JP5277432B2 - Suspended matter analysis method - Google Patents

Suspended matter analysis method Download PDF

Info

Publication number
JP5277432B2
JP5277432B2 JP2007185672A JP2007185672A JP5277432B2 JP 5277432 B2 JP5277432 B2 JP 5277432B2 JP 2007185672 A JP2007185672 A JP 2007185672A JP 2007185672 A JP2007185672 A JP 2007185672A JP 5277432 B2 JP5277432 B2 JP 5277432B2
Authority
JP
Japan
Prior art keywords
particle size
attenuation rate
ultrasonic attenuation
suspended matter
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007185672A
Other languages
Japanese (ja)
Other versions
JP2009025027A (en
Inventor
力 小林
重光 猪股
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2007185672A priority Critical patent/JP5277432B2/en
Publication of JP2009025027A publication Critical patent/JP2009025027A/en
Application granted granted Critical
Publication of JP5277432B2 publication Critical patent/JP5277432B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、液体中の浮遊物質を解析するための浮遊物質解析方法に関する。 The present invention relates to a suspended matter analysis method for analyzing suspended matter in a liquid.

ダム、河川その他の水系において、水質管理その他の目的で、浮遊物質の濃度測定が行われている。このような濃度測定は、浮遊物質が高濃度になった場合においても、正確に行う必要があり、このような測定を実現するために、超音波を用いた測定が用いられつつある。超音波測定に用いる装置としては、例えば、超音波を液体試料に照射して、通過したパルスに対応する電気信号から浮遊物質の濃度を算出するものがある。この測定装置は、パルスの送信部と受信部を共通化するとともに、パルスを受信部側へ反射させる反射体を設けることによって、測定効率を向上させることができる(特許文献1)。
特開2004−271348号公報
In dams, rivers, and other water systems, suspended matter concentrations are measured for water quality management and other purposes. Such concentration measurement needs to be accurately performed even when the suspended matter becomes a high concentration, and in order to realize such measurement, measurement using ultrasonic waves is being used. As an apparatus used for ultrasonic measurement, for example, there is an apparatus that irradiates a liquid sample with ultrasonic waves and calculates the concentration of suspended solids from an electric signal corresponding to the pulse that has passed. This measuring apparatus can improve the measurement efficiency by sharing a pulse transmitting unit and a receiving unit and providing a reflector that reflects the pulse toward the receiving unit (Patent Document 1).
JP 2004-271348 A

しかしながら、上述のような測定装置では、粒度が一定の浮遊物質の濃度は正確に測定することができるが、浮遊物質の粒度が変化する場合は、濃度を正しく推測することが困難である。これは、水系によって浮遊物質の種類、形状、粒度等の特性が異なるため、同じ超音波減衰率を示していても浮遊物質の粒径分布が異なると濃度が変化するためである。水系のうち、特にダムにおいては、浮遊物質が沈降・堆積するため、ダムの堆積土砂対策を効果的に実施するためには、ダムに流入する浮遊物質量およびダムから流出する浮遊物質量を正確かつ迅速に把握する必要がある。 However, the above-described measuring apparatus can accurately measure the concentration of suspended matter having a constant particle size, but it is difficult to correctly estimate the concentration when the particle size of suspended matter changes. This is because the characteristics such as the type, shape, and particle size of the suspended matter differ depending on the water system, and the concentration changes if the suspended particle size distribution varies even though the same ultrasonic attenuation rate is exhibited. Among the water systems, especially in dams, suspended solids settle and accumulate. Therefore, in order to effectively implement measures against sediment accumulation in the dam, the amount of suspended solids flowing into and out of the dam must be accurately determined. And it is necessary to grasp quickly.

そこで本発明は、浮遊物質の粒度を反映した、液体試料の濃度測定を行うことのできる浮遊物質解析方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a suspended matter analysis method capable of measuring the concentration of a liquid sample reflecting the particle size of suspended matter.

上記課題を解決するために、本発明の浮遊物質解析方法においては、浮遊物質を含む液体試料の濁度を測定する濁度測定工程と、前記液体試料に含まれる前記浮遊物質の粒度を測定する粒度測定工程と、前記液体試料に対して超音波パルス波を照射し、前記液体試料通過後の反射パルス信号が有する超音波減衰率を測定する超音波減衰率測定工程と、前記濁度測定工程において得られた濁度と前記超音波減衰率測定工程において得られた超音波減衰率とに基づいて、前記浮遊物質の粒度を解析する粒度解析工程と、を備え、前記粒度解析工程においては、前記濁度測定工程において得られた前記濁度と、前記粒度測定工程において得られた粒度に基づく相対粒子量と、の積を目的変数とし、前記超音波パルス波の各周波数に対応する超音波減衰率を説明関数とした重回帰分析式を生成することを特徴としている。 In order to solve the above problems, in the suspended matter analysis method of the present invention, a turbidity measuring step for measuring turbidity of a liquid sample containing suspended matter, and a particle size of the suspended matter contained in the liquid sample are measured. Particle size measurement step, Ultrasonic attenuation rate measurement step of irradiating the liquid sample with an ultrasonic pulse wave and measuring the ultrasonic attenuation rate of the reflected pulse signal after passing through the liquid sample, and the turbidity measurement step A particle size analysis step for analyzing the particle size of the suspended solids based on the turbidity obtained in step 1 and the ultrasonic attenuation rate obtained in the ultrasonic attenuation rate measurement step, in the particle size analysis step , The product of the turbidity obtained in the turbidity measurement step and the relative particle amount based on the particle size obtained in the particle size measurement step is used as an objective variable, and an ultrasonic wave corresponding to each frequency of the ultrasonic pulse wave Decrease It is characterized by generating a regression analysis equation that the rate as explained function.

本発明の浮遊物質解析方法において生成する重回帰分析式は次式(A)で表されることが好ましい。
ここで、rαが次式(B)を満たすとともに、
rαはα番目の粒径の相対粒子量(単位%)、tuは散乱光式濁度(mg/l)、β0は定数、βi偏回帰係数、miはi番目の周波数に対応する超音波減衰率(dB)、pは例えば0.5MHzごとの周波数(p=20)、nは粒度分析の粒径の数、εは残差である。
The multiple regression analysis formula generated in the suspended matter analysis method of the present invention is preferably represented by the following formula (A).
Here, while rα satisfies the following formula (B),
rα is the relative particle amount (unit%) of the αth particle size, tu is the scattered light turbidity (mg / l), β0 is a constant, βi partial regression coefficient, mi is the ultrasonic attenuation corresponding to the ith frequency The rate (dB), p is, for example, a frequency every 0.5 MHz (p = 20), n is the number of particle sizes in the particle size analysis, and ε is the residual.

本発明の浮遊物質解析方法において、液体試料は水系に対応した試料であって、浮遊物質解析方法は、さらに、水系から実際に採取した採取試料に対して超音波パルス波を照射し、採取試料通過後の反射パルス信号が有する超音波減衰率を用いて採取試料の濃度を測定する採取試料濃度測定工程と、採取試料濃度測定工程で得られた超音波減衰率を、重回帰分析式に適用することによって、採取試料について、粒度に対応した濃度を算出する濃度算出工程と、を備えるとよい。 In the suspended matter analysis method of the present invention, the liquid sample is a sample corresponding to an aqueous system, and the suspended matter analysis method further irradiates a collected sample actually collected from the aqueous system with an ultrasonic pulse wave to collect the collected sample. Applying the collected sample concentration measurement process that measures the concentration of the collected sample using the ultrasonic attenuation rate of the reflected pulse signal after passing, and the ultrasonic attenuation rate obtained in the collected sample concentration measurement process to the multiple regression analysis formula By doing so, it is preferable to provide a concentration calculation step of calculating a concentration corresponding to the particle size for the collected sample.

本発明の浮遊物質解析方法は、さらに、重回帰分析式を記憶部に保存する記憶工程を備え、濃度算出工程では、重回帰分析式を記憶部から読み出して、採取試料濃度測定工程において得られた採取濃度の濃度測定を重回帰分析式に適用することができる。 The suspended matter analysis method of the present invention further includes a storage step of storing a multiple regression analysis formula in the storage unit. In the concentration calculation step, the multiple regression analysis formula is read from the storage unit and obtained in the collected sample concentration measurement step. The concentration measurement of the collected concentration can be applied to the multiple regression analysis formula.

本発明の浮遊物質解析方法は、さらに、水系における採取試料の採取ポイントの水温を測定する水温測定工程と、水温測定工程において得られた水温を用いて、濃度算出工程において得られた採取試料の濃度を補正する濃度補正工程と、を備えることが好ましい。 The suspended matter analysis method of the present invention further includes a water temperature measurement step for measuring a water temperature at a collection point of a collected sample in the water system, and a water temperature obtained in the water temperature measurement step, and the collected sample obtained in the concentration calculation step. And a density correction step of correcting the density.

本発明によると、浮遊物質を含む液体試料の濁度を測定する濁度測定工程と、液体試料に含まれる浮遊物質の粒度を測定する粒度測定工程と、液体試料に対して超音波パルス波を照射し、液体試料通過後の反射パルス信号が有する超音波減衰率を測定する超音波減衰率測定工程と、濁度測定工程において得られた濁度と超音波減衰率測定工程において得られた超音波減衰率とに基づいて、浮遊物質の粒度を解析する粒度解析工程と、を備えることにより、浮遊物質の粒度を考慮した液体試料の濃度解析を行うことができる。 According to the present invention, a turbidity measuring step for measuring the turbidity of a liquid sample containing suspended solids, a particle size measuring step for measuring the particle size of suspended solids contained in the liquid sample, and an ultrasonic pulse wave on the liquid sample. Ultrasonic attenuation rate measurement process for measuring the ultrasonic attenuation rate of the reflected pulse signal after irradiation and passing through the liquid sample, and the turbidity obtained in the turbidity measurement step and the ultrasonic attenuation rate obtained in the ultrasonic attenuation rate measurement step By providing a particle size analysis step for analyzing the particle size of the suspended matter based on the sound wave attenuation rate, the concentration analysis of the liquid sample in consideration of the particle size of the suspended material can be performed.

以下、本発明の実施形態に係る浮遊物質解析方法に用いる浮遊物質解析システムについて図面を参照しつつ詳しく説明する。
図1に示すように、浮遊物質解析システム10は、制御部11と、濁度測定装置20と、粒度測定装置30と、超音波減衰率測定装置40と、粒度解析装置50と、を備える。
以下に、各構成要素について詳細に説明する。
Hereinafter, a suspended matter analysis system used in a suspended matter analysis method according to an embodiment of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the suspended solid analysis system 10 includes a control unit 11, a turbidity measurement device 20, a particle size measurement device 30, an ultrasonic attenuation rate measurement device 40, and a particle size analysis device 50.
Below, each component is demonstrated in detail.

制御部11は、濁度測定装置20、粒度測定装置30、超音波減衰率測定装置40、及び粒度解析装置50に、それぞれ接続されており、これらの装置の動作を制御する。各装置における測定結果は制御部11内の記憶部12に保存される。制御部11としては、例えばパーソナルコンピュータのCPU(Central Processing Unit)を用いることができ、記憶部12として、例えばパーソナルコンピュータ内の記憶装置を用いることができる。 The control unit 11 is connected to the turbidity measuring device 20, the particle size measuring device 30, the ultrasonic attenuation rate measuring device 40, and the particle size analyzing device 50, respectively, and controls the operation of these devices. The measurement result in each device is stored in the storage unit 12 in the control unit 11. As the control unit 11, for example, a CPU (Central Processing Unit) of a personal computer can be used, and as the storage unit 12, for example, a storage device in a personal computer can be used.

また、パーソナルコンピュータを用いる場合には、入力手段(例えばキーボード、マウス)、及び出力手段(例えばモニター、プリンタ)も備えることが好ましく、例えば入力手段によって各装置の動作を制御する指示信号を入力し、測定条件や測定結果を出力手段に出力する。また、超音波減衰率測定装置40は、水温測定のために温度計(不図示)を備える。 In the case of using a personal computer, it is preferable to provide an input means (for example, a keyboard and a mouse) and an output means (for example, a monitor and a printer). For example, an instruction signal for controlling the operation of each device is input by the input means. The measurement conditions and measurement results are output to the output means. The ultrasonic attenuation rate measuring device 40 includes a thermometer (not shown) for water temperature measurement.

なお、本発明は、本実施形態のように制御部11に各装置を接続する形態のほか、濁度測定装置、粒度測定装置、超音波減衰率測定装置、及び、粒度解析装置が互いに別個独立に動作する形態にも適用可能である。また、記憶部についても、各装置に互いに独立した記憶部を備えた構成とすることができる。 In the present invention, the turbidity measuring device, the particle size measuring device, the ultrasonic attenuation rate measuring device, and the particle size analyzing device are independent from each other in addition to the configuration in which each device is connected to the control unit 11 as in this embodiment. The present invention can also be applied to a mode that operates in the following manner. In addition, the storage unit can also be configured to include storage units that are independent of each other.

濁度測定装置20は、例えば散乱光式濁度計を用いることができる。散乱光式濁度計では、液体試料に対して光を照射したことにより試料内部で発生する散乱光の強さが、試料中の浮遊物質の濃度に比例することを利用してその濁度を知ることができる。測定された濁度は記憶部12に保存される。なお、散乱光式のほか、透過光式、表面散乱光式、散乱光・透過光併用方式、積分球式の濁度計を用いることもできる。 As the turbidity measuring device 20, for example, a scattered light turbidimeter can be used. In the scattered light turbidimeter, the turbidity is measured by utilizing the fact that the intensity of the scattered light generated inside the sample by irradiating the liquid sample with light is proportional to the concentration of suspended matter in the sample. I can know. The measured turbidity is stored in the storage unit 12. In addition to the scattered light method, a transmitted light method, a surface scattered light method, a combined scattered light / transmitted light method, and an integrating sphere turbidimeter can also be used.

粒度測定装置30は、レーザー回折式粒度分析装置(例えば、株式会社島津製作所製 SALD−3000J)を用いることができる。レーザー回折式粒度分析装置においては、液体試料に光を照射したときに、浮遊物質の粒子径が大きな場合は全周方向に散乱強度が強く特に前方向の散乱光強度が強くなるのに対して、粒子径が小さくなるにしたがい、散乱光強度が弱くなり、前方散乱光が弱まることを利用して、浮遊物質の粒径を測定する。すなわち、前方散乱光を凸レンズで集めることにより、その焦点面上に回折像が生じ、その回折光の明るさと大きさが浮遊物質の粒子の大きさ(粒径)によって変動することから、粒子径を得ることができる。 As the particle size measuring device 30, a laser diffraction particle size analyzer (for example, SALD-3000J manufactured by Shimadzu Corporation) can be used. In laser diffraction particle size analyzers, when the particle size of suspended solids is large when the liquid sample is irradiated, the scattering intensity is strong in the entire circumference, especially the scattered light intensity in the forward direction. As the particle diameter decreases, the scattered light intensity decreases and the forward scattered light decreases, so that the particle size of the suspended matter is measured. That is, by collecting the forward scattered light with a convex lens, a diffracted image is generated on the focal plane, and the brightness and size of the diffracted light vary depending on the size (particle size) of the suspended solid particles. Can be obtained.

超音波減衰率測定装置40は、図2に示すような、プラノコンケーブ形超音波振動子を用いた測定装置を用いる。超音波減衰率測定装置40は、浮遊物質を含む液体試料に対して超音波パルス波(Ultrasonic pulse wave)を照射し、液体試料通過後の反射超音波パルス波から得た反射パルス信号を得る測定部46と、測定部46からの反射パルス信号に基づいて、浮遊物質濃度を測定する解析部41と、を備える。 As the ultrasonic attenuation rate measuring apparatus 40, a measuring apparatus using a plano-concave ultrasonic transducer as shown in FIG. 2 is used. The ultrasonic attenuation rate measuring device 40 irradiates a liquid sample containing suspended substances with an ultrasonic pulse wave and obtains a reflected pulse signal obtained from the reflected ultrasonic pulse wave after passing through the liquid sample. Unit 46 and an analysis unit 41 that measures the suspended matter concentration based on the reflected pulse signal from the measurement unit 46.

測定部46は、液体試料を入れる容器47と、容器47の内部の一方に配置され平凹(Plano−concave)形状に形成された超音波振動子(Transducer)48と、容器47内部の他方側であって、超音波振動子48の焦点位置付近に配置された反射体(Reflector)49とを備える。 The measurement unit 46 includes a container 47 into which a liquid sample is placed, an ultrasonic transducer (Transducer) 48 disposed in one of the containers 47 and formed in a plano-concave shape, and the other side inside the container 47. And a reflector 49 arranged near the focal position of the ultrasonic transducer 48.

解析部41は、パルス発生部42、エコーパルス収録・FFT(Fast Fourier transform)処理部43、及びデータ送受信部44を備える。パルス発生部42は、測定部46の超音波振動子48に励振パルス信号を照射する。エコーパルス収録・FFT処理部43は、測定部46の反射体49から反射した反射パルス波(超音波エコー)に対応する反射パルス信号を超音波振動子48から取込んで所定のデータに変換するとともに、反射パルス信号をデジタル化するデジダルオシロスコープ(Digital oscilloscope)を備える。さらに、エコーパルス収録・FFT処理部43は、変換された所定のデータを基に浮遊物質濃度、及び超音波減衰率を測定できる。エコーパルス収録・FFT処理部43における処理結果はデータ送受信部44を介して制御部11に出力される。 The analysis unit 41 includes a pulse generation unit 42, an echo pulse recording / FFT (Fast Fourier transform) processing unit 43, and a data transmission / reception unit 44. The pulse generator 42 irradiates the ultrasonic transducer 48 of the measuring unit 46 with an excitation pulse signal. The echo pulse recording / FFT processing unit 43 takes in a reflected pulse signal corresponding to the reflected pulse wave (ultrasonic echo) reflected from the reflector 49 of the measuring unit 46 from the ultrasonic transducer 48 and converts it into predetermined data. In addition, a digital oscilloscope for digitizing the reflected pulse signal is provided. Furthermore, the echo pulse recording / FFT processing unit 43 can measure the suspended matter concentration and the ultrasonic attenuation rate based on the converted predetermined data. The processing result in the echo pulse recording / FFT processing unit 43 is output to the control unit 11 via the data transmitting / receiving unit 44.

本実施形態の超音波減衰率測定装置40では、プラノコンケーブ(平凹面)形超音波振動子48から放射される広帯域の超音波の周波数スペクトルの減衰特性から、浮遊物質の濃度をリアルタイムで測定することができる。超音波振動子48は、図2に示すように、厚さが連続的に変化しているために、広い周波数帯域の超音波の放射が可能であり、さらに超音波放射面が凹面状であるため、集束した超音波の放射も可能である。このため、この超音波振動子48にインパルス電圧を印加すると、リンギングの少ない集束した超音波パルスを放射することができる。 In the ultrasonic attenuation rate measuring apparatus 40 of the present embodiment, the concentration of suspended solids is measured in real time from the attenuation characteristics of the frequency spectrum of the broadband ultrasonic wave radiated from the plano-concave (planar concave) ultrasonic transducer 48. be able to. As shown in FIG. 2, since the ultrasonic transducer 48 has a continuously changing thickness, it can emit ultrasonic waves in a wide frequency band, and the ultrasonic radiation surface is concave. Therefore, focused ultrasonic radiation is also possible. For this reason, when an impulse voltage is applied to the ultrasonic transducer 48, a focused ultrasonic pulse with little ringing can be emitted.

粒度解析装置50は、記憶部12に保存された、濁度測定装置20における測定結果、及び超音波減衰率測定装置40における測定結果に基づいて、粒度測定装置30で得られた浮遊物質(Suspended Solid)の粒度を解析するものであって、解析プログラムが記憶されたメモリー部(不図示)と、解析プログラムを実行する演算部(不図示)を備える。これらのメモリー部及び演算部としては、例えばパーソナルコンピュータの記憶装置及びCPUを用いることができる。なお、粒度解析装置50は、制御部11及び記憶部12と共通化することもできる。すなわち、粒度解析装置50の演算部の機能を制御部11に、粒度解析装置50のメモリー部の機能を記憶部12に持たせることによって粒度解析を行うことができる。 The particle size analyzer 50 is based on the measurement result in the turbidity measurement device 20 and the measurement result in the ultrasonic attenuation rate measurement device 40 stored in the storage unit 12, and suspended matter (Suspended) obtained in the particle size measurement device 30. Solid) is analyzed, and includes a memory unit (not shown) in which an analysis program is stored and a calculation unit (not shown) that executes the analysis program. As the memory unit and the calculation unit, for example, a storage device and a CPU of a personal computer can be used. The particle size analyzer 50 can be shared with the control unit 11 and the storage unit 12. That is, the particle size analysis can be performed by providing the control unit 11 with the function of the calculation unit of the particle size analysis device 50 and the memory unit 12 with the function of the memory unit of the particle size analysis device 50.

ここで粒度解析について説明する。
まず、超音波減衰率測定装置40で測定した周波数スペクトルを図3に示す。図3は、4つの試料((a)はNo.3L、(b)はNo.1R、(c)はNo.2L、(d)はNo.5R)について、横軸を周波数、縦軸を次式(1)で表される超音波減衰度を示している。これらの試料は、図4に示す、実際の水系の浮遊物質に基づいて作成した試料から選択したものであり、図4に示す試料の粒度分布は図5に示すとおりである。ここで、図5の縦軸の通過質量百分率(%)とは、株式会社島津製作所製SALD−3000Jを用いた実測粒度測定結果のふるい下(%)であって、横軸に示す粒径のふるいを通過する試料の割合を示す。
ここで、Mnは超音波減衰度(単位dB)、M0は水道水の超音波スペクトルの最大値、Mは各濃度の周波数スペクトルの値である。
図3においては、周波数スペクトルは1〜10MHzの広帯域において、濃度(mg/l)と、試料Noに対応する粒度(粒径(μm))と、によって変化している。したがって、この周波数スペクトルの減衰特性を分析することにより濃度の測定と粒度分析を行うことができる。
Here, the particle size analysis will be described.
First, a frequency spectrum measured by the ultrasonic attenuation rate measuring apparatus 40 is shown in FIG. 3 shows the frequency of the four samples (No. 3L for (a), No. 1R for (b), No. 2L for (c), No. 5R for (d)), and the vertical axis for the frequency. The ultrasonic attenuation represented by the following formula (1) is shown. These samples were selected from samples prepared based on the actual aqueous suspended matter shown in FIG. 4, and the particle size distribution of the samples shown in FIG. 4 is as shown in FIG. Here, the passing mass percentage (%) on the vertical axis in FIG. 5 is the sieve size (%) of the actual particle size measurement result using SALD-3000J manufactured by Shimadzu Corporation, and the particle size shown on the horizontal axis. The percentage of sample passing through the sieve is shown.
Here, Mn is the ultrasonic attenuation (unit dB), M0 is the maximum value of the ultrasonic spectrum of tap water, and M is the value of the frequency spectrum of each concentration.
In FIG. 3, the frequency spectrum varies in a wide band of 1 to 10 MHz depending on the concentration (mg / l) and the particle size (particle size (μm)) corresponding to the sample No. Therefore, concentration measurement and particle size analysis can be performed by analyzing the attenuation characteristics of the frequency spectrum.

各周波数における水道水の周波数スペクトルの大きさを基準とした超音波減衰率は、次式(2)によって示される。
ここで、m(f)は周波数f(MHz)における超音波減衰率(dB)、M0(f)は周波数fの水道水の周波数スペクトルの大きさ、M(f)は周波数fの懸濁液の周波数スペクトルの大きさである。
The ultrasonic attenuation rate based on the size of the frequency spectrum of tap water at each frequency is expressed by the following equation (2).
Here, m (f) is the ultrasonic attenuation rate (dB) at frequency f (MHz), M0 (f) is the size of the frequency spectrum of tap water at frequency f, and M (f) is the suspension at frequency f. Of the frequency spectrum.

図6は、式(2)を用いて算出した、各周波数における超音波減衰率を示すグラフである。図6は、粒度の異なる4つの試料((a)はNo.3L、(b)はNo.1R、(c)はNo.2L、(d)はNo.5R)についての超音波減衰率を示しており、各周波数における超音波減衰率の応答特性は粒度の異なる試料によって異なっている。
また、浮遊物質濃度と超音波減衰率との関係を示した図7によれば、各周波数における超音波減衰率は濃度変化に比例して低下するが、2〜10MHzの範囲では10MHzの周波数における超音波減衰率が最も大きいことが分かる。
FIG. 6 is a graph showing the ultrasonic attenuation rate at each frequency calculated using Equation (2). 6 shows the ultrasonic attenuation rates of four samples having different particle sizes ((a) No. 3L, (b) No. 1R, (c) No. 2L, (d) No. 5R). As shown, the response characteristic of the ultrasonic attenuation rate at each frequency is different for samples having different particle sizes.
Further, according to FIG. 7 showing the relationship between the suspended matter concentration and the ultrasonic attenuation rate, the ultrasonic attenuation rate at each frequency decreases in proportion to the concentration change, but at a frequency of 10 MHz in the range of 2 to 10 MHz. It can be seen that the ultrasonic attenuation rate is the largest.

超音波減衰率の周波数特性は、浮遊物質の濃度、粒径、物性値(例えば土粒子の密度)によって影響を受ける。したがって超音波減衰率の周波数特性から粒度分布(相対粒子量)を測定するためには、濃度と物性値の影響を考慮することが必要である。図8に、周波数f=10MHzにおける超音波減衰度と散乱光濁度との関係を示す。
図8に示す超音波減衰率と散乱光式濁度との関係から、浮遊物質の相対粒子量と散乱光濁度との積を目的変数、各周波数に対応する超音波減衰率を説明変数とする、以下の式(3)で表される重回帰モデルを作成することができ、この式によって粒度分析をすることができる。
ここで、
であり、rαはα番目の粒径の相対粒子量(単位%)、tuは散乱光式濁度(mg/l)、β0は定数、βi偏回帰係数、miはi番目の周波数に対応する超音波減衰率(dB)、pは例えば0.5MHzごとの周波数(p=20)、nは粒度分析の粒径の数、εは残差である。
なお、相対粒子量は、粒度測定装置30の仕様に基づいて決定される。また、超音波減衰率測定装置40による測定データとしての超音波減衰率は、例えば、0.5〜10MHzの範囲において0.5MHzごとに20個(p=20)とする。
The frequency characteristics of the ultrasonic attenuation rate are affected by the concentration, particle size, and physical property values (for example, the density of soil particles) of suspended solids. Therefore, in order to measure the particle size distribution (relative particle amount) from the frequency characteristics of the ultrasonic attenuation rate, it is necessary to consider the influence of concentration and physical property values. FIG. 8 shows the relationship between the ultrasonic attenuation at the frequency f = 10 MHz and the scattered light turbidity.
From the relationship between the ultrasonic attenuation rate and the scattered light turbidity shown in FIG. 8, the product of the relative particle amount of the suspended matter and the scattered light turbidity is the objective variable, and the ultrasonic attenuation rate corresponding to each frequency is the explanatory variable. The multiple regression model represented by the following equation (3) can be created, and the particle size analysis can be performed by this equation.
here,
Where rα is the relative particle amount (unit%) of the αth particle size, tu is the scattered light turbidity (mg / l), β0 is a constant, βi partial regression coefficient, and mi corresponds to the ith frequency. Ultrasonic attenuation rate (dB), p is, for example, a frequency every 0.5 MHz (p = 20), n is the number of particle sizes in particle size analysis, and ε is a residual.
The relative particle amount is determined based on the specifications of the particle size measuring device 30. Moreover, the ultrasonic attenuation rate as measurement data by the ultrasonic attenuation rate measuring device 40 is, for example, 20 (p = 20) every 0.5 MHz in the range of 0.5 to 10 MHz.

図9は、上記式(3)を用いて求めた粒度分布(超音波減衰率法)、及び、粒度測定装置30による粒度測定結果を示すグラフである。図9においては、試料の濃度によって粒度分布が上下又は左右にずれる場合もあるが、式(3)を用いた粒度分布結果と、粒度測定装置30による粒度測定結果と、が略一致する。 FIG. 9 is a graph showing the particle size distribution (ultrasonic attenuation rate method) obtained using the above equation (3) and the particle size measurement result by the particle size measuring device 30. In FIG. 9, the particle size distribution may be shifted up and down or left and right depending on the concentration of the sample, but the particle size distribution result using the equation (3) and the particle size measurement result by the particle size measuring device 30 are substantially the same.

また、図10は、各試料の浮遊物質濃度と超音波減衰率との関係を示すグラフである。図10では、各試料の超音波減衰率が、他の周波数の場合よりも比較的安定した値を示す周波数を採用して周波数fを8MHzとしている。図10では、超音波減衰率が浮遊物質濃度に比例して増加する傾向を示している。このときの超音波減衰率と浮遊物質の濃度との関係は次式(5)又は(6)で表すことができる。
ここで、m(f)は周波数fにおける超音波減衰率(dB)、cは浮遊物質の濃度(mg/l)、λは浮遊物質の粒度によって定まる濃度換算率(定数)である。
FIG. 10 is a graph showing the relationship between the suspended matter concentration and the ultrasonic attenuation rate of each sample. In FIG. 10, the frequency f is set to 8 MHz by adopting a frequency at which the ultrasonic attenuation rate of each sample shows a relatively stable value as compared with other frequencies. FIG. 10 shows a tendency that the ultrasonic attenuation rate increases in proportion to the suspended solid concentration. The relationship between the ultrasonic attenuation rate and the concentration of suspended solids at this time can be expressed by the following equation (5) or (6).
Here, m (f) is the ultrasonic attenuation rate (dB) at the frequency f, c is the concentration (mg / l) of the suspended matter, and λ is the concentration conversion rate (constant) determined by the particle size of the suspended matter.

図11は、図10に示す全測定データ(n=172)のλを説明変数、各試料の粒度(各粒径の相対粒子量)を目的変数として、次式(7)により分析した結果を示すグラフである。(b)
ここで、λは濃度変換率、ψは定数、ψは偏回帰係数、dはj番目の粒径の相対粒子料、nは粒度分布の粒径の数、εは残差である。
上記式(7)によって決定された濃度換算率としての定数λに超音波減衰率を乗じることによって、浮遊物質濃度を算出することができる。
FIG. 11 shows the result of analysis by the following equation (7), where λ of all measurement data (n = 172) shown in FIG. 10 is an explanatory variable and the particle size of each sample (relative particle amount of each particle size) is an objective variable. It is a graph to show. (b)
Where λ is the concentration conversion rate, ψ 0 is a constant, ψ j is the partial regression coefficient, d j is the relative particle material of the j-th particle size, n is the number of particle sizes in the particle size distribution, and ε is the residual .
The floating substance concentration can be calculated by multiplying the constant λ as the concentration conversion factor determined by the above equation (7) by the ultrasonic attenuation factor.

さらに、実験濃度と、上述の超音波減衰率を用いた方法による濃度測定結果を図12に示す。図12において、濃度が5000mg/lまでの測定値は実験値±10%程度以下となっているため、超音波減衰率測定装置40を用いた濃度測定が高精度に行われること示している。 Further, FIG. 12 shows the concentration measurement results obtained by the method using the experimental concentration and the above-described ultrasonic attenuation rate. In FIG. 12, since the measured value up to the concentration of 5000 mg / l is about ± 10% or less of the experimental value, it shows that the concentration measurement using the ultrasonic attenuation rate measuring device 40 is performed with high accuracy.

以上の解析は、対象となる水系ごとに試料(液体試料)を作成して、又は、採取して、行うものであり、これにより、水系ごとに異なる粒度を考慮した浮遊物質濃度を解析することができる。このような解析を行うと、対象となる水系から随時採取した試料(採取試料)の濃度分析の結果から、水系ごとに異なる粒度分布を、正確かつ迅速に、かつリアルタイムで測定することができる。 The above analysis is performed by creating or collecting a sample (liquid sample) for each target water system, thereby analyzing the suspended solids concentration considering different particle sizes for each water system. Can do. When such an analysis is performed, the particle size distribution that differs for each aqueous system can be measured accurately, quickly, and in real time from the result of the concentration analysis of the sample (collected sample) collected from the target aqueous system as needed.

つづいて、浮遊物質解析システムを用いた浮遊物質解析方法について説明する。
ここで、図13は、粒度分析の流れを示すフローチャートであり、図14は、水系から実際に採取した試料の濃度を測定する流れを示すフローチャートである。
本実施形態では、図13に示す流れにしたがって、水系固有の粒度分布を解析して上記式(3)に示す重回帰分析式を作成するとともに、超音波減衰率測定装置40を用いて水系から実際に採取した試料の周波数解析を行った結果を、重回帰分析式に代入することによって、水系の粒径、粒度分布、及び、浮遊物質の濃度(SS量)を算出する。
以下に、図13、図14に沿って、解析の流れについて説明する。
Next, the suspended matter analysis method using the suspended matter analysis system will be described.
Here, FIG. 13 is a flowchart showing the flow of particle size analysis, and FIG. 14 is a flowchart showing the flow of measuring the concentration of the sample actually collected from the aqueous system.
In the present embodiment, according to the flow shown in FIG. 13, the particle size distribution unique to the water system is analyzed to create the multiple regression analysis formula shown in the above formula (3), and from the water system using the ultrasonic attenuation rate measuring device 40. By substituting the result of frequency analysis of the actually collected sample into the multiple regression analysis formula, the particle size of the water system, the particle size distribution, and the concentration of suspended matter (SS amount) are calculated.
Hereinafter, the flow of analysis will be described with reference to FIGS. 13 and 14.

まず、浮遊物質を含む液体試料(検定用懸濁物試料)を作成する(ステップS1)。この液体試料は、測定対象となる水系から採取した試料に対応するように作成する。濁度測定装置20による濁度測定、及び超音波減衰率測定装置40による超音波減衰率測定(超音波エコー測定)(ステップS2)、並びに、粒度測定装置30による粒度測定(ステップS3)に供される。濁度、超音波減衰率、及び粒度の測定結果は記憶部12に保存される。 First, a liquid sample (suspension suspension sample) containing suspended solids is prepared (step S1). This liquid sample is prepared so as to correspond to a sample collected from the water system to be measured. It is used for turbidity measurement by the turbidity measurement device 20, ultrasonic attenuation rate measurement (ultrasonic echo measurement) by the ultrasonic attenuation rate measurement device 40 (step S2), and particle size measurement by the particle size measurement device 30 (step S3). Is done. The measurement results of turbidity, ultrasonic attenuation rate, and particle size are stored in the storage unit 12.

濁度測定、及び超音波減衰率測定(ステップS2)においては、平行して液体試料の水温が測定される。測定された水温と、記憶部12にあらかじめ保存された、水温と超音波減衰率の関係を示す補正テーブルと、を用いて超音波減衰率の測定値を補正する。次に補正された超音波減衰率に基づいて、上記式(1)、(2)を用いて、制御部11において周波数解析が行われる(ステップS4)。解析結果は記憶部12に保存される。 In turbidity measurement and ultrasonic attenuation factor measurement (step S2), the water temperature of the liquid sample is measured in parallel. The measured value of the ultrasonic attenuation rate is corrected using the measured water temperature and the correction table indicating the relationship between the water temperature and the ultrasonic attenuation rate stored in advance in the storage unit 12. Next, based on the corrected ultrasonic attenuation rate, frequency analysis is performed in the control unit 11 using the above formulas (1) and (2) (step S4). The analysis result is stored in the storage unit 12.

つづいて、粒度測定(ステップS3)及び周波数解析(ステップS4)の結果を用いて、制御部11において粒度解析処理が行われる(ステップS5)。以上の測定、及び解析の結果を用いて、上記の重回帰分析式(3)に相当する式を作成する(ステップS6)。これにより、水系固有の粒度を示す重回帰モデルが決定する。 Subsequently, using the result of the particle size measurement (step S3) and the frequency analysis (step S4), a particle size analysis process is performed in the control unit 11 (step S5). Using the above measurement and analysis results, an equation corresponding to the multiple regression analysis equation (3) is created (step S6). Thereby, the multiple regression model which shows the particle size peculiar to a water system is determined.

次に、図14を参照しつつ、以上のように決定された重回帰分析式を用いた濃度測定について説明する。この測定においては、特定の水系について、リアルタイムに浮遊物質の平均粒径、粒度分布、及び濃度を算出することができる。ここで算出される濃度は、粒度分析を踏まえたものであって、浮遊物質の粒度を考慮した濃度である。 Next, concentration measurement using the multiple regression analysis formula determined as described above will be described with reference to FIG. In this measurement, the average particle size, particle size distribution, and concentration of suspended solids can be calculated in real time for a specific aqueous system. The concentration calculated here is based on particle size analysis and is a concentration that takes into account the particle size of suspended solids.

まず、測定対象となる水系の測定箇所に超音波減衰率測定装置40を設置し、超音波エコー測定を行う(ステップS11)。超音波減衰率測定装置40では、超音波エコー測定と平行して水温を測定しており、超音波減衰率測定装置40に接続された制御部11は、測定温度を記憶部12に記憶された補正テーブルに適用することによって、超音波減衰率の測定値を補正する(ステップS12)。 First, the ultrasonic attenuation rate measuring device 40 is installed at the measurement point of the water system to be measured, and ultrasonic echo measurement is performed (step S11). In the ultrasonic attenuation rate measuring device 40, the water temperature is measured in parallel with the ultrasonic echo measurement, and the control unit 11 connected to the ultrasonic attenuation rate measuring device 40 stores the measured temperature in the storage unit 12. By applying to the correction table, the measured value of the ultrasonic attenuation rate is corrected (step S12).

次に、補正された超音波減衰率に基づいて、上記式(1)、(2)を用いて、制御部11において周波数解析を行う(ステップS13)。解析結果は記憶部12に保存されるとともに、ステップS6で作成された式に代入され、制御部11により重回帰分析が行われる(ステップS14)。この重回帰分析によって粒度分布が算出され(ステップS15)、この粒度分布に基づいて平均粒径及び粒度分布が算出される(ステップS16)。さらに、上記式(7)を用いて浮遊物質濃度を算出する(ステップS17)。 Next, based on the corrected ultrasonic attenuation rate, the control unit 11 performs frequency analysis using the above formulas (1) and (2) (step S13). The analysis result is stored in the storage unit 12 and substituted into the formula created in step S6, and the multiple regression analysis is performed by the control unit 11 (step S14). The particle size distribution is calculated by the multiple regression analysis (step S15), and the average particle size and the particle size distribution are calculated based on the particle size distribution (step S16). Further, the suspended substance concentration is calculated using the above equation (7) (step S17).

本発明について上記実施形態を参照しつつ説明したが、本発明は上記実施形態に限定されるものではなく、改良の目的または本発明の思想の範囲内において改良または変更が可能である。 Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above embodiment, and can be improved or changed within the scope of the purpose of the improvement or the idea of the present invention.

本発明の実施形態に係る浮遊物質解析システムの構成を示すブロック図である。It is a block diagram which shows the structure of the suspended solids analysis system which concerns on embodiment of this invention. 本発明の実施形態に係る超音波減衰率測定装置の概略構成図である。It is a schematic block diagram of the ultrasonic attenuation factor measuring apparatus which concerns on embodiment of this invention. 試料濃度に対する周波数スペクトルの変化を示す、周波数(単位MHz)を横軸に、超音波減衰度(dB)を縦軸にとったグラフである。It is a graph which shows the change of the frequency spectrum with respect to sample concentration, with frequency (unit MHz) on the horizontal axis and ultrasonic attenuation (dB) on the vertical axis. 実際の水系の浮遊物質に基づいて作成した試料の物性値、レーザー回折式粒度分析による粒度分析結果、及び、超音波減衰率測定による粒度分析結果を示す表である。It is a table | surface which shows the physical-property value of the sample created based on the actual water-system floating substance, the particle size analysis result by a laser diffraction type particle size analysis, and the particle size analysis result by an ultrasonic attenuation factor measurement. 図4に示す各試料の粒度分布を示す、横軸に粒径(μm)、縦軸に通過質量百分率(%)をとったグラフである。5 is a graph showing the particle size distribution of each sample shown in FIG. 4, with the horizontal axis representing the particle size (μm) and the vertical axis representing the passing mass percentage (%). 試料の濃度に対する超音波減衰率の変化を示す、周波数(単位MHz)を横軸に、超音波減衰率(dB)を縦軸にとったグラフである。It is a graph which shows the change of the ultrasonic attenuation rate with respect to the density | concentration of a sample, and took the frequency (unit MHz) on the horizontal axis and the ultrasonic attenuation rate (dB) on the vertical axis | shaft. 試料における浮遊物質濃度(mg/l)と超音波減衰率(dB)との関係を示すグラフである。It is a graph which shows the relationship between the suspended solids concentration (mg / l) in a sample, and an ultrasonic attenuation factor (dB). 周波数10MHzにおける散乱光濃度(mg/l)と超音波減衰率(dB)との関係を示すグラフである。It is a graph which shows the relationship between the scattered light density (mg / l) in the frequency of 10 MHz, and an ultrasonic attenuation rate (dB). 超音波減衰率法による粒度分析結果を示す、横軸に粒径(μm)、縦軸に通過質量百分率(%)をとったグラフである。It is a graph which shows the particle size analysis result by the ultrasonic attenuation rate method, with the horizontal axis representing the particle size (μm) and the vertical axis representing the passing mass percentage (%). 周波数10MHzにおける浮遊物質の濃度(mg/l)と超音波減衰率(dB)との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration (mg / l) of a suspended | floating matter in a frequency of 10 MHz, and an ultrasonic attenuation factor (dB). 横軸に濃度換算率の実験値を、縦軸に式(7)による計算結果を、それぞれとったグラフである。It is the graph which took the experimental value of the density | concentration conversion rate on the horizontal axis, and calculated the result by Formula (7) on the vertical axis | shaft, respectively. 超音波減衰率法による浮遊物質濃度の測定結果を示す、横軸に実験による浮遊物質濃度(mg/l)、縦軸に本測定装置の測定値(mg/l)をとったグラフである。It is a graph which shows the measurement result (mg / l) of the suspended matter concentration by an experiment on the horizontal axis, and the measured value (mg / l) of this measuring device on the vertical axis, showing the measurement result of the suspended matter concentration by the ultrasonic attenuation rate method. 本発明の実施形態に係る粒度分析の流れを示すフローチャートである。It is a flowchart which shows the flow of the particle size analysis which concerns on embodiment of this invention. 本発明の実施形態に係る濃度測定の流れを示すフローチャートである。It is a flowchart which shows the flow of the density | concentration measurement which concerns on embodiment of this invention.

符号の説明Explanation of symbols

10 浮遊物質解析システム
11 制御部
12 記憶部
20 濁度測定装置
30 粒度測定装置
40 超音波減衰率測定装置
41 解析部
42 パルス発生部
43 エコーパルス収録・FFT処理部
44 データ送受信部
46 測定部
47 容器
48 超音波振動子
49 反射体
50 粒度解析装置
DESCRIPTION OF SYMBOLS 10 Suspended substance analysis system 11 Control part 12 Memory | storage part 20 Turbidity measuring apparatus 30 Particle size measuring apparatus 40 Ultrasonic attenuation rate measuring apparatus 41 Analysis part 42 Pulse generation part 43 Echo pulse recording and FFT process part 44 Data transmission / reception part 46 Measurement part 47 Container 48 Ultrasonic vibrator 49 Reflector 50 Particle size analyzer

Claims (5)

浮遊物質を含む液体試料の濁度を測定する濁度測定工程と、
前記液体試料に含まれる前記浮遊物質の粒度を測定する粒度測定工程と、
前記液体試料に対して超音波パルス波を照射し、前記液体試料通過後の反射パルス信号が有する超音波減衰率を測定する超音波減衰率測定工程と、
前記濁度測定工程において得られた濁度と前記超音波減衰率測定工程において得られた超音波減衰率とに基づいて、前記浮遊物質の粒度を解析する粒度解析工程と、を備え、
前記粒度解析工程においては、前記濁度測定工程において得られた前記濁度と、前記粒度測定工程において得られた粒度に基づく相対粒子量と、の積を目的変数とし、前記超音波パルス波の各周波数に対応する超音波減衰率を説明関数とした重回帰分析式を生成することを特徴とする浮遊物質解析方法。
A turbidity measuring step for measuring the turbidity of a liquid sample containing suspended solids,
A particle size measuring step for measuring the particle size of the suspended solids contained in the liquid sample;
An ultrasonic attenuation rate measuring step of irradiating the liquid sample with an ultrasonic pulse wave and measuring an ultrasonic attenuation rate of a reflected pulse signal after passing through the liquid sample;
Based on the turbidity obtained in the turbidity measurement step and the ultrasonic attenuation rate obtained in the ultrasonic attenuation rate measurement step, and a particle size analysis step for analyzing the particle size of the suspended matter,
In the particle size analysis step, a product of the turbidity obtained in the turbidity measurement step and a relative particle amount based on the particle size obtained in the particle size measurement step is used as an objective variable, and the ultrasonic pulse wave A suspended matter analysis method characterized by generating a multiple regression analysis expression using an ultrasonic attenuation rate corresponding to each frequency as an explanatory function .
前記重回帰分析式は次式(1)で表される請求項に記載の浮遊物質解析方法。

ここで、rαが次式(2)を満たすとともに、
rαはα番目の粒径の相対粒子量(単位%)、tuは濁度(mg/l)、β0は定数、βi偏回帰係数、miはi番目の周波数に対応する超音波減衰率(dB)、pは例えば0.5MHzごとの周波数、nは粒度分析の粒径の数、εは残差である。
The suspended matter analysis method according to claim 1 , wherein the multiple regression analysis formula is expressed by the following formula (1).

Here, rα satisfies the following formula (2), and
rα is the relative particle amount (unit%) of the α-th particle diameter, tu is the turbidity (mg / l), β0 is a constant, βi partial regression coefficient, mi is the ultrasonic attenuation rate (dB) corresponding to the i-th frequency ), P is, for example, a frequency every 0.5 MHz, n is the number of particle sizes in the particle size analysis, and ε is a residual.
前記液体試料は水系に対応した試料であって、
前記浮遊物質解析方法は、さらに、
前記水系から実際に採取した採取試料に対して超音波パルス波を照射し、前記採取試料通過後の反射パルス信号が有する超音波減衰率を用いて前記採取試料の濃度を測定する採取試料濃度測定工程と、
前記採取試料濃度測定工程で得られた超音波減衰率を、前記重回帰分析式に適用することによって、前記採取試料について、粒度に対応した濃度を算出する濃度算出工程と、を備える請求項又は請求項に記載の浮遊物質解析方法。
The liquid sample is a sample corresponding to an aqueous system,
The suspended matter analysis method further includes:
Collecting sample concentration measurement by irradiating the collected sample actually collected from the water system with an ultrasonic pulse wave and measuring the concentration of the collected sample using the ultrasonic attenuation rate of the reflected pulse signal after passing through the collected sample Process,
The ultrasonic attenuation factor obtained by the taken sample concentration measurement step, by applying the multiple regression analysis equation for the samples collected, claim 1 and a density calculation step of calculating a density corresponding to the particle size Alternatively, the suspended matter analysis method according to claim 2 .
前記浮遊物質解析方法は、さらに、前記重回帰分析式を記憶部に保存する記憶工程を備え、
前記濃度算出工程では、前記重回帰分析式を前記記憶部から読み出して、前記採取試料濃度測定工程において得られた前記採取試料の濃度測定を前記重回帰分析式に適用する請求項に記載の浮遊物質解析方法。
The suspended matter analysis method further includes a storage step of storing the multiple regression analysis formula in a storage unit,
In the density calculating step, the multiple regression analysis equation is read out from the storage unit, according to the concentration measurement of the collected sample obtained in the collected sample concentration measuring step to claim 3 applied to the multiple regression analysis equation Suspended matter analysis method.
前記浮遊物質解析方法は、さらに、
前記水系における前記採取試料の採取ポイントの水温を測定する水温測定工程と、
前記水温測定工程において得られた水温を用いて、前記濃度算出工程において得られた前記採取試料の濃度を補正する濃度補正工程と、を備える請求項又は請求項に記載の浮遊物質解析方法。
The suspended matter analysis method further includes:
A water temperature measuring step for measuring the water temperature of the sampling point of the collected sample in the water system;
Using a temperature obtained in the temperature measurement step, suspended solids analysis method according to claim 3 or claim 4 and a density correction step of correcting the concentration of the collected samples obtained in the density calculating step .
JP2007185672A 2007-07-17 2007-07-17 Suspended matter analysis method Expired - Fee Related JP5277432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007185672A JP5277432B2 (en) 2007-07-17 2007-07-17 Suspended matter analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007185672A JP5277432B2 (en) 2007-07-17 2007-07-17 Suspended matter analysis method

Publications (2)

Publication Number Publication Date
JP2009025027A JP2009025027A (en) 2009-02-05
JP5277432B2 true JP5277432B2 (en) 2013-08-28

Family

ID=40396985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007185672A Expired - Fee Related JP5277432B2 (en) 2007-07-17 2007-07-17 Suspended matter analysis method

Country Status (1)

Country Link
JP (1) JP5277432B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5458258B2 (en) * 2009-04-30 2014-04-02 電源開発株式会社 Suspended matter analysis method and suspended matter analysis system
WO2013108413A1 (en) * 2012-01-20 2013-07-25 本多電子株式会社 Ultrasonic concentration meter for measuring sludge concentration, and sludge treatment system
JP6156617B2 (en) * 2012-11-27 2017-07-05 電源開発株式会社 Suspended matter analysis method, suspended matter analysis device and ultrasonic attenuation spectrum analyzer using the same
KR101317311B1 (en) 2013-02-26 2013-10-10 임욱빈 Cytology preparing apparatus of using air blowing
JP6586351B2 (en) * 2015-11-11 2019-10-02 東京瓦斯株式会社 Calorific value deriving device
CN116359086B (en) * 2023-06-01 2023-09-08 南昌科晨电力试验研究有限公司 Measurement device-based pulverized coal particle size and mass concentration measurement method
CN116559401B (en) * 2023-07-11 2023-09-19 四川新环科技有限公司 Water quality detection method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133289A (en) * 1976-04-30 1977-11-08 Tokyo Keiki Kk Method of and instrument for measuring suspension concentration with ultrasonic wave
DE3438798A1 (en) * 1984-10-23 1986-04-24 Löffler, Friedrich, Prof. Dr.-Ing., 7500 Karlsruhe METHOD AND DEVICE FOR MEASURING THE SOLID CONCENTRATION AND GRAIN SIZE DISTRIBUTION IN A SUSPENSION BY MEANS OF ULTRASOUND
JPH06317582A (en) * 1993-05-10 1994-11-15 Mitsubishi Heavy Ind Ltd Method for evaluating property of water slurry fuel
JP3566840B2 (en) * 1997-10-04 2004-09-15 株式会社堀場製作所 Concentration measuring device
JP4218014B2 (en) * 2003-03-10 2009-02-04 学校法人日本大学 Fine particle concentration measuring device
JP2007121133A (en) * 2005-10-28 2007-05-17 Denshi Kogyo Kk Method and apparatus for measuring concentration of insulating matter particles in aqueous solution

Also Published As

Publication number Publication date
JP2009025027A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
JP5277432B2 (en) Suspended matter analysis method
JP5458258B2 (en) Suspended matter analysis method and suspended matter analysis system
Zhang et al. The use of ultrasonic arrays to characterize crack-like defects
EP3008506B1 (en) Molecular manipulation system and method
CN107356320B (en) pulse ultrasonic sound field detection device and method
JPS62500612A (en) Ultrasonic measurement method for solid concentration and particle size distribution
EP2223096B1 (en) Devices, methods and systems for measuring one or more characteristics of a suspension
CN103983549A (en) Method for measuring particle diameter and concentration based on ultrasonic pulsation principle
US9726590B2 (en) Suspended sediment meter
WO2019111802A1 (en) Fine bubble removing method and fine bubble removing device, and bubble diameter distribution measuring method and bubble diameter distribution measuring device
Richter et al. Polydisperse particle size characterization by ultrasonic attenuation spectroscopy for systems of diverse acoustic contrast in the large particle limit
CN105572076A (en) Terahertz spectrum measuring device based on scattering effect and measuring method thereof
JP5360391B2 (en) Particle measuring method and apparatus
Greenwood Attenuation measurements with ultrasonic diffraction grating show dependence upon particle size of slurry and viscosity of base liquid
CN107255511B (en) Disturbance-free calibration device and method for detection sensitivity of fiber grating sensor
JP6112025B2 (en) Data processing device for particle size distribution measurement, particle size distribution measuring device equipped with the same, data processing method for particle size distribution measurement, and data processing program for particle size distribution measurement
RU2469309C1 (en) Ultrasonic method of determining grain-size composition of particulates
RU132548U1 (en) FIRE PHOTOMETER
JPH11108822A (en) Method and device for measuring concentration
Fleckenstein et al. Modeling analysis of ultrasonic attenuation and angular scattering measurements of suspended particles
Jia et al. Characterization of pulsed ultrasound using optical detection in Raman-Nath regime
Rangarajan et al. Ultrasonic imaging using a computed point spread function
Szlaszynski et al. Short range pipe guided wave testing using SH0 plane wave imaging for improved quantification accuracy
JP2019070590A (en) Optical characteristic measuring device
Ingram Exploring the application of ultrasonic phased arrays for industrial process analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

R150 Certificate of patent or registration of utility model

Ref document number: 5277432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees