JP2910596B2 - Particle size distribution analyzer - Google Patents

Particle size distribution analyzer

Info

Publication number
JP2910596B2
JP2910596B2 JP6324257A JP32425794A JP2910596B2 JP 2910596 B2 JP2910596 B2 JP 2910596B2 JP 6324257 A JP6324257 A JP 6324257A JP 32425794 A JP32425794 A JP 32425794A JP 2910596 B2 JP2910596 B2 JP 2910596B2
Authority
JP
Japan
Prior art keywords
particle size
size distribution
suspension
sample
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6324257A
Other languages
Japanese (ja)
Other versions
JPH08178825A (en
Inventor
治夫 島岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimazu Seisakusho KK
Original Assignee
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimazu Seisakusho KK filed Critical Shimazu Seisakusho KK
Priority to JP6324257A priority Critical patent/JP2910596B2/en
Publication of JPH08178825A publication Critical patent/JPH08178825A/en
Application granted granted Critical
Publication of JP2910596B2 publication Critical patent/JP2910596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はレーザ回折/散乱式の粒
度分布測定装置に関し、特に、粒子が媒液中に高濃度で
分散しているような試料の粒度分布を測定するのに適し
た粒度分布測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser diffraction / scattering type particle size distribution measuring apparatus, and more particularly to a method suitable for measuring the particle size distribution of a sample in which particles are dispersed in a medium at a high concentration. The present invention relates to a particle size distribution measuring device.

【0002】[0002]

【従来の技術】レーザ回折/散乱式の粒度分布測定装置
においては、分散状態の粒子群にレーザ光を照射するこ
とによって発生する回折/散乱光の空間強度分布を測定
するとともに、その測定結果をフラウンホーファ回折理
論またはミー散乱理論に基づいて試料粒子群の粒度分布
に換算する。
2. Description of the Related Art In a laser diffraction / scattering type particle size distribution measuring apparatus, a spatial intensity distribution of diffraction / scattered light generated by irradiating a particle group in a dispersed state with laser light is measured, and the measurement result is measured. It is converted into the particle size distribution of the sample particle group based on the Fraunhofer diffraction theory or Mie scattering theory.

【0003】すなわち、粒子にレーザ光を照射すると、
レーザ光はその粒子によって回折または散乱する。その
回折/散乱光の強度分布パターンは、粒子の大きさによ
って変化する。レーザ回折/散乱式の粒度分布測定装置
はこのような原理を利用したもので、分散状態の粒子群
にレーザ光を照射することによって得られる回折/散乱
光の空間強度分布を測定することによって、粒子群の粒
度分布を算出する。実際の粒子群は、大きさの異なる粒
子が混在しているため、粒子群による回折/散乱光の強
度分布パターンは、それぞれの粒子からの回折/散乱光
の重ね合わせとなる。
That is, when a particle is irradiated with a laser beam,
The laser light is diffracted or scattered by the particles. The intensity distribution pattern of the diffraction / scattered light changes depending on the size of the particles. The laser diffraction / scattering type particle size distribution measuring device utilizes such a principle, and by measuring the spatial intensity distribution of the diffracted / scattered light obtained by irradiating the dispersed particles with laser light, Calculate the particle size distribution of the particle group. In an actual particle group, particles having different sizes are mixed, so that the intensity distribution pattern of the diffraction / scattered light by the particle group is a superposition of the diffraction / scattered light from each particle.

【0004】実際の装置においては、図7にその基本的
構成例を模式的に示すように、レーザ光源71からの出
力光をコリメータ72によって平行光束にして分散状態
の粒子群に照射し、粒子群による回折/散乱光のうち、
前方への回折/散乱光はレンズ73によって集光してそ
の焦点距離の位置にリング状の回折/散乱像を結ばせる
とともに、その位置には、互いに異なる半径を持つリン
グ状ないしは半リング状の複数の受光面を持つ光センサ
の集合体であるリングデテクタ74を配置して、前方所
定角度範囲における回折/散乱角度ごとの光強度を測定
する。また、側方および後方への散乱光は、それぞれ独
立した側方散乱光センサ75および後方散乱光センサ7
6によって検出する。
In an actual apparatus, as shown schematically in FIG. 7, an example of a basic configuration thereof is shown. As shown in FIG. Of the diffraction / scattered light by the group,
The forward diffracted / scattered light is condensed by the lens 73 to form a ring-shaped diffracted / scattered image at a position of the focal length, and at the position, a ring-shaped or semi-ring-shaped having a radius different from each other. A ring detector 74, which is an aggregate of optical sensors having a plurality of light receiving surfaces, is arranged to measure the light intensity at each diffraction / scattering angle in a predetermined forward angle range. Further, the scattered light to the side and the back is separated from the side scattered light sensor 75 and the back scattered light sensor 7 respectively.
6 to detect.

【0005】このようにして得られた回折/散乱光の空
間強度分布は、前記したように大きさの異なる多数の粒
子からのそれぞれの回折/散乱光の重ね合わせたもので
あって、これをマトリクス(行列)で表現すると、
[0005] The spatial intensity distribution of the diffracted / scattered light obtained in this manner is obtained by superimposing the diffracted / scattered light from a large number of particles having different sizes as described above. Expressed as a matrix,

【0006】[0006]

【数1】 (Equation 1)

【0007】となる。光強度分布ベクトルの各要素si
(i=1,2・・・・m)は、前方、側方、後方等に置かれ
た回折/散乱光強度検出用の各光センサ素子への入射光
量である。また、粒度分布ベクトルの各要素qj (j=
1,2,・・・・n)は、粒度分布測定範囲を有限とし、こ
の範囲内をn分割するとともに、最大値をd1 、最小値
をdn+1 とし、それぞれの分割区間〔dj ,dj+1 〕を
一つの粒子径xj (j=1,2,・・・・n)で代表させた
ときその各粒子径xj に対応して
[0007] Each element s i of the light intensity distribution vector
(I = 1, 2,..., M) is the amount of incident light on each of the optical sensor elements for detecting the intensity of the diffracted / scattered light placed forward, side, rear, and the like. Also, each element q j (j =
1, 2,... N) make the particle size distribution measurement range finite, divide this range into n, set the maximum value to d 1 and the minimum value to d n + 1, and set each divided section [d j, d j + 1] of the one particle size x j (j = 1,2, ···· n) when a representative in corresponding to the respective particle diameter x j

【0008】[0008]

【数2】 (Equation 2)

【0009】となるように正規化(ノルマライズ)して
表した相対粒子量(%)である。係数行列A(マトリク
ス)は、粒度分布q(ベクトル)を、光強度分布s(ベ
クトル)に変換する係数行列であり、その各要素ai,j
(i=1,2・・・・m,j=1,2・・・・n)の物理的意味
は、粒子径xj の単位粒子量の粒子群によって回折/散
乱した光を、光強度分布を測定するためのセンサ群のう
ち、最も小角度側に置かれたものからi番目の素子で検
出した光強度である。このai,j の数値は、理論的に計
算することができる。これには、光源となるレーザ光の
波長に比べて粒子径が十分に大きい場合には、フラウン
ホーファ回折理論を用いる。しかし、粒子径がレーザ波
長と同等か、それより小さいサブミクロンの領域では、
ミー散乱理論を用いる必要がある。フラウンホーファ回
折理論は、前方微小角散乱において、粒子径が波長に比
べて十分大きい場合に有効なミー散乱理論の優れた近似
であると考えることができる。
Is a relative particle amount (%) normalized (normalized) so that The coefficient matrix A (matrix) is a coefficient matrix for converting the particle size distribution q (vector) into the light intensity distribution s (vector), and each element a i, j
The physical meaning of (i = 1, 2,..., M = 1, 2,..., N) is that the light diffracted / scattered by a particle group having a unit particle amount of particle diameter x j is a light intensity. It is the light intensity detected by the i-th element from the sensor located at the smallest angle side in the sensor group for measuring the distribution. This numerical value of a i, j can be theoretically calculated. For this, the Fraunhofer diffraction theory is used when the particle diameter is sufficiently large compared to the wavelength of the laser light serving as the light source. However, in the submicron region where the particle size is equal to or smaller than the laser wavelength,
Mie scattering theory must be used. The Fraunhofer diffraction theory can be considered to be an excellent approximation of the Mie scattering theory that is effective when the particle diameter is sufficiently larger than the wavelength in forward small angle scattering.

【0010】ただし、ミー散乱理論を用いて係数行列A
(マトリクス)の要素を計算するためには、粒子および
それを分散させる媒液の屈折率を設定する必要がある。
さて、(1)式に基づいて粒度分布ベクトルqの最小自
乗解を求める式を導出すると、
However, a coefficient matrix A using Mie scattering theory
In order to calculate the elements of (matrix), it is necessary to set the refractive index of the particles and the medium in which the particles are dispersed.
By deriving an equation for obtaining a least square solution of the particle size distribution vector q based on the equation (1),

【0011】[0011]

【数3】 (Equation 3)

【0012】が得られる。この係数行列A(マトリク
ス)は前記したようにフラウンホーファ回折理論あるい
はミー散乱理論に基づいてあらかじめ計算しておくこと
ができ、(5)式の右辺における光強度分布s(ベクト
ル)の各要素は光センサにより実測された光量であるか
ら、これらを用いて粒度分布q(ベクトル)が求まるこ
とは明らかである。
Is obtained. The coefficient matrix A (matrix) can be calculated in advance based on the Fraunhofer diffraction theory or the Mie scattering theory as described above, and each element of the light intensity distribution s (vector) on the right side of the equation (5) is It is clear that the particle size distribution q (vector) can be obtained using these since the light amounts are actually measured by the sensor.

【0013】以上がレーザ回折/散乱法による粒度分布
測定原理であるが、ここで示したのはその計算方法の一
例であり、この他にも様々なバリエーションが存在し、
また、センサやデテクタの種類や配置にも様々なバリエ
ーションがある。
The principle of particle size distribution measurement by the laser diffraction / scattering method has been described above. However, this is an example of the calculation method, and there are various other variations.
Also, there are various variations in types and arrangements of sensors and detectors.

【0014】そしてこの種の測定装置では、通常、試料
粒子群を適当な媒液中に分散させ、懸濁液状にしてレー
ザ光を照射する。また、試料そのものが既に懸濁液状の
ものでは、その試料に対して直接的に、あるいは適当に
希釈してレーザ光を照射することが一般的である。ま
た、懸濁液へのレーザ光の照射は、懸濁液をフローセル
中に流動させた状態で、あるいは容器状のバッチセル中
に懸濁液を収容した状態で行われる。
In this type of measuring apparatus, the sample particles are usually dispersed in an appropriate medium to form a suspension, and the suspension is irradiated with laser light. If the sample itself is already in the form of a suspension, it is general to irradiate the sample directly or appropriately diluted with laser light. The irradiation of the suspension with the laser beam is performed in a state where the suspension is flowed in the flow cell or in a state where the suspension is accommodated in a container-shaped batch cell.

【0015】[0015]

【発明が解決しようとする課題】ところで、この種の測
定装置においては、懸濁液中の粒子群の濃度は、多重散
乱を生じさせないためにある一定の濃度以下とする必要
がある。多重散乱は、図8に模式的に示すように、一つ
の粒子によって回折または散乱した光が、別の粒子によ
って再度散乱する現象であり、懸濁液濃度が高すぎる場
合に発生する。このような多重散乱が生じると、得られ
た回折/散乱光の空間強度分布に基づいて算出された粒
度分布は、当然のことながら試料粒子群の真の粒度分布
を正確に表すものとはなり得ない。
By the way, in this type of measuring apparatus, the concentration of the particle group in the suspension needs to be lower than a certain concentration in order not to cause multiple scattering. Multiple scattering, as schematically shown in FIG. 8, is a phenomenon in which light diffracted or scattered by one particle is scattered again by another particle, and occurs when the suspension concentration is too high. When such multiple scattering occurs, the particle size distribution calculated based on the obtained spatial intensity distribution of the diffracted / scattered light naturally does not accurately represent the true particle size distribution of the sample particle group. I can't get it.

【0016】このような多重散乱の発生を回避するた
め、レーザ光を照射する懸濁液の濃度を一定濃度以下に
するわけであるが、この場合、試料そのものが既に懸濁
液状のものでは、適当な媒液によって希釈した状態でレ
ーザ光を照射する必要がある。しかし、試料の種類によ
っては、例えばインクのように、希釈することによって
粒度分布が変化してしまう場合があり、このような試料
については、従来のレーザ回折/散乱式の粒度分布測定
装置によっては正確な粒度分布を測定することが困難で
あるとされていた。
In order to avoid the occurrence of such multiple scattering, the concentration of the suspension to be irradiated with the laser beam is set to a certain concentration or less. In this case, if the sample itself is already in the form of a suspension, It is necessary to irradiate a laser beam in a state diluted with an appropriate medium. However, depending on the type of sample, the particle size distribution may change due to dilution, for example, as with ink. For such a sample, a conventional laser diffraction / scattering type particle size distribution measuring apparatus may be used. It has been considered difficult to measure an accurate particle size distribution.

【0017】本発明はこのような実情に鑑みてなされた
もので、高濃度の試料懸濁液を希釈することなく、しか
も多重散乱を生じさせることなく、正確な粒度分布測定
を行うことのできる装置の提供を目的としている。
The present invention has been made in view of such circumstances, and enables accurate measurement of particle size distribution without diluting a high-concentration sample suspension and without causing multiple scattering. It is intended to provide equipment.

【0018】[0018]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の粒度分布測定装置は、分散状態の被測定粒
子群にレーザ光を照射することによって得られる回折/
散乱光の空間強度分布を測定し、その測定結果から被測
定粒子群の粒度分布を算出する装置において、レーザ光
を照射すべく被測定粒子群を収容する試料セルが、2枚
のガラス板と、これらを照射レーザ光の光軸に対して交
差させた状態で着脱自在に支持する支持部材とからな
り、その2枚のガラス板の間に、被測定粒子群が媒液中
に分散してなる懸濁液を挟み込んだ状態で保持するとと
もに、試料セルを照射レーザ光の光軸に対して傾斜させ
て配置することによって特徴づけられる。
Means for Solving the Problems To achieve the above object, a particle size distribution measuring apparatus according to the present invention uses a diffraction / observation method obtained by irradiating a group of particles to be measured in a dispersed state with a laser beam.
In a device that measures the spatial intensity distribution of scattered light and calculates the particle size distribution of the group of particles to be measured from the measurement result, the sample cell that contains the group of particles to be measured to irradiate laser light has two glass plates and And a support member for detachably supporting these in a state of intersecting with the optical axis of the irradiation laser light, and a suspension formed by dispersing the particles to be measured in the medium between the two glass plates. The method is characterized in that the suspension is held in a sandwiched state and the sample cell is arranged to be inclined with respect to the optical axis of the irradiation laser light.

【0019】[0019]

【作用】多重散乱は、前記したように一つの粒子による
回折/散乱光が別の粒子によって再度散乱される現象で
あり、懸濁液濃度に大きく影響されるが、レーザ光が通
過する懸濁液中の光路長が短くなればなるほど、同じ懸
濁液濃度であっても多重散乱が発生する確率は小さくな
る。本発明はこの点を利用したものである。
As described above, multiple scattering is a phenomenon in which diffraction / scattered light by one particle is again scattered by another particle, and is greatly affected by the suspension concentration. The shorter the optical path length in the liquid, the lower the probability that multiple scattering will occur even at the same suspension concentration. The present invention utilizes this point.

【0020】すわなち、2枚のガラス板31,32の間
に試料懸濁液を挟み込んだ状態で、これを照射レーザ光
の光軸に交わるように配置すれば、図3に示すように極
めて薄い懸濁液層中をレーザ光が通過することになり、
高濃度の懸濁液であっても多重散乱を生じる恐れがなく
なる。
That is, if the sample suspension is sandwiched between the two glass plates 31 and 32 and is arranged so as to intersect with the optical axis of the irradiation laser beam, as shown in FIG. The laser light will pass through a very thin suspension layer,
There is no danger of multiple scattering even in a highly concentrated suspension.

【0021】[0021]

【実施例】図1は本発明実施例の測定光学系の構成を示
す模式図である。レーザ光源1からの出力光はコリメー
タ2によって平行光束にされた状態で、後述する構造の
試料セル3中の試料懸濁液Sに照射される。試料セル3
を挟んでレーザ光源1の反対側のレーザ光の光軸上には
集光レンズ4が配設されているとともに、その集光レン
ズ4の焦点位置には、前方回折/散乱光の強度分布を測
定するための従来と同等のリングデテクタ5が配設され
ている。また、試料セル3の側方および後方(レーザ光
源1側)には、それぞれ側方散乱光および後方散乱光を
測定するための側方散乱光センサ6および後方散乱光セ
ンサ7が配置されている。
FIG. 1 is a schematic diagram showing the configuration of a measuring optical system according to an embodiment of the present invention. The output light from the laser light source 1 is applied to a sample suspension S in a sample cell 3 having a structure described later in a state where the output light is converted into a parallel light beam by a collimator 2. Sample cell 3
A condensing lens 4 is provided on the optical axis of the laser light on the opposite side of the laser light source 1 with respect to the laser light source 1. A conventional ring detector 5 for measurement is provided. Further, a side scattered light sensor 6 and a back scattered light sensor 7 for measuring side scattered light and back scattered light, respectively, are arranged on the side and rear side (on the side of the laser light source 1) of the sample cell 3. .

【0022】リングデテクタ5の各センサと側方散乱光
センサ6および後方散乱光センサ7の出力は、それぞれ
増幅器によって増幅された後、A−D変換器によってデ
ジタル化され、コンピュータ(いずれも図示せず)に採
り込まれて、公知のアルゴリズムによって被測定粒子群
の粒度分布に換算される。
The outputs of the ring detector 5 and the side scattered light sensor 6 and the back scattered light sensor 7 are amplified by an amplifier and digitized by an A / D converter. And is converted into the particle size distribution of the group of particles to be measured by a known algorithm.

【0023】図2は本発明実施例の特徴部分である試料
セル3の分解斜視図である。試料セル3は、2枚の薄い
ガラス板31および32と、これらをコリメータ2を経
たレーザ光の光軸に交差させた状態で支持する支持部材
33によって構成されている。そして、試料懸濁液S
は、2枚のガラス板31と32の間に挟み込まれた状態
でレーザ光の光軸上に静的に保持されて回折/散乱光強
度分布の測定に供される。
FIG. 2 is an exploded perspective view of the sample cell 3 which is a feature of the embodiment of the present invention. The sample cell 3 includes two thin glass plates 31 and 32 and a support member 33 that supports the thin glass plates 31 and 32 in a state of intersecting the optical axis of the laser beam passing through the collimator 2. Then, the sample suspension S
Is statically held on the optical axis of the laser beam while being sandwiched between the two glass plates 31 and 32, and is used for measuring the diffraction / scattered light intensity distribution.

【0024】この例において、以上のように試料懸濁液
Sを測定箇所にセットする仕方は、まず、試料セル3を
分解して一方のガラス板31を略水平に置いた状態で、
その表面に試料懸濁液Sを少量だけ滴下した後、その上
から他方のガラス板32を重ねる。このとき、試料懸濁
液S中の媒液の表面張力により、これら2枚のガラス板
31,32は相互に付着した状態となるから、これを支
持部材33に装着して、図1のようにレーザ光の光軸に
交差するように配置する。このとき、試料懸濁液Sの濃
度が相当に高い場合でも、これを希釈せずにガラス板3
1,32の間に挟み込む。
In this example, the method of setting the sample suspension S at the measurement location as described above is as follows. First, the sample cell 3 is disassembled and one glass plate 31 is placed substantially horizontally.
After a small amount of the sample suspension S is dropped on the surface, the other glass plate 32 is overlaid thereon. At this time, the two glass plates 31 and 32 are attached to each other due to the surface tension of the liquid medium in the sample suspension S. The two glass plates 31 and 32 are attached to the support member 33 and are attached as shown in FIG. Are arranged so as to intersect the optical axis of the laser light. At this time, even if the concentration of the sample suspension S is considerably high, it is not diluted and the glass plate 3 is not diluted.
1 and 32.

【0025】このように2枚の薄いガラス板31,32
の間に試料懸濁液Sを挟み込んだ状態でレーザ光を照射
すると、試料懸濁液Sが極めて薄い層になっているた
め、レーザ光の試料懸濁液中での光路長が極めて短くな
る。従って、高濃度の試料懸濁液Sをそのまま用いて
も、図3に模式的に示すように多重散乱は生じない。
Thus, the two thin glass plates 31, 32
When the laser beam is irradiated with the sample suspension S interposed therebetween, the optical path length of the laser beam in the sample suspension becomes extremely short because the sample suspension S has an extremely thin layer. . Therefore, even if the high-concentration sample suspension S is used as it is, multiple scattering does not occur as schematically shown in FIG.

【0026】ここで、例えば被測定粒子の粒子径が比較
的大きい場合、あるいは試料懸濁液Sの濃度がそれほど
高くなく、むしろ十分な回折/散乱光強度を得たい場合
には、2枚のガラス板31と32の間に適当なスペーサ
を介在させてもよい。図4はスペーサを介在させた試料
セルの構造例の説明図で、(A)は断面図、(B)およ
び(C)はそのスペーサ34を抽出して示す正面図およ
びそのC−C断面図である。この例では、例え厚さば
0.1〜1mm程度の薄いスペーサ34の中央部分に透
孔34aを穿ち、そのスペーサ34をガラス板31と3
2の間に挟み込んだ状態で、そのスペーサ34の透孔3
4a内で試料懸濁液Sを2枚のガラス板31,32間で
挟み込んでいる。
Here, for example, when the particle diameter of the particles to be measured is relatively large, or when the concentration of the sample suspension S is not so high and it is desired to obtain a sufficient intensity of diffraction / scattered light, two sheets An appropriate spacer may be interposed between the glass plates 31 and 32. 4A and 4B are explanatory views of a structure example of a sample cell with a spacer interposed therebetween. FIG. 4A is a cross-sectional view, and FIGS. 4B and 4C are front views showing the spacer 34 extracted and its CC cross-sectional view. It is. In this example, a through hole 34a is formed in a central portion of a thin spacer 34 having a thickness of about 0.1 to 1 mm, and the spacer 34 is attached to the glass plates 31 and 3.
2 and the through holes 3 of the spacer 34
The sample suspension S is sandwiched between two glass plates 31 and 32 in 4a.

【0027】ガラス板31,32とスペーサ34との相
互の固定するために、例えはスペーサ34の両側の表面
に粘着性を持たせてもよいし、あるいは、図5に断面図
で示すように、透孔34aに重ならないように、従って
レーザ光を遮らないように、ガラス板31,32の上下
両端部分を、固定用板35を介してネジ36で両側から
挟み付けてもよい。
In order to fix the glass plates 31, 32 and the spacer 34 to each other, for example, the surfaces on both sides of the spacer 34 may be provided with adhesiveness, or as shown in a sectional view in FIG. Alternatively, the upper and lower ends of the glass plates 31 and 32 may be sandwiched from both sides with screws 36 via the fixing plate 35 so as not to overlap with the through hole 34a and not to block the laser beam.

【0028】以上の各例において、試料セル3とレーザ
光軸とのなす角度は、垂直とするよりも、むしろ図6に
平面断面図で例示するように、少し傾斜させることが望
ましい。すなわち、試料セル3をレーザ光軸に直交して
配置した場合には、特にスペーサ34を介在させる場合
において側方散乱光(レーザ光軸に対して垂直方向への
散乱光)の正確な検出が困難となるが、図6のように傾
斜を与えることによって、側方散乱光の正確な検出が可
能となり、このことはサブミクロン領域の相当に小さい
粒子群の粒度分布をより高精度に計測することが可能と
なることに繋がる。
In each of the above examples, it is desirable that the angle formed between the sample cell 3 and the laser optical axis be slightly inclined as illustrated in a plan sectional view in FIG. 6 rather than perpendicular. That is, when the sample cell 3 is arranged perpendicular to the laser optical axis, accurate detection of side scattered light (scattered light in a direction perpendicular to the laser optical axis) is performed particularly when the spacer 34 is interposed. Although it is difficult, by giving an inclination as shown in FIG. 6, accurate detection of side scattered light becomes possible, which makes it possible to measure the particle size distribution of a considerably small particle group in the submicron region with higher accuracy. That can be done.

【0029】また、以上の各例における支持部材33
は、2枚のガラス板31,32、あるいはこれに加えて
スペーサ34並びに固定用板35等を単に挟み込んだ状
態でこれらを支持するほか、ガラス板31,32もしく
は固定用板35をその側方から止めネジ等によって押し
つける方法等の変形が可能であることは勿論である。
Further, the support member 33 in each of the above examples is used.
In addition to supporting the two glass plates 31 and 32, or a spacer 34 and a fixing plate 35 in addition to the two glass plates 31 and 32, the glass plates 31 and 32 or the fixing plate 35 Needless to say, the method of pressing with a set screw or the like can be modified.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
レーザ回折/散乱式の粒度分布測定装置における試料セ
ルを、2枚のガラス板と、これらを照射レーザ光の光軸
に交差させた状態で着脱自在に支持する支持部材によっ
て構成し、その2枚のガラス板の間に試料懸濁液を挟み
込んだ状態でレーザ光を照射するから、フローセルまた
はバッチセルを用いた従来の粒度分布測定装置では多重
散乱の発生によって測定が不可能であった高濃度の懸濁
液試料を、全く希釈することなく高濃度のままで、多重
散乱を生じさせずに正確に回折/散乱光強度分布を測定
することが可能となった。その結果、例えばインクのよ
うに、希釈により分散質が分散したり崩壊し、あるいは
凝集してしまい、かつ、そのままでは多重散乱が生じて
しまうような高濃度の試料懸濁液でも正確な粒度分布測
定を行うことが可能となった。しかも、本発明では、試
料セルを照射レーザ光の光軸に対して傾けて配置するの
で、側方散乱光を正確に検出することが可能となり、こ
れによりサブミクロン領域の相当に小さい粒子群の粒度
分布を、より高精度に計測することが可能となった。
As described above, according to the present invention,
The sample cell in the laser diffraction / scattering type particle size distribution measuring device is constituted by two glass plates and a supporting member which detachably supports these glass plates in a state of intersecting with the optical axis of the irradiation laser beam. Laser light is emitted while the sample suspension is sandwiched between glass plates of high concentration, and high-concentration suspensions that could not be measured due to the occurrence of multiple scattering with the conventional particle size distribution analyzer using a flow cell or batch cell It has become possible to measure the diffraction / scattered light intensity distribution accurately without causing multiple scattering while maintaining the liquid sample at a high concentration without any dilution. As a result, accurate particle size distribution can be obtained even for highly concentrated sample suspensions, such as inks, in which the dispersoids disperse, disintegrate, or agglomerate due to dilution, and multiple scattering occurs as it is. It is now possible to make measurements. Moreover, in the present invention, the sample cell is arranged at an angle with respect to the optical axis of the irradiation laser light, so that it is possible to accurately detect side scattered light, and thereby, a particle group of a considerably small submicron region can be detected. The particle size distribution can be measured with higher accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例の全体構成図で、測定光学系の模
式図を示す図
FIG. 1 is an overall configuration diagram of an embodiment of the present invention, showing a schematic diagram of a measurement optical system.

【図2】その試料セル3の分解斜視図FIG. 2 is an exploded perspective view of the sample cell 3.

【図3】本発明実施例の作用説明図FIG. 3 is a diagram illustrating the operation of the embodiment of the present invention.

【図4】本発明の他の実施例の試料セルの構造説明図FIG. 4 is a structural explanatory view of a sample cell according to another embodiment of the present invention.

【図5】本発明の更に他の実施例の試料セルの構造説明
FIG. 5 is a structural explanatory view of a sample cell according to still another embodiment of the present invention.

【図6】本発明の各実施例の試料セル3のレーザ光軸に
対する配置例の説明図
FIG. 6 is an explanatory diagram of an example of the arrangement of the sample cell 3 with respect to the laser optical axis in each embodiment of the present invention.

【図7】レーザ回折/散乱式粒度分布測定装置の基本的
構成を示す模式図
FIG. 7 is a schematic diagram showing a basic configuration of a laser diffraction / scattering type particle size distribution analyzer.

【図8】高濃度懸濁液にレーザ光を照射したときに生じ
る多重散乱の説明図
FIG. 8 is an explanatory diagram of multiple scattering generated when a high-concentration suspension is irradiated with laser light.

【符号の説明】[Explanation of symbols]

1 レーザ光源 2 コリメータ 3 試料セル 31,32 ガラス板 33 支持部材 34 スペーサ 34a 透孔 4 集光レンズ 5 リングデテクタ 6 側方散乱光センサ 7 後方散乱光センサ DESCRIPTION OF SYMBOLS 1 Laser light source 2 Collimator 3 Sample cell 31, 32 Glass plate 33 Support member 34 Spacer 34a Through-hole 4 Condensing lens 5 Ring detector 6 Side scattered light sensor 7 Back scattered light sensor

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 分散状態の被測定粒子群にレーザ光を照
射することによって得られる回折/散乱光の空間強度分
布を測定し、その測定結果から被測定粒子群の粒度分布
を算出する装置において、レーザ光を照射すべく被測定
粒子群を収容する試料セルが、2枚のガラス板と、これ
らを照射レーザ光の光軸に対して交差させた状態で着脱
自在に支持する支持部材とからなり、その2枚のガラス
板の間に、被測定粒子群が媒液中に分散してなる懸濁液
を挟み込んだ状態で保持するとともに、試料セルを照射
レーザ光の光軸に対して傾斜させて配置することを特徴
とする粒度分布測定装置。
An apparatus for measuring a spatial intensity distribution of diffracted / scattered light obtained by irradiating a laser beam onto a group of particles to be measured in a dispersed state and calculating a particle size distribution of the group of particles to be measured from the measurement result. A sample cell containing a group of particles to be measured for irradiating a laser beam is composed of two glass plates and a supporting member for detachably supporting the two glass plates in a state of crossing the optical axis of the irradiating laser beam. Between the two glass plates, holding the suspension in which the particles to be measured are dispersed in the medium , and irradiating the sample cell.
A particle size distribution measuring device, which is arranged to be inclined with respect to the optical axis of a laser beam .
JP6324257A 1994-12-27 1994-12-27 Particle size distribution analyzer Expired - Fee Related JP2910596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6324257A JP2910596B2 (en) 1994-12-27 1994-12-27 Particle size distribution analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6324257A JP2910596B2 (en) 1994-12-27 1994-12-27 Particle size distribution analyzer

Publications (2)

Publication Number Publication Date
JPH08178825A JPH08178825A (en) 1996-07-12
JP2910596B2 true JP2910596B2 (en) 1999-06-23

Family

ID=18163790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6324257A Expired - Fee Related JP2910596B2 (en) 1994-12-27 1994-12-27 Particle size distribution analyzer

Country Status (1)

Country Link
JP (1) JP2910596B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180372614A1 (en) * 2017-06-22 2018-12-27 Horiba, Ltd. Optical measurement cell and particle properties measuring instrument using the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3895673B2 (en) 2002-11-21 2007-03-22 株式会社堀場製作所 Particle size distribution measuring device
JP4517145B2 (en) * 2004-09-02 2010-08-04 国立大学法人北海道大学 Light scattering device, light scattering measurement method, light scattering analysis device, and light scattering measurement analysis method
JP5223478B2 (en) * 2008-06-11 2013-06-26 株式会社島津製作所 Scattering characteristic evaluation equipment
EP2404154B1 (en) * 2009-03-04 2020-11-11 Malvern Panalytical Limited Particle characterization
FR2947339B1 (en) * 2009-06-26 2011-07-15 Inst Francais Du Petrole PERFECTIONAL GRANULOMETER
FR2947338B1 (en) * 2009-06-26 2011-07-15 Inst Francais Du Petrole IMPROVED METHOD OF GRANULOMETRIC MEASUREMENT
CN103308432B (en) * 2013-07-05 2015-06-24 河北工业大学 Continuous spectrum scattering type particle measurement method
US9261448B2 (en) * 2014-06-27 2016-02-16 Shimadzu Corporation Particle size distribution measuring apparatus
JP6567281B2 (en) * 2015-01-30 2019-08-28 株式会社堀場製作所 Optical analysis cell and particle size distribution measuring apparatus using the same
JP6749011B2 (en) * 2016-06-13 2020-09-02 学校法人 東洋大学 Particle size measuring system and particle size measuring method
CN111331249B (en) * 2020-02-28 2022-05-13 中国科学院微电子研究所 Configuration device and method of dodging parameters, stripping system and stripping method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180372614A1 (en) * 2017-06-22 2018-12-27 Horiba, Ltd. Optical measurement cell and particle properties measuring instrument using the same
US10782225B2 (en) 2017-06-22 2020-09-22 Horiba, Ltd. Optical measurement cell and particle properties measuring instrument using the same

Also Published As

Publication number Publication date
JPH08178825A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
US6469786B2 (en) Particle size analyzer based on the laser diffraction method
EP0106684B1 (en) Particle diameter measuring device
JP2930710B2 (en) Particle size analysis using differential polarization intensity scattering
JP2910596B2 (en) Particle size distribution analyzer
JP3446410B2 (en) Laser diffraction particle size distribution analyzer
US6104491A (en) System for determining small particle size distribution in high particle concentrations
JP2862077B2 (en) Particle size distribution analyzer
JPH09189653A (en) Optical axis adjusting method for use in scattering type particle size distribution measuring device
JP3151036B2 (en) Method and apparatus for detecting submicron particles
JP3301658B2 (en) Method and apparatus for measuring particle size of fine particles in fluid
JP2000046722A (en) Method and apparatus for measurement of concentration of particles and particle measuring apparatus
JP3531557B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP3566840B2 (en) Concentration measuring device
JPH05172730A (en) Measurement of particle-size distribution
JP3058571B2 (en) Particle size distribution analysis method
JPH0534259A (en) Device for measuring particle size distribution
JP4105888B2 (en) Particle size distribution measuring device
JPH0754291B2 (en) Particle size distribution measuring device
JP3633168B2 (en) Particle size distribution data comparison method and particle size distribution measuring apparatus
JP2001133385A (en) Laser diffraction/scatter type particle-size distribution measuring device
JPH0643950B2 (en) Particle size distribution measuring device
JP2803296B2 (en) Particle size distribution analyzer
JPH02173550A (en) Particle size distribution measuring instrument
JP2001330551A (en) Particle measuring instrument
JP3025051B2 (en) Scattered light measurement cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees