring detector 5 is arranged in front of it in the focal position thereof. The ring detector 5 is formed by concentrically arranging a plurality of photosensors each having a ring-shaped or semi-ring-shaped light receiving surface whose radius is different from each other around the optical axis of the lens 4.
40 ° out of scattered / diffracted light by particles in the flow cell 2
Light having a scattering / diffraction angle within is collected by the lens 4 on the ring detector 5.

【0017】フローセル2の周囲には、レンズ4および
デテクタ5と異なる角度で、例えば3個の光センサ6,
7および8が配設されており、それぞれの配設角度に応
じて、フローセル2内の粒子による40°を越える所定
角度の前方散乱光、側方散乱光および後方散乱光の強度
を検出することができる。
Around the flow cell 2, there are, for example, three optical sensors 6 at different angles from the lens 4 and the detector 5.
7 and 8 are arranged to detect the intensities of the forward scattered light, the side scattered light and the back scattered light of a predetermined angle exceeding 40 ° by the particles in the flow cell 2 according to the respective arrangement angles. You can

【0018】リングデテクタ5の各素子、および各光セ
ンサ6,7,8からの出力信号は、それぞれプリアンプ
9、マルチプレクサ10を介してA−D変換器11に導
かれて順次デジタル変換され、入出力インターフェース
12を経由して演算部13に採り込まれる。
The output signals from the respective elements of the ring detector 5 and the respective photosensors 6, 7 and 8 are guided to the A / D converter 11 via the preamplifier 9 and the multiplexer 10, respectively, and are sequentially digital-converted, and then input. It is taken into the arithmetic unit 13 via the output interface 12.

【0019】演算部13はCPU13a、ROM13
b、RAM13c等を備えたコンピュータシステムを主
体として構成されており、リングデテクタ5内の各素子
および各光センサ6,7,8からの光強度データをRA
M13c内に採り込み、これらデータを用いて、ROM
13bに書き込まれた後述する変換式により、被測定粒
子の粒度分布を一挙に算出することができる。なお、こ
の演算部13には、粒度分布の算出結果を印字および表
示するプリンタ14およびCRT15が接続されてい
る。
The calculation unit 13 includes a CPU 13a and a ROM 13
b, a RAM 13c, and the like, and is mainly configured by a computer system. Light intensity data from each element in the ring detector 5 and each optical sensor 6, 7, 8 is RA.
It is taken into M13c and using these data, ROM
The particle size distribution of the particles to be measured can be calculated all at once by the conversion formula described later written in 13b. A printer 14 and a CRT 15 that print and display the calculation result of the particle size distribution are connected to the calculation unit 13.

【0020】次に、演算部13における演算の手法につ
いて述べる。フローセル2内には大きさの異なる粒子が
混在しており、これらによる散乱/回折光の強度分布パ
ターンは各粒子からの散乱/回折光の重ね合わせとな
り、前記したようにマトリクスで表現すると、 r = Af ・・・・ (1) となる。ただし、
Next, a method of calculation in the calculation unit 13 will be described. Particles of different sizes are mixed in the flow cell 2, and the intensity distribution pattern of scattered / diffracted light due to these particles is a superposition of scattered / diffracted light from each particle. = Af ... (1) However,

【0021】[0021]

【式1】 [Formula 1]

【0022】[0022]

【式2】 である。rは光強度分布ベクトルであり、その要素ri
(i=1,2,・・・・m)は、リングデテクタ5の各
素子によって検出される前方微小角散乱/回折光の強度
である。ri (i=m+1,m+2,・・・・,p)
は、光センサ6,7,8により検出された前方、側方、
後方散乱光の強度である。fは粒度分布ベクトルであ
る。粒度分布範囲を有限とし、この範囲内をn分割し、
それぞれの分割区間内を一つの粒子径Dj で代表させ
る。fの要素fj (j=1,2,・・・・n)は、粒子
径Dj に対応する粒子量である。Aは、粒度分布fを,
光強度分布rに変換する係数行列である。Aの要素a
i,j (i=1,2,・・・・m,m+1,・・・・,
p;j=1,2,・・・・,n)の物理的意味は、粒子
径Dj の単位粒子量の粒子群によって回折/散乱した光
のi番目の素子に対する入射光強度である。ai,j の数
値は、光源の波長、偏光成分、光学系の配置等に基づい
て、理論的に計算することができる。これには、粒子径
が光源となるレーザ光の波長に比べて充分に大きい場合
には、フラウンホーファ回折理論を用いる。
[Formula 2] Is. r is a light intensity distribution vector, and its element r i
(I = 1, 2, ..., M) is the intensity of the front minute angle scattered / diffracted light detected by each element of the ring detector 5. r i (i = m + 1, m + 2, ..., P)
Is the front, side, detected by the optical sensors 6, 7, and 8.
This is the intensity of backscattered light. f is a particle size distribution vector. The particle size distribution range is finite, and this range is divided into n,
The inside of each divided section is represented by one particle diameter D j . The element f j of f (j = 1, 2, ..., N) is the amount of particles corresponding to the particle diameter D j. A is the particle size distribution f,
It is a coefficient matrix for converting into a light intensity distribution r. Element a of A
i, j (i = 1,2, ... m, m + 1, ...
The physical meaning of p; j = 1, 2, ..., N) is the incident light intensity of the light diffracted / scattered by the particle group having the particle diameter D j and the unit particle amount to the i-th element. The numerical value of a i, j can be theoretically calculated based on the wavelength of the light source, the polarization component, the arrangement of the optical system, and the like. For this, the Fraunhofer diffraction theory is used when the particle diameter is sufficiently larger than the wavelength of the laser light serving as the light source.

【0023】しかし、粒子径がレーザ光の波長と同程度
か、あるいはそれより小さいサブミクロン領域の場合に
は、ミー散乱理論を用いる必要がある。フラウンホーフ
ァ回折理論は、前方微小角散乱において、粒子径が波長
に比べて充分大きな場合に有効なミー散乱理論の優れた
近似であると考えることができる。
However, when the particle diameter is in the submicron region which is about the same as or smaller than the wavelength of laser light, it is necessary to use the Mie scattering theory. The Fraunhofer diffraction theory can be considered to be an excellent approximation of the Mie scattering theory, which is effective in the case of forward small angle scattering when the particle size is sufficiently larger than the wavelength.

【0024】さて、(1)〜(3)式は、レンズ4によ
って集光された前方微小角散乱光の強度分布パターン
と、それ以外の前方、側方、後方散乱光の強度パターン
が統一的に扱われており、これらの式に基づけば、広範
囲の粒度分布を一挙に計算して求めることができる。こ
の計算方法は一般的にインバースプロブレム(逆問題)
と呼ばれるものであり、様々な手法がある。例えば、最
小自乗法を用いると、(1)式に基づいて粒度分布(ベ
クトル)fは,次の(4)式によって計算できる。
f = (AT A)-1T r ・・・・
(4) ただし、AT は、Aの転置行列であり、()-1は逆行列
を表す。(4)式の右辺において、前記したように光強
度分布(ベクトル)rの各要素はリングデテクタ5およ
び前方、側方、後方に置かれた光センサ6,7,8で検
出される光強度の値であり、また、係数行列Aは、フラ
ウンホーファ回折理論あるいはミー散乱理論を用いて、
あらかじめ計算できるので、それらの既知のデータを用
いて(4)式の計算を実行すれば粒度分布(ベクトル)
fが一挙に求まることになる。ところで、上記と同様な
考え方に基づき、より広範囲で高分解能な粒度分布を測
定する手法について説明する。すなわち、光源の波長、
偏光成分、光学系の配置(レンズ4の焦点距離、セン
サ、デテクタの配置等)などの測定条件を変化させた場
合について考えてみる。
In the equations (1) to (3), the intensity distribution pattern of the front minute angle scattered light condensed by the lens 4 and the other intensity patterns of the front, side and back scattered light are unified. , And based on these equations, a wide range of particle size distributions can be calculated and obtained all at once. This calculation method is generally inverse problem (inverse problem)
There are various methods. For example, when the least squares method is used, the particle size distribution (vector) f can be calculated by the following equation (4) based on the equation (1).
f = (A T A) -1 A T r ···
(4) where AT is the transposed matrix of A and () -1 represents the inverse matrix. On the right side of the equation (4), as described above, each element of the light intensity distribution (vector) r is the light intensity detected by the ring detector 5 and the optical sensors 6, 7, 8 placed in front, side, and rear. And the coefficient matrix A is obtained by using Fraunhofer diffraction theory or Mie scattering theory,
Since it can be calculated in advance, the particle size distribution (vector) can be obtained by executing the calculation of equation (4) using those known data.
f will be obtained all at once. By the way, based on the same idea as described above, a method of measuring a particle size distribution with a wider range and high resolution will be described. That is, the wavelength of the light source,
Consider a case where the measurement conditions such as the polarization component and the arrangement of the optical system (focal length of the lens 4, arrangement of the sensor and detector, etc.) are changed.

【0025】ある測定条件(仮に条件kとする)におい
て、前方微小角散乱光および前方、側方、後方散乱光の
光強度分布パターンについて、合計pk の数の入射光量
のデータを得たとする。
It is assumed that, under a certain measurement condition (provisionally, condition k), a total of p k of incident light amount data is obtained for the light intensity distribution patterns of the front minute angle scattered light and the front, side, and back scattered light. .

【0026】測定条件が異なれば、粒度分布(ベクト
ル)が同じであっても、光強度分布(ベクトル)と係数
行列も異なる。
If the measurement conditions are different, the light intensity distribution (vector) and the coefficient matrix are different even if the particle size distribution (vector) is the same.

【0027】測定条件kにおける光強度分布ベクトルを
k 、係数行列をAk とすると、(1)と同様に、 rk = Ak f ・・・・(5) の関係が成り立つ。同一のサンプル(同一の粒度分布)
に対してq回の異なった測定条件で散乱光の強度分布パ
ターンの測定を行ったとすると、それらを合成して次の
(6)式で表現できる。
Assuming that the light intensity distribution vector under the measurement condition k is r k and the coefficient matrix is A k , the relationship of r k = A k f ··· (5) holds as in (1). Same sample (same particle size distribution)
On the other hand, if the intensity distribution pattern of the scattered light is measured q times under different measurement conditions, they can be combined and expressed by the following equation (6).

【0028】r’ = A’f ・・・・(6) ただし、R ′ = A′f (6) where

【0029】[0029]

【式3】 である。ここで、rk (k=1,2,・・・・,q)
は、それ自身がベクトルであり、Ak (k=1,2,・
・・・,q)は、それ自身が行列である。従って、r’
は(p1 +p2 +・・・・pk +・・・・pq )次のベ
クトルであり、A’は(p1 +p2 +・・・・pk +・
・・・pq )×n次の行列となる。
[Formula 3] Is. Where r k (k = 1, 2, ..., Q)
Is itself a vector, and A k (k = 1, 2, ...
..., q) is itself a matrix. Therefore, r '
Is a (p 1 + p 2 + ... Pk + ... Pq ) next vector, and A'is (p 1 + p 2 + ... Pk + ...
... p q ) × n-order matrix.

【0030】このような方法で異なった複数の測定条件
で得られた光強度分布パターンを統一的に取り扱えば、
(1)式と同様に、(4)式のような手法でより広範囲
で高分解能で、かつ、より正確な粒度分布を一挙に計算
して求めることができる。従って、図面の実施例におい
て、光源1の波長、偏光成分を変更し得るようにすると
ともに、光学系の配置(レンズ4の焦点距離やデテクタ
5、センサ6等の配置等)を可変にすることにより、こ
れを実現できる。
If the light intensity distribution patterns obtained under a plurality of different measurement conditions by such a method are handled in a unified manner,
Similar to the formula (1), a more wide range, high resolution and more accurate particle size distribution can be calculated and obtained all at once by the method of the formula (4). Therefore, in the embodiment shown in the drawings, the wavelength and polarization component of the light source 1 can be changed, and the arrangement of the optical system (focal length of the lens 4, arrangement of the detector 5, sensor 6, etc.) can be made variable. This can be achieved by

【0031】なお、この場合、光源はレーザ光源に限ら
ず、ハロゲン光源から取り出した複数の単一波長光を用
いることもできる。また、偏光フィルタによって光の偏
光成分を変更することによっても測定条件は変えられ
る。
In this case, the light source is not limited to the laser light source, and a plurality of single wavelength lights extracted from the halogen light source can be used. The measurement conditions can also be changed by changing the polarization component of the light with a polarization filter.

【0032】更に、前方微小角散乱光用の集光レンズの
焦点距離の可変機構は、レンズの変更のほか、ズームレ
ンズの採用によっても実現可能である。
Further, the mechanism for changing the focal length of the condenser lens for the front minute angle scattered light can be realized not only by changing the lens but also by adopting a zoom lens.

【0033】更にまた、本発明では、前記した実施例の
ようなデテクタと散乱光集光用レンズの配置のほか、レ
ンズを光源としてフローセールの間に配設する。いわゆ
る逆フーリエ変換と称される光学系を用いたものにも同
様に適用し得ることは勿論である。
Furthermore, in the present invention, in addition to the arrangement of the detector and the scattered light condensing lens as in the above-mentioned embodiment, the lens is arranged between the flow sails as a light source. It is needless to say that the invention can be similarly applied to the one using an optical system called so-called inverse Fourier transform.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
集光用のレンズとアレイセンサにより測定された前方微
小角散乱光の強度分布パターンと、これとは別に配設さ
れた光センサによる上記角度を越える前方、側方および
後方散乱光の強度分布パターンとを統一的に取り扱い、
これを用いて、変換係数行列によって一挙に粒度分布を
測定するので、従来のように別々に算出した粒度分布を
後で接続する手法に比べて、広範囲の粒度分布をより正
確に、かつ、高分解能で測定することが可能となるとと
もに、各センサからの出力を共通の(一つの)A−D変
換器によって採り込むので、装置全体をコンパクトにす
ることが可能となった。
As described above, according to the present invention,
Intensity distribution pattern of front minute angle scattered light measured by a condenser lens and array sensor, and intensity distribution pattern of front, side and back scattered light exceeding the above angle by an optical sensor separately arranged Treats and as a unified
By using this, the particle size distribution is measured all at once by the transformation coefficient matrix, so compared to the conventional method of connecting the separately calculated particle size distributions later, a wider range of particle size distributions can be more accurately and It becomes possible to measure with resolution, and since the output from each sensor is taken in by a common (one) A-D converter, the entire device can be made compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である粒度分布測定装置の概
略構成を示す図である。
FIG. 1 is a diagram showing a schematic configuration of a particle size distribution measuring apparatus which is an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・レーザ光原 2・・・・・フローセル 3・・・・・懸濁液 4・・・・・レンズ 5・・・・・リングデテクタ 6、7、8・・・・・光センサ 9・・・・・プリアンプ 11・・・・・A−D変換器 13・・・・・演算部 1 ... Laser light source 2 ... Flow cell 3 ... Suspension 4 ... Lens 5 ... Ring detector 6, 7, 8 ... Optical sensor 9 ... Preamplifier 11 ... A / D converter 13 ... Calculation unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 分散飛翔状態の粒子群に平行光束を照射
することによって得られる、粒子群による回折/散乱光
の強度分布を測定することによって、粒子群の粒度分布
を測定する装置において、粒子群による回折/散乱光の
内、前方所定角度以下の回折/散乱光を集光するレンズ
と、そのレンズによって集光された回折/散乱光の強度
分布を検出するアレイセンサと、粒子群による散乱光の
内、上記角度を越える前方散乱光、側方散乱光および後
方散乱光のいずれかを入射してその強度を検出する1個
もしくは複数の光センサと、上記アレイセンサおよび上
記光センサの出力をそれぞれの出力を共通のA−D変換
器を介して採り込んで、その各データを統一的な散乱光
強度分布ベクトルの成分として用い、そのデータから、
散乱光強度分布ベクトルを粒度分布ベクトルに変換する
ためのあらかじめ設定されている変換係数行列を用いた
演算により、粒子群の粒度分布を一挙に算出する演算手
段を備えたことを特徴とする粒度分布測定装置。
1. An apparatus for measuring a particle size distribution of a particle group by measuring an intensity distribution of diffracted / scattered light by the particle group, which is obtained by irradiating a particle group in a dispersed flying state with a parallel light flux. Of the diffracted / scattered light by the group, a lens that condense the diffracted / scattered light of a predetermined angle forward, an array sensor that detects the intensity distribution of the diffracted / scattered light that is condensed by the lens, and the scatter by the particle group Of the light, one or a plurality of optical sensors that detect the intensity of any of forward scattered light, side scattered light, and back scattered light that exceeds the angle, and the outputs of the array sensor and the optical sensor. Each output is taken in through a common AD converter, each data is used as a component of a unified scattered light intensity distribution vector, and from that data,
A particle size distribution characterized by comprising calculation means for calculating the particle size distribution of particle groups all at once by calculation using a conversion coefficient matrix set in advance for converting the scattered light intensity distribution vector into a particle size distribution vector. measuring device.
JP7069787A 1995-03-28 1995-03-28 Grain size distribution measuring device Pending JPH07260669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7069787A JPH07260669A (en) 1995-03-28 1995-03-28 Grain size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7069787A JPH07260669A (en) 1995-03-28 1995-03-28 Grain size distribution measuring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1256161A Division JPH0643950B2 (en) 1989-09-29 1989-09-29 Particle size distribution measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8226814A Division JP2862077B2 (en) 1996-08-28 1996-08-28 Particle size distribution analyzer

Publications (1)

Publication Number Publication Date
JPH07260669A true JPH07260669A (en) 1995-10-13

Family

ID=13412824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7069787A Pending JPH07260669A (en) 1995-03-28 1995-03-28 Grain size distribution measuring device

Country Status (1)

Country Link
JP (1) JPH07260669A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132726A (en) * 1996-11-02 1998-05-22 Horiba Ltd Particle size distribution measuring instrument
JP2000121540A (en) * 1998-10-16 2000-04-28 Horiba Ltd Apparatus for measuring particle size distribution
JP2002116134A (en) * 2000-10-10 2002-04-19 Shimadzu Corp Measuring apparatus for suspended particulate matter
KR101225296B1 (en) * 2011-02-21 2013-01-23 성균관대학교산학협력단 Method for real-time measuring particles with signal analysis
CN106323826A (en) * 2016-11-15 2017-01-11 上海理工大学 Monitoring device and monitoring method for ultralow emission smoke
CN110672476A (en) * 2019-09-27 2020-01-10 上海理工大学 Online measurement method for concentration and granularity of catering oil fume particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256161A (en) * 1988-04-05 1989-10-12 Toshiba Corp Printed wiring board device
JPH0643950A (en) * 1992-07-23 1994-02-18 Shoei Denki Kk Power unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256161A (en) * 1988-04-05 1989-10-12 Toshiba Corp Printed wiring board device
JPH0643950A (en) * 1992-07-23 1994-02-18 Shoei Denki Kk Power unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10132726A (en) * 1996-11-02 1998-05-22 Horiba Ltd Particle size distribution measuring instrument
JP2000121540A (en) * 1998-10-16 2000-04-28 Horiba Ltd Apparatus for measuring particle size distribution
JP2002116134A (en) * 2000-10-10 2002-04-19 Shimadzu Corp Measuring apparatus for suspended particulate matter
KR101225296B1 (en) * 2011-02-21 2013-01-23 성균관대학교산학협력단 Method for real-time measuring particles with signal analysis
CN106323826A (en) * 2016-11-15 2017-01-11 上海理工大学 Monitoring device and monitoring method for ultralow emission smoke
CN106323826B (en) * 2016-11-15 2023-11-10 上海理工大学 Ultralow emission smoke monitoring device and monitoring method
CN110672476A (en) * 2019-09-27 2020-01-10 上海理工大学 Online measurement method for concentration and granularity of catering oil fume particles
CN110672476B (en) * 2019-09-27 2021-11-19 上海理工大学 Online measurement method for concentration and granularity of catering oil fume particles

Similar Documents

Publication Publication Date Title
JP3412606B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP2930710B2 (en) Particle size analysis using differential polarization intensity scattering
KR100416245B1 (en) Device for the optical inspection of a fluid, esqecially for hematological analyses
EP0416067B1 (en) Method and apparatus for particle size analysis
JP2000121540A (en) Apparatus for measuring particle size distribution
JP2862077B2 (en) Particle size distribution analyzer
US5229839A (en) Method and apparatus for measuring the size of a single fine particle and the size distribution of fine particles
JP2863874B2 (en) Particle size distribution analyzer
JP2910596B2 (en) Particle size distribution analyzer
JPH07260669A (en) Grain size distribution measuring device
JP3258889B2 (en) Optical axis adjustment method in scattering particle size distribution analyzer
US20030164944A1 (en) Apparatus for determining the shape and/or size of little particles
JPH0643950B2 (en) Particle size distribution measuring device
JP3531557B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP2626009B2 (en) Particle size distribution analyzer
JP3528359B2 (en) Laser diffraction / scattering particle size distribution analyzer
JPH0640058B2 (en) Particle size distribution measuring device
JPH0754291B2 (en) Particle size distribution measuring device
JP2674128B2 (en) Particle size distribution analyzer
JP4105888B2 (en) Particle size distribution measuring device
JPH0616008B2 (en) Scattered light measuring device
JPH0534259A (en) Device for measuring particle size distribution
JP3874047B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP2001133385A (en) Laser diffraction/scatter type particle-size distribution measuring device
JPH0575975B2 (en)