JP3566840B2 - Concentration measuring device - Google Patents

Concentration measuring device Download PDF

Info

Publication number
JP3566840B2
JP3566840B2 JP28772897A JP28772897A JP3566840B2 JP 3566840 B2 JP3566840 B2 JP 3566840B2 JP 28772897 A JP28772897 A JP 28772897A JP 28772897 A JP28772897 A JP 28772897A JP 3566840 B2 JP3566840 B2 JP 3566840B2
Authority
JP
Japan
Prior art keywords
light intensity
light
sample
detector
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28772897A
Other languages
Japanese (ja)
Other versions
JPH11108822A (en
Inventor
達夫 伊串
靖 渡邊
清 森本
了 昼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP28772897A priority Critical patent/JP3566840B2/en
Publication of JPH11108822A publication Critical patent/JPH11108822A/en
Application granted granted Critical
Publication of JP3566840B2 publication Critical patent/JP3566840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、気相中の粒子や液体中の粒子またはコロイドなどの濃度を測定する装置に関する。
【0002】
【従来の技術】
例えば液体中の粒子濃度を測定する方法として、濁度を用いる方法がある。この濁度による試料濃度の測定は、JIS K0801に規定されるように、濁度計測装置を予め特定の試料について校正し、この校正後の装置を用いて濁度を計測し、この濁度を用いて濃度を求めるものである。
【0003】
【発明が解決しようとする課題】
しかしながら、校正試料以外の試料を測定する場合、その濃度を測定するには、測定対象の試料を用いて前記装置の校正を改めて行う必要がある。これは、濁度は、試料中に含まれる粒子に起因して生ずる散乱による現象であるため、濁度のパラメータとして粒子径と相対屈折率とがあるが、校正データはこのようなパラメータを持っていないため、試料ごとに校正データを持つ必要があるからである。
【0004】
つまり、上記従来の濃度測定方法においては、濃度と濁度の校正曲線(検量線)を試料の数だけ持つ必要があり、この校正曲線を得るための操作が非常に煩わしいものであった。また、得られる試料の濃度は、標準試料に換算された濃度であり、試料そのものの実際の濃度ではなかった。
【0005】
この発明は、上述の事柄に留意してなされたもので、その目的は、試料の実際の濃度を短時間にしかも簡単に得ることができる濃度測定装置を提供することである。
【0006】
【課題を解決するための手段】
上記目的を達成するために、この発明の濃度測定装置は、試料セルを照射する光源と、この光源からの光を試料セルに照射したとき、その試料セルを透過した透過光を検出する透過光強度検出器及び複数個のセンサ素子を配列して前記試料セルの試料粒子によって散乱された散乱光を検出する散乱光強度検出器とからなる検出器を備えた測定部と、この検出器における前記両光強度検出器から出力される光強度信号が入力され、これに基づいて所定の演算を行う信号処理部とが備えられており、前記信号処理部は、前記散乱光強度検出器の複数個のセンサ素子から出力される散乱光の光強度信号による散乱光強度分布に基づいて散乱光相当粒度分布を演算する一方、試料セルに対する入射光強度と前記透過光強度検出器から出力される透過光強度及び試料セルの光路長に基づいて濁度を演算し、かつ、それら演算された散乱光相当粒度分布と、濁度と、予め求めておいた散乱係数と粒径との関係とから試料濃度を演算するように構成されていることを特徴としている。
【0007】
【0008】
この発明によれば、試料の濃度を測定するに際して、光を試料セル中の試料に照射し、そのとき生ずる散乱光の強度分布と、入射光強度と透過光強度及び光路長に基づいて演算される濁度とを同時に測定する。散乱光の強度分布から粒度分布演算を行うことにより試料の散乱光相当粒度分布が得られる。この散乱光相当粒度分布と濁度と、予め求めておいた散乱係数と粒径との関係とを用いることによって、濃度と濁度の校正曲線を用いることなく、しかも粒子径が変化しても試料濃度を得ることができる。
【0009】
【発明の実施の形態】
発明の実施の形態を図面を参照しながら説明する。図1〜図3は、この発明の一つの実施の形態を示す。まず、図1は、この発明の濃度測定装置の一例となるレーザ回折式粒度分布(粒子径分布ともいう)測定装置を示すもので、この図において、Aは測定部で次のような部材からなる。すなわち、1は分散バスで、その内部にはモータ2によって回転する攪拌羽根3が設けられているとともに、底面1aの外部には図外の発振器によって振動する超音波振動子4が設けられている。5は試料粒子を含む分散媒6を収容したタンク、7は分散媒供給管で、電磁弁などの開閉弁8を備え、分散バス1の開口に開放接続されている。
【0010】
9は懸濁液が充填される試料セルとしてのフローセルで、分散バス1とは、ポンプ10、切換え弁11を備えた循環流路12によって接続されている。13はフローセル9の一方の側に設けられるレーザ光源で、このレーザ光源13を発したレーザ光は、反射鏡14a,14bを経てビーム拡大器15に至り、所定のビーム径の平行光となってフローセル9に照射される。
【0011】
16はフローセル9の他方の側に設けられる集光レンズで、その後方の焦点位置にアレイ状の検出器17が配設されている。このアレイ状検出器17は、図2に示すように、フローセル9を透過した光を検出する透過光強度検出器17Aと、この透過光強度検出器17Aを中心にして互いに半径が異なる半リング状の受光面を持つ複数個のセンサ素子17bを同心状に配列した散乱光強度検出器17Bとからなる。
【0012】
そして、図1において、Bは信号処理部で、次のような部材からなる。すなわち、18はアンプおよびマルチプレクサなどよりなる信号切換回路、19はAD変換器である。また、20は例えばCPUからなる信号演算部で、装置の各部に対する各種制御を行うとともに、AD変換器19を介して入力される検出器17の信号をROM21に格納されているプログラムやデータに基づいて処理し、粒度分布(粒子径分布)演算や濁度演算を行い、演算結果をRAM22に格納する。23はCRTなどよりなる表示画面23aの周辺に各種のファンクションキー23bを備えた表示操作部、24は演算結果を出力するプリンタである。
【0013】
上記構成のレーザ回折式粒度分布測定装置において、フローセル9に懸濁液を供給している状態で、レーザ光源13からレーザ光をフローセル9に照射する。フローセル9に対して照射されたレーザ光の一部は、試料粒子に当たることなく懸濁液を通過してフローセル9の反対側に透過する。この透過光は、集光レンズ16を経て検出器17における透過光強度検出器17Aに入射する。この透過光の入射に基づいて透過光強度検出器17Aから光強度信号が出力され、これが信号切換回路18を介してAD変換器に送られ、信号演算部20に取り込まれる。
【0014】
一方、前記フローセル9に対して照射されたレーザ光の他の一部は、懸濁液に含まれる試料粒子によって散乱された光となる。この散乱光は、集光レンズ16を経て各散乱角度ごとに検出器17における散乱光強度検出器17Bに入射する。この場合、試料粒子による散乱光は、同じ散乱角度の光は集光レンズ16の作用により散乱光強度検出器17B上の同一半径の位置に入射する。したがって、散乱光強度検出器17の同じセンサ素子17bに入射する光は、散乱光がきわめて近い光のみとなり、各センサ素子17bからの出力信号は散乱角ごとの光強度信号を表し、各センサ素子17bごとの出力信号から散乱光強度分布が得られ、これが信号切換回路18を介してAD変換器19に送られ、信号演算部20に取り込まれる。
【0015】
ところで、セルにおける粉体やコロイドによる透過光の減衰は、下記(1)式で表される。
τT =ln(I0 /I)/L ……(1)
ここにおいて、I,I0 はそれぞれ入射光、透過光の強度であり、Lはセルの光路長、τT は濁度である。
【0016】
したがって、信号演算部20においては、上記(1)式と、レーザ光の入射光強度、透過光強度およびセル9の光路長を用いることにより、前記懸濁液の濁度τT を得ることができる。
【0017】
また、信号演算部20においては、散乱光の強度分布から粒度分布(粒子径分布)に変換するための予め設定されている変換係数行列を用いた演算により粒度分布が一挙に演算される。なお、変換係数行列は、対象試料の相対屈折率ごとに用意しておく。
【0018】
次に、濃度を求める手順について説明する。粒子1個当たりの光の散乱係数をKext 、粒子体積濃度をΦ、粒子径をaとすると、単位体積当たりの濁度τT /Φは、
τT /Φ=(3π/4a)・Kext ……(2)
となる。
【0019】
したがって、粒子体積濃度Φは、
Φ={4a/(3πLKext )}・ln(I0 /I) ……(3)
と表すことができる。
【0020】
そして、粒子1個当たりの光の散乱係数Kext は、粒子が均一な球形の場合、Mieの散乱式から理論的に求めることができる。なお、図3は、散乱係数と粒子径との関係の一例を示す図で、符号Aは散乱断面積(または遮光効率)を表している。
【0021】
この場合、測定に用いるセル(この例ではフローセル9)と試料が一定の場合は、セルの光路長Lおよび粒子1個当たりの光の散乱係数Kext および粒子径aは一定であるので、従来の濁度測定方法と同じである。
【0022】
そして、粒子径に分布がある場合は、粒子径分布をf(a)とすると、そのときの光の散乱係数Kaext は、下記(4)式で表すことができる。
【0023】
【数1】

Figure 0003566840
【0024】
上記(4)式において、a0 は最小粒子径を、また、a は最大粒子径をそれぞれ示している。
【0025】
したがって、上述のように、粒子径分布がある試料については、前記(3)式において、Kext に代えてKaext を用いるのである。
【0026】
そして、粒子径分布があるときの散乱係数から前記測定した濁度を用いて試料体積濃度を計算で求める。なお、散乱係数は、測定対象の試料の屈折率ごとに予め求め、これを記憶しておく。
【0027】
上述の説明から理解されるように、この発明の濃度測定方法は、試料の粒度分布や種類が変化しても一つの校正データから試料濃度を演算により求めることができるので、試料ごとに校正データを測定する必要がなくなり、従来技術に比べて、短時間かつ簡単に測定を行うことができる。そして、前記濃度測定方法においては、測定対象試料の実際の濃度を得ることができ、試料における粒子の分布が均一でなく変化するような試料測定系においても濃度測定を行うことができるようになった。
【0028】
この発明は、上述の実施の形態に限られるものではなく、種々に変形して実施することができ、例えば、測定対象としては、液中に分散した粉体やコロイドのほかに、気相中に分散した粉体であってもよい。そして、試料が液中に分散した粉体やコロイドである場合、フローセル9に代えて、図4に示すようなセル25を用いてもよい。
【0029】
【発明の効果】
この発明によれば、試料の実際の濃度を短時間にしかも簡単に得ることができる。また、この発明においては、粒度分布測定を行うための装置を用いて濃度を求めることができるといった利点もある。
【図面の簡単な説明】
【図1】この発明の濃度測定装置の一構成を概略的に示す図である。
【図2】前記装置において用いられる検出器の一例を概略的に示す図である。
【図3】散乱係数と粒子径との関係の一例を示す図である。
【図4】この発明の濃度測定装置の他の構成を概略的に示す図である。
【符号の説明】
A…測定部、B…信号処理部、9…試料セル、13…光源、17…検出器、17A…透過光強度検出器、17B…散乱光強度検出器、17b…センサ素子。 [0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for measuring the concentration of particles in a gas phase, particles or a colloid in a liquid, and the like.
[0002]
[Prior art]
For example, as a method for measuring the particle concentration in a liquid, there is a method using turbidity. The measurement of the sample concentration based on the turbidity is performed by calibrating a turbidity measuring device in advance for a specific sample as described in JIS K0801, measuring the turbidity using the calibrated device, and measuring the turbidity. Is used to determine the concentration.
[0003]
[Problems to be solved by the invention]
However, when measuring a sample other than the calibration sample, in order to measure the concentration, it is necessary to re-calibrate the apparatus using the sample to be measured. Since turbidity is a phenomenon due to scattering caused by particles contained in a sample, there are a particle diameter and a relative refractive index as turbidity parameters, but calibration data has such parameters. This is because it is necessary to have calibration data for each sample.
[0004]
That is, the above conventional concentration measuring how, must have a calibration curve of the concentration turbidity (calibration curve) by the number of samples, the operation for obtaining the calibration curve was very troublesome. Further, the concentration of the obtained sample was a concentration converted into a standard sample, and was not an actual concentration of the sample itself.
[0005]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned matters, and an object of the present invention is to provide a concentration measuring device capable of easily obtaining the actual concentration of a sample in a short time.
[0006]
[Means for Solving the Problems]
To achieve the above object, a concentration measuring device comprising a light source for irradiating light to the sample cell, when irradiated with light from the light source to the sample cell, for detecting the transmitted light transmitted through the sample cell a measurement unit which includes a detector that transmitted light intensity detector and by arranging a plurality of sensor elements consisting of a scattered light intensity detector for detecting scattered light scattered by the sample particles in the sample cell, the detector Light intensity signals output from the two light intensity detectors are input, and a signal processing unit that performs a predetermined calculation based on the light intensity signals is provided.The signal processing unit includes a scattered light intensity detector. while you calculating the scattered light equivalent particle size distribution based on the scattered light intensity distribution by the scattered light of the light intensity signals output from the plurality of sensor elements, it is output from the transmitted light intensity detector and the incident light intensity for the sample cell that Toru Based on the optical path length of the light intensity and the sample cell is calculated turbidity, and samples from the those calculated scattered light equivalent particle size distribution, turbidity and, the relationship between the scattering coefficient and the grain size obtained in advance It is characterized in that it is configured to calculate the density.
[0007]
[0008]
According to the present invention, on the occasion to measure the concentration of the sample, light is irradiated to the sample in the sample cell, and the intensity distribution of the scattered light generated at that time, based on the transmitted light intensity and the optical path length and the incident light intensity And turbidity calculated at the same time. By calculating the particle size distribution from the scattered light intensity distribution, a scattered light equivalent particle size distribution of the sample can be obtained. By using the scattered light equivalent particle size distribution and turbidity, and the relationship between the scattering coefficient and the particle size determined in advance, without using a calibration curve of concentration and turbidity, and even if the particle size changes The sample concentration can be obtained.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. 1 to 3 show one embodiment of the present invention. First, FIG. 1 shows an example become (also referred to as the particle size distribution) laser diffraction particle size distribution measuring equipment of the concentration measuring apparatus of the present invention, in this figure, the following member by A measuring unit Consists of That is, reference numeral 1 denotes a dispersion bus, in which a stirring blade 3 rotated by a motor 2 is provided, and an ultrasonic vibrator 4 vibrated by an oscillator (not shown) is provided outside the bottom surface 1a. . Reference numeral 5 denotes a tank containing a dispersion medium 6 containing sample particles, and reference numeral 7 denotes a dispersion medium supply pipe, which is provided with an on-off valve 8 such as an electromagnetic valve, and is openly connected to the opening of the dispersion bath 1.
[0010]
Reference numeral 9 denotes a flow cell as a sample cell to be filled with the suspension, which is connected to the dispersion bus 1 by a circulation path 12 having a pump 10 and a switching valve 11. Reference numeral 13 denotes a laser light source provided on one side of the flow cell 9. The laser light emitted from the laser light source 13 reaches the beam expander 15 via the reflecting mirrors 14a and 14b, and becomes parallel light having a predetermined beam diameter. Irradiation is performed on the flow cell 9.
[0011]
Reference numeral 16 denotes a condensing lens provided on the other side of the flow cell 9, and an array of detectors 17 is disposed at a focal position behind the condensing lens. As shown in FIG. 2, the arrayed detector 17 includes a transmitted light intensity detector 17A that detects light transmitted through the flow cell 9, and a semi-ring shape having different radii from the transmitted light intensity detector 17A. And a scattered light intensity detector 17B in which a plurality of sensor elements 17b having a light receiving surface are concentrically arranged.
[0012]
In FIG. 1, B is a signal processing unit, which is composed of the following members. That is, 18 is a signal switching circuit including an amplifier and a multiplexer, and 19 is an AD converter. Reference numeral 20 denotes a signal operation unit composed of, for example, a CPU, which performs various controls on each unit of the apparatus, and converts a signal of the detector 17 input via the AD converter 19 based on a program or data stored in the ROM 21. Then, a particle size distribution (particle size distribution) calculation and a turbidity calculation are performed, and the calculation result is stored in the RAM 22. Reference numeral 23 denotes a display operation unit provided with various function keys 23b around a display screen 23a formed of a CRT or the like, and reference numeral 24 denotes a printer that outputs a calculation result.
[0013]
In the laser diffraction type particle size distribution measuring apparatus having the above-described configuration, a laser beam is emitted from the laser light source 13 to the flow cell 9 while the suspension is being supplied to the flow cell 9. A part of the laser light applied to the flow cell 9 passes through the suspension and does not hit the sample particles, and is transmitted to the opposite side of the flow cell 9. This transmitted light enters the transmitted light intensity detector 17A in the detector 17 via the condenser lens 16. A light intensity signal is output from the transmitted light intensity detector 17A based on the incidence of the transmitted light, sent to the AD converter via the signal switching circuit 18, and taken into the signal operation unit 20.
[0014]
On the other hand, another part of the laser light irradiated to the flow cell 9 becomes light scattered by the sample particles contained in the suspension. This scattered light enters the scattered light intensity detector 17B of the detector 17 at each scattering angle via the condenser lens 16. In this case, the light having the same scattering angle as the light scattered by the sample particles enters the position of the same radius on the scattered light intensity detector 17B by the action of the condenser lens 16. Therefore, light incident on the same sensor element 17b of the scattered light intensity detector 17 B, the scattering light is only very close optical output signal from each sensor element 17b represents a light intensity signal for each scattering angle, each sensor A scattered light intensity distribution is obtained from the output signal of each element 17b, sent to the AD converter 19 via the signal switching circuit 18, and taken into the signal operation unit 20.
[0015]
By the way, the attenuation of transmitted light due to powder or colloid in the cell is expressed by the following equation (1).
τT = ln (I 0 / I) / L (1)
Here, I and I 0 are the intensity of the incident light and the transmitted light, respectively, L is the optical path length of the cell, and τT is the turbidity.
[0016]
Therefore, the signal operation unit 20 can obtain the turbidity τT of the suspension by using the above equation (1), the incident light intensity of the laser light, the transmitted light intensity, and the optical path length of the cell 9. .
[0017]
Further, in the signal calculation unit 20, the particle size distribution is calculated all at once by a calculation using a preset conversion coefficient matrix for converting the intensity distribution of the scattered light into a particle size distribution (particle size distribution). Note that a conversion coefficient matrix is prepared for each relative refractive index of the target sample.
[0018]
Next, a procedure for obtaining the density will be described. Assuming that the scattering coefficient of light per particle is Kext, the particle volume concentration is Φ, and the particle diameter is a, the turbidity τT / Φ per unit volume is
τT / Φ = (3π / 4a) · Kext (2)
It becomes.
[0019]
Therefore, the particle volume concentration Φ is
Φ = {4a / (3πLKext)} · ln (I 0 / I) (3)
It can be expressed as.
[0020]
The scattering coefficient Kext of light per particle can be theoretically obtained from Mie's scattering equation when the particles are uniform and spherical. FIG. 3 is a diagram showing an example of the relationship between the scattering coefficient and the particle diameter, and the symbol A indicates the scattering cross section (or light shielding efficiency).
[0021]
In this case, when the cell used for the measurement (the flow cell 9 in this example) and the sample are constant, the optical path length L of the cell, the light scattering coefficient Kext per particle, and the particle diameter a are constant. It is the same as the turbidity measurement method.
[0022]
If the particle diameter has a distribution, and the particle diameter distribution is f (a), the light scattering coefficient Kaext at that time can be expressed by the following equation (4).
[0023]
(Equation 1)
Figure 0003566840
[0024]
In the above (4), a 0 is the minimum particle size, also, a n denotes the maximum particle size, respectively.
[0025]
Therefore, as described above, for a sample having a particle size distribution, Kaext is used instead of Kext in the equation (3).
[0026]
Then, the sample volume concentration is obtained by calculation from the scattering coefficient when there is a particle size distribution using the measured turbidity. The scattering coefficient is obtained in advance for each refractive index of the sample to be measured, and is stored.
[0027]
As can be understood from the above description, the concentration measuring method of the present invention can calculate the sample concentration from one piece of calibration data by calculation even if the particle size distribution and the type of the sample change. Is no longer required, and the measurement can be performed in a shorter time and more easily than in the conventional technique. In the concentration measurement method, the actual concentration of the sample to be measured can be obtained, and the concentration can be measured even in a sample measurement system in which the distribution of particles in the sample is not uniform and changes. Was.
[0028]
The present invention is not limited to the above-described embodiment, and can be implemented in various modifications. For example, in addition to powders and colloids dispersed in a liquid, Powder may be dispersed. When the sample is a powder or a colloid dispersed in a liquid, a cell 25 as shown in FIG.
[0029]
【The invention's effect】
According to the present invention, the actual concentration of the sample can be obtained in a short time and easily. Further, in the present invention, there is also an advantage can therefore be found to concentration using the apparatus for particle size distribution measurement.
[Brief description of the drawings]
1 is a diagram schematically showing a configuration of a density measurement apparatus of the present invention.
FIG. 2 is a diagram schematically showing an example of a detector used in the device.
FIG. 3 is a diagram illustrating an example of a relationship between a scattering coefficient and a particle diameter.
4 is a diagram schematically showing another configuration of the concentration measurement apparatus of the present invention.
[Explanation of symbols]
A: measuring unit, B: signal processing unit, 9: sample cell, 13: light source , 17: detector, 17A: transmitted light intensity detector, 17B: scattered light intensity detector, 17b: sensor element.

Claims (1)

試料セルを照射する光源と、この光源からの光を試料セルに照射したとき、その試料セルを透過した透過光を検出する透過光強度検出器及び複数個のセンサ素子を配列して前記試料セルの試料粒子によって散乱された散乱光を検出する散乱光強度検出器とからなる検出器を備えた測定部と、この検出器における前記両光強度検出器から出力される光強度信号が入力され、これに基づいて所定の演算を行う信号処理部とが備えられており、
前記信号処理部は、前記散乱光強度検出器の複数個のセンサ素子から出力される散乱光の光強度信号による散乱光強度分布に基づいて散乱光相当粒度分布を演算する一方、試料セルに対する入射光強度と前記透過光強度検出器から出力される透過光強度及び試料セルの光路長に基づいて濁度を演算し、かつ、それら演算された散乱光相当粒度分布と、濁度と、予め求めておいた散乱係数と粒径との関係とから試料濃度を演算する信号演算部を有していることを特徴とする濃度測定装置。
A light source that irradiates the sample cell with light , and a light intensity detector that detects transmitted light transmitted through the sample cell when the light from the light source irradiates the sample cell, and a plurality of sensor elements are arranged. a measuring unit having a detector consisting of a scattered light intensity detector for detecting scattered light scattered by the sample particles of the sample cell, light intensity signals output from the two light intensity detectors in the detector input And a signal processing unit that performs a predetermined operation based on the signal processing unit .
The signal processing unit, while you calculating the scattered light equivalent particle size distribution based on the scattered light intensity distribution by the scattered light of the light intensity signals output from the plurality of sensor elements of the scattered light intensity detector, with respect to the sample cell The turbidity is calculated based on the incident light intensity, the transmitted light intensity output from the transmitted light intensity detector, and the optical path length of the sample cell , and the calculated scattered light equivalent particle size distribution, turbidity, and concentration measuring apparatus and a relationship between the scattering coefficient and the grain size had been determined and characterized by having a signal calculator for calculating the sample concentration.
JP28772897A 1997-10-04 1997-10-04 Concentration measuring device Expired - Fee Related JP3566840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28772897A JP3566840B2 (en) 1997-10-04 1997-10-04 Concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28772897A JP3566840B2 (en) 1997-10-04 1997-10-04 Concentration measuring device

Publications (2)

Publication Number Publication Date
JPH11108822A JPH11108822A (en) 1999-04-23
JP3566840B2 true JP3566840B2 (en) 2004-09-15

Family

ID=17720990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28772897A Expired - Fee Related JP3566840B2 (en) 1997-10-04 1997-10-04 Concentration measuring device

Country Status (1)

Country Link
JP (1) JP3566840B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277432B2 (en) * 2007-07-17 2013-08-28 学校法人日本大学 Suspended matter analysis method
JP5891936B2 (en) * 2011-05-10 2016-03-23 三菱化学株式会社 Apparatus and method for measuring solvent insoluble content of coal tar or coal tar pitches
US9958431B2 (en) * 2012-05-14 2018-05-01 Nanjing Tuozhu Pharmaceutical & Tech Co., Ltd. Endotoxin detection systems and detection methods thereof
CN104422640B (en) * 2013-09-06 2017-01-25 重庆大学 Laser-scattering-based air quality detecting system
CN104833624A (en) * 2015-05-20 2015-08-12 浙江科技学院 Fiber-based turbidity measuring method and apparatus
WO2018092573A1 (en) * 2016-11-16 2018-05-24 株式会社堀場製作所 Particle diameter distribution measuring device, particle diameter distribution measuring method, and program for particle diameter distribution measuring device
CN114199734B (en) * 2021-11-11 2024-05-24 华中科技大学 Method and system for measuring mass concentration of online pollutant particles

Also Published As

Publication number Publication date
JPH11108822A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
JP2771206B2 (en) Portable particle analyzer
JP3248910B2 (en) Analysis of particle properties
EP0167272B1 (en) Particle size measuring apparatus
US4140395A (en) Electro-optical method and system for in situ measurements of particle size and distribution
EP0956496B1 (en) Method and apparatus for detecting an object
JP3566840B2 (en) Concentration measuring device
JP3446410B2 (en) Laser diffraction particle size distribution analyzer
US6104491A (en) System for determining small particle size distribution in high particle concentrations
JP5277432B2 (en) Suspended matter analysis method
JP2910596B2 (en) Particle size distribution analyzer
US6104490A (en) Multiple pathlength sensor for determining small particle size distribution in high particle concentrations
JP3371816B2 (en) Particle concentration measuring method and device and particle measuring device
Schwarz et al. Investigations on the capability of the statistical extinction method for the determination of mean particle sizes in concentrated particle systems
JP3151036B2 (en) Method and apparatus for detecting submicron particles
JP3531557B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP3058571B2 (en) Particle size distribution analysis method
Bunkin et al. Small-angle scattering of laser radiation by stable micron particles in twice-distilled water
Griffin et al. Optical properties of solid particle receiver materials: I. Angular scattering and extinction characteristics of Norton Masterbeads®
JP2000002644A (en) Laser diffraction/scattering type grain size distribution- measuring device
JP2636051B2 (en) Particle measurement method and device
JP3962306B2 (en) Particle size distribution measuring method and apparatus
JPH11183356A (en) Laser diffraction and scattering type particle size distribution measuring device
JP3025051B2 (en) Scattered light measurement cell
WO1991014935A1 (en) A method and an apparatus for cleaning control
JP2803296B2 (en) Particle size distribution analyzer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040611

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees